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Abstract
An elastic wedge whose thickness varies with axial position according to a power law can act as an absorber
of incident flexural waves and thus as an anechoic termination. Ideally, if the wedge is tapered down to
zero thickness, the incident wave slows down to zero propagation velocity at the edge, thus never reaching
the boundary, and, so, not undergoing reflection. In practice, however, a small truncation of the wedge
always occurs, due to manufacturing restrictions, leading to non-zero thickness at the edge, so that some
reflection does occur. In this paper, alternative thickness profiles are examined, such as the power-cosine, the
exponential and the Gaussian profile, the latter two inevitably having a truncation within a finite length. A
method based on the WKB approximation is used in order to calculate the reflection coefficient of a structure
comprising a wedge connected to a uniform plate. Higher-order WKB approximations are also applied.
Results are compared with those from a Finite Element analysis.

1 Introduction

In various engineering applications, vibration damping is of great importance. A novel idea for attenu-
ating structural vibrations was proposed by Mironov in [1]. In that article, it was theoretically predicted
that a wedge-like plate which tapers according to a quadratic law down to zero thickness, undergoing one-
dimensional bending, will cause incident waves to slow down to zero propagating velocity at the vicinity of
the vanishing free edge; therefore, the waves will not reach the boundary and they will not be reflected. The
energy carried by the waves will be dissipated by the arbitrarily weak damping of the material of the structure
at the region near the free edge. This phenomenon has come to be known as the ‘acoustic black hole’ effect.
It can be shown with the same type of analysis as the one carried out in [1] that this theoretical result holds
for any non-uniform plate with a power-law thickness profile of order greater than or equal to two, that is,
with thickness varying as hp = h0 (1− x/x0)n, where h0 is the thickness at the input end of the wedge
and x0 is the length of the wedge, the point x = x0 corresponding to the edge of vanishing thickness, as
depicted in Figure 1. The same qualitative conclusions hold for a beam of constant width, since the equation
of motion of such a system is similar to that describing one-dimensional bending waves in a plate.

It was also demonstrated in [1] that even a small truncation at the edge of the plate, which inevitably occurs
in practice due to manufacturing restrictions, introduces considerable reflection. In order to overcome this
problem, Krylov and Tilman proposed applying thin layers of viscoelastic material on the sides of the wedge
[2]. It was theoretically predicted in that article that the use of such damping layers greatly reduces the
reflection from the truncated wedge, thus enhancing the damping effect due to the tapering geometry. This
idea has been further elaborated on, both in terms of mathematical modelling and experimentally in a number
of articles, as has been reviewed in [3].

The wedges examined in [1] and [2] are considered to be driven internally, that is, an incident flexural wave
originating inside the wedge is travelling towards the free edge. Therefore, this approach only accounts
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Figure 1: Elastic wedge of power-law thickness profile, ideally tapered down to zero thickness, terminating
a uniform plate.

for reflection due to the edge. In practice, however, a wedge usually forms the termination of a uniform
waveguide, so that there is an additional source of reflection due to the junction of the uniform and non-
uniform parts of the system. Such composite systems have been examined in the literature using different
mathematical modelling approaches. In [4], a rectangular uniform plate with one of its edges terminated as
a power-law wedge is examined, using a matrix formulation for the various boundary conditions, including
the continuity and equilibrium conditions at the junction of the uniform plate with the wedge. The vertical
displacement in the wedge is represented by an approximate analytical solution of the two-dimensional
equation of motion, so that oblique incidence is also accounted for. The analysis focuses on driving-point
and transfer mobility. A numerical solution of the one-dimensional flexural wave equation is implemented in
[5], where the impedance matrix method is employed for the formulation of the matrix equation to be solved
numerically, thus yielding the reflection coefficient for a wave travelling towards the wedge from the uniform
part. Yet another methodology was presented more recently in [6], where a wavelet expansion is used for
the vertical displacement of the wedge, giving good correspondence with measurements. In all three of these
articles, mathematical models for thin damping layers are included.

As regards mathematical models which are based on an analytical representation of the displacement field
in the wedge, it is the first-order WKB approximation that is usually implicitly used in the literature. Such
is the case in [1], as well as in [2], where it is referred to as the geometrical acoustics approximation, and in
[4]. In the case where the reflection only due to the free end is considered, as in [1] and [2], the accuracy
of the approximation is not easily assessed by comparison with experimental results. However, theoretically
predicted results have been compared with experimental ones for example in [4], where the mathematical
model includes the effect of the junction to the flexural wave. Even though the authors recognise qualitatively
similar trends and some quantitative correspondence of the predicted and measured resonance frequencies in
parts of the spectrum in that study, the use of different boundary conditions for the mathematical model and
the experiment do not allow for a valid comparison between the two.

The validity of the WKB method is linked to a set of conditions that need to be satisfied so that the solution is
an asymptotic solution to the differential equation under study [7]. Furthermore, an additional condition has
to be satisfied, which is different for different orders of approximation, so that the truncation of the infinite-
order solution up to a term of finite order form a valid approximation. In the literature of non-uniform flexural
waveguides, for example in [1] and [2], only one of the validity conditions is typically used, which can be
expressed as the requirement that the relative change of the wavenumber within the length of the order of a
wavelength be negligible, usually expressed mathematically as∣∣∣∣ k′k2

∣∣∣∣� 1, (1)



where k(x, ω) is the space- and frequency-dependent wavenumber function within the waveguide and the
prime denotes differentiation with respect to the spatial coordinate x. In [8] and [9], the quantity in the left
side of condition (1) is used as a means of assessing the performance of a wedge in terms of reflection in
correlation with the reflection coefficient predicted with a Finite Element model.

In the present article, an analytical method is used to calculate the reflection coefficient from a wedge driven
from a semi-infinite uniform plate. It is shown that the usually employed first-order WKB approximation
may give results that are significantly divergent from those obtained with a Finite Element model. Moreover,
it is demonstrated that higher-order approximations may greatly improve the analytical prediction of the
reflection coefficient.

Alternative profiles for the thickness variation may also be used, which still manifest the effect of suppressed
reflection due to the decrease of propagation velocity towards the tapering edge of the non-uniform plate. An
exponential profile with thickness varying as he = h0e

−βx, with β > 0, is considered, which forms the limit
of a power-law profile with fixed length and maximum and minimum thickness as the order of the power
tends to infinity, that is, limn→∞ hp(n) = he, where hp = h0 (1− x/x0)n is the power-law profile of order
n. An exponential wedge of finite length inevitably has a truncated edge, which does not pose a restriction to
real applications, since the ideal taper of zero edge thickness is practically unrealisable. It can also be shown
that the modulus of the inner reflection coefficient of the exponential wedge is smaller than any finite-length
power-law wedge of the same dimensions, that is, the exponential produces less reflection due to truncation.
Therefore, the exponential profile may be considered optimal in terms of inner reflection within the family
of power-law thickness profiles. A practical disadvantage of the exponential wedge is that it becomes much
thinner than a power-law profile before the edge, so that it is much acuter and thus harder to manufacture
and more prone to damage.

In a wedge connected to a uniform plate, apart from the truncated edge, the junction of the two parts also
introduces reflection, due to discontinuity of slope. Therefore, there is motivation to search for thickness
profiles whose slope starts from zero, so that they may be smoothly connected to a constant profile. It was
presented in [2] that a wedge with a sinusoidal thickness profile raised to a power equal to or greater than
two also leads to propagation velocity which tends to zero towards the edge, if the wedge is ideally tapered
down to zero thickness. In the present article, a sinusoidal profile in the form of a power-cosine is examined,
that is, with its thickness varying as hpc = h0 cos

n (πx/(2x0)), where x0 is the length where the thickness
becomes zero. Similarly to the power-law and exponential profiles, the Gaussian profile with thickness
variation hg = h0e

−γx2 , with γ > 0, appears to form the limit of the power-cosine profile as the order of the
power tends to infinity, that is, limn→∞ hpc(n) = hg, thus producing an inner reflection coefficient which
is smaller than that of any power-cosine wedge throughout the spectrum. The power-cosine profiles have
the advantage of not having a discontinuity of slope at the junction with a uniform plate, while producing a
vanishing propagation velocity at their free edge in the ideally tapered case. The special characteristics of the
various profiles are presented by means of the reflection coefficient calculated with Finite Element models
as well as with WKB approximations of order up to three.

2 Methods

The system to be considered in this study is a truncated wedge-like non-uniform plate connected to a semi-
infinite uniform plate. Incident waves are travelling on the x-direction from the uniform part towards the
wedge, as depicted in Figure 2. The equation describing the one-dimensional flexural harmonic vibration of
a thin plate with varying thickness, h(x), is[

D(x)w′′(x)
]′′ − ω2ρh(x)w(x) = 0, (2)

where w(x) is the vertical displacement amplitude of the midplane of the plate, ω is the angular frequency,
ρ is the density of the material of the plate, D(x) = ρc2ph

3(x)/12 = Eh3(x)/
(
12(1− σ2)

)
is the bending

stiffness, E is Young’s modulus, σ is Poisson’s ratio, and cp is the velocity of quasi-longitudinal waves
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Figure 2: Truncated elastic wedge connected to a uniform plate. The various travelling and evanescent waves
are shown, as well as the inner and total reflection coefficients.

in a thin plate, given by cp =
[
E/
(
ρ
(
1− σ2

))]1/2 [10]. The prime denotes differentiation with respect
to the spatial variable x. The harmonic time dependence of the displacement is assumed to be eiωt. It
should be mentioned that the displacement is also dependent on frequency. However, since the equation of
motion involves differentiation only with respect to the spatial variable, the dependence on frequency may be
omitted for notational convenience. In consequent analysis, the spatial dependence is also often omitted for
simplicity; it should be remembered that the displacement and its derivatives, as well as the bending stiffness
and the thickness, are spatially varying in the non-uniform part of the waveguide.

2.1 The WKB approximation

Equation (2) is not analytically solvable for an arbitrary variation of the thickness. Therefore, it either has to
be solved by some numerical method or an analytical approximation may be used. The WKB is a method
for analytical approximations of arbitrarily high order for differential equations; a systematic presentation of
the method can be found, for example, in [7]. Usually in vibration literature, the first-order approximation is
used, and it is commonly referred to simply as the WKB approximation. The first-order WKB approximation
for beams and plates was derived by Pierce in [11], based on considerations of energy conservation. A more
systematic approach, similar to the one in [7], is presented in [12], which readily allows for the use of
higher-order approximations.

For the general formulation of the WKB approximation, a perturbation factor has to be included in the
differential equation. In the case of Equation (2), a perturbation factor given by ε = ω−1/2 may be included,
so that the equation takes the form

ε4
[
Dw′′

]′′ − ρhw = 0. (3)

A trial solution for the vertical displacement is used, having the form

w = e
ε−1

∞∑
n=0

Snεn

, ε→ 0, (4)

where the functions Sn are spatially and spectrally variable. In strict mathematical notation, the sign of
equality in relation (4) should be substituted by ∼, to express the fact that this relation is an asymptotic
solution to the differential equation, as the perturbation factor tends to zero, and not an exact solution; a
looser notational convention is followed in this analysis, following the engineering literature. The fact that
when the perturbation factor tends to zero the frequency tends to infinity and vice versa implies that the WKB



solution (4) constitutes a better approximation at high frequencies and ceases to be a good approximation at
low frequencies. As pointed out in [13], however, Equation (2) only applies below the frequencies where
the rotational inertia is significant and so the WKB solution to Equation (2) only strictly applies over a given
bandwidth.

Substitution of relation (4) into Equation (3) yields a polynomial equation for ε. For the polynomial equation
to hold for any ε, all coefficients of the powers of ε have to be equal to zero, so that an infinite set of
differential equations is obtained, the first four of which are
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=
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The WKB approximation of order N includes the first N + 1 terms in the exponent of the solution (4), thus
including the first N + 1 WKB functions, that is, from S0 up to SN . Therefore, the first N + 1 equations of
the WKB formulation have to be serially solved, starting from the zeroth order. Equation (5), which is also
called the eikonal equation, has four roots, namely

S′0 = {±1,±i}
121/4

c
1/2
p h1/2

, (9)

where the factors defining the four distinct solutions are included in curly brackets. Integration with respect
to x gives

S0 = {±1,±i}
∫ x

0

121/4

c
1/2
p h1/2

dx̃. (10)

The lower limit of integration has been chosen to be at the junction of the uniform and non-uniform parts,
where the origin for the x coordinate is set to be. Equation (6), also called the transport equation, may then
be solved, giving

S1 =
3

4
ln

(
h0
h

)
. (11)

The form of Equation (6) is such that the distinctive constant coefficients of S0 cancel out, so that S1 is the
same for all four different solutions of the eikonal equation.

The first-order WKB solution to Equation (3) is found by including only the first two terms in the exponent
of relation (4). Therefore, by virtue of Equations (10) and (11), the first-order WKB solution can be written
as

w1 = A

(
h0
h

)3/4

e{±1,±i}
∫ x
0 k(x̃)dx̃, (12)

where

k =
121/4ω1/2

c
1/2
p h1/2

(
1− iη

4

)
(13)



is the wavenumber function in the non-uniform plate,A is an arbitrary complex constant and η is the damping
factor. The inclusion of the damping factor has been achieved by using a complex Young’s modulus in the
form ofE(1+iη), which, through the quasi-longitudinal velocity cp and after appropriate simplifications due
to the assumed small value of η, gives the complex wavenumber of Equation (13). The expected deviation of
the WKB approximation at low frequencies mentioned earlier may be linked to the violation of the validity
condition, relation (1), at low frequencies, as can be seen by use of the wavenumber function of Equation
(13).

The second- and third-order WKB approximations may, accordingly, be written as

w2 = A

(
h0
h

)3/4

e{±1,±i}
∫ x
0 k(x̃)dx̃+ω−1/2S2,j (14)

and

w3 = A

(
h0
h

)3/4

e{±1,±i}
∫ x
0 k(x̃)dx̃+ω−1/2S2,j+ω

−1S3,j , (15)

respectively, where the subscript j = ±1,±i denotes the different S2 and S3 functions corresponding to
the four different S0 functions; the S2 and S3 functions are obtained by integrating Equations (7) and (8),
respectively. It should be noted that Equations (7) and (8) are in general not integrable analytically, so that
numerical integration has to be applied.

2.2 Matrix formulation for calculating the reflection coefficients

The reflective behaviour of a wedge driven from a uniform plate, such as the one depicted in Figure 2, may
be assessed by use of the ratio of the reflected wave, travelling in the negative-x direction in the uniform
plate, to the incident travelling wave, evaluated at the junction of the uniform and non-uniform parts, where
x = 0. This ratio is henceforth called the total reflection coefficient and is given by Rtot = wr(0)/wi(0), in
accordance with the notation shown in Figure 2.

The various wave components inside the wedge may be expressed in the form of WKB approximations of a
specified order. The appropriate coefficient for the wavenumber has to be chosen to match with the direction
and the qualitative type of each component; coefficients −i and +i correspond to positive-x and negative-x
travelling waves, respectively, while coefficients−1 and +1 correspond to positive-x and negative-x evanes-
cent waves, respectively. The wave components in the uniform part may be expressed as exponential func-
tions with constant amplitude and constant wavenumber,

wu = Ae{+1,±i}kux, (16)

where ku is the spatially constant wavenumber in the uniform part; the appropriate one from the factors
written in the curly brackets again needs to be chosen for each component. It should be noted that no
incident nearfield wave is present in the uniform plate, since it is considered to be semi-infinite, and, hence,
the factor of −1 is not included.

The displacement field in the uniform plate and in the wedge may be expressed as the superposition of the
corresponding wave components, all of which will in general have different constant amplitude coefficients.
The amplitude coefficients represent ratios of wave components evaluated at the coordinate origin, so that
they may be thought of as reflection and transmission coefficients. These unknown coefficients may be cal-
culated by applying the various boundary conditions of the system, which are the continuity of displacement
and its slope and the equilibrium of bending moment and shear force at the junction, as well as the van-
ishing of bending moment and shear force at the free edge boundary, where the bending moment is given
by M = Dw′′ and the shear force by V = −M ′ [10]. This procedure involves calculating up to the third
derivatives of the wave components, which get increasingly complicated with increasing order of differenti-
ation, and even more with increasing order of WKB approximation. Numerical differentiation has been used
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Figure 3: Schematic of a Finite Element model for a wedge connected to a semi-infinite uniform plate. A
harmonic vertical velocity of constant amplitude u0 is used as a source of excitation. A perfectly matched
layer (PML) on the left end assures than no reflection occurs from that side. The standing wave ratio (SWR)
is obtained by measuring the maximum and minimum displacement moduli over a region of the uniform
plate away from sources of nearfield waves.

for the calculation of the second- and third-order derivatives of the second- and third-order WKB functions
given in Equations (7) and (8). Solving the system of equations corresponding to the applied conditions
yields, among others, the total reflection coefficient, Rtot, which is of primary interest, and the inner reflec-
tion coefficient, defined as Rin = wrw(0)/wt(0), whose modulus is equivalent to the reflection coefficient
used in [1] and [2].

A similar approach may be applied for a wedge ideally tapered down to zero thickness driven from a uniform
plate. In this case, it is considered that all waves travelling or decaying towards the edge are completely
attenuated, so that no reflected waves, either travelling or nearfield, are present in the wedge. Accordingly,
no conditions need be applied at the vanishing edge, resulting in a four by four system of equations for the
various reflection and transmission coefficients. In such a system, reflection occurs only at the junction, and
the corresponding reflection coefficient, denoted by Rj in this analysis, expresses the reflective effect of the
junction to incident waves.

2.3 Finite Element model

A Finite Element model was implemented in COMSOL Multiphysics 5.3 for calculating the modulus of the
reflection coefficient of a wedge driven from a uniform plate. A qualitative illustration is given in Figure
3. The system is driven by applying a harmonic vertical velocity of constant amplitude to the uniform plate
at a position away from the wedge. A perfectly matched layer is connected to the left end of the uniform
plate in order to suppress reflections from this side, so that the model may simulate a semi-infinite system.
Furthermore, the uniform plate is modelled as having no damping, so that travelling waves do not attenuate
within it; damping is present only in the non-uniform part. The maximum and minimum displacement
moduli are measured over a region of the uniform plate away from both the point of excitation and the
junction with the wedge, in order to avoid measuring evanescent components. Therefore, the standing wave
ratio is calculated from the relation SWR = |w|max / |w|min [14]. Finally, the modulus of the total reflection
coefficient is obtained from the following equation, [14],

|Rtot| =
SWR− 1

SWR+ 1
. (17)

It should be mentioned that, for accurate measurement of the maximum and minimum displacements, the
region of measurement has to be long enough to include a wavelength of the lowest frequency examined.
In the Finite Element simulations conducted here, 14456 two-dimensional solid elements were used for the
uniform plate and 3939 to 8325 solid elements for the wedge, depending on the thickness profile.



3 Results and discussion

For the simulations of this study, wedges with properties as presented in Table 1 were used. The specific
properties of the four different thickness profiles considered are summarised in Table 2, expressed with
respect to given quantities. The quadratic profile constitutes the lowest-order power-law profile for which
the propagation velocity vanishes at its ideal edge. A plot of the moduli of the inner and total reflection
coefficients, along with the modulus of the junction reflection coefficient, which is present in an ideally
tapered wedge of similar geometry, all calculated using the first-order WKB approximation, are shown in
Figure 4. First of all, it can be seen that the total reflection coefficient fluctuates with frequency around
the inner reflection coefficient. These fluctuations are the result of the frequency-varying interaction of an
incident wave with the two sources of reflection, that is, the free edge and the junction. Secondly, the junction
reflection coefficient retains high values at low frequencies, whereas it decreases down to very low values at
higher frequencies. This may be linked to the fact that, at low frequencies, the discontinuity at the junction
resembles a more abrupt thickness change, while at high frequencies, the flexural wavelength is smaller and
can follow the change in thickness more easily, undergoing little reflection. Furthermore, the fluctuations
of the total reflection coefficient around the inner reflection coefficient are greater in magnitude at lower
frequencies, where reflection due to the junction is also strong. Moreover, the junction reflection coefficient
in Figure 4 shows a peak at about 50 Hz, whereas it would be expected to decrease monotonically with
increasing frequency. This result may be linked to the deteriorating validity of the WKB approximation as
frequency decreases.

Geometrical properties Value Material properties Value
Length of wedge (x1) 0.3 m Young’s modulus (E) 70 · 109 Pa

Thickness at junction (h0) 0.01 m Density (ρ) 2700 kg·m−3
Thickness at edge (h1) 10−4 m Poisson’s ratio (σ) 0.33

Damping factor (η) 0.01

Table 1: Geometrical and material properties of the wedge model. Damping applies only to the non-uniform
part of the waveguide.

Thickness profile type Thickness variation Length of ideal wedge Decay parameter

Quadratic hq = h0

(
1− x

x0

)2
x0 =

x1

1−
(

h1
h0

)1/2 -

Exponential he = h0e
−βx ∞ β = 1

x1 ln
(

h0
h1

)
Power-cosine hpc = h0 cos

n
(
πx
2x0

)
x0 =

πx1

2 arccos

((
h1
h0

)1/n) -

Gaussian hg = h0e
−γx2 ∞ γ = 1

x21 ln
(

h0
h1

)
Table 2: Formulas for different thickness profiles.

A set of plots with results based on the WKB approximation for the different thickness profiles presented
above is shown in Figure 5; the thickness variation of the different profiles is illustrated in Figure 5a. In
the following results, a seventh-order cosine is used, due to the fact that its inner reflection coefficient prac-
tically coincides with that of a quadratic wedge, as can be seen in Figure 5d. It should be noted that this
correspondence holds for the specific geometrical properties used; different properties will lead to different
order for the inner reflection coefficient of a power-cosine wedge to match with that of the corresponding
quadratic one. The matching of the inner reflection coefficients of the quadratic and the seventh-order cosine
may be linked to the fact that their thickness profiles seem to be very similar towards the narrow edge of the
wedge, as can be seen in Figure 5a, where the propagation velocity becomes small and most of the energy is
dissipated.
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Figure 4: Moduli of the inner and total reflection coefficients of a truncated quadratic wedge, along with
the modulus of the junction reflection coefficient of an ideally tapered quadratic wedge, using the first-order
WKB approximation.

The phase velocity of a wave travelling in the wedge is given by cph = ω/<{k}, where < denotes the real
part. The spatial variation of the phase velocity for the different profiles at 1000 Hz is shown in Figure 5c,
where it can be seen that all profiles have a phase velocity of about 30 m·s−1 at the edge, where the thickness
is 0.1 mm. The correspondence between thickness variation and phase velocity, through the wavenumber
function of Equation (13), is apparent by comparison of Figures 5a and 5c.

The spectral variation of the modulus of the junction reflection coefficient for different profiles, calculated
with the third-order WKB approximation, is plotted in Figure 5b. By inspection of the upper spectral region,
it can be seen that the junction of the exponential wedge introduces more reflection than the junction of
the quadratic wedge. This is expected, due to the fact that the exponential has greater absolute slope at
the junction, thus introducing a more abrupt discontinuity. The power-cosine and Gaussian profiles, on
the other hand, have junction reflection coefficients of modulus smaller than that of the quadratic at high
frequencies, which may be related to the fact that the slope of these profiles at the junction is zero. At lower
frequencies, however, it can be seen that the power-cosine and Gaussian profiles are predicted to produce
greater reflection at the junction than the quadratic profile does, a result which contradicts the expected
correspondence between slope and reflection at the junction. Nevertheless, this counter-intuitive result is
verified by the Finite Element results, as can be seen in Figure 7, where the fluctuations of the power-cosine
and Gaussian profiles are greater than those of the quadratic profile at low frequencies. This effect may be
related to the presence of higher-order derivatives of the thickness variation in the solution.

Inconsistencies with the theory are present at low frequencies. The already mentioned violation of energy
conservation, as well as fluctuations of the junction reflection coefficient, the latter occurring only for the ex-
ponential wedge at the currently used third-order of WKB approximation, are apparent. Such inconsistencies
may again be linked to the issue of validity of the WKB at low frequencies.

Figure 5d shows the moduli of the inner reflection coefficients of the different thickness profiles. The inner
reflection coefficient of the quadratic and the seventh-order cosine are practically indistinguishable, apart
from the very low end of the spectrum, since the specific order of cosine was chosen with this criterion.
Inspection of the corresponding thickness and phase velocity variations shown in Figures 5a and 5c, respec-
tively, illustrates that the thinner part of the wedge is predominant in defining the inner reflection coefficient,
since a slightly smaller thickness of the power-cosine in the thinner third of the wedge and, accordingly, a
slightly smaller phase velocity, balance out the much greater thickness and phase velocity difference in the
thicker two thirds. The inner reflection coefficient for the exponential wedge has an unexpected very narrow
dip around 100 Hz; a plot of the same coefficient as calculated according to the analysis in [1] is also shown.
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Figure 5: Properties of different profiles, namely a quadratic, a seventh-order cosine, an exponential and
a Gaussian: (a) thickness variation, having a value of 0.1 mm at the thin edge, (b) spectral variation of
the modulus of the junction reflection coefficient, calculated with the third-order WKB approximation, (c)
spatial variation of the phase velocity at a frequnecy of 1000 Hz, (d) spectral variation of the modulus of
the inner reflection coefficient, calculated with the first-order WKB approximation. The modulus of the
inner reflection coefficient of the exponential wedge has an unexpected dip at around 100 Hz. A plot for
the modulus of the inner reflection coefficient which is produced with the approach presented in [1], where
the wedge is driven internally and evanescent waves are not taken into account, is therefore also shown for
qualitative consistency with the rest of the results, labelled as exp0.

It can be seen that the exponential clearly improves the inner reflection coefficient, as was mentioned earlier,
which may also be illuminated by the fact that the phase velocity of the exponential acquires significantly
smaller values than that of the quadratic. A similar conclusion was drawn in [2], where higher-order power-
law wedges were found to produce less inner reflection. The Gaussian, on the other hand, presents a very
small improvement compared to the quadratic and seventh-order cosine, which complies with the respective
thickness and phase velocity variations.

A comparison of results for the modulus of the total reflection coefficient between the presented method
based on the WKB approximation and Finite Element analysis for the different thickness profiles is shown in
Figure 6. It may be generally observed that, for all the thickness profiles, the WKB results diverge from the
Finite Element ones predominantly at lower frequencies, as is expected due to the deteriorating validity of the
method. A second general observation is that the WKB results, especially from higher-order approximations,
correspond well with those from Finite Elements as frequency increases, although a small deviation starts to
be visible in the very upper end of the considered spectrum. Furthermore, the first-order WKB approximation
does not give very good correspondence with Finite Element analysis for the total reflection coefficient, apart
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Figure 6: Comparison of the modulus of the total reflection coefficient calculated with the first three WKB
approximations with corresponding results from Finite Element analysis, for different thickness profiles: (a)
quadratic, (b) seventh-order cosine, (c) exponential and (d) Gaussian. For the quadratic, the third-order WKB
solution is indistinguishable from the second-order one.

from frequencies at the upper end of the considered spectrum, failing in large part to predict similar resonance
frequencies. On the other hand, the average level of the spectral fluctuations of the total reflection coefficient
seems to be captured quite well, even by the first-order WKB approximation. This spectrally local average is
linked to the inner reflection coefficient, as was mentioned earlier. Therefore, even though the inner reflection
coefficient is not calculated by the current Finite Element model, the results for the total reflection coefficient
imply that the former is well predicted even with first-order WKB considerations.

A central point of this analysis is the use of higher-order WKB approximations within the presented ana-
lytical model. A general overview of the results for all thickness profiles demonstrates the fact that higher-
order approximations greatly improve the correspondence with the Finite Element model. In the case of the
quadratic wedge, shown in Figure 6a, the second-order WKB already provides very good results in most
of the spectrum, in this case above about 150 Hz, although correspondence is generally good even down to
around 40 Hz. The third-order approximation does not produce any distinguishable improvement.

For the exponential wedge, shown in Figure 6c, inspection of the plots above about 400 Hz illustrates that the
third-order WKB approximation provides significant improvement to the second-order one, which, in turn,
greatly improves the first-order approximation. At lower frequencies, however, all WKB approximations
up to third order fail to produce accurate results, also predicting values higher than one for the reflection
coefficient. Furthermore, even for the higher-order approximations, the results are good above about 2 kHz.
Interestingly, within the spectral region from about 900 Hz to roughly 1500 Hz, an oscillatory converging
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Figure 7: Modulus of the total refelction coefficient for different wedge thickness profiles, calculated from
the Finite Element models.

trend for the solution seems to be followed, where consecutive orders of WKB approximation provide alter-
nating overestimations and underestimations of the amplitude of spectral fluctuations of the total reflection
coefficient. A similar behaviour is observed in Figures 6b and 6d for the power-cosine and Gaussian profiles,
respectively. Finally, for the exponential as well as the power-cosine and Gaussian profiles, the third-order
approximation seems to follow the Finite Element results starting from lower frequencies compared to the
second-order approximation, thus providing better results in a greater part of the spectrum.

The seventh-order cosine and Gaussian wedges have similar reflection coefficients, as plotted in Figures 6b
and 6d, respectively, which is expected due to the similarity of their thickness variation, as shown in Figure
5a. In the line of thought of the previous analysis for the quadratic and exponential wedges, the power-cosine
and the Gaussian wedges seem to behave worse than the quadratic but much better than the exponential in
terms of performance of the WKB method.

A comparative graph of the reflective behaviour of the different profiles is shown in Figure 7, where the mod-
uli of the total reflection coefficients are plotted as calculated with Finite Element models. In the context of
this comparative set-up, where all wedges are taken to have equal length and equal maximum and minimum
thickness, the exponential wedge seems to provide considerably less reflection than the quadratic one over a
large part of the spectrum. A power-cosine wedge with the same inner reflection coefficient as the quadratic
comparatively reduces the fluctuation amplitude over most of the spectrum, above about 500 Hz in this case,
though it increases it at low frequencies. The Gaussian wedge generally produces a small general decrease
in the total reflection coefficient, again in compliance with the respective inner reflection coefficients shown
in Figure 5d.

The reduction of the fluctuations that the power-cosine causes above some frequency, apart from being
relatively small, does not improve the general level of reflection, since the order of the power of the cosine
was chosen so as to give the same inner reflection as the quadratic. The Gaussian profile provides little
improvement in that respect. Nevertheless, it should be noted that, in the considered context of comparison,
the power-cosine and Gaussian wedges have considerably greater thickness than the quadratic along much
of their length, as can be seen in Figure 5a. Apart from restrictions due to limitations in the realisability of
very small thickness at the edge, which is taken to be the same for all wedges in this analysis, there are also



manufacturing restrictions on the acuteness of the wedge as represented by the length over which the wedge
is very thin, a characterisation which is apparently of a qualitative nature. In light of this restriction, it can
be commented that the exponential wedge is much acuter than the rest of the profiles. Therefore, longer
Gaussian profiles may be manufactured, which would cause both less inner reflection, due to having a longer
thin part in which the energy is dissipated, and less junction reflection, due to a longer thick part in which
the slope varies more smoothly.

Two additional general comments need to be made. First, the reflection coefficients presented in this article
generally have high values, due to the wedges being truncated, above 0.65 even at high frequencies. It is,
however, well established in the literature, as reviewed in [3], that a combination of appropriate thickness
variation and thin damping layers dramatically reduces reflection. Therefore, the current study focuses on
one of the two main aspects of practically useful wedges. Second, all spectral results have been presented in
a logarithmic scale for frequency, starting from a very low value of 10 Hz. The reason for this choice is that a
key motivation for this study was to assess the behaviour of the WKB method in comparison with reference
numerical results. Since it is known that the validity of results produced with the WKB method deteriorates
with decreasing frequency, great resolution is required at low frequencies to facilitate comparison between
the two methods. The fact that low frequencies cover a great part of the spectral plots might intuitively give
a misleading impression that the less accurate results of the analytical method cover a wider spectrum than
they actually do. In complement, it should be noted that the low end of the spectrum is less important in
the study of wedges with absorbing properties, since, in general, their absorbing capability is poor at low
frequencies.

4 Summary and Conclusions

A method has been presented for calculating reflection coefficients for a system consisting of a wedge con-
nected to a semi-infinite uniform plate, which is based on the WKB approximation for the solution of the
fourth-order equation of flexural vibrations of a thin plate. Four different thickness variation profiles for the
wedge are considered, and the calculations are compared with those predicted from Finite Element models.
The inner and junction reflection coefficients, obtained with the WKB-based method, are indirectly assessed
through the above comparison of total reflection coefficients.

For all thickness profiles, the total reflection coefficient is found to fluctuate around the inner reflection
coefficient along the spectrum. The amplitude of these fluctuations is related to the modulus of the junction
reflection coefficient, so that, at low frequencies, where the junction reflection coefficient has high values, the
fluctuations are great, whereas at higher frequencies, where the modulus of the junction reflection coefficient
decreases, the amplitude of fluctuations also decreases.

The exponential profile produces less inner reflection due to the truncation but more reflection due to the
junction than a quadratic wedge. Accordingly, the total reflection coefficient of the exponential fluctuates
around a lower general level but with greater amplitude of fluctuations. In general, the effect of reduced
inner reflection is found to be dominant, giving locally less total reflection in most of the spectrum compared
to the quadratic. Furthermore, the power-cosine wedge, and, accordingly, its limit as the power tends to
infinity, that is, the Gaussian, have the advantage of having zero slope at their thick end, so that they may be
smoothly connected to a uniform plate. Such wedges are expected to produce less reflection at the junction
compared to a power-law wedge. This appears to hold above some frequency; at low frequencies, however,
the power-cosine wedge actually produces greater reflection at the junction than the quadratic.

The first-order WKB approximation is found to predict well the average level of reflection, represented
by the inner reflection coefficient. However, it fails to predict the details of the fluctuations of the total
reflection coefficient. Higher-order approximations are found to greatly improve the performance of the
model, producing results that match the corresponding ones from Finite Element analysis very well above
some frequency. The width of the spectrum over which correspondence with results from Finite Elements is
good increases in accordance with the order of approximation, although this differs for the various profiles.
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