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1 Introduction

The design of modern ships capable of achieving complex manoeuvres and handle dynamic ocean en-
vironment requires a precise understanding of the flow around hulls, propellers and control surfaces.
Computational fluid dynamics already allows complex simulations to be performed thanks to conven-
tional mesh techniques. Moving, sliding and deforming grids allow for some dynamic simulation of
moving bodies (Toxopeus and Bhawsinka, 2016). However, when considering more complex motions,
e.g. 6 degrees of freedom of several bodies, the combination of previously mentioned conventional tech-
niques is at its limit. The overset grid method (or overlapping grid method), allows large and arbitrary
relative motion of bodies by overlapping several meshes. The overset method was first designed for the
aerospace industry (Benek et al., 1985) but is now also used for maritime applications like ship motions
(Carrica et al., 2013), submarine maneuvers (Martin et al., 2015), etc.

This paper presents an initial implementation of overset using the two libraries Suggar++ and DiRTlib
to compute the domain connectivity information (DCI). Manufactured solutions and analytical solutions
are used in order to quantitatively assess the discretisation errors.

The paper is organised as follows: section 2 presents the overset approach and its nomenclature.
Details of the implementation are introduced in section 3. Section 4 describes the test cases used for the
study. Results are presented in section 5 and conclusions are given in section 6.

2 The overset approach

The overset method, sometimes called chimera technique or overlapping grid method, works by transfer-
ring field data between meshes and by ignoring certain cells which are outside the domain or overlapped
by another mesh. Each cell has a given geometrical status and solver status which can change during the
calculation:

• Hole cell: a field cell that is outside the boundary of the domain or not used because it is overlapped
by another mesh. It is ignored when solving the transport equations (ignore status).

• Fringe cell: a fringe cell is a cell adjacent to a hole or at the boundary of an embedded grid. It
will act as boundary cell for its grid and get its field value from the interpolation of donor cells of
another mesh (interpolated status).

• Orphan cell: an orphan cell is a fringe cell that does not have an acceptable donor to compute its
interpolated value. Its field value is usually then computed as the average of its neighbouring cells.

• In cell: every cell that is an active solution cell and not a hole, a fringe nor an orphan cell is called
in cell. The equations are solved only for these cells. No particular treatment related with the grid
assembly is needed (solved status).

The domain connectivity information (DCI) contains the cell status information sometimes associated
with the interpolation weights needed to compute fringe values from donor cells. When grids are moving
or being modified, the DCI needs to be recomputed. From the DCI, the flow solver will modify its
equations and matrix system to ignore hole cells, get interpolation data on fringe and orphan cells and
solve normally in cells.

3 Overset implementation

ReFRESCO (refresco.org) is a community-based open-usage CFD code for the maritime world.
It solves multiphase incompressible flows using the Navier-Stokes equations, complemented with tur-
bulence models, cavitation models and volume-fraction transport equations for different phases. The
equations are discretised using a finite-volume approach with cell-centered collocated variables.

refresco.org


The implementation of the overset conducted here is using two external libraries called Suggar++
(Noack and Boger, 2009) and DiRTlib (Noack, 2005). Suggar++ computes the DCI and interpolation
weights from the grid geometry and DiRTlib ease the treatment and use of the output from Suggar++. In
this first implementation, Suggar++ provides cell status information (fringe/hole/orphan/in cells), donor
associated to each fringe cell as as well as the interpolation weights via a .dci file. DiRTlib then pro-
vides to the flow solver an IBLANK array, an integer field data where the status of each cell is defined.
Each outer loop, fringe cells get interpolated data from their donor cells currently using a first order
inverse distance scheme provided by Suggar++. The coupling with the flow solver is done explicitly.
Interpolated values are set at the right hand side of the system, and a unitary diagonal is applied on
the lines corresponding to the fringe cells. Brunswig et al., 2010 compared several coupling approaches
for overset method, and concluded that an explicit coupling needs more outer loops to converge to the
same level as an implicit one and is more challenging to make mass conservative. However an implicit
coupling demands more modifications on the flow solver code, hence an explicit method has been imple-
mented as a first approach. When the continuity equation is used, the SIMPLE algorithm is employed to
correct the pressure field. In this method, an estimated pressure is used to solve the momentum equation,
then a pressure correction is solved to compensate for mass imbalance. In the overset explicit coupling
implemented here, the pressure on the fringe cells is known (from interpolated data from the donor cells),
and no pressure correction is performed on these cells. To implement this, a unitary diagonal is set for
each fringe cells in the pressure correction matrix, together with a value of zero in the right hand side,
and therefore the pressure field on the fringe cells is directly interpolated from its donor cells. Several
methods have been described in Völkner et al., 2017 and Hadžić, 2005 to enforce mass conservation on
the fringe of the overlapping grids, but none of them are used here.

4 Test cases definition

Background Ni Foreground N f
i

G1 32x16 512 8x4 32
G2 64x32 2048 16x8 128
G3 128x64 8192 32x16 512
G4 256x128 32768 64x32 2048
G5 512x256 131072 128x64 8192

Table 1: Details of the Cartesian grids used for the
two test cases and cell count (Ni)

The overset implementation have been tested on
three different analytical/manufactured 2D cases:
Advection only case, Advection-diffusion case and
Poiseuille flow case. Only the latter two will be
presented here. The same five grid assemblies
were used on the two test cases. It consists of a
background grid and a foreground one, both be-
ing 2D Cartesian meshes with a 2:1 ratio. The
foreground grid is twice smaller in both direc-
tion compared to the background grid and is posi-
tioned in the middle of the background grid. The
cell size in between the two grids is the same, hence in the overlapping region the two grids are perfectly
aligned, leading to a one-to-one match between cells in this area. Table 1 shows the different cell counts.

(a) Background grid (b) Foreground grid

Fig. 1: G2 grids and DCI colored thanks to the IBLANK array. The overlap region is composed of five
“layers” of cells.



Figure 1 shows the grid assembly, which has been precomputed by Suggar++. Two layers of fringe
cells are used and one layer of in cells is defined between the fringe cells of the background and fore-
ground grids. This leads to an overlap of five cells between the two grids of the assembly. Cells in the
middle part of the background mesh, which overlap the foreground one, are hole cells. Each fringe cell
has one donor from the other grid. Such grid assembly was designed as a first step to remove the influence
an interpolation scheme can have on results.

4.1 Advection-diffusion case
The Advection-diffusion case was generated using a manufactured solution. To construct a manufactured
solution case, a field solution is defined. Here, the advection of a Gaussian profile in a circular velocity
field was chosen (Eq. 3).

∇ · (ρUφ) − ∇ · (µ∇φ) = q . (1)

Ux = y , Uy = 1 − x . (2)

φ(r) = e−2r sin2(πr) , r =
√

(1 − x)2 + y2 . (3)

Eq. 1 is being solved with the velocity field enforced with Eq. 2. The source term q is chosen in
order to have φ (Eq. 3) as the analytical solution of the advection-diffusion equation (Eq. 1). This method
allows to construct test cases where the exact analytical solution is known. The exact solution is enforced
at the boundary thanks to Dirichlet boundary conditions. The steady computation is stopped when the
infinity norm of the residuals is below 10−12. A QUICK scheme is used for the discretisation of the
convective fluxes.

4.2 Poiseuille flow test case
In the Poiseuille flow case an analytical solution is known. The flow is bounded between two walls (top
and bottom) and driven by an axial pressure gradient. The analytical solution is presented in Eq. 4 with
L the length of the channel (X direction), and h the distance between the walls.

Ux (y) =
Ph2

2µ

(
1 −

y2

h2

)
, Uy = 0 ,

∂p
∂x
= −P , p (x) = −P (x − L) . (4)

In this test case the momentum equation and the pressure correction via the SIMPLE method are
solved. The Reynolds number, based on the height of the channel, is Reh = 10.

At the inlet, the analytical velocity profile is set and the outlet the pressure is enforced. The top and
bottom of the domain uses non slip wall boundary conditions. Convergence is ensured by an iterative
criterion of 10−12 for the infinity norm of the residuals. A second order central difference scheme is used
for the discretisation of convective fluxes.

5 Results and discussion Grid ‖φos − φexact‖∞ order ‖φ − φexact‖∞ order
G1 0.787738275518 · 10−02 0.787738275519 · 10−02

G2 0.225550008727 · 10−02 1.80 0.225550008725 · 10−02 1.80
G3 0.590247617471 · 10−03 1.93 0.590247617400 · 10−03 1.93
G4 0.149722446897 · 10−03 1.98 0.149722446791 · 10−03 1.98
G5 0.375999643849 · 10−04 1.99 0.375999643008 · 10−04 1.99

Table 2: Advection-diffusion convergence with (left) and with-
out (right) overset. Similar orders of convergence and errors
are observed.

For both test cases, simulations with
overset as well as simulations done us-
ing only the background grid were per-
formed (without overset). Comparison
with the exact analytical solution is also
available.

From Table 2 one can conclude that
the Advection-diffusion case is converg-
ing when refining the grid toward the exact analytical solution with an order 2. The level of the error is
also similar to the simulation without overset (right column of the table). The error distribution at the
end of the computation can be visualized on Figure 2, no particular artefact due to the overset assembly
is visible: the error does not increase around the edges of the foreground grid. Figure 3 presents the dif-
ferences between the simulations with and without overset, showing that the difference is below 10−10



and are slightly impacted by the overset assembly. An Advection only case was also run and yielded very
similar results to this Advection-diffusion case.

(a) G3 (b) G5

Fig. 2: Difference between exact solution and overset simulation for the Advection-diffusion case. The
error reduces when refining the grid and no effect of the overset assembly is visible.

Fig. 3: Difference between with and without overset for the finest grid (G5) for the Advection-diffusion
case. The difference is slightly impacted by the overset assembly.

‖Pos − Pexact‖∞ order ‖Uos − Uexact‖∞ order ‖P − Pexact‖∞ order ‖U − Uexact‖∞ order
G1 0.570951568 · 10−01 0.106355136 · 10−01 0.570951568 · 10−01 0.106355136 · 10−01

G2 0.221288355 · 10−01 1.37 0.338702389 · 10−02 1.65 0.221290412 · 10−01 1.37 0.338700864 · 10−02 1.65
G3 0.934912126 · 10−02 1.24 0.944148824 · 10−03 1.84 0.934912218 · 10−02 1.24 0.944148756 · 10−03 1.84
G4 0.424055832 · 10−02 1.14 0.248345462 · 10−03 1.93 0.424054967 · 10−02 1.14 0.248345483 · 10−03 1.93
G5 0.201178414 · 10−02 1.08 0.637460767 · 10−04 1.96 0.201182292 · 10−02 1.08 0.637460542 · 10−04 1.96

Table 3: Poiseuille case convergence with (left) and without (right) overset. Similar orders of convergence
and errors are observed for the two sets of simulations.

For the Poiseuille flow case, Table 3 shows that the order of convergence is second order for the
velocity and first order for the pressure. Similarly to the Advection-diffusion case, comparable errors and
thus convergence orders are observed when running a simulation without overset. Figure 4 displays the
pressure difference between the exact solution and the overset simulation. The pressure being enforced
at the outflow the error is null at that location. No variation of the error is visible around the boundary
of the foreground grid. However, when comparing simulations with and without overset, some effects of
the overlapping method are visible. Figure 5a shows the difference in pressure between simulations with
and without overset, and a pressure variation is observed close to the inlet of the foreground mesh. The
differences between the two simulations are higher in the foreground mesh when compared to the rest
of the domain. Since pressure and momentum are coupled (via the SIMPLE method), a similar effect
is visible on Figure 5b presenting the velocity difference between overset and non overset simulation.
As presented in section 3, no particular treatment is being done at the fringe of overlapping grids to



account for pressure correction. Another way of quantifying the error introduced by the overset mesh
method is by assessing the mass fluxes difference between the inflow and outflow. Figure 6 presents the
mass imbalance with and without overset for all grids. For both set of simulations, the mass imbalance
decreases when refining the grids, going down to machine accuracy for the non overset simulations.
Three to four orders of magnitude are however noticeable between the two sets of simulations. Figure 7
shows residuals convergence with and without overset simulations. Some oscillations are observed for
the overset simulation, this is related to the under relaxation and the explicit coupling used. One can also
note that the overset simulation does not converge slower than the simulation without overset.

(a) G3 (b) G5

Fig. 4: Pressure error for the overset simulation of the Poiseuille flow. The error is minimal at the outflow
where it is enforced, and no effect of the overset method is visible.

(a) Pressure difference (b) Velocity difference

Fig. 5: Pressure (left) and velocity (right) differences between simulations with and without overset for
grid G2 (Poiseuille case). A pressure variation at the boundary of the foreground mesh leading to a
velocity variation is visible.

6 Concluding remarks

An initial explicit overset implementation has been tested and results from two different cases presented
here. The use of manufactured and analytical solutions permitted the quantitative assessment of the errors
involved, and check the implementation for bugs. Convergence towards the exact solution is not affected
by the use of the overset method. The difference between simulations with and without overset is below
10−10 for the Advection-diffusion case and below 10−7 for the Poiseuille case. When solving the conti-
nuity equation, however, pressure variations at the boundary of the overlapping area are introduced. This
leads to a mass imbalance between the inflow and outflow. Quantitatively, for the Poiseuille test case, the
mass imbalance introduced is of about four orders of magnitude higher when using overset compared to
simulations without overset. To overcome this, other CFD codes usually use methods to compensate for
the loss or gain of mass at the grid interfaces (Völkner et al., 2017). Future developments will focus on



0 5 10 15
hi/h5 =

√
N5/Ni

10−17

10−14

10−11

10−8

|Q
O
u
t
−
Q
I
n
|

Overset no Overset

Fig. 6: Mass flux differences between the
inflow and outflow of the domain for the
Poiseuille case.
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Fig. 7: Residual convergence for the finest grid (G5) for the
Poiseuille test case. Oscillations related to the under relax-
ation are visible for the overset simulation.

various aspects. Different methods available in the literature to correct mass imbalance will be assessed.
The impact of the interpolation scheme used for fringe field data will be examined. Finally, the influence
of an implicit coupling toward mass conservation will also be investigated.
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