

RUN-TIME POWER
AND ENERGY
MANAGEMENT OF
MULTI- AND MANYCORE SYSTEMS

Dr Geoff Merrett

Tutorial on the Spectrum of Run-time Management for Modern and Next Generation Multi/Many-core Systems 30 September 2018 | ESWeek, Torino, Italy

Southampton Southampton

ECS/SOUTHAMPTON

University of Southampton

- ~25,000 students
- Top 100 universities worldwide (QS'19)
- Founding member of UK's Russell Group

School of ECS

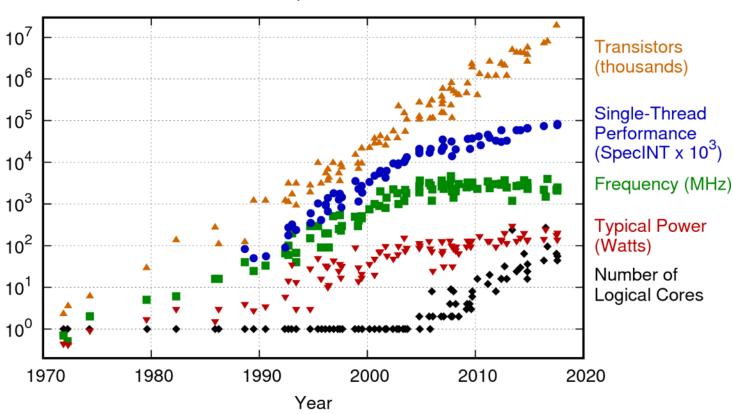
- ~1,500 students
- ~300 PhD research students
- ~110 academics/faculty
- Top 3 in UK for EEE
- 14 research groups/centres

THE PRIME PROJECT

"Enable the sustainability of many-core scaling by preventing the uncontrolled increase in energy consumption and unreliability through a step change in holistic design methods and cross-layer system optimisation."

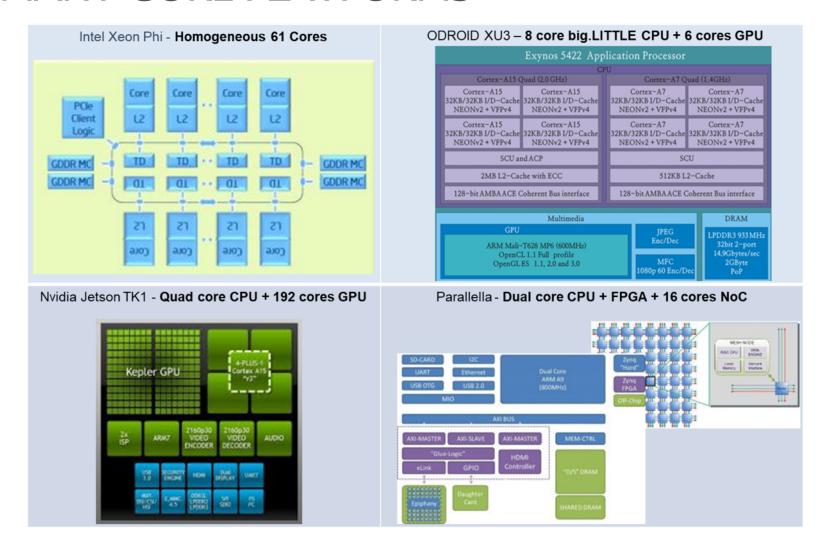
www.prime-project.org

MORE COMPUTE FOR THE SAME POWER

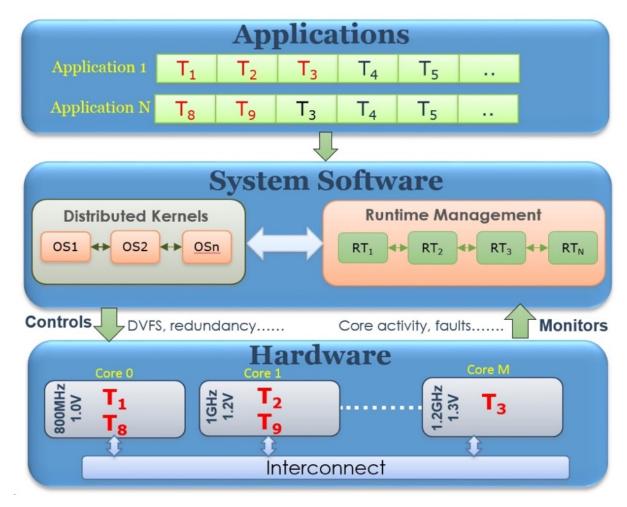

A "supercomputer in your hands", running 100s of cores with a battery lasting for a day

WE ARE MANY-CORE

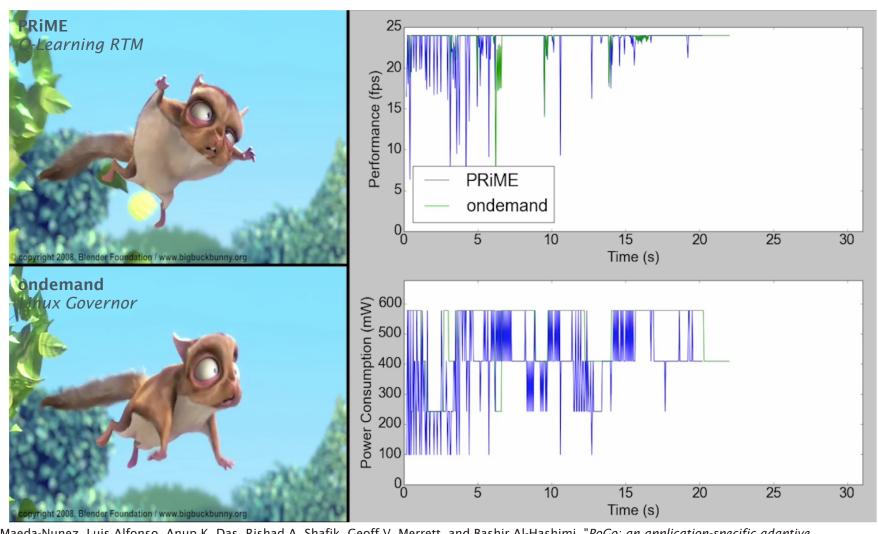
42 Years of Microprocessor Trend Data



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

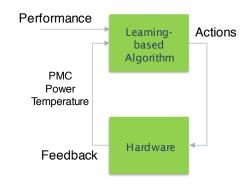

MANY-CORE PLATFORMS

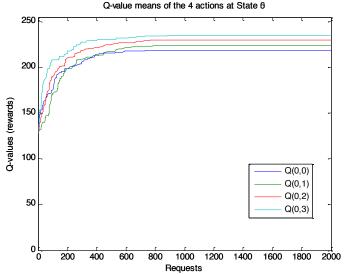
THE PRIME PROJECT


www.prime-project.org

RUNTIME POWER MANAGEMENT

Maeda-Nunez, Luis Alfonso, Anup K. Das, Rishad A. Shafik, Geoff V. Merrett, and Bashir Al-Hashimi. "*PoGo: an application-specific adaptive energy minimisation approach for embedded systems.*" **HiPEAC Workshop on Energy Efficiency with Heterogenous Computing**, 2015

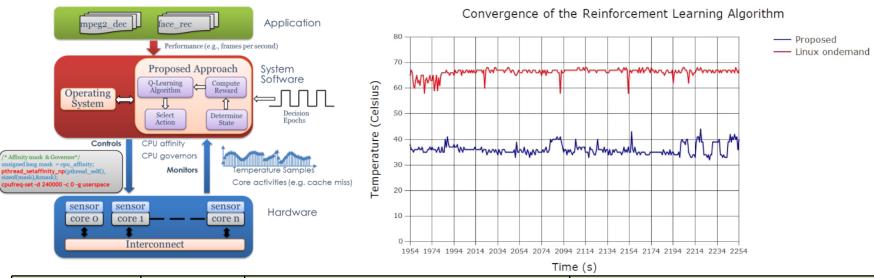



LEARNING OPTIMAL DVFS CHOICES

Reinforcement Learning

- Observes the current system state
- Selects an action (V-F pairs)
- Changes the state (workload)
- Leads to a payoff (reward/penalty)

	ACTIONS (Power Modes)				
STATES (Tasks)	P0	P1	P2	Р3	
WD0	128	128	128	128	
WD1	128	128	128	128	
WD2	128	128	128	128	
WD3	128	128	128	128	
WD4	128	128	128	128	
WD5	128	128	128	128	



MANAGING THERMAL (LIFETIME) RELIABILITY

Application	Data Set	Average Temperature (Celcius)			Peak Temperature (Celcius)		
Application	Data Sct	Linux	Ge et al.	Proposed	Linux	Ge et al.	Proposed
	set 1	69.2	52.6	38.6	71.5	63	60
tachyon	set 2	50.5	44.5	43.8	57.3	56.3	52
	set 3	50.8	44.7	41.6	57.8	54.5	48.8
	clip 1	36	34	34.2	42.7	41.3	39
mpeg2_dec	clip 2	35.6	34.4	34.2	42.3	42	39.3
	clip 3	34.3	34.4	34	43	39.7	44.3

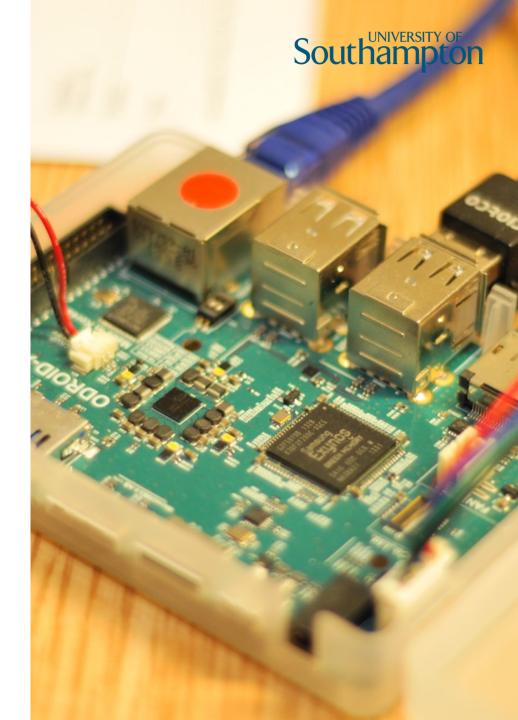
Average MTTF improvements: 5x (thermal aging); 4x (thermal cycling)

OVERVIEW

Applications

From single > sequential > concurrent execution

Offline Characterisation


 Can we improve RTM through offline characterisation?

Towards Many-Core

 How do RTM approaches scale with number of cores?

Novel Platforms

 Can our RTM approaches be applied to novel platforms?

RTMs and Application Workloads

From single > sequential > concurrent execution

QUALITY OF EXPERIENCE

- User cares about observable performance
 - Responsiveness, battery life, consistency, uninterrupted service
 - Doesn't really care about FLOPS, FPS, bandwidth, latency (QoS)
- Therefore, optimise for quality of user experience (QoE)
 - "good-enough" performance
 - Minimum energy usage

Bischoff, Alexander S. (2016) *User-experience-aware system optimisation for mobile systems*, **University of Southampton, Electronics and Computer Science, Doctoral Thesis**, 199pp.

Southampton Southampton

QUALITY OF EXPERIENCE

Example Scenario

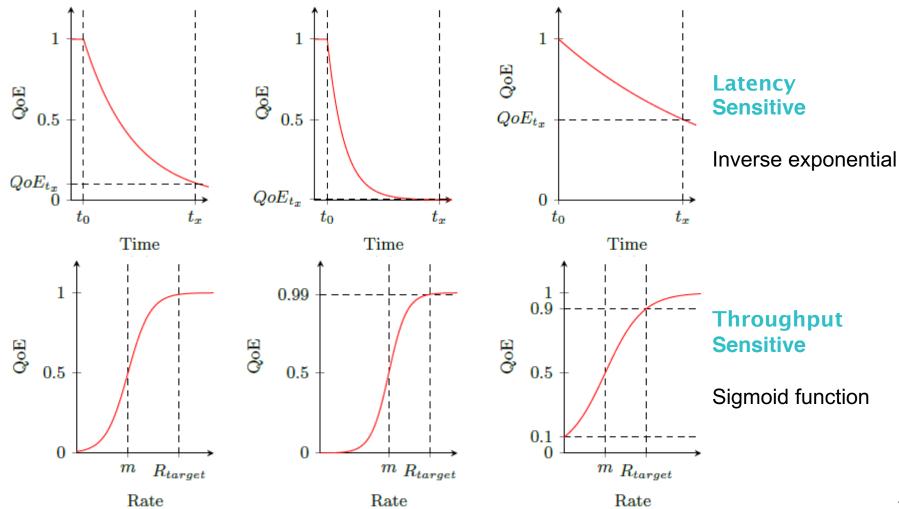
QUALITY OF EXPERIENCE

Workload Classification

Applications	Type of QoE
Audio	Throughput
Video	Throughput
Application Loading	Latency
Web Page Loading	Latency
Downloading a File	Latency
3D Gaming	Throughput
Word Processing	Latency

Delay of

<0.1 s appears instant, 1 s becomes noticeable 10 s become disruptive'


Types of QoE:

- Latency sensitive complete workload in short time period
- Throughput sensitive complete at minimum rate

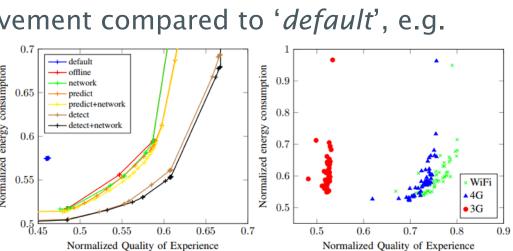
Southampton Southampton

QoE CHARACTERISTICS

Resource access time

variability

Normalized Quality of Experience


Resource access time

monitor

TUNING DPM/RTM PARAMETERS

- Tune governor parameters for the executing (interactive) workload
- Account for variability in access times and user input
- Prediction/detection dependent
- Energy saving/QoE improvement compared to 'default', e.g.
 - 13% energy saving
 - 27% QoE improvement
 - 9% energy + 15% QoE

Exynos-5422 A15/A7, Android 6.0 Google Chrome browser workloads Touch input emulation Network throttling (UL, DL, RTT latency)

User inputs to

interactive workloads

User input

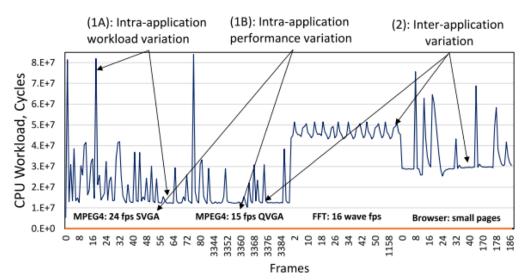
prediction or detection

online

Inelasticity analysis profiles

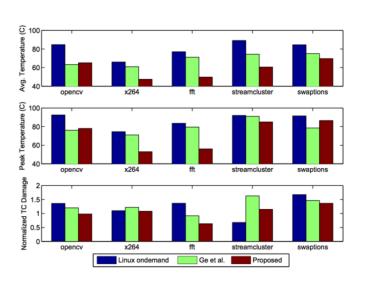
QoE/energy

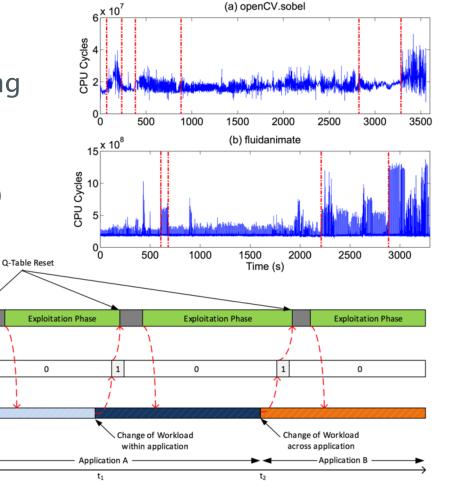
trade-off


DPM tuning configuration

EXECUTING MULTIPLE APPLICATIONS

- Workload and performance variation due to:
 - Changes within an application
 - Changing applications (sequential execution)


Overlapping applications (concurrent execution)

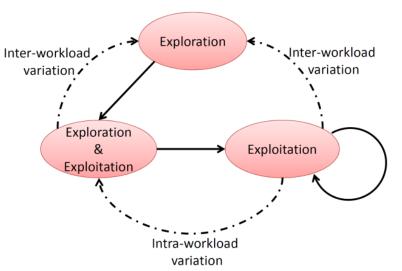


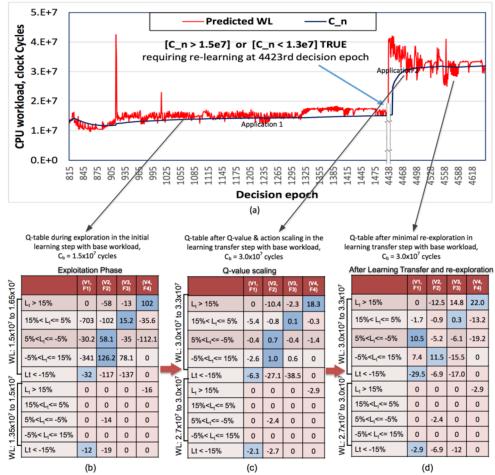
DETECTING WORKLOAD CHANGES

- Density ratio-based statistical divergence between overlapping sliding windows of CPU cycles
- Use this information to clear learning table (i.e. start afresh)

Q-learning

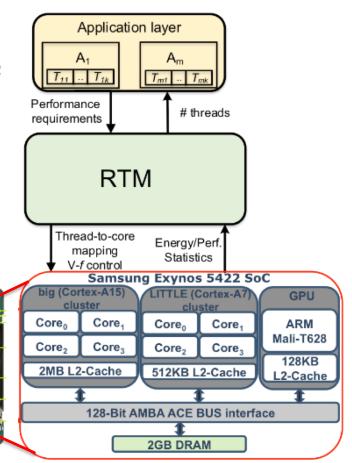
Change Detection


Application



TRANSFERING LEARNING

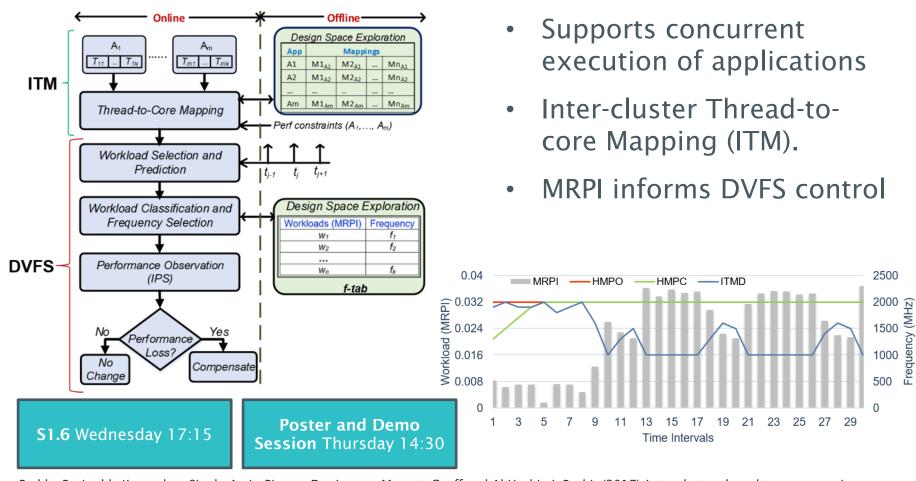
- Detect workload changes
- Transfer knowledge where possible
- Learn again fresh when not



RTM FOR CONCURRENT EXECUTION

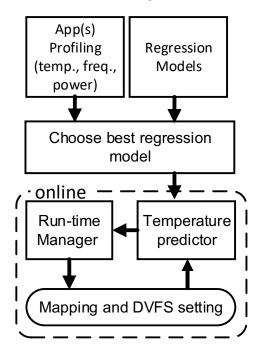
- Approaches so far instrument a single application executing at a time
- How can we manage multiple applications executing concurrently?

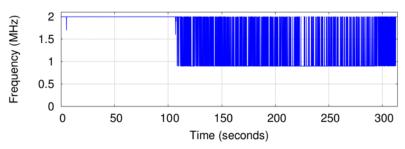
Online vs Offline


Can we improve RTM through offline characterisation?

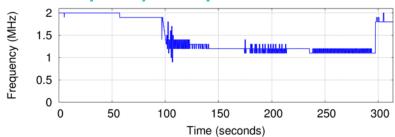
RTM FOR CONCURRENT EXECUTION

MRPI (Memory Reads Per Instruction)




MANAGING TEMPERATURE

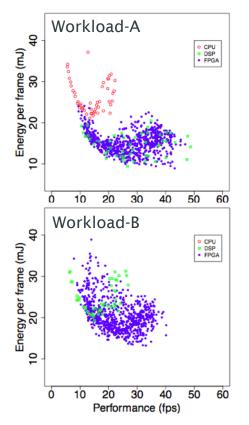
MRPI (Memory Reads Per Instruction)


- Aims to avoid frequency throttling at temperature threshold.
- Predicts temperature using a regression-based model

Core frequency without prediction

Core frequency with prediction

Can achieve a 10% improvement in energy and performance

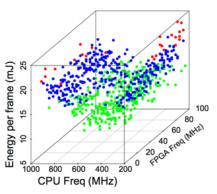

MODEL-BASED RTM: HETEROGENEITY

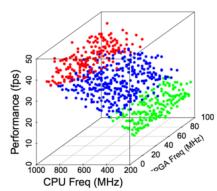
Heterogeneous Platforms

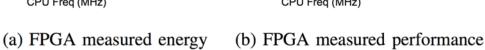
Task 2 Task 1 Task 3 **FPGA BUFFER OUTPUT BUFFER FPGA Filter** Display Decoder **CPU BUFFER OUTPUT BUFFER** DSP Filter **CPU Filter** VIDEO IN (a) Convolution filter implementation (d) Blurred (b) Original (c) Edge detected

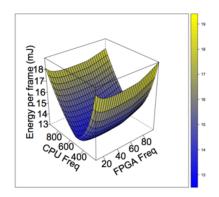
Run-time changes in:

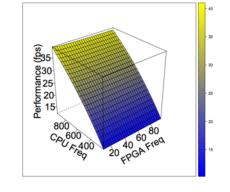
- Performance requirements
- Application workload changes

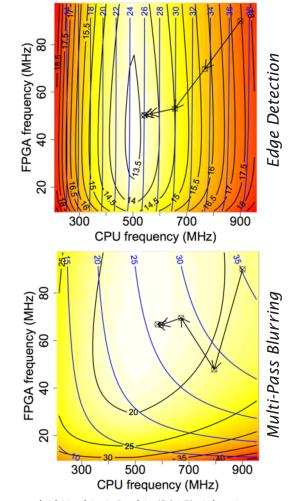




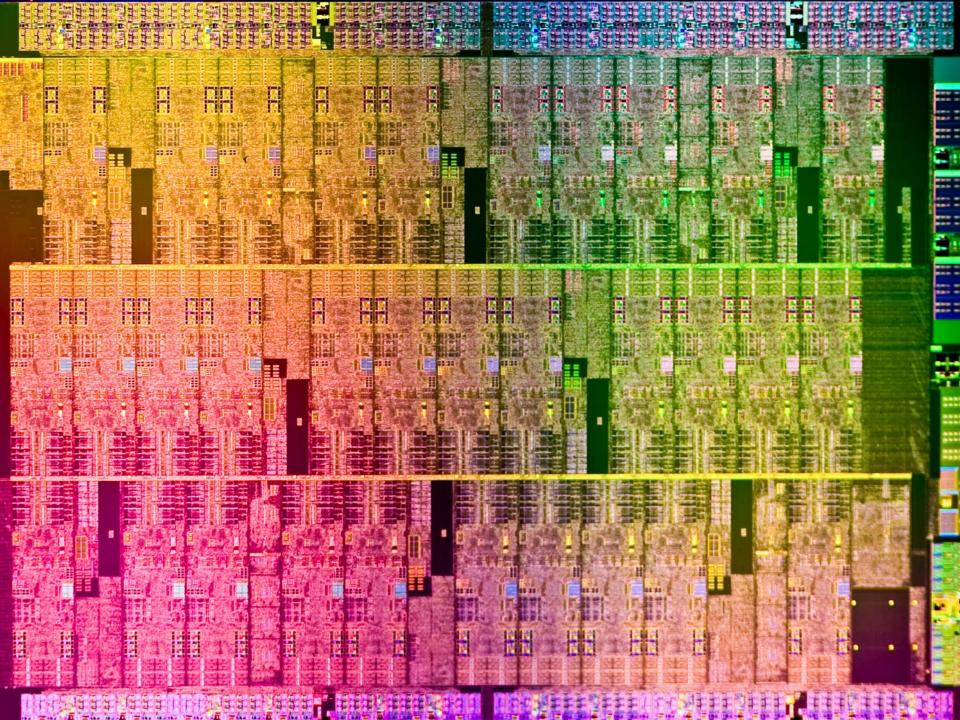



MODEL-BASED RTM: HETEROGENEITY


Heterogeneous Platforms

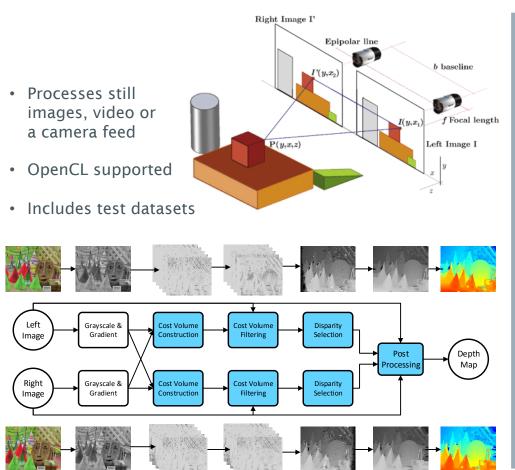


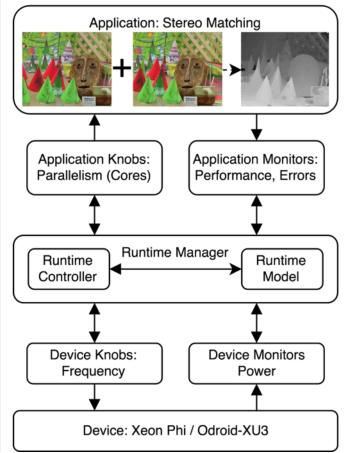
(c) FPGA modeled energy


(d) FPGA modeled performance

Towards Many-Core

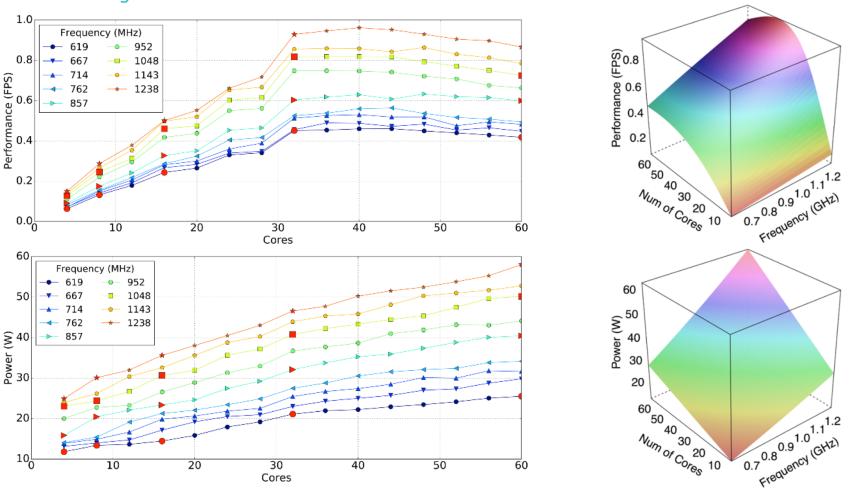
How do RTM approaches scale with number of cores?





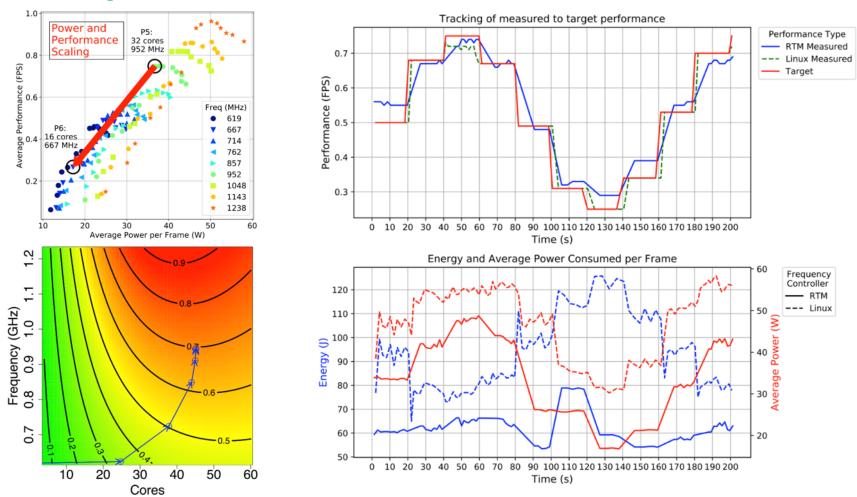
MODEL-BASED RTM

Stereo Matching Application: http://github.com/PRiME-project/PRiMEStereoMatch



MODEL-BASED RTM

Model Building


Leech, Charles, Vala, Charan Kumar, Acharyya, Amit, Yang, Sheng, Merrett, Geoffrey and Al-Hashimi, Bashir (2017) Run-time performance and power optimization of parallel disparity estimation on many-core platforms ACM Transactions on Embedded Computing Systems

MODEL-BASED RTM

Runtime Management

Leech, Charles, Vala, Charan Kumar, Acharyya, Amit, Yang, Sheng, Merrett, Geoffrey and Al-Hashimi, Bashir (2017) Run-time performance and power optimization of parallel disparity estimation on many-core platforms ACM Transactions on Embedded Computing Systems

ENERGY RTM ON HPC SYSTEMS

- Applications targeted for HPC are usually multi-threaded
- Modern HPC often based on Non-Uniform Memory Access (NUMA) architecture
- Our Approach:
 - Platform characterized offline
 - Workload estimated based on memory-intensity, thread synchronization contention, NUMA latency
 - V-f determined using binning, while accounting for contention due to concurrent execution

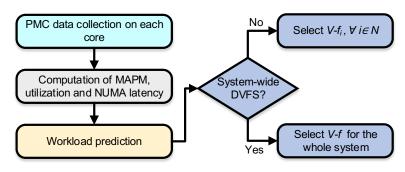
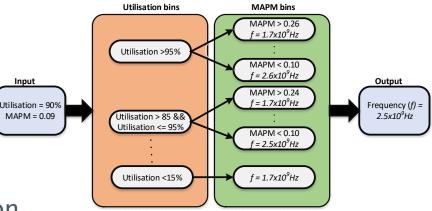
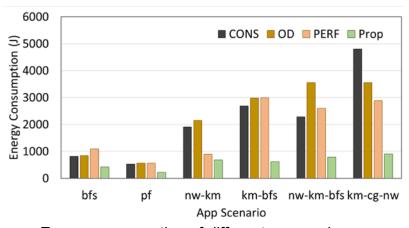
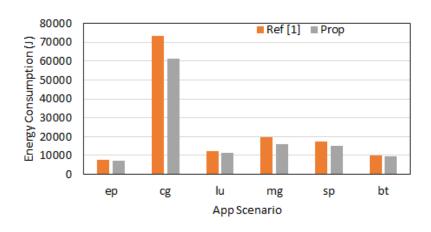



Illustration of various steps in the proposed approach




An example of *V-f* setting selection using binning-based approach

ENERGY RTM ON HPC SYSTEMS

Energy consumption of different approaches

Comparison of presented approach with Sundriyal et al

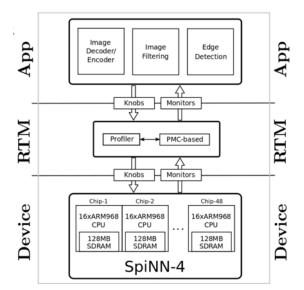
- Xeon E5-2630 (12 cores, 24 threads) and Xeon Phi 7620P (61 cores, 244 threads); NAS and Rodinia benchmarks
- Proposed (Prop) approach achieves energy savings of up to 81% (Xeon) and 61% (Phi) compared to Linux's governors
- Outperforms Sundriyal et al. by 10% in energy efficiency and 3.7% in performance

RTM of Novel Platforms

Can our RTM approaches be applied to novel platforms?

Southampton Southampton

RTM ON "SPINNAKER"


- Implemented 4 RTMs
 - User (G1): user-defined static f
 - On-demand (G2): Highest f when CPU load is high, lowest when it's low
 - Conservative (G3): Increase or decrease
 f by fixed step according to load.
 - Proposed (G4): As G3, but using a nonlinear f step

		Governor				
App.	Res.	G1	G2	G3	G4	
	vga	955	976	976	975	
A1	svga	1490	1522	1522	1523	
	xga	2444	2498	2498	2498	
	vga	2670	3080	3080	3080	
A2	svga	4408	4737	4737	4737	
	xga	7114	7342	7342	7342	
	vga	437	454	454	451	
A3	svga	674	696	696	697	
	xga	1111	1150	1150	1150	

		Governor				
App.	Res.	G1	G2	G3	G4	
	vga	2.76	1.98	2.11	2.27	
A1	svga	6.40	5.06	5.05	5.12	
	xga	17.79	13.74	13.82	13.74	
	vga	8.24	6.84	7.16	7.06	
A2	svga	22.20	16.46	17.02	16.13	
	xga	58.72	39.29	40.95	39.29	
	vga	9.41	7.16	7.17	6.62	
A3	svga	17.07	13.01	13.08	11.90	
	xga	48.30	37.19	36.87	33.92	

Timing (ms)

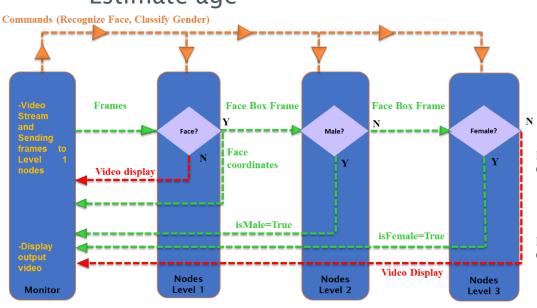
Energy Consumption (J)

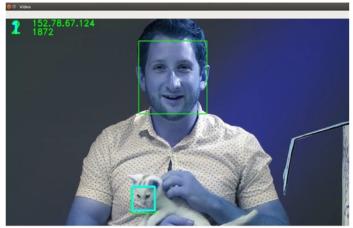
RTM ON THE "GRACEFUL" PLATFORM

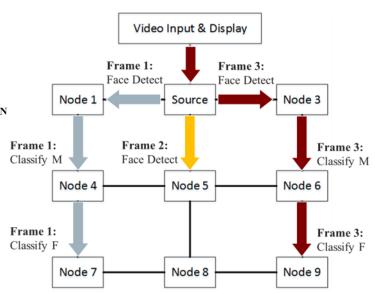
Approach

- Opportunity for Hierarchical RTM
 - Local RTM (DVFS, local mapping etc) on each node
 - Higher level 'strategic' RTM (mapping within cluster, migration, load balancing etc) in clusters
 - Potential for a third level negotiating between clusters

M		М	
м		М	






RTM ON THE "GRACEFUL" PLATFORM

Example Application

- Face/Object Detection/Classification
- Uses OpenCV classifiers
 - Detect faces/animals/objects
 - Classify gender
 - Estimate age

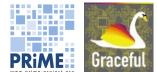
OPEN SOURCE TOOLS

POWMON: STABLE POWER MODELLING

www.powmon.ecs.soton.ac.uk

Our stable approach achieves a low average error and narrow error distribution compared to existing techniques.

[a] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin, "Power-performance modeling on asymmetric multi-cores," CASES '13.
[b] M. Walker et al., "Run-time power estimation for mobile and embedded asymmetric multi-core cpus," HIPEAC Workshop Energy Efficiency with Hetero. Comp. 2015
[c] S. K. Rethinagiri et al., "System-level power estimation tool for embedded processor based platforms," RAPIDO '14. New York, 2014.
[d], [e] R. Rodrigues et al, "A study on the use of performance counters to estimate power in microprocessors," IEEE TCAS II, vol. 60, no. 12, pp. 882–886, Dec 2013.


M. J. Walker *et al.*, "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 1, pp. 106-119, Jan. 2017.

Southampton Southampton

POWMON: METHODOLOGY

www.powmon.ecs.soton.ac.uk 6. Uses 5. Validate OS Run-time Run workloads K-fold cross validation management $R^2:>0.99$ @ different DVFS levels Reference for research Error: 2.8 - 3.7%gem5 add-on 39 workloads used: MiBench. LMBench, Roy Longbottom, ParMiBench and ALPBench Predicted 3. Choose PMCs Workloads Hierarchical cluster analysis, Correlation matrix analysis, Exhaustive search, etc. 4. Build Model OLS multiple regression Considers collinearity and heteroscedasticity "sensible" equation **ODROID-XU3** 2. Record Exynos-5422 **PMCs** 4x Cortex-A7 Power, Voltage, 4x Cortex-A5 Temperature, etc.

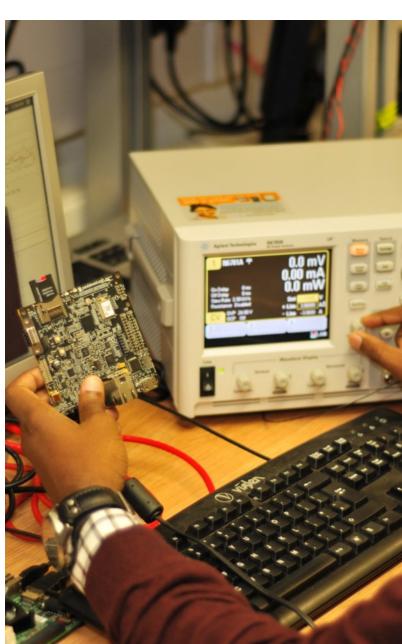


PRIME RTM FRAMEWORK

https://github.com/PRiME-project/PRiME-Framework

Plat.	Const.	Space	Type	For	No.
		disc	GOVERNER	A7 cluster	1
		disc	GOVERNER	A15 cluster	1
		disc	FREQ	A7 cluster	1
	knob	disc	FREQ	A15 cluster	1
	KHOD	disc	FREQ_EN	GPU DVFS	1
		disc	FREQ	GPU	1
E		disc	PMC_CTRL	A7 cores	16
id->		disc	PMC_CTRL	A15 cores	24
Odroid-XU3		cont	POW	Clusters, RAM, GPU, SoC	5
_		cont	TEMP	A15 cores	4
		cont	TEMP	GPU	1
	mon	disc	CYCLE	A7 cores	4
		disc	CYCLE	A15 cores	4
		disc	PMC	A7 cores	16
		disc	PMC	A15 cores	24
	knob	cont	VOLT	A9 cluster, peripherals	4
>	KNOD	cont	VOLT	FPGA, peripherals	3
Cyclone V		cont	POW	A9 cluster, peripherals	5
Š	mon	cont	POW	FPGA, peripherals	4
		cont	POW	SoC	1

Application	Name	Const.	Space	Allowed/target values
	Iterations	knob	disc	$\mathbb{N} \in [1, \infty)$
	Data type	knob	disc	{float,double}
Jacobi	Device type	knob	disc	{CPU, GPU/FPGA}
	Throughput	mon	cont	$\mathbb{R} \in [10, \infty)$
	Error	mon	cont	$\mathbb{R} \in \left(-\infty, 1e^{-12}\right]$
Video decoder	Throughput	mon	cont	$\mathbb{R} \in [25,\infty)$
Whetstone	Threads	knob	disc	$\mathbb{N} \in [1, \infty)$
Wiletstone	Throughput	mon	cont	$\mathbb{R} \in [2.5, \infty)$


CONCLUSIONS

Runtime Power Management

- Single > multiple > concurrent applications
- Online vs offline+online approaches
- >> Number of cores
- COTS > Novel multi-/many-core platforms
- Homogeneous vs Heterogeneous platforms

Tools and Support www.prime-project.org

- PowMon power estimation <u>www.powmon.ecs.soton.ac.uk</u> www.gemstone.ecs.soton.ac.uk
- PRIME RTM Framework
 github.com/PRiME-project/PRiME-Framework
- PRiMEStereoMatch application github.com/PRiME-project/PRiMEStereoMatch

Southampton

Dr Geoff V Merrett

Associate Professor | Head of Centre

Centre for IoT and Pervasive Systems

Tel: +44 (0)23 8059 2775 Email: gvm@ecs.soton.ac.uk | www.geoffmerrett.co.uk Highfield Campus, Southampton, SO17 1BJ UK