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Abstract 
In this paper, new methods for the remote acoustic source mapping of vehicle noise sources are 
considered. This work initially considers the effect of a wall reflection on conventional methods of 
processing the signals from a remote microphone array. The use of alternative array processing techniques 
to discriminate against the reflections are then considered and used, to produce a ‘heatmap’ of the array 
response as a noise source is moved around within the chamber. In a first step, an inverse impedance 
weighting strategy is considered, to distinguish the desired physical source location from the one created 
due to the reflections. In a second step, additional restrictions are also taken into account such as the 
ability of the microphone array to suppress the high levels for sources close to the microphones and an 
optimised weighting strategy is introduced and applied. 

1 Introduction 

The exterior sound emission of a vehicle is an increasingly important criterion for the homologation of 
road vehicles. The latest limit value of 74 dB(A) is already a major challenge for car manufacturers and an 
even lower limit of 68 dB(A) is in plan for the near future. Therefore, measurement of the drive-by noise 
of vehicles is important to ensure lower sound levels for people living close to roads. Until recently, it has 
been measured outdoors according to ISO – 362-1:2015, [1]. However, drive-by noise can now be 
estimated in a laboratory environment, with a stationary vehicle on a rolling road, [2], by processing and 
identifying the individual sources of noise on the vehicle and then synthesising the pressures that would be 
measured in a drive-by test, [3-4]. Within this method, the tire-road noise is separately energetically added 
to the powertrain noise and the final result is compared to the outdoor measurement, [5-6]. 
The indoor estimation of pass-by noise has advantages over outdoor measurements in terms of the 
repeatability and robustness of the measurements. However, the use of chambers with imperfectly 
anechoic walls can distort the results in certain frequency bands. With the aim of overcoming this 
limitation, new approaches to the mapping of the vehicle pass-by noise sources in a reverberant 
environment are developed in this paper, utilising optimal beamforming. 

2 Formulation 

As a first step, we may assume that a specific noise source on the vehicle can be represented by a compact 
monopole source radiating omnidirectionally. If a microphone is positioned a distance of r from the 
source, the pressure is, [7],  

 pi(r) = Zi(r)q = jωρ0q e−jkr

4πr
    (Pa) (1) 

 

Where Zi is the transfer impedance and q is the source strength. 



Assuming an array of 41 microphones positioned on a line 7.5 m away from the source and a rigid wall 3 
meters behind it, then the contributions due to the various reflections from the wall could be modelled as 
an image source, placed 13.5 meters away from the linear array, as shown in Figure 1. 

 
Figure 1: Environment of pass-by noise measurement with a rigid wall 

The array output due to the source at each point is initially calculated by adding the contributions from 
each microphone together, so that 

 p(x) = 1
41
∑ pi(x)41
i=1    (Pa) (2) 

 

This uniform weighting corresponds to that of a broadside array using a delay and sum beamformer with a 
far-field directivity pointing towards the source. The pressure can also be expressed in terms of the Sound 
Pressure Level (SPL), which is given as 

      SPL(x) = 20log10 �
prms(x)
pref

�    (dB) (3) 
 

So that SPL is independent of the phase of p(x) and hence the frequency. In this case, pref is chosen to be 
the array output pressure when the source is positioned at the physical source location in Figure 1. By 
moving the source around the room, a heatmap in terms of the sound pressure level at each point can be 
created, as shown in Figure 2. From this plot, it can be seen that the uniform linear array generates a high 
estimate of the SPL in the near field of the array.  

 
Figure 2: Heatmap of the sound pressure level due to a monopole source measured using a 41 – 

microphone array (1 kHz) and the uniform weighting method 



To provide further insight into those results, Figure 3 shows the Sound Pressure Level estimated along the 
x = 0 axis, moving away from the array towards the physical source location at x = 7.5 m and the image 
source at 13.5 m for various working frequencies.  
It can be seen that the response of the array to the image source is approximately 10 dB less than the one 
to the physical source, and hence the image source will significantly alter the estimate of the source 
strength. It is also shown in Figure 3 that the weighting strategy offers poor results at very low frequencies 
below around 100 Hz and only delivers 4 and 8 dB level difference between the physical and image source 
points at 50 and 100 Hz respectively. To overcome these limitations, the next step is to apply appropriate 
weighting to the microphones in order to achieve further discrimination against the image source strength 
and points close to the array.  

 
Figure 3. Sound pressure level at x = 0 m over distance in the y – direction using the uniform weighting 

for f = 50, 100, 500, 1000 Hz 

3 Inverse impedance weighting synthesis 

A simple method of weighting the microphones would be to use the inverse of the impedance measured 
when the source is placed at y = 7.5 m, x = 0 m. The heatmap is then constrained to deliver unity gain for 
the point where the physical source is placed. The weights are, thus, equal to 

 wi = 1
Zi,y=7.5,x=0

 (4) 

Where Zi,y=7.5,x=0 is the impedance between the i-th microphone and the physical source position. The 
overall output of the array is then equal to the sum of the weighted pressures 

 p(x) = 1
41
∑ wipi(x)41
i=1    (Pa) (5) 

Since all terms, wipi(x), in this symmetry are equal to unity when the source is at the reference position, x 
= 0, y = 7.5 m, this array processing strategy is similar to the one used in the far-field delay-and-sum 
approach.  As a result, the heatmap in terms of the sound pressure level is transformed, as shown in Figure 
5. From this plot, it can be seen that the physical source SPL is at 0 dB, as enforced, and the level 
elsewhere is significantly attenuated compared to the uniformally weighted array results in Figure 4. For 
reference, the amplitude and the phase of the array weights used to produce the heatmap in Figure 5 are 
shown in Figure 6(a), (b). From the plots, it can be seen that the inverse impedance weighting scheme 
results in array shading that compensates for the path length differences between the physical source and 
each of the array microphones. 



 
Figure 4. Heatmap in terms of the sound pressure level for a monopole source with a 41 – microphone 

array (1 kHz) using the inverse impedance weighting 

 
Figure 5(a), (b). Amplitude and phase of the inverse impedance weights 

To provide a clear picture of the results presented in Figure 5, the sound pressure level is again plotted 
along y-axis at x = 0 m at four discrete frequencies. From these results, it can be seen that, at 1 kHz, the 
weighting provides a 23.5 dB level difference between the physical and the image source (assuming that 
there is no noise absorption provided by the rigid wall), while retaining the physical source level at unity 
gain. However, the level is very high (up to 30 dB) when the source is placed very close to the array. The 
method is also limited at low frequencies around 100 Hz and only delivers a level of difference of 3 and 9 
dB between the physical and image source points at 50 and 100 Hz, as shown in Figure 6. 



 
Figure 6. Sound pressure level at x = 0 m over distance in the y – direction using the inverse impedance 

weighting for f = 50, 100, 500, 1000 Hz 

4 Optimised weighting synthesis 

In an attempt to overcome the limitations highlighted on the inverse impedance weights, an alternative 
strategy that directly optimises the array weights will be presented in this section. In this case, the 
microphone array weights are specified by performing a linear optimisation of the weights wi subject to 
three constraints: 
 

- The weights provide unity gain for the physical source position i.e. 𝑝𝑝𝑦𝑦=7.5,𝑥𝑥=0 = 1
41
∑ 𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖41
𝑖𝑖=1 = 1 

- The weights provide zero gain for the image source position i.e. 𝑝𝑝𝑦𝑦=13.5,𝑥𝑥=0 = 1
41
∑ 𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖41
𝑖𝑖=1 = 0 

- The weights are kept to the minimum magnitude possible in order to discriminate against the 
positions close to the microphone array i.e. 𝑚𝑚𝑖𝑖𝑖𝑖∑ |𝑤𝑤𝑖𝑖|41

𝑖𝑖=1  
The weight calculation is split into two parallel optimisation problems in Matlab. The first one solves the 

least-squares curve fitting problem of the form 𝑚𝑚𝑖𝑖𝑖𝑖 1
2
� 1
41
∑ 𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖41
𝑖𝑖=1 − 1�

2

2
 subject to 1

41
∑ 𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖41
𝑖𝑖=1 = 0. The 

second one adds the supplementary constraint 𝑚𝑚𝑖𝑖𝑖𝑖∑ |𝑤𝑤𝑖𝑖|41
𝑖𝑖=1  by setting numerical bounds on each wi. The 

function used utilises the method of the Lagrange multipliers which is a strategy for finding the local 
maxima and minima of a function subject to equality constraints [44]. The only prerequisite is that the 
used functions have continuous first partial derivatives as is the case in the considered problem..  
To assess the performance of this weights optimisation process, the total pressure at each source point is 
again estimated using Equation 5, but with the calculated 𝑤𝑤𝑖𝑖. The heatmap in terms of the sound pressure 
level is shown in Figure 7 and the corresponding amplitude and phase of the optimised array weights are 
shown in Figure 10(a) and 10(b) respectively. It is interesting to see from both the amplitudes of the array 
weights and the heatmap in Figure 7 that this optimisation method effectively creates two separate arrays 
at either end of the microphone array, both focused on the physical source location. It can be seen from 
Figure 7 that this results in an effective triangular – type array behaviour.  
 

To provide a consistent analysis of this array processing method, the sound pressure level is plotted along 
the y-axis at x = 0 m in Figure 9 with lines indicating the positions where the physical and image sources 
are located. At 1 kHz, it can be seen from Figure 9 that the weighting creates a 43.1 dB level difference 
between the physical and the image source (assuming there is no sound absorption by the rigid wall), 
while retaining the physical source level slightly lower than unity gain (-0.6 dB). As a result, the 
optimized weighting enhances the level difference between the two source points by about 20 dB 
compared to the inverse impedance weighting strategy. However, the optimized weighting also 
discriminates against the source points close to the microphone array reducing the level from 30 dB to -18 
dB. In principal, there would be no signal for a source at the image location if the optimization problem 



above was satisfied, but the finite level difference illustrates that the optimisation problem does not have a 
solution, particularly at low frequencies, as shown in Figure 9. In particular, it can be seen that the 
weighting strategy offers poor results in very low frequencies only delivering 4 to 8 dB level difference 
between the physical and image source points at 50 and 100 Hz. 

 
Figure 7. Heatmap in terms of the sound pressure level for a monopole source with a 41 – microphone 

array (1 kHz) using the optimised weighting 

 
Figure 8(a), (b). Amplitude and phase of the optimised weights 



 
Figure 9. Sound pressure level at x = 0 m over distance in the y – direction using the optimised weighting 

for f = 50, 100, 500, 1000 Hz 

To provide a clear comparison between the three considered array weighting methods, Figure 13 shows 
the difference between the physical and image source strengths for the three different weighting strategies, 
which correspond to the discrimination that the array provides against the image source. It should be noted 
that in contrast to the uniform array weighting, the inverse impedance and optimised weighting assume a 
known position for the image source, and so the results will be degraded if the position of the physical 
source with respect to the wall is not exactly where it is assumed to be in Figure 1. Nevertheless, at 
frequencies above 100 Hz, the inverse impedance method achieves a significant performance increase, 
with a 10 dB discrimination between 2 and 10 kHz, whilst the optimised weighting achieves a 
performance increase of about 25 dB over the same frequency range. 

 
Figure 10: Difference between the level at the assumed image source and that at the physical source for 

the 3 different array weighting methods 

5 Conclusions 

In this paper, new approaches to the acoustic source identification for the synthesis of vehicle pass-by 
noise sources have been considered. Τhe effect of a wall reflection on conventional methods of processing 
the signals from the far field microphone array has been examined and two alternative array processing 



techniques to discriminate against the reflections are considered. A ‘heatmap’ of the array response as a 
noise source is moved around within the measurement chamber has then been produced, while two 
different weighting strategies are considered to distinguish the desired physical source location from the 
one created due to the reflections. Additional restrictions are also taken into account such as the ability of 
the microphone array to suppress the physically high sound pressure levels at the points close to the 
microphones, therefore, an optimised weighting strategy is introduced and applied. 
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