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ABSTRACT 
 

In traffic safety studies, there are almost inevitable concerns about unobserved heterogeneity. As 

a feasible alternative to current methods, this article proposes a novel crash count model that can 

address asymmetry and multimodality in the data. Specifically, a Bayesian random parameters 

model with flexible discrete densities for the regression coefficients is developed, employing a 

Dirichlet process prior. The approach is illustrated on the Ontario Highway 401, which is one of 

the busiest North American highways. The results indicate that the proposed model better 

captures the underlying structure of the data compared to conventional models, improving 

predictive power examined based on pseudo Bayes factors. Interestingly, the model can identify 

sites (highway segments, intersections, etc.) with similar site characteristic (risk factor) profiles, 

those that manifest similarity in the heterogeneous effects of their risk factors (e.g., traffic flow) 

on traffic safety, providing useful insight towards designing effective countermeasures.  

1. Introduction 

Crash data are often limited since many unobserved or unmeasured factors that affect 

crash likelihood may not be available (e.g., driver behaviour, environmental conditions, etc.), 

causing unobserved heterogeneity. In road safety studies it is usually necessary to account for 

unobserved heterogeneity to draw more reliable statistical inferences, which in turn help 

decision-makers to plan safety improvement programs more effectively. Due to multiple sources 

of heterogeneity in crash data sets, more complex statistical models seem inevitable.  

In fact, various efforts have been underway to mitigate the unobserved heterogeneity 

problem in traffic safety analysis, which could be summarized as follows: (1) the random effects 

(intercepts) approach (Shankar et al., 1998; Kim al., 2007; Aguero-Valverde, 2013; Naznin et al., 

2016; Sarwar et al., 2017b); (2) the random parameters (also referred to as random slopes or 

random coefficients) approach (Anastasopoulos and Mannering, 2009; El-Basyouny and Sayed, 

2009; Venkataraman et al., 2014; Wu et al., 2013; Anastasopoulos, 2016; Sarwar et al., 2017a; Alarifi 

et al., 2017; Bogue et al., 2017; Chen et al., 2017; Bhat et al., 2017, Fountas and Anastasopoulos, 

2017; Shaon et al., 2018; Fountas et al., 2018; Cai et al., 2018; Heydari et al., 2018); (3) the finite 

mixture approach (Park and Lord, 2009; Park et al., 2016; Yasmin and Eluru, 2016; Zou et al., 

2017); (4) the finite mixture random parameters approach (Xiong and Mannering, 2013; Li et al., 

2018); and recently (5) the Bayesian semiparametric Dirichlet process approach (Heydari et al., 

2016a and 2016b; Shirazi et al., 2016; Yu et al., 2016; Heydari et al., 2017; Cheng et al., 2018), which 

has been applied only in random effects model settings in traffic safety research. A detailed 

discussion relating to various statistical models used in traffic safety research and unobserved 
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heterogeneity can be found in Lord and Mannering (2010), Mannering and Bhat (2014), and 

Mannering et al. (2016). 

The random parameters approach — which is the focus of this article — is perhaps the 

most commonly used method to address unobserved heterogeneity in the crash literature. It can 

be unrealistic to assume that the effect of explanatory variables is fixed across observations or 

groups of observations since the effect of covariates (e.g., site characteristics) could vary from one 

site (highway segment, intersection, region, etc.) to another due to several unobserved or 

unmeasured factors. Therefore, random parameters (slopes) models are in general expected to 

better address unobserved heterogeneity relative to random intercepts (effects) models that only 

allow the constant term to vary across observations (Washington et al., 2011; Mannering et al., 

2016). It should be noted, however, that this does not necessarily rule out random intercepts 

models as they may adequately approximate the distribution of a regression coefficient if the 

variation between sites is small enough. The use of random parameters models is important when 

the intrinsic interest lies in investigating the range of a parameter or in capturing unobserved 

heterogeneity more fully.  

Although random parameters models have been extensively used in traffic safety studies, 

a major limitation is in their inherent parametric assumptions (Mannering and Bhat, 2014). To 

draw more robust statistical inferences, while providing more insight, a limited number of traffic 

safety studies have recently employed models with heterogeneity in means and variances 

(Venkataraman et al., 2014; Behnood and Mannering, 2017a and 2017b; Seraneeprakarn et al., 

2017; Xin et al., 2017; Heydari et al., 2018). Anastasopoulos (2016) addressed concerns relating to 

parametric assumptions for random parameters by testing different densities such as lognormal, 

Weibull and normal to find the most appropriate distribution. This choice, however, usually 

needs to be done via model selection, an exhaustive task when there are many regression 

parameters, and even then, none of the candidate densities may be optimal. In addition, model 

selection criteria such as the AIC or the DIC have limitations, for example, due to excessive 

sensitivity to different parameterizations (Washington et al., 2011; Geedipally et al., 2014).  

Using a Bayesian nonparametric approach, Heydari et al. (2016a and 2016b) discuss 

sensitivity to parametric assumptions in random intercepts models, showing that flexible 

densities can address unobserved heterogeneity better than restrictive parametric densities in 

random intercepts models. Another limitation to standard random parameters models is that the 

analyst often decides groupings based on apparent data features but what if there are hidden 

groupings? Those groupings not known to the analyst could pose significant challenge in 

addressing unobserved heterogeneity properly (Mannering and Bhat, 2014). Finite mixture 

modeling is a viable approach that can side-step the above issues  (asymmetry, multimodality, 

and hidden groupings), but similar to choosing the best density in random parameter modeling 

one needs to select the optimal number of components through model selection and statistical fit.   
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1.1.  The current paper 

This paper proposes an alternative approach to current methods: a new crash count 

random parameters model developed based on flexible Bayesian discrete densities. The proposed 

model does not require model selection neither to choose the proper density for random 

regression parameters as in random parameters modeling nor to choose the optimal number of 

components as in finite-mixture modeling. The proposed model assumes an unspecified discrete 

density for regression parameters in a count model with both fixed and random regression 

parameters — inferring the shape of random parameters densities from the data. Specifically, a 

Bayesian semiparametric Poisson lognormal model is developed using a stick-breaking 

algorithm.  

In the statistical literature, a similar approach can be found in Dhavala et al. (2010) who, 

using a polya-urn scheme (Escobar and West, 1998), proposed a Bayesian semiparametric zero 

inflated count model of massively parallel signature sequencing for gene expression profiling. 

Carota and Parmigiani (2002) provide a general discussion of Bayesian semiparametric Dirichlet 

process models for count data. Other applications can be found, for example, in Guindani et al. 

(2014) and Canale and Prunster (2017). A useful by-product of the model developed in this paper 

is that it allows the analyst to identify sites (highway segments, intersections, etc.) that manifest 

similarity in the heterogeneous effects of their site characteristics (e.g., median shoulder width) 

on safety (here, crash frequencies). This could be particularly useful for decision-makers in 

designing effective countermeasures. 

2. Methodological approach 

This paper employs a Poisson lognormal model.  Similar to negative binomial (Poisson 

gamma) models, Poisson lognormal models allow for overdispersion, often encountered in count 

data. The Poisson-lognormal approach is appealing from both theoretical and practical 

perspectives. Winkelmann (2008) provides a discussion in this regard. A number of traffic safety 

studies have used and discussed various aspects of Poisson lognormal models (Lord and 

Miranda-Moreno, 2008; El-Basyouny and Sayed, 2009; Aguero-Valverde, 2013; Heydari et al., 

2016a; Khazraee et al, 2018; Heydari et al., 2018). This section first discusses the standard random 

intercepts and random parameters Poisson lognormal models before extending them to include 

flexible discrete densities for random regression coefficients. Note that the ideas discussed in this 

paper could be used to extend other models (e.g., random parameters Poisson gamma models) 

as well. 
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2.1.  Standard random intercepts model 

Let yi and θi denote the observed and the expected crash counts for sites (i = 1,2,…, N). Let 

X = (X1, X2,…, Xk) be the vector of covariates (i.e., site characteristics) with the corresponding 

regression parameters γ = (γ1, γ2,…, γk), excluding the constant term η. A generic Poisson 

lognormal model can be specified as 

 

𝑦𝑖|𝑿𝒊, 𝜸, 𝜀𝑖 , 𝜂  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖) 

(1) 

𝜃𝑖 =  𝜆𝑖 ∗ 𝑒𝜖𝑖 

𝑙𝑜𝑔(𝜆𝑖) =  𝜂 + 𝜸𝑿𝒊 

𝑙𝑜𝑔(𝜃𝑖) =  𝜂 + 𝜸𝑿𝒊 + 𝜖𝑖 

𝜀𝑖|𝑣𝜀 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜈𝜀) 

 

In the above model specification, eε follows a lognormal density (instead of a gamma density as 

in Poisson gamma models), meaning that ε follows a normal density with the mean 0 and the 

variance following a low information prior. By including the random variation 𝜀i in the constant 

term η, the above model can be written as  

 

𝑦𝑖|𝑿𝒊, 𝜸, 𝜀𝑖 , 𝜂𝑖   ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖) 

(2) 

𝑙𝑜𝑔(𝜃𝑖) =   𝜂𝑖 + 𝜸𝑿𝒊 

𝜂𝑖|𝜇𝜂 , 𝑣𝜂 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝜂 , 𝜈𝜂) 

𝜸 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1000) 

𝜇𝜂  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0,1000) 

𝜎𝑣 ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,20) 

𝜈𝜂 =  𝜎𝑣
2 

 

where random intercepts ηi are usually assumed to follow a normal density, but other densities 

are possible as well. The vector of fixed parameters γ and the mean and the variance of the 

random intercepts are assumed to follow low information priors as indicated in (2).  

2.2.  Standard random parameters model 

One can allow the above model to also include a set of covariates with varying effects, Z 

= (Z1, Z2,…, Zm), across observations with their corresponding random parameters β = (β1, β2,…, 

βm), including varying intercepts. Given the above notation, a generic random parameters Poisson 

lognormal model can be specified as 
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𝑦𝑖|𝑿𝒊, 𝒁𝒊, 𝜸, 𝜷𝒊  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑖) 

(3) 𝑙𝑜𝑔(𝜃𝑖) =   𝜷𝒊𝒁𝒊 +  𝜸𝑿𝒊 

𝜷𝒊|𝝁𝜷, 𝒗𝜷 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝝁𝜷, 𝒗𝜷) 

  

In the above formulation, βi are often assumed to be normally distributed.  Note that one can 

assume other densities such as lognormal or Weibull for random regression parameters β, so the 

normality assumption is not a requirement. However, the normal density is often the first and 

the only choice due to convenience. Low information priors can be specified for the vector of fixed 

parameters γ and the means µi and variances νi, as in (2).  

2.3.  Extension to a flexible discrete density random parameters model 

The proposed approach is an extension of the method, a flexible random intercepts model, 

discussed in Ohlssen et al. (2007) and is rooted in Bayesian nonparametrics (Escobar and West, 

1998; Walker et al., 1999; Neal, 2000; Muller and Quintana, 2004; Hjort et al., 2010; Ladouceur et 

al., 2011). Specifically, this paper introduces a Bayesian semiparametric model that places a 

unique Dirichlet process prior on two or multiple random regression parameters. Doing so, 

random parameters are tied together allowing the analyst to identify observations (sites) that are 

similar according to the heterogeneous effects of their corresponding site characteristics on safety. 

If a single Dirichlet process prior is placed on all regression coefficients, one can then identify 

similar profiles of an outcome of interest (e.g., crash frequencies) in the data.  

A major challenge in statistical modeling, in general, is choosing an appropriate level of 

complexity for a model. As discussed in Gresham and Blei (2012), a valuable property of Bayesian 

nonparametrics is that the number of parameters can vary according to data complexity. This 

number is then decided by the model (given the data) based on a rigorous mathematical 

algorithm. The Bayesian nonparametric approach is flexible as the analyst can test whether a 

parametric assumption (normal, lognormal, etc.) holds. If a parametric assumption does not hold, 

the proposed model fits a flexible density. Otherwise, the model approximates that parametric 

density, for example, confirming that there is no multimodality or skewness in the data. Heydari 

et al. (2016a) showed this explicitly for the vector of random intercepts using a simulated data set.   

Conventional statistical models under both frequentist and Bayesian frameworks (e.g., the 

model specified in Section 2.2) assume that each of the random coefficients β follows a specific 

“known” continuous density function Gβ(.) with a “known” (and finite) number of “unknown” 

parameters; for example, a normal distribution with two parameters: the mean and the variance 

to be inferred from the data. Assuming a parametric density (whether normal or other densities) 

is the standard approach. The Bayesian nonparametric methods (which constitute the idea behind 

the proposed random parameters model), however, assume that Gβ is an unspecified discrete 

density with an “unknown” number of “unknown” parameters to be inferred from the data, 
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reflecting the lack of knowledge about a parameter or data set of interest more realistically. The 

Bayesian nonparametric approach then places a Dirichlet process (DP) prior (Freedman, 1963; 

Ferguson, 1973) on Gβ (corresponding to β) to infer its density: 

 

𝜷𝑖  ~ 𝐷𝑃(𝛼𝐺0𝛽)   

𝐺0𝛽~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝑣𝛽) 

𝛼 ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(. ) 

   (4) 

 

where G0 is a Dirichlet baseline density, a prior density selected for the unspecified random 

density Gβ, and α is the Dirichlet precision (concentration) parameter that indicates the degree of 

similarity between Gβ and G0. This parameter is usually assumed to follow a gamma or a uniform 

density. Small values of α imply larger departures from the baseline G0 compared to larger values 

of α. If G0 is selected to be a normal density, the model indicates departures from the normality 

assumption. One may specify another density for G0 as well, then the model measures departures 

from that specified density. This paper specifies a normal density for the baseline with mean zero 

and the variance vβ to be inferred from the data for each random regression parameter. This 

variance follows a low information prior as specified in (2). In the model formulation (4) and 

according to a full Dirichlet process, each random coefficient β1, β2, …, βm is an infinite random 

object being in the form of a mixture of multiple points; that is, a discrete density with a flexible 

shape that do not necessarily follow any standard parametric density. It can, therefore, 

accommodate skewness and multimodality, situations where parametric densities may not fit 

well and hence may result in misleading statistical inferences.  

Note that the location of the points (atoms) in the resulting discrete density is obtained 

based on the pre-specified baseline density G0. In this paper, probabilities associated with these 

atoms are estimated based on the stick-breaking algorithm (Ishwaran and James, 2002). The idea 

is to have a set of sequentially generated random probabilities that sum to one. In this regard, the 

beta distribution is a convenient density function as it is defined on the interval [0,1]. The 

precision parameter α comes into play at this point as described below. The above procedures to 

define the locations of the atoms and their respective probabilities p1, p2, … is as follows (Ohlssen 

et al., 2007): 

 

(i) draw a set of random variables θ1, θ2,… from G0;  

(ii) draw a set of random variables ξ1, ξ2,… from a Beta(1, α);  

(iii) allocate probabilities p1 = ξ1, p2 = (1 - ξ1)ξ2,  p3 = (1 - ξ1)(1 – ξ2)ξ3, ... to θ1, θ2, θ3,…, 

respectively.  

 

To summarize, given the above discussion, the density Gβ ~ DP(αG0) corresponding to 

each of the m random parameters β1, β2, …, βm can be written as 
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𝐺𝛽 =  ∑ 𝑝𝑗𝐼𝜃𝑗

∞

𝑗=1

,   𝜃𝑗~ 𝐺0 (5) 

 

where I is a measure corresponding to θj. Note that Gβ is a discrete random density function 

rather than being a continuous density as universally used in parametric approaches. Drawing 

inference with respect to such an infinite random measure is computationally cumbersome; 

therefore, a truncation is usually considered to limit the number of mixtures. Setting J (J <= n; 

where n is the total number of observations) as the maximum number of mass points in (5), one 

can then write 

  

𝐺𝛽 =  ∑ 𝑝𝑗𝐼𝜃𝑗

𝐽

𝑗=1

 ≈  𝐺𝛽 =  ∑ 𝑝𝑗𝐼𝜃𝑗

∞

𝑗=1

,   𝜃𝑗~ 𝐺0 
   (6) 

 

Using a truncated (finite) Dirichlet process that approximates the full Dirichlet process 

reduces the computational burden while retaining a sufficiently flexible model. In this paper, a 

uniform(0.3, 10) prior for the Dirichlet precision parameter with J=50 was chosen. This means that 

in the proposed model formulation each regression coefficient β1, β2, …, βm is generated from a 

discrete density that can have up to 50 different values instead of 418 values (corresponding to 

the total number of sites in the data set) generated from a common continuous density in 

conventional random effects/parameters models. We will see in the section of results that the 

specified uniform prior and the selected value of 50 for J are proper choices in the empirical 

setting of this paper. Note that the proposed model reduces to a finite mixture model. From a 

practical standpoint, the proposed model could be considered to be at the intersection of finite 

mixtures and random parameters models. Therefore, it was also compared to a conventional 

finite mixture negative binomial model (Park and Lord, 2009), based on pseudo Bayes factors 

discussed in Section 2.5. 

2.4.  Simulation of posterior densities 

 The flexible random parameters model specified in Section 2.3 leads to tractable posterior 

updates for which standard Markov chain Monte Carlo (MCMC) methods can be used. To draw 

posterior inferences, MCMC simulations are needed because, due to the presence of high 

dimensional integrals, the model is intractable analytically. WinBUGS (Lunn et al., 2000) was 

used for MCMC simulations running two chains each containing 150,000 iterations, with a 

thinning of 5. The first 40,000 iterations were discarded for convergence requirements; therefore, 

the posterior inferences are based on the final 110,000 of 150,000 total iterations. It was made sure 
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that this number of iterations was satisfactory by checking the Gelman-Rubin statistic (Gelman 

and Rubin, 1992), history plots, and Monte Carlo errors.  

2.5.  Predictive performance 

 With respect to model selection, note that once the range or shape of a parameter is not 

supported by a parametric assumption, the model corresponding to that inaccurate assumption 

should be ruled out, and there is no need for a model selection exercise in terms of statistical fit. 

For a similar discussion in the context of Bayesian nonparametric methods, see Gershman and 

Blei (2012). This article, however, compares the above models in terms of their predictive power, 

using a more robust approach compared to the conventional cross-validation, to verify how 

predictive performance could be affected.  

2.5.1.  Leave-one-out cross-validation 

In conventional cross-validation a data set is randomly grouped into two samples. A 

model is calibrated based on one of the samples, then its accuracy is validated using the other 

sample. However, the accuracy of inferences could be sensitive to the choice of these samples 

(Ntzoufras, 2009). In other words, repeating the above procedure may lead to different 

conclusions. Conventional cross-validation is also wasteful of data since not all data are used for 

inferences. Leave-out-one cross-validation avoids this by leaving out only one observation each 

time. The leave-out-one cross-validation is the base idea for estimating conditional predictive 

ordinates (CPOs), which is then used to estimate pseudo Bayes factors as described in the 

subsequent section (Ntzoufras, 2009).   

Let Yi be the ith observation, ψ denote the vector of all model parameters, and t = (1,2,…, 

T) denote iterations in the MCMC simulations. One can write  

 

𝐶𝑃𝑂𝑖 =  (
1

𝑇
∑

1

𝑓(𝑌𝑖|𝜓(𝑡))

𝑇

𝑡=1

)

−1

 
    (7)  

 

2.5.2.  Pseudo Bayes factors 

The Bayes factor is the ratio of marginal likelihoods (the marginal probability of the data 

y given a model) of two different models, say, M1 and M2 (Kass and Raftery, 1995). While the 

computation of Bayes factors is not straightforward for complex models, other versions of Bayes 

factors (e.g., pseudo Bayes factors) can be estimated, for example, based on conditional predictive 

ordinates obtained from (7) (Gelfand, 1996; Ntzoufras, 2009). The log pseudo marginal likelihoods 

(LPMLs) can be obtained for the entire data set by computing the product of CPOs as in (8). 

Consequently, log pseudo Bayes factors (LPBFs) for models M1 and M2 can be obtained from (9). 
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A log pseudo Bayes factor of greater than 5 indicates an important difference between M1 and M2 

in terms of statistical fit (Kass and Raftery, 1995).  

 

𝐿𝑃𝑀𝐿 = 𝑙𝑜𝑔 (∏ 𝐶𝑃𝑂𝑖

𝑛

𝑖=1

) = ∑ 𝑙𝑜𝑔 (𝐶𝑃𝑂𝑖)

𝑛

𝑖=1

     (8) 

𝐿𝑃𝐵𝐹 = 𝐿𝑃𝑀𝐿𝑀1
− 𝐿𝑃𝑀𝐿𝑀2

  (9) 

2.6.  Estimating overall mean and variance for random parameters 

 Since each mass point of the flexible discrete density has a different probability p assigned 

to it, the overall (population) mean (μβ) and variance (Vβ) for each regression coefficient β (from 

the vector of random parameters β) is calculated at each iteration of the MCMC simulations: 

   

𝜇𝛽 = ∑ 𝑝𝑗

𝐽

𝑗 =1

. 𝛽𝑗 

𝑉𝛽 = (∑ 𝑝𝑗

𝐽

𝑗 =1

. 𝛽𝑗
2) − 𝜇𝛽

2 

   (10) 

 

After running a total of T iterations in the MCMC simulations, posterior mean and variance 

densities of the random parameters of interest can be obtained from the entire sample using 

 

𝜇̂𝛽 = 𝑇−1 ∑ 𝜇𝛽

𝑇

𝑡=1

 

𝑉̂𝛽 = 𝑇−1 ∑ 𝑉𝛽

𝑇

𝑡=1

 

   (11) 

 

2.7.  An algorithm for identifying sites with similar risk factors 

An important advantage of the developed flexible random parameters model is providing 

inferences about how different sites may be similar in the effect of their risk factors (site 

characteristics) on safety. This is particularly valuable for an in-depth study of safety mechanisms 

among different sites, which could also be useful for designing countermeasures more properly. 

It is important to highlight that identifying sites with similar performance in the effect of their 

site characteristics on safety does not provide direct insights relating to reasons for such 

similarities. Nevertheless, this reveals the underlying structure of the data, indicating the need to 
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open up a new line of inquiry that aim at explaining latent data patterns. Further discussion is 

provided in Section 4.1.2. 

Let i = {1, 2,…, N} and J = {1, 2,…, j} index, respectively, a set of sites (observations) and a 

set of clusters among these sites; and Li denotes an allocation variable that assigns sites i to clusters 

j. At each of the T iterations of the MCMC simulations and for each pair of sites i and i' (NxN 

combinations), one can verify whether Li and Li’ are equal, meaning that sites i and i' belong to the 

same cluster j. Suppose I is an indicator variable, one can write 

 

𝐼𝑖𝑖′ =  {
1     𝑖𝑓     𝐿𝑖 = 𝐿𝑖′

0     𝑖𝑓     𝐿𝑖 ≠ 𝐿𝑖′
            (12) 

Averaging over T iterations of the MCMC simulations, an NxN similarity matrix SIM can be 

obtained. The cells of the resulting matrix are basically pairwise probabilities of similarities of 

sites (here, highway segments) in the crash data. 

 

𝑆𝐼𝑀 = 𝑇−1 ∑ 𝐼𝑖𝑖′

𝑇

𝑡=1

    (13) 

 

In this research, since a unique Dirichlet process for all random parameters β = (β1, β2,…, βm) is 

used, then, if Li = Li’, their respective random parameters are similar; i.e., (βi1, βi2,…, βim) = (βi’1, 

βi’2,…, βi’m). The above algorithm is fully probabilistic; hence, it better reflects real data scenarios. 

Based on (12), one could also identify outlying sites (i.e., those performing very differently 

from the rest of the sample in the effect of their characteristics on safety), estimating the total 

number of sites with similar risk factors profiles. Obviously, when i=i', the pairwise probability 

of similarly is 1. One can thus write  

  

𝑇𝑜𝑡𝑎𝑙 = ∑ 𝐼𝑖𝑖′

𝑖≠𝑖′
    (14) 

As in (13), the statistic obtained in (14) is averaged over all iterations. A value close to one 

indicates an outlying site as there are no other sites that are similar to this outlier (Ohlssen et al., 

2007).  

2.8.  Marginal effects 

Marginal effects can be used to interpret the association between crash frequencies and site 

characteristics. With respect to model interpretation, this research investigates the impact of 

model formulation on the estimated marginal effects, which indicate the effect of one unit change 

in an independent variable on the outcome of interest; e.g., cash frequencies. In this paper, the 
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average marginal effects can be obtained for the mth random parameters βi and fixed parameters 

γ from (15) and (16), respectively.  

 

𝜕𝐸(𝑦|𝒁𝒊, 𝑿𝒊, 𝜷𝒊, 𝜸)

𝜕(𝑍𝑚)
=

1

𝑁
∑ 𝛽𝑖𝑚𝑒𝑥𝑝(

𝑁

𝑖=1

𝜷𝒊𝒁𝒊 +  𝜸𝑿𝒊)    (15) 

𝜕𝐸(𝑦|𝒁𝒊, 𝑿𝒊, 𝜷𝒊, 𝜸)

𝜕(𝑋𝑚)
=

1

𝑁
∑ 𝛾𝑚𝑒𝑥𝑝(

𝑁

𝑖=1

𝜷𝒊𝒁𝒊 +  𝜸𝑿𝒊)    (16) 

 

Under a Bayesian framework, the posterior distribution of the marginal effect can be inferred, for 

example, for random parameters Z by averaging the calculated values at each iteration t of the 

MCMC simulations: 

 

{
𝜕𝐸(𝑦|𝒁𝒊, 𝑿𝒊, 𝜷𝑖

(𝑡)
, 𝜸(𝑡))

𝜕(𝑍𝑚)
}

𝑡=1

𝑇

 
   (17) 

 

Therefore, Bayes estimates of marginal effects could be obtained in the form of posterior densities, 

providing a fuller picture compared to point estimates often obtained from classical estimates.  

3. Empirical setting  

This paper illustrates the ideas discussed above with an example data set (provided by 

the Ontario Ministry of Transportation) containing 418 highway segments in Ontario, Canada. 

Specifically, the crash data were obtained from Highway 401, which is one of the busiest North 

American highways, from 2006 to 2008. This highway connects the Ontario-Quebec border to the 

Ontario-Michigan border, passing through the Greater Toronto Area. In the aforementioned 

three-year period, the data set recorded 29,148 crashes, which result in huge amount of monetary 

and non-monetary costs. Besides crash counts, a number of operational and geometric segment 

characteristics such as average annual daily traffic, median (inside) shoulder width, outside 

shoulder width, and average horizontal curve degree curvature per km were available as well. 

The outcome of interest is the total crash frequency during a three-year period. Descriptive 

statistics are provided in Table 1. A histogram of the crash frequency is displayed in Fig. 1.  

Several combinations were tested and the final model reported in the section of results 

was the best. Since a relatively limited site characteristics appear to be statistically important in 

the model, the omitted variable issue may arise. Although it was attempted to include the most 

significant variables that have an important effect on safety, having a limited number of variables 

in the model could be a limitation of this study, and perhaps several other previous traffic safety 

studies. A discussion in this regard is provided in previous research; for example, see Jovanis et 
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al. (2011), Mitra and Washington (2012), Mannering and Bhat (2014), and Wu et al. (2015). It is 

discussed in the crash literature that statistical techniques such as random parameters models 

could mitigate adverse consequences of the omitted variables problem (Mannering and Bhat, 

2014; Heydari et al., 2016b). However, whether these techniques are satisfactory remains 

uncertain and the problem may not be fully addressed. Therefore, it is important to recognize the 

importance of the omitted variables bias in traffic safety research. Also, note that temporal 

instability could play a role in the results as the effect of explanatory variables may vary by time 

during the study period. Therefore, accounting for temporal instability could better address 

unobserved heterogeneity (Mannering, 2018). While the general importance of addressing 

temporal instability in traffic safety research is recognized, the topic is beyond the scope of this 

paper. It was not possible to include some site characteristics in the model at the same time 

because of high co-linearity.  

4. Results and discussion 

This section reports the results obtained from the estimation of a standard random 

intercepts model, a standard random parameters model, and the proposed flexible discrete 

density random parameters model. Non-informative priors were used for model parameters to 

minimize the effect of prior information on the final posterior estimates. Sensitivity to prior choice 

is particularly important for the Dirichlet precision parameter, which measures the similarity 

between an unknown density and its baseline as discussed in Section 2.3. A sensitivity analysis 

was conducted for this parameter using a uniform prior on the range (0, 20) and did not result in 

any important variation in the results. With respect to conventional finite mixture modeling, a 2-

component negative binomial model was found to be more appropriate than a 3-component finite 

mixture model. However, based on the data set analyzed here, pseudo Bayes factors ruled out 

the finite mixture model with 2 components (which provides a log pseudo marginal likelihood of 

-1705), so the finite mixture model will not be discussed further. 

The results are summarized in Table 2. The results obtained from the conventional 

random parameters model support varying effects for the intercepts, median shoulder width, and 

average horizontal curve degree curvature. This means that the effects of some site characteristics 

vary across the sample, indicating heterogeneity across highway segments. The predictive 

performance of the model improves relative to the random intercepts model, considering the log 

pseudo marginal likelihoods reported in Table 2. In fact, a log pseudo Bayes factor of 5.95 

provides support for the random parameters model.  

While the conventional random parameters model employed in this paper assumes that 

random parameters follow a normal density, the proposed model relaxes this assumption, fitting 

flexible discrete densities to these random parameters. The posterior density of the Dirichlet 
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precision parameter (displayed in Fig. 2) is peaked away from 0 and 10 indicating that the 

normality assumption is not suitable here. The estimated posterior mean of the precision 

parameter is 2.65 with a 95% credible interval of [1.20, 4.74] based on a uniform(0.3, 10) prior. The 

estimated expected median number of mass points for the fitted discrete densities is 13 with a 

95% credible interval of [10, 16]. The estimated standard deviations for the baseline densities (in 

the flexible discrete density model) are 13.6, 2.34, and 1.49 for random parameters associated with 

intercept, median shoulder width, and horizontal curve, respectively. The predictive power 

improves significantly under the flexible random parameters model as the log pseudo marginal 

likelihood increases to -1607.64 from -1617.71 in the conventional random parameters model. This 

leads to a log pseudo Bayes factor of around 10, providing strong support for the flexible model.  

It should be noted that the normality assumption for random parameters may cause 

undue shrinkage towards the overall mean for some sites; however, our flexible model prevents 

this problem. This is particularly important in the presence of outliers (sites performing very 

differently from the rest of the data), meaning that outlying sites can be accommodated in the 

analysis without the need to removing them from the data. As the potential presence of outlying 

sites is often ignored in road safety studies, the proposed approach could constitute a more robust 

statistical approach by accommodating them without compromising the results. A similar 

discussion in this regard is provided by Ohlssen et al. (2007) who used a flexible random 

intercepts model in the context of medical research. 

In general, the posterior means of regression coefficients are less or more similar among 

the two random parameters models except for the median shoulder width. However, a major 

difference is that the flexible model accounts for a much greater spread of the data, capturing 

unobserved heterogeneity more fully. Fig. 3 displays the posterior masses of the random 

parameters p(β|y) obtained from the standard and the flexible random parameters models, 

highlighting their differences in inferring the shape and the range of the random parameters. Fig. 

3 implies that the conventional random parameters model falls short in covering the range of the 

parameters, only partly capturing unobserved heterogeneity. For example, Fig. (3a) shows that 

the random parameter associated with horizontal curvature varies from around -13 to +7 under 

the flexible model; however, this parameter varies from around -5 to +4 under the conventional 

model. This variation is much larger for the vector of intercepts.  

The posterior mean estimates of the variances associated with random parameters under 

the flexible model are larger than those obtained from the standard random parameters model 

(see Table 2). In accordance with the above discussion regarding the estimated Dirichlet precision 

parameter, asymmetry and multimodality of random regression parameters (see the left-hand 

side of Fig. 3) indicate that, based on the data analyzed in this paper, parametric assumptions 

may be limited in reflecting the underlying structure of crash data sets. As it is discussed in the 

next section, this limitation could have practical implications such as affecting the effectiveness 

of countermeasures. One should however take into account that the proposed model may become 
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computationally intensive compared to many current methods commonly used in traffic safety 

research. It is also important to emphasize that methods such as standard random parameters 

models should not be ruled out as they may approximate the density of a random regression 

parameter properly, specifically when for example non-normal densities are considered.   

4.1.  Practical implications 

An important difference observed here is in the range of random parameters although the 

posterior means indicate that the overall mean of the population is negative for median shoulder 

with and average horizontal curve degree curvature. This difference has interesting practical 

implications, for example, with respect to selecting appropriate countermeasures for different 

sites. According to the standard random parameters model, which erroneously assumes a 

normally distributed random density for median shoulder width, 15.04% of the sites in the data 

manifest a positive association between crash frequencies and median shoulder width (this is the 

portion of density that is greater than zero). However, according to the flexible discrete density 

random parameters model, 34.02% of the sites manifest such positive association. The difference 

between these two estimates is relatively large; i.e., 18.98%. Suppose a safety treatment consisting 

in modifying median shoulder width is to be implemented. Obviously, this discrepancy could 

distort the overall expected benefits.  

With regard to average horizontal curve degree curvature, the proportions of the sites 

having a coefficient greater than zero are 14.94% and 23.70% for the random parameters model 

and the flexible random parameters model, respectively. The overall negative sign for this 

variable could be justified based on an increased driver awareness in relatively sharper curves. 

This is in accordance with previous research (see, for example, Anastasopoulos and Mannering, 

2009). Relative to the random intercepts model that only supports a negative sign for this variable 

across the entire sample, however, both random parameters models draw a more realistic picture, 

revealing that, for some sites, crash frequencies could increase as horizontal curve degree 

curvature increases. Note that, when discussing the range of random parameters, a more holistic 

approach would be to consider a third group of intervals on the interval [-∞, ∞] that includes a 

region around zero where a covariate of interest does not have an important effect on safety. 

However, this requires specifying two arbitrary values around zero by the analyst, creating an 

interval that is considered as the non-significance region. 

4.1.1.  Magnitude of association between site characteristics and safety 

To interpret the magnitude of association between the expected crash frequency and site 

characteristics, average marginal effects were computed according to Section 2.8.  The posterior 

summary of marginal effects is reported in Table 3. One advantage of the data set used in this 

research is that the average crash frequency is relatively large so that the differences between 
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different models (and site characteristics) could be better highlighted as estimated marginal 

effects are large as well. Apparently, AADT has the largest impact on crash frequencies under the 

three models examined here. Relative to both random parameters model, the random intercepts 

model slightly underestimates the average effect of traffic exposure on crash frequencies by 

around 2 crashes in a 3-year period. This difference is much larger for average horizontal curve 

degree curvature: around 22 crashes in a 3-year period relative to the proposed flexible discrete 

density model. Marginal effects are more similar among the two random parameters models, but 

the effect of horizontal curve is underestimated in the conventional random parameters model 

relative to the flexible model (-43.99 vs. -52.54). 

A large difference can be observed in the standard deviation estimates of the marginal 

effects (Table 3). For both non-varying regression coefficients (those associated with AADT and 

segment length), the flexible discrete density model provides smaller standard deviations. In 

contrast, the latter model provides larger standard deviations for random parameters (those 

associated with median shoulder with and horizontal curve). This can be explained by the fact 

that the conventional models considered in this study may be limited in accommodating the 

range of random parameters. For the non-varying parameters, standard deviations are small 

relative to their posterior means, suggesting a positive association between these parameters and 

safety for all highway segments. However, relatively large standard deviations of marginal 

effects for random parameters indicate that the effect of median shoulder width and horizontal 

curve can vary considerably in the sample. 

4.1.2.  Sites performing similarly 

An interesting advantage of the proposed model is its ability to identify sites with similar 

covariate effects (risk factors). This allows the identification of sites that could be affected 

similarly by implementing similar countermeasures. As discussed in Section 2.7, pairwise 

probabilities of similarity can be estimated to identify highway segments having similar random 

regression parameters profiles (here, intercept, median shoulder width, and horizontal curve 

degree curvature). Recall that if a Dirichlet process prior is placed on all regression coefficients, 

sites exhibiting similar expected crash frequency profiles can be identified. A pairwise probability 

plot for a sample of sites is displayed in Fig. 4. This plot implies that, for example, segments 127 

and 149 across Highway 401 are similar in the effects of their random parameters with a 

probability of 74%. As previously discussed in Section 2.7, identifying sites with similar covariate 

effects stimulates further investigations that could lead to find reasons for which, say, some 

highway segments are similar in the effect of traffic flow on crash frequencies of a specific type. 

One may find that these segments are also similar in some other features that were initially 

unnoticed. For example, they may be similar in the formation of microclimates among them or in 

the presence of entrance/exit ramps as well. This means that such variables should be tested in 
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the model in the future since they may have a bearing on safety. Therefore, identifying sites 

performing similarly could also provide insights relating to future data collection activities.  

5. Summary and conclusions 

In traffic safety research, there has been considerable attention devoted of late to the use 

of random parameters models to overcome unobserved heterogeneity. In the random parameters 

approach, it is often necessary to confirm the accuracy of parametric assumptions (e.g., normality 

of random parameters), which may otherwise compromise the estimation of the effect of 

explanatory variables on safety. This paper introduces a novel data-driven random parameters 

approach, rooted in Bayesian nonparametric literature, to model count data. The proposed model 

overcomes sensitivity to distributional assumptions by fitting a discrete density (instead of a pre-

specified continuous density) to random parameters based on a Dirichlet process mixing 

approach.  

The methodology is applied to a highway segment data set from Ontario, Canada. The 

proposed model is compared with some of the commonly used approaches in traffic safety 

research such as a random intercepts model and a random parameters (slopes) model. In this 

work, while heterogeneity across highway segments is mostly ignored by the random intercepts 

model, it is partially captured by the conventional random parameters model. It is shown that the 

proposed flexible discrete density model accommodates unobserved heterogeneity more 

properly relative to the standard random parameters model. The proposed discrete density 

model provided the best statistical fit according to the estimated pseudo Bayes factors, derived 

from a more robust leave-out-one cross-validation exercise (compared to conventional cross-

validation).  

The fitted models were compared in terms of the estimated range of the random 

parameters and their posterior masses of marginal effects. In this research, in general, the random 

intercepts model provided the least accurate estimates; for example, underestimating the effect 

(and the standard deviation of the effect) of horizontal curve degree curvature on highway safety. 

The results indicate that the standard random parameters models can also compromise the 

accuracy of estimates if parametric assumptions do not hold. Marginal effects were also affected 

by different model formulations. Besides coping with situations where parametric assumptions 

are inappropriate (e.g., due to asymmetry or multimodality), the flexible random parameters 

model identifies sites that manifest similarity in the effect of their risk factors, providing new 

guidance that could be useful in designing safety treatments. A further in-depth study can be 

conducted to reveal the reasons for such similarities or dissimilarities among sites in the data. 

This research suggests that the proposed discrete density approach, as a feasible alternative to 
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current approaches, provides promise in modeling count data and addressing unobserved 

heterogeneity by drawing important and interesting insights from the data.  
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Table 1. Summary statistics for the Ontario Highway 401 data (418 observations). 

Variables Mean Std. Dev. Min Max 

AADT all vehicles (vehicles per day) 80369.420 95760.440 14499.940 442900.300 

AADT commercial vehicles (vehicles per day) 14383.640 6890.880 4864.000 42075.500 

Percentage of commercial vehicles 29.027 12.300 3.100 49.100 

Segment length (km) 1.952 2.061 0.206 12.703 

Number of lanes 5.445 2.428 4.000 12.000 

Median (inside) shoulder width (m) 1.598 1.194 0.000 5.190 

Median width (m) 11.106 6.147 0.600 30.500 

Outside shoulder width (m) 3.135 0.285 2.600 4.000 

Lane width (m) 3.707 0.301 1.830 5.625 

Average horizontal curve degree curvature per km 0.945 1.864 0 16.592 

Paved outside shoulder (1 if paved; 0 otherwise) 0.586 0.493 0.000 1.000 

Surface type (1 if HCB1; 0 otherwise) 0.526 0.500 0.000 1.000 

Crash frequency (3-year period) 69.732 138.975 0 1098 

1 HCB stands for high class bituminous pavement. 
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Table 2. Posterior estimation summary of model coefficients 
   Posterior 

Mean Std. Dev. 

95% Credible intervals 

    2.50% 97.50% 

Random intercepts model 

Random intercepts mean -10.340 0.479 -11.180 -9.236 

Variance 0.517 0.043 0.437 0.609 

ln(AADT) 1.248 0.043 1.150 1.322 

ln(length) 0.802 0.050 0.705 0.899 

Median shoulder width (in tenths of meters) -0.643 0.318 -1.257 -0.008 

Average horizontal curve degree curvature per km -0.442 0.121 -0.680 -0.208 

Model fit (log pseudo marginal likelihood) -1623.66 - - - 

Random parameters model 

Random intercepts mean -10.550 0.472 -11.510 -9.625 

Variance 0.393 0.056 0.295 0.516 

ln(AADT) 1.270 0.042 1.187 1.353 

ln(length) 0.792 0.047 0.702 0.887 

Median shoulder width (in tenths of meters) -0.681 0.323 -1.323 -0.038 

Variance 0.873 0.037 0.007 2.911 

Average horizontal curve degree curvature per km -0.663 0.161 -0.985 -0.356 

Variance 0.755 0.286 0.268 1.387 

Model fit (log pseudo marginal likelihood) -1617.71 - - - 

Flexible discrete density random parameters model 

Random intercepts mean -10.700 0.325 -11.360 -10.090 

Variance 4.001 3.324 0.909 12.770 

ln(AADT) 1.278 0.027 1.228 1.332 

ln(length) 0.772 0.020 0.731 0.813 

Median shoulder width (in tenths of meters) -0.430 0.309 -1.110 0.077 

Variance 2.959 3.205 0.036 9.687 

Average horizontal curve degree curvature per km -0.658 0.179 -1.024 -0.319 

Variance 1.426 0.919 0.186 3.851 

Model fit (log pseudo marginal likelihood) -1607.64 - - - 
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Table 3. Posterior summary of average marginal effects 

 

Posterior 

Mean Std. Dev. 

Random intercepts model   

ln(AADT) 86.96 2.86 

ln(length) 55.89 3.44 

Median shoulder width (in tenths of meters) -45.43 21.94 

Average horizontal curve degree curvature per km -30.80 8.43 

Random parameters model 
 

 

ln(AADT) 88.55 2.96 

ln(length) 55.25 3.29 

Median shoulder width (in tenths of meters) -42.88 22.38 

Average horizontal curve degree curvature per km -43.99 12.56 

Flexible discrete density random parameters model 
 

 

ln(AADT) 89.12 1.96 

ln(length) 53.80 1.46 

Median shoulder width (in tenths of meters) -43.18 28.31 

Average horizontal curve degree curvature per km -52.54 20.96 
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Figure 1. Histogram of observed crash data 

 

 

 
Figure 2. Histogram of posterior density for Dirichlet precision parameter 
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Figure 3. Histograms of posterior masses:  

(1) varying intercepts; (2) median shoulder width; and (3) average horizontal curve degree curvature for 

(a) flexible discrete density random parameters model and (b) standard random parameters model 
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    Highway segment ID 

   125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 

H
ig

h
w

ay
 s

eg
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ID
 

138 0.02 0.00 0.00 0.04 0.00 0.06 0.00 0.06 0.00 0.00 0.10 0.00 0.88 1.00 0.01 

139 0.06 0.30 0.02 0.25 0.36 0.02 0.02 0.00 0.11 0.02 0.00 0.38 0.01 0.01 1.00 

140 0.24 0.24 0.34 0.19 0.23 0.08 0.24 0.22 0.44 0.15 0.14 0.00 0.00 0.00 0.06 

141 0.18 0.22 0.48 0.26 0.09 0.14 0.41 0.35 0.32 0.29 0.26 0.00 0.00 0.00 0.04 

142 0.17 0.25 0.04 0.14 0.29 0.06 0.07 0.00 0.11 0.07 0.00 0.38 0.01 0.01 0.42 

143 0.25 0.25 0.27 0.17 0.29 0.06 0.19 0.17 0.46 0.12 0.11 0.01 0.00 0.00 0.09 

144 0.17 0.18 0.55 0.29 0.02 0.17 0.51 0.41 0.27 0.35 0.30 0.00 0.00 0.00 0.01 

145 0.23 0.30 0.20 0.17 0.36 0.04 0.13 0.12 0.41 0.07 0.08 0.05 0.00 0.00 0.19 

146 0.02 0.01 0.04 0.04 0.00 0.03 0.00 0.03 0.00 0.04 0.06 0.02 0.33 0.31 0.02 

147 0.15 0.01 0.00 0.09 0.00 0.00 0.00 0.07 0.09 0.00 0.01 0.38 0.00 0.00 0.04 

148 0.34 0.06 0.11 0.05 0.00 0.58 0.44 0.09 0.09 0.48 0.15 0.00 0.01 0.01 0.04 

149 0.04 0.25 0.74 0.40 0.04 0.02 0.50 0.59 0.28 0.35 0.45 0.00 0.00 0.00 0.01 

150 0.09 0.30 0.01 0.22 0.34 0.00 0.00 0.00 0.08 0.00 0.00 0.42 0.00 0.00 0.64 

151 0.08 0.22 0.68 0.37 0.02 0.09 0.51 0.55 0.26 0.35 0.42 0.00 0.00 0.00 0.01 

152 0.21 0.12 0.32 0.17 0.02 0.35 0.42 0.27 0.15 0.41 0.25 0.01 0.02 0.02 0.02 

Figure 4. Pairwise probabilities of similarities according to random regression coefficients profiles for a 

sample of highway 401 segments – darker cells indicate higher probabilities 


