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Due to manufacturing variations, no real turbine blade exactly conforms to its nom-

inal geometry. Even minimal deviations are known to affect aerodynamic perfor-

mance, blade temperatures and blade lifespan negatively. Rather than conventional

deterministic design with its costly adherence to strict control of tolerance limits,

robust design optimization aims to incorporate inevitable variations into the design

process itself, so that both performance mean and scatter can be optimized simulta-

neously. Such a workflow is presented and applied in this paper to aerodynamically

optimize an industrial turbine rotor blade against realistic manufacturing varia-

tions. A set of digitized 3D laser scans from two turbofan engines forms the core

of this study. On the basis of these deviations, the approach uses high-fidelity ge-

ometric models, non-intrusive uncertainty quantification and efficient robust opti-

mization with constraints to effectively locate Pareto-optimal designs. One selected

robust blade is validated and shown to be desensitized to the observed manufac-

turing variability. The underlying measurement data is crucial to obtain realistic

results and as a consequence vital to design real robust turbine blades.
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Nomenclature

COI Coefficient of importance

Cv Coefficient of variation

cp, cv Specific heat capacity at constant pressure, volume

d Design variable vector

E Expected value

h Optimal kernel bandwidth

ṁ Mass flow rate

P Delta parameter sample matrix

p Pressure

PCE Percentage error

R2 Coefficient of determination

Rs Specific gas constant

rs Spearman’s rank correlation coefficient

ŝ Sample standard deviation

T Temperature

Var Variance

w Specific work

x Sample mean

∆p Vector with radially averaged delta parameters

η Isentropic efficiency

θ, q, λ Kriging hyperparameters

κ Heat capacity ratio

ν Kinematic viscosity

ν̃ Spalart variable

ρ Density

φ Inlet capacity

Ψ Kriging correlation matrix
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I. Introduction

No turbine blade ever exactly conforms to its nominal design intent geometry and almost never

operates at the nominal conditions it was initially designed for. For example, deviations can stem

from manufacturing variations, corrosion, foreign object damage, creep, fatigue and operating

condition abnormalities such as hot streaks. In the literature, it is well-known that even minimal

perturbations in certain areas, whatever the cause, can have substantial detrimental effects on blade

performance [1, 2, 3, 4]. For turbines in particular, this concerns the capacity, pressure losses, blade

temperatures and as a consequence thereof blade life. This motivates the need for uncertainty quan-

tification (UQ) and robust design optimization (RDO) with the goal to design turbine blades, which

operate well despite unavoidable variations. In the past, the problem of manufacturing variations to

some degree was addressed by safety factors and strict control of tolerances, which, however, can

quickly lead to over-engineering and increased costs [5]. In contrast, the fundamental idea here

is to establish a non-deterministic methodology to create robust turbine blade by design, which

is vital in moving away from suboptimal safety factors and the expensive practice of tightening

quality control tolerance limits.

The contribution of this paper relative to prior work is the incorporation of a previously devel-

oped parameterization method [2] and UQ workflow [6] into a coherent RDO workflow for turbine

blades, which, to the best of our knowledge, is the first such heuristic to incorporate real variations

of the entire blade shape. It is shown that artificially generated blades for UQ can recreate the

stochastic performance of real scans and that the optimization effectively produces robust turbine

blade designs. The optimization strategy also improves existing techniques, can handle constraints

and has been integrated into Rolls-Royce’s optimization tool OPTIMAT v2 a. The difference to

similar surrogate-based robust optimization methods is that UQ is carried out on a single surrogate

and the statistics are passed straight to the optimizer. The construction of another layer of surro-

gates for mean and standard deviation is not required. For details, see Sec. III. Moreover, as an

improvement to related work on compressor blades, where deviations were approximated with a

truncated multivariate normal distribution [8], probability density functions (PDFs) of random pa-
aOPTIMAT v2 is a surrogate-based optimization tool developed at the University of Southampton’s Rolls-Royce

UTC [7].
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rameters are estimated nonparametrically through kernel density estimation (KDE). This is more

flexible and allows the incorporation of random variables with any distribution.

The methodology in this paper is significant because it permits robust turbine blade design

with realistic geometric variations so that blades can be optimized and desensitized towards real

measured variations and as a consequence perform better. This is preferable to robust optimization

with made-up and possibly unrealistic variations based on assumptions. The industrial relevance

stems from the fact that every engine manufacturer faces adverse effects due to manufacturing

variations in one way or another, and the workflow presents a way to tackle this. It is efficient due

to its use of fully-featured high-fidelity geometric models, 3D Reynolds-averaged Navier-Stokes

(RANS) equation-based computational fluid dynamics (CFD), easy-to-use non-intrusive UQ and

its use of parallel computing. It can also handle large numbers of parameters, which can be useful

for potential large-scale industrial applications.

II. Background

A. Related Work

Several relevant UQ studies describe the effects of turbine blade deviations based on actual man-

ufacturing process-related data [1, 2, 3, 4, 9]. Notably, a previous version of the correlation-based

parameterization method also used in this paper was used as part of a UQ study [2]. The statisti-

cal basis consisted of 500 digitized new and used high-pressure (HP) turbine blades. With a 3D

RANS-based CFD model of an HP turbine stage, a sensitivity study based on 50 MC samples was

carried out and the stagger angle was found to be the single most important parameter for stage

capacity and reaction. The effects of manufacturing variability on the aerodynamic performance

of turbine vanes have also been investigated using 2D MISES CFD and principal component anal-

ysis (PCA) by Duffner [3]. It was found that the regions most sensitive to perturbations were the

throat and trailing edge (TE). Upstream of the throat, performance was found to be nearly com-

pletely insensitive to perturbations. Changes in the minimum throat area and shock waves were

identified as the main underlying mechanisms. Another study of a Rolls-Royce HP nozzle guide

vane (NGV) explored the influence of geometric variations on capacity settings using parametric
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NGV TE slots [4]. A one-factor-at-a-time analysis and MC simulations were used and TE position

and the suction side (SS) profile offset were found to impact capacity significantly. In another

UQ study, manufacturing data was distilled into tolerances for four parameters: ±0.3 mm for the

chord length, ±20′ (arcminutes) for the stagger angle, −0.1 mm for the TE radius and ±0.15 mm

for the blade height [9]. This study identified the stagger angle and TE variations to impact the

performance most significantly.

In general, RDO is not yet widely adopted in industry and subject to a lot of current re-

search [8, 10, 11, 12, 13]. Past studies often lack real manufacturing data, and probability distribu-

tions for uncertain parameters are often made-up. For example, uniform probability distributions

were assumed for a centrifugal impeller optimization [11]. Similarly, a β-distribution was assumed

for compressor tip clearance variations [14]. The problem is that in reality probability distributions

could be entirely different, e.g., in terms of range, shape and correlation, but the variability model

is crucial for the final design and its performance. There also have been studies with underlying

variability models based on measurements. In one such study of compressor blades, probability

distributions and correlations were approximated with a truncated multivariate normal PDF and

each blade was analyzed with three 2D MISES solver runs [8]. The study hence relied on the

assumption that each parameter’s marginal distribution is also normally distributed. The restric-

tion to 2D CFD was chosen due to the long CFD runtimes, but three-dimensional effects in the

flow were neglected. The method presented in this paper improves upon both of these aspects. In

another study, a 3D RANS-based robust optimization of a fully-featured turbine blade with PDFs

based on over 100 measurements was carried out [10]. But besides three operational uncertain-

ties, this study only considered the leading edge (LE) film cooling row and the tip gap as the sole

two geometric noise parameters as the main focus was the inclusion of conjugate heat transfer to

compute the actual metal temperatures.

Various approaches to robust optimization have been compared by Keane [12, 13]. In particu-

lar, it was shown that co-Kriging can be very efficient, but also that there is no universal method of

choice. Co-Kriging or other multi-fidelity approaches are typically only options when high- and

low-fidelity model outputs are well correlated and otherwise cannot be used. Surrogate model-

6 of 41



assisted optimization is typically a suitable choice, whereas direct NSGA-II (Non-dominated Sort-

ing Genetic Algorithm II [15]) searches involving a vast number of function evaluations in con-

junction with long CFD runtimes are often prohibitively expensive in practice. Other often-used

UQ techniques such as polynomial chaos-based surrogate models are typically restricted to prob-

lems with only a few variables [16]. Sparse grid methods, although highly efficient for smooth

functions, cannot cope with potentially noisy, discontinuous or missing data points, e.g., due to

diverged CFD or parameterization failures. It is also worth noting that robust optimization can be

construed differently, that there is no universal definition for robustness and that different statistics

can be used as objectives. For example, minimizing expectation and dispersion, expectation and

nominal value or nominal value and dispersion are three possible formulations [17]. By far the

most frequent form is to minimize expected value and standard deviation, which is also used here.

Hence, the stochastic objectives are to simultaneously minimize the sample mean and the unbiased

sample standard deviation in Eq. (1):

x = 1

N

N

∑
i=1
xi and ŝ =

¿
ÁÁÀ 1

N − 1

N

∑
i=1

(xi − x)2 (1)

B. Optical Scans & Blade Variations

Fifty-eight HP turbine blade scans in the form of STL files (stereolithography file format) were

provided by Rolls-Royce Germany. Although the blades have been in service briefly with two

different airlines and were taken from used, low-cycle engines, they essentially represent manufac-

turing variations. In a previous work, all blades were digitized using the scanning system GOM

ATOS SO 4M, a high-resolution, structured-light 3D scanner [6]. Due to their significance for

this study, some facts from this reference are repeated here: The measurement accuracy of the

scan system according to the manufacturer is 5 µm, but previous internal investigations with a test

specimen revealed that the real observed measurement accuracy is around 8 µm for planar surfaces

and about 27 µm near strongly curved areas. The blades were aligned to the nominal part using the

upper firtree surfaces due to their contact with rotating disk surfaces during operation. This ensures

the blades are realistically aligned in accordance with their actual operating state. Any measured
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deviation is thus a superposition of a blade’s positional variation, shape variation and variation of

the selected firtree surfaces. Also, gaps from scanned cooling holes are removed from each scan

using purpose-built in-house software from TU Dresden [18]. Doing this ensures that complete

airfoil sections are available, which are required for the parametrization to work. With smoothed

patches approximating the local blade curvature, the application of this tool introduces negligible

effects for the results.

(a) Nominal CAD model. (b) Blade scan #1. (c) Reverse engineered NX
model.

Figure 1 High-pressure turbine blade CAD model, scan and reconstruction.

As an illustration of one of the scanned HP turbine blades, Fig. 1b depicts the STL file of scan

#1 with about 2 million triangles. This scan can be compared with the nominal CAD model, the

design intent geometry, depicted in Fig. 1a. Figure 1c shows a reverse engineered NX model of

the blade geometry for CFD analysis.

To illustrate some observed deviations from the nominal CAD model, Fig. 2 depicts the ge-

ometric variations of all 58 scans’ leading and trailing edges at 50 % span. In Fig. 2b near the

TE, axially shifted and twisted airfoil shapes are striking. One outlier with a particularly short TE

stands out. The manufactured mean is clearly different from the nominal CAD design intent.
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(a) Leading edge. (b) Trailing edge.

Figure 2 Variations of all 58 blade scans (mean – –) vs. the nominal CAD design intent (—)
at half-span.

III. Computational Methodology

The four basic robust optimization steps can be broken down as follows:

1. Construction and evaluation of a design of experiments (DOE) comprising the design and

noise parameter space.

2. Tuning of an ordinary Kriging surrogate model.

3. UQ through sampling the surrogate (MC or quasi-Monte Carlo (QMC) sampling) with

Eq. (1).

4. Multi-objective optimization of mean and variance using NSGA-II [15].

One part of this robust optimization methodology is novel and differs from existing approaches,

e.g., those due to Lee and Park [19] or Dellino et al. [20]. Here, one single Kriging model for the

combined design and noise parameters is constructed and then sampled. In both references, how-

ever, an intermediate Kriging model is built first, which is then sampled to construct another layer

of Kriging models for mean and variance. Here, mean and standard deviation are passed directly to

NSGA-II without these additional surrogates, which is more efficient (since only one surrogate has

to be optimized) and more accurate (due to the lack of redundant surrogates). The key advantage of

this process is the cheap computation of statistics through sampling the surrogate model. In step 3,

either pseudorandom numbers, so Monte Carlo (MC) samples, or low-discrepancy sequences such
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as Halton, Sobol or Faure sequences, referred to as quasi-Monte Carlo (QMC) methods, can be

used. QMC samples are more evenly distributed and QMC can be superior to MC due to its faster

rate of convergence close toO(1/N), versusO(1/
√
N) for MC [21]. One of the advantages of the

proposed workflow is that the surrogate is independent of the number of UQ samples. To ensure

fast UQ, the surrogate, as opposed to the expensive black box function, can be sampled efficiently

thousands of times to calculate the statistics.

A. Robust Optimization with an Analytical Function

As an analytical toy problem, a stochastic version of the modified Branin function [22] in Eq. (2),

f(x) =

Modified Branin function [22]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(x2 −

5.1

4π2
x21 +

5

π
x1 − 6)

2

+ 10(1 − 1

8π
) cosx1 + 10 + 1

3
(x1 + 5)

+ 50000 ⋅
⎛
⎝

x3

8
(0.05 + cos(x1

8 + 1)4 + cos(x2

8 + 7)4) + x4

8 cos(x1

8 + 1)2 cos(x2

8 + 7)2

(x1

8 + 1)2 + 2(x2

8 + 7)2
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Extra uncertain / noise term (cf. Ref. [5])

(2)

is used, where in addition to the usual design parameters, x1 ∈ [−5,10] and x2 ∈ [0,15], two

additional noise parameters, x3, x4 ∈ [−8,8], are part of the function. Without noise, the modified

Branin function is a multimodal function and has a single global minimum in the upper left corner

at f(−π,12.275) ≈ 1.0174.

A bound-constrained multi-objective optimization problem formulation is given by Eq. (3):

minimize
x

E[f(x)] and Var[f(x)],

subject to x1 ∈ [−5,10],

and x2 ∈ [0,15],

and x3, x4 ∈ [−8,8].

(3)

To solve this, a 20-point Latin Hypercube DOE for design and noise parameters is generated

and evaluated first. The second step is to construct the Kriging surrogate given the parameters and

their responses. Third, the statistics are computed using 100,000 QMC Sobol samples. Fourth,
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a multi-objective search is run with NSGA-II. Both population and generation size are set to 100

and a space-filling DOE is used inside NSGA-II at the start. The result of this search is a set of

non-dominated, Pareto-optimal update points, which can be added to the initial DOE. The update

point selection method first selects points in the middle of the Pareto front, followed by endpoints

and points in between. Every new point is compared to existing points to ensure that only truly

new points are added. The optimization loop can be repeated until convergence is detected or

until a fixed time limit has been reached. Convergence is monitored after every iteration. New

Pareto-optimal infill points are compared to all previous points to make sure they are truly new

and not too close to existing points. The search is stopped if not a single new Pareto-optimal point

can be found for four consecutive iterations. Besides Pareto-optimal update points (exploitation),

space-filling update points can also help improve surrogate model accuracy through better space

exploration. They are computed with the Euclidean distance by selecting points furthest away from

existing points (DOE and update points). In this example, five Pareto-optimal and five space-filling

update points are requested in every iteration. Additionally, whenever update points are clustered

too closely, again based on a minimum allowed Euclidean distance, a filtering method using a

d-dimensional hypersphere replaces such points with space-filling update points.

The results from this methodology applied to Eq. (3) are depicted in Fig. 3. The resulting

estimates of both mean and standard deviation in the design parameter space are shown in Figs. 3a-

3b respectively. Figure 3c shows the final Pareto front in the objective space after 100 iterations

through the loop. For validation, the metamodel-based search was compared to a direct NSGA-II

search using a 20-point Sobol sequence DOE and 100,000 Halton sequence UQ samples per design

point. The agreement of both Pareto fronts in Fig. 3c confirms the previous results.

To gauge surrogate model accuracy, metrics such as the coefficient of determination (R2), the
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(a) Estimated mean in design space. (b) Estimated standard deviation in design
space.

Figure 3 Robust optimization using Eq. (2) with 5 Pareto-optimal update points (◀), 5
space-filling update points (▶), all Pareto-optimal points (●) and all evaluated points (●).

(c) Robust Pareto fronts in objective space.

Figure 3 (cont.) In addition to markers from Figs. 3a-3b, direct NSGA-II Pareto front
points (●) and corresponding evaluated points (●) are depicted for validation.

root-mean-square error (RMSE) and the maximum absolute error (MAE) as defined in Eq. (4),

R2 = 1 − ∑
n
i=1(fi − f̂i)2

∑n
i=1(fi − f̄)2

, (4a)

RMSE =

¿
ÁÁÀ 1

n

n

∑
i=1

(f − f̂)
2
, (4b)

MAE = max (∣f − f̂ ∣) , (4c)
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can be computed using k-fold cross-validation, i.e., using k subsets of points. RMSE and MAE are

reported in percent with regard to the full range of values, e.g., in Table 1. Expectedly, given the

huge number of points in only four dimensions, the final surrogate model accuracy is excellent.

Table 1 Cross-validated accuracy estimates for surrogate models of f(x).

Error metric Beginning (20 points) End (1020 points)
R2 [%] 91.2214 99.9958
RMSE [%] 6.4896 0.0593
MAE [%] 15.2618 1.0988

Ordinary Kriging surrogate models approximate black box function responses f(x) at any

point x with the stochastic process model y = µ+ε(x), where µ is a constant mean and ε a Gaussian

error with zero mean and variance σ2. ε is assumed to depend on the distance between observed

data points. Based on the choice of basis function, the correlation matrix Ψ is then constructed. In

engineering applications, this is typically the correlation function in Eq. (5) [22]:

Ψ(x(i),x(l)) = exp(−
d

∑
j=1
θj ∣x(i)j − x(l)j ∣qj) + λδij (5)

Surrogate model hyperparameters θj , qj and λ are tuned using maximum likelihood estimation

(MLE), where the concentrated log-likelihood function (CLLF) is optimized with a hybrid op-

timizer, viz., particle swarm optimization (PSO) followed by a greedy downhill search. λ is a

regression constant added to the diagonal of Ψ to deal with potentially noisy CFD outputs by ei-

ther interpolating (λ = 0) or regressing (λ > 0) observed data points. When qj = 2, Eq. (5) is called

the Gaussian correlation function. A new ordinary Kriging prediction f̂ at update a point xN is

given by Eq. (6) with ψ(xN) = Ψ(xN ,x(i)) as the correlation vector between the point and the

DOE:

f̂(xN) = µ̂r+ψT (Ψ + λI)−1(f − 1µ̂r),

where µ̂r =
1T (Ψ + λI)−1f
1T (Ψ + λI)−11

.
(6)
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B. Robust Optimization Heuristic for Turbine Blades

The robust turbine blade optimization workflow is an extension of the principles described in

Sec. III. A for the analytical example. Figure 4 depicts the entire workflow, which can be di-

vided into three main subgroups: In steps 1-3, the initial DOE is generated and evaluated. This

involves the geometry construction process as well as the black box CFD objective and constraint

functions described later in Sec. III. E. The unnumbered steps below steps 1-3 constitute the statis-

tical basis. As described in Sec. III. 2, based on the 58 optical blade scans, real parameter samples

are generated from fitted probability distributions. Also, a target correlation matrix is extracted

to generate realistically correlated pseudorandom samples with Iman & Conover’s method (see

Sec. III. D. 2 and Sec. III. D. 3). Steps 4-9 constitute the main robust optimization loop. Steps 4-5

correspond roughly to what has been described in the analytical example in Sec. III. A. The real

workflow also allows the definition of constraint functions for any quantity of interest. Surrogate

models are then built for each objective and each constraint function. Step 5, NSGA-II, yields a

set of Pareto-optimal points. Step 6 involves a simple twofold check: On one hand, whether or not

to stop because the optimization budget is exhausted, and on the other to leave the loop in case

the Pareto front has not changed meaningfully in between four successive iterations. In step 7 the

workflow uses incremental increases of the number of UQ samples to speed up UQ search times.

Steps 8 and 9 are detailed in subsequent sections, Sec. III. D and Sec. III. E respectively.

C. Geometry and Analysis of the Real Scans’ Performance

First, to serve as a reference for validation of the parametrized blades for UQ in the next section,

the original scans’ performance is analyzed by accurately reverse engineering the scanned blade

geometries. Having removed the film cooling holes, the blade geometry is extracted directly from

STL files by slicing the triangle edges at n radial positions to extract intersection points. These

slices are extracted between 10 % and 90 % span to ignore the fillet regions below and above. The

only reconstruction errors are due to the partitioning of scans into discrete airfoil sections and due

to the cooling hole removal process. Both are negligibly small. Results are presented in Sec. IV. A.
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Figure 4 Measurement-based robust turbine blade optimization flowchart.

D. Parametric Construction of Realistic Blade Models

Parametrized blades, as opposed to the original scan files, are necessary to be able to construct as

many artificial, but realistic blades as required for UQ. In principle, various methods such as free-

form deformation or principal component analysis (PCA) can be used for this, e.g., see Ref. [23]

for PCA. Here, a reverse engineering process based on a set of 14 classical airfoil parameters, im-

plemented in a tool called Blade2Parameter (B2P) developed at TU Dresden, is used [6]. Figure 5

depicts all 14 parameters applied to a turbine blade section. As opposed to parameterizing the en-

15 of 41



tire airfoil, based on the assumption that differences are small, deviations are modeled in relation

to a baseline blade shape such as the CAD model. This parameterization has two distinct advan-

tages: First, unlike modes from PCA, variations of standard airfoil parameters are straightforward

to interpret, whereas PCA modes are more abstract than familiar airfoil parameters. Second, only

14 noise parameters (or even fewer, as shown in the sensitivity analysis in Sec. IV. B) are required

to accurately model geometric deviations. In contrast, the number of PCA modes can be far greater

than 14 and also vary significantly depending on the problem, as has been shown in previous UQ

studies, e.g., by Refs. [23, 24]. The number of parameters should be as low as possible in any

optimization due to the curse of dimensionality and the associated increased complexity.
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eters.

Figure 5 Illustration of Blade2Parameter’s noise parameters.

Through Eq. (7),

pi = pbaseline +∆p (7)

the parameterization creates new blade shapes pi by adding delta parameters ∆p to a baseline

blade shape pbaseline with camber, chord and thickness distributions. Samples for ∆p are obtained

by subtracting the baseline model’s parameters from those of the scans. The 14 delta parameters
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for a single section are listed in Eq. (8),

∆p =[axpos tanpos lc γ βLE βTE tmax post,max

cmax posc,max ct,max posTE tTE rLE]
T ∈ R14.

(8)

∆p consists of axial and tangential distances axpos and tanpos, chord length lc, stagger angle γ, LE

and TE camber angles βLE and βTE , maximum thickness tmax and its position post,max, maximum

camber cmax and its position posc,max, camber at the position of maximum thickness ct,max, TE

position posTE , TE thickness tTE and LE radius rLE .

First, B2P is used to extract parameter samples from all 58 blade scans to create the statistical

basis for UQ and optimization. Delta parameter samples can then be created by subtracting param-

eters of a real scan from those of the nominal CAD model. Second, B2P is used again to construct

artificial turbine blades given a pseudorandom sample of ∆p. Given that the parameterization is

for 2D airfoil profile sections, n sections are stacked spanwise to create the final 3D blade models.

For each 2D section in length-preserving rθ-m space, axpos and tanpos are used to position the

blade. Given this point, stagger angle γ and chord length lc are added. Next, camber and thickness

distributions are both morphed towards their target distribution using several morphing vectors.

Then, the morphed camber line is added to the chord line and the morphed thickness distribution

is applied to the camber line. This process yields a complete airfoil profile and is repeated for all

specified span positions.

Applying Eq. (8) to a single blade section technically results in 14 parameters per section.

For example, when a blade is modeled with 21 2D airfoil sections, there would be 21 ⋅ 14 = 294

delta parameters in total. As this would be far too many parameters for many purposes, all delta

parameters can be radially averaged to yield ∆p, which reduces the number of parameters to just

14. This radial averaging, termed the one mean area approach, can be justified due to the high

radial correlations between sections. The reason this works is that the delta parameters ∆p are

added to the baseline blade to add variability. As an example, the high correlations for ∆tmax are

shown in Fig. 6, but other delta parameters exhibit similar correlations.

Also, the regions below 10 % span and above 90 % span require special attention. This is
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Figure 6 Spanwise correlations for ∆tmax noise parameter.

because the parameterization does not work for fillets, i.e., sections there are not airfoil profiles. To

bridge the gap, models are extended through extrapolation using a special in-house code parapy.

Local displacement vectors are computed from two corresponding points on the outermost profiles

and smoothed using a Savitzky-Golay filter before new profiles are created. All required sections

from 0 %-100 % span are then available to construct the final 3D blade geometry.

Another in-house tool, which fits all airfoil section points with four cubic B-spline curves,

is used to construct the blades from sections. Each surface segment is C2 continuous to ensure

smooth transitions. The fitting essentially acts as a data point smoothing. From all radially stacked

splines, the final 3D blade model is then created, as shown in Fig. 1c. As a final step, each Siemens

NX blade model is sectioned again to export an arbitrary number of sections into text input files

for the meshing tool.

It is also worth noting that the reverse engineering workflow also supports constructing and

varying other geometric features such as the shroud geometry or film cooling hole positions and

dimensions. Hub and shroud fillets could be added too. Here, every blade’s shroud is shifted

axially. This shift is computed by comparing the axial chord midpoints of the topmost aerofoil

sections of the artificial blade to that of the nominal CAD geometry and the nominal shroud geom-

etry is moved accordingly.

During the optimization, PADRAM, one of Rolls-Royce’s in-house codes [25], is used to gen-

erate new turbine blade shapes given various engineering design parameters (cf. Sec. III. E. 4).
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Fine, unstructured, triangular surface meshes of each blade are then constructed with ANSYS

ICEM CFD and exported as STL files. Then, baseline parameters and distributions are reverse

engineered and the noise parameters are applied.

1. Comparison of Geometric Reconstruction Accuracy

The excellent reconstruction accuracy of the described approach is depicted in Fig. 7. In Fig. 7a on

the left, the magnitude of one of the scanned blade’s deviations are shown. Figure. 7b in the middle

depicts the deviations of a one-to-one, nonparametric reconstruction as described in Sec. III. C

with 19 sections extracted directly from the scan’s triangles. On the right in Fig. 7c is the fully

parameterized blade. The colors and histograms demonstrate that reconstruction errors from the

parameterized blade are very small compared to the actually measured deviations. Note that the

baseline model used is a so-called mean value model (MVM), which is essentially an average of

all blade scans’ parameters, thickness, camber and chord distributions. Using the MVM in lieu of

the nominal CAD model can lead to better reconstruction accuracy, but differences are very small,

i.e., on the order of a few tens of micrometers, and hence negligible.

2. Sample Generation

Pseudorandom samples have to be generated to construct new artificial blade geometries with real-

istic geometric variations. Equation (8) is key to doing this: delta parameter samples are generated

by first applying the blade parameterization to each blade scan. Subtracting each scan’s parameters

from the baseline model’s parameters yields a 58×14 delta parameter sample matrixP , which con-

stitutes the statistical basis for the entire workflow. For example, the samples in the first row of P

create the parametrized reconstruction of scan #1 as shown in Fig. 7. New delta parameter samples

∆p have to be generated based on the samples in P . Since visual inspection and statistical tests

showed that parametric PDFs do not fit the data well, each PDF was estimated using KDE. KDE

is nonparametric and more flexible, since random variables with any distribution can be handled.

Here, a kde function using Gaussian kernels and an automatic optimal bandwidth selection pro-

cess is used, see Ref. [26] for details. Any KDE estimate is a sum of many “bumps”, i.e., kernels,
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(a) Nominal CAD model vs.
scan #1.

(b) Nonparametric recon-
struction vs. scan #1.

(c) Parametric reconstruc-
tion vs. scan#1.

Figure 7 Surface comparisons to illustrate measured blade deviations and reconstruction
accuracy (units are normalized).

given the observed samples. Here, n = 58 realizations for each parameter are extracted from the

scans. Each PDF is fitted separately. The kernel density estimator is defined in Eq. (9) as

f̂h(x) =
1

nh

n

∑
i=1
K (x − xi

h
) , where K(x) = 1√

2π
e−

1
2
x2

(9)

is the Gaussian kernel [26]. h is the bandwidth, which specifies the kernel width. As an example

for the maximum thickness ∆tmax delta parameter, the empirical cumulative distribution function

(ECDF) in Fig. 8 illustrates that KDE is able to approximate the given sample data adequately.

Similar fits were generated for all other delta parameters. For each delta parameter, minimum

and maximum parameter bounds are extracted from the original data in P to effectively truncate

the PDFs below and above these values. Random samples with values larger or smaller than

these bounds are discarded as in reality blades with extreme variations in violation of the allowed

tolerance limits are sorted out. New samples are generated by adding values drawn uniformly at

random from each sample Xi with replacement to values drawn from the Gaussian N (Xi, h), i.e.,
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centered at Xi with variance h.

Figure 8 Kernel density-estimated cumulative distribution function fit of ∆tmax parameter.

3. Sample Correlation Control

To create an artificial turbine blade geometry, the delta parameters are sampled independently

from each KDE-fitted PDF. A matrix with N rows of samples for ∆p could be created and used

to construct blades. However, these new blades would be unrealistic without also considering the

strong correlations of the original scans’ parameters. This is illustrated in Fig. 9 using Spearman’s

rank correlation coefficient rs to reveal monotonically dependent delta parameters. rs is defined in

Eq. 10 with the operator rg(Xi) for the ranked scores and rgX for their average [27]:

rs =
∑i(rg(Xi) − rgX)(rg(Yi) − rgY )√
∑i(rg(Xi) − rgX)2

√
∑i(rg(Yi) − rgY )2

(10)

It is crucial to ensure the original correlation structure is preserved for newly generated samples

and Iman and Conover’s method is used to do this here. Iman and Conover’s method is distribution-

free and allows the reintroduction of rank correlations after independently generating N rows

of Monte Carlo samples. The target correlation matrix stems from the original blade sample’s

parameters. For details of the method, see Ref. [27].
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Figure 9 Target delta parameter correlation matrix.

E. Computational Fluid Dynamics Model & Setup

The CFD model consists of the turbine rotor blade only to keep the computational cost as low

as possible. Rotationally periodic boundary conditions are used, so that only a single blade pas-

sage needs to be modeled. Although this is a frequently used simplification, one has to keep in

mind that this introduces a perfect correlation between all blades around the annulus and entails

overestimating the variability, e.g., see Ref. [4]. However, this is of no concern for the actual trade-

off between performance mean and variability, because only their absolute magnitude is affected.

Boundary conditions (BCs) are specified for all inlets and outlets and all rotating and stationary

surfaces. All walls are adiabatic. A meridional view of the complete turbine stage with all BCs

can be found in Ref. [2]. The main inlet is a normal subsonic inflow and the outlet a non-reflecting

subsonic outflow. Mass flow inlets are used for both hub cavity and rim seal. Rolls-Royce’s stan-

dard in-house solver HYDRA is used. A multigrid method with a 5-grid-level W-cycle is used to

accelerate convergence. The general CFD approach is to solve the steady-state 3D compressible

RANS equations defined in Eqs. (11a)-(11b) using Reynolds and Favre averaging [28]:

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ũj) = 0 (11a)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ũiρ̄ũj) = −

∂p̄

∂xi
+
∂σij

∂xj
−
∂Rij

∂xj
(11b)
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∂

∂t
(ρ̄Ẽ)+ ∂

∂xj
(ũj ρ̄H̃) = ∂

∂xj
(uiσij) −

∂q̄j
∂xj

−
∂Qj

∂xj
(11c)

In Eqs. (11a)-(11c), σ̄ij ≈ 2µ̃t (S̃ij − 1/3S̃kkδij) is the is the viscous stress tensor, Rij = ρ̄τij =

ρu′′i u
′′
j = ρũ′′i u′′j is the turbulent stress tensor (Reynolds stress), Sij = 1/2 (∂ui/∂xj + ∂uj/∂xi) is

the strain rate tensor, ρ̄Ẽ = ρ̄cvT̃ +1/2ρũiũi+1/2Rii is the averaged total energy field, ρ̄H̃ = ρ̄cpT̃ +

1/2ρũiũi + 1/2Rii = ρ̄cpT̃0 is the averaged total enthalpy, qj = −kT ∂T /∂xj ≈ −cpµ̃/Pr ∂T̃ /∂xj is

the mean heat flux vector (Fourier’s law) and Qj = ρ̄cpũ′′j T ′′ + 1/2ρ̄ũ′′i u′′i u′′j + ρ̄ũiτij is the turbulent

scalar flux. The turbulence closure problem stems from the turbulent stress ρ̄τij and all terms in

Qj = ρ̄cpũ′′j T ′′ + ρ̄ũ′′i u′′i u′′j /2 + ρ̄ũiτij . Here, the one-equation Spalart-Allmaras turbulence model

defined in Eq. (12) is solved for the Spalart variable ν̃:

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= cb1(1 − ft2)S̃ν̃ − [cw1fw −

cb1
κ2
ft2] (

ν̃

d
)
2

+ 1

σ
[ ∂

∂xj
((ν + ν̃) ∂ν̃

∂xj
) + cb2

∂ν̃

∂xi

∂ν̃

∂xi
]

(12)

In compressible flows, the turbulent dynamic eddy viscosity µt is computed with the relation

µt = ρν̃fv1. For the sake of brevity, exact model constants used in HYDRA are not provided here

and all additional model equations, e.g., fv1 = . . . , can be found in Ref. [29]. The working fluid air

is modeled as a calorically perfect gas with heat capacity ratio κ = 1.3. Thus, it obeys the ideal gas

law equations defined in Eq. (13),

p = ρ̄RsT̃ , κ =
cp
cv
, cp − cv = R and e = cvT, (13)

where κ, Rs, cp and cv are all constant. In reality, the fluid is a two-phase air-fuel mixture, but the

presence of fuel is neglected here.

Also note that for each blade, the CFD control volume position is fixed in space, so that each

blade is installed with whatever deviations it was made with, i.e., as if its firtree root was attached

to the rotating turbine disk. For the CFD model, there are two geometrical simplifications vis-à-vis

reality, i.e., the very small shroud and hub gaps are not modeled and instead are continuous in the

annulus, as is commonly done. Also, the case here is run “cold” and a cold-to-hot transformation
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would be necessary for real-engine results. Moreover, since film cooling is not part of the scope of

this study, the inlet total pressure was increased to offset the missing coolant mass flow rate from

all film cooling holes, i.e., to ensure the same operating point as if cooling was enabled. This is

necessary since for this blade film cooling accounts for roughly 5 % of the total mass flow rate

through the annulus, which is significant. Besides the fully-featured case, a defeatured model only

consisting of the rotor blade from 10 % to 90 % span is used briefly in Sec. IV. A, because it does

not involve extrapolated sections.

1. Mesh & Quantities of Interest

A structured y+ ≈ 1 mesh was created with PADRAM, one of Rolls-Royce’s in-house meshing

tools [25]. A mesh independence study was carried out to determine the final mesh size. Variations

from the mesh are quantified in detail in Sec. III. 3. The final mesh with a size of roughly 5.5

million cells is depicted in Fig. 10.

Figure 10 Fully-featured CFD domain and mesh.

Quantities of interest monitored and extracted from each CFD solution include the isentropic

efficiency defined in Eq. (14),

η =
∑

i=inlets
(ṁh0)i − ∑

i=exits
ṁh0

∑
i=inlets

(ṁh0)i − ∑
i=sec exits

(ṁh0)i − (ṁh0,ideal)main exit
, (14)
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as the ratio of actual to ideal, isentropic work for turbines, the inlet capacity in Eq. (15),

φ = ṁ4

√
T04

p04
, (15)

and the specific work produced.

w = ∑i=inlets(ṁH0)i −∑i=exits(ṁH0)i
(ṁT0)maininlet

. (16)

The work is computed from the rotor torque τ = ∫ r×FdA with all forces from pressure and viscous shear

stress terms acting on all rotating walls. Torque and specific work are both directly related to the generated

power: P = τΩ = ṁw. During post-processing, values from the last 100 CFD iterations are averaged for

each quantity of interest due to small oscillations from the steady-state CFD approach. All flow quantities

are mass-weighted.

2. CFD Validation

For the scanned turbine rotor no experimental data has been recorded, so CFD validation had to be done by

inference and a two-step approach was pursued: first, it was ensured that the present case matches Rolls-

Royce’s internal CFD solution. Second, the CFD can be validated by using the same settings as in Sec. III. E

in a different but similar case, for which experimental data is available. One such turbine with time-averaged

measurements is the MT1 research rig. The experimental data can be found in Ref. [30] and geometry and

boundary conditions in Ref. [31]. The CFD was set up with a y+ ≈ 1 grid, similar to the HP rotor. Figure 11

shows that there is very good agreement with both experimental and numerical results, all using the Spalart-

Allmaras turbulence model. Due to the experiments’ time-averaging, it comes as no surprise that unsteady

phase-lagged BCs perform best. For both steady-state results from HYDRA and Fluent, reproduced from

Ref. [31], there is some disagreement near the SS shock, which is attributable to unsteady flow. For the rest,

the agreement is very good.

3. Epistemic vs. Aleatoric Uncertainties

In UQ studies, it is important to ensure that epistemic (modeling) uncertainties, i.e., volatility stemming

from the computational model itself, cause smaller variations than the effects of real aleatoric (inherent)

aberrations, i.e., the variations to be quantified. Here, epistemic uncertainties stem from sectioning the
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Figure 11 Isentropic Mach number distribution of MT1 turbine stator at half-span (○ from
Ref. [30] and × from Ref. [31]).

blade, meshing, mass averaging over postprocessing planes and averaging of 100 samples for each quantity

of interest. Geometric differences as a result of sectioning the blade are negligibly small (≪ 10 µm) and

hence are of no concern.

As will be shown in Sec. IV. A, aleatoric geometric blade variations lead to output variations of roughly

0.2 %, 0.5 % and 0.7 % for efficiency, capacity and specific work respectively. This stands in contrast to

maximal meshing variations of 0.02 % for efficiency, −0.003 % for capacity and −0.015 % for specific work,

which were obtained by comparing the outputs from the selected mesh-independent 5.5 million cell mesh

with those from finer 8.2 and 15.3 million cell meshes. Hence, meshing uncertainties are at least an order

of magnitude smaller than aleatory variations. Also, an iteration reduction study was carried out because

it helps to significantly speed up each black box function’s evaluation time in HYDRA. With 40 preceding

W-cycle multigrid iterations, errors from fewer iterations are very small, viz., around hundredths of percent.

Thus, the number of iterations could be reduced from 1000 to 300.

The convergence of the sample mean and the sample standard deviation is shown in Fig. 12. It is evident

that fluctuations of the mean are small in comparison to the much slower convergence of the standard

deviation.
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Figure 12 Convergence of objectives for 100 artificial blades.

4. Design Parameters

A set of five 3D engineering design parameters are used as controllable design parameters: skew, sweep,

lean and LE & TE recambering. As an example, Fig. 13a depicts the effects of all five parameters applied at

three different radial positions, 0 %, 50 % and 100 % span, so 15 parameters in total. This is a solid choice

as, for example, this parameterization has been used previously in a deterministic aerodynamic turbine

optimization to alleviate negative effects from high swirling flows in modern lean-burn combustors [32].

The same reference also details the geometrical changes each parameter brings about. Essentially though,

each parameter in some way modifies the 2D airfoil sections: e.g., skew rotates them, lean shifts them

circumferentially, sweep shifts them axially and both recambering parameters shears them either at the LE

or TE. Radially, a B-spline ensures a smooth transition across all airfoil sections. Figure 13b illustrates the

effects of both the design and the noise parameters.

F. Optimization Problem Definition

For a basic aerodynamic optimization of a turbine rotor, the end result ought to be a blade that at some

capacity delivers a certain amount of power with a smaller total pressure drop, i.e., higher efficiency. Hence,

isentropic efficiency defined in Eq. (14) is selected as the objective function. For the purposes of optimiza-

tion, efficiency is multiplied by negative one to minimize it. Equality constraints for capacity defined in
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(a) Design parameters at three span positions. (b) Design and noise parameters.

Figure 13 Illustration of design and noise parameter effects.

Eq. (15) and extracted work defined in Eq. (16) are implemented as two inequality constraints each. The

capacity constraint for a single HP turbine rotor is chosen to be ±0.1 % because often the stator chokes and

the rotor is somewhat less critical. The same constraint limits are chosen for specific work. As will be

shown in Fig. 14b, the nominal CAD geometry does not satisfy these requirements and hence is no valid

solution. The complete problem formulation is defined mathematically in Eq. (17), where the controllable

PADRAM design parameters are contained in vector d. Since the main intention in this study is to showcase

the implementation and design improvements, a 15 design parameter limit is chosen for d. In addition, the

vector ∆p contains the uncontrollable, pseudorandom delta noise parameters from Eq. (8). The optimiza-

tion hence involves 29 parameters in total. Upper (dU ) and lower (dL) control parameter bounds in Eq. (17)

are ±0.2 mm for sweep, ±0.1° for skew, ±0.1° for lean and ±0.05° for LE recambering and ±0.25° for TE

recambering. Although these bounds appear to be relatively small in magnitude, the parameters change the

blade shape much more than the manufacturing variations. The lower (∆pL) and upper (∆pU ) bounds for

the delta noise parameters ensure that no pseudorandom samples with extreme variations are generated, as
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described in Sec. III. D. 2. The problem tackled is this:

minimize
x

E[−ηis(d,∆p)] and Var[ηis(d,∆p)],

subject to 0.999 ⋅wCAD ≤ E[w(d,∆p)] ≤ 1.001 ⋅wCAD,

and 0.999 ⋅ φCAD ≤ E[φ(d,∆p)] ≤ 1.001 ⋅ φCAD,

and dL ≤ d ≤ dU ,

and ∆pL ≤ ∆p ≤ ∆pU ,

(17)

where subscript CAD refers to the nominal CAD model’s reference performance. There is a key point to

be made regarding the definition of constraints in Eq. (17), namely that only constraints for mean values are

enforced here. Given that all stochastic outputs entail some inherent variation, this means certain realizations

can violate these mean constraints as optimizers often tend to drive designs close the specified constraint

limits.

G. Computational Implementation & Resources

Due to the large computational demands, the implementation allows for parallel computations for surrogate

model training, UQ and searches through MATLAB’s parallel pool and CUDA GPU support. The computa-

tional setup here consists of an Intel Core i7-4790 and an Nvidia GeForce GTX 750 Ti. CFD simulations

run remotely on 14 nodes of a Linux high-performance computing (HPC) cluster with eight-core Intel Xeon

E5-2670 processors. On each cluster node, one instance of the CFD solver can use 16 message passing

interface (MPI) processes. The multigrid method and the reduced number of solver iterations also entail

a considerable speed-up. Despite all that, the optimization presented in the next section took about two

months in total (DOE ≈ 20 days; optimization ≈ 30 days), largely due to the long evaluation time of about

eight hours for the CFD. However, using more nodes on a larger cluster and parallelizing more tasks would

bring this time down further.

IV. Results

A. Validation of Artificial Blade Performance Statistics

The first step is to ensure that randomly built blades exhibit the same statistical performance outputs as the

real, original sample of blades. All 58 blade scan models are sliced and built straight from the original
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STL files, as described in Sec. III. C. 100 artificial blades are constructed for comparison. Due to the good

reconstruction accuracy, the expectation is to obtain output performance statistics similar to the real blades.

Besides the mean, the coefficient of variation (CV) as defined in Eq. (18)

Cv = ŝ

x
(18)

is used to quantify the amount of variability relative to the mean. CFD results of the defeatured model

(0.1 ≤ s ≤ 0.9) are illustrated in Fig. 14a. In the figure, the overlapping histograms with outputs from both

cases (blue and yellow) show that artificial blades can imitate actual blade variations very well. Indeed,

the results show that the artificial blades’ mean efficiency, capacity and specific work is underpredicted by

only 0.01 %, 0.02 % and 0.03 % respectively. Similarly, CVs were found to be overpredicted by 0.40 %,

1.77 % and 1.44 % only. Good agreement is also observed in Fig. 14b for the fully-featured CFD model.

The effects the variations have on the fully-featured model are similar to those in Fig. 14a for the mean

capacity (only −0.02 % difference), but somewhat worse in terms of mean efficiency (−0.07 % difference)

and mean specific work (−0.28 % difference).The mean output quantities are all underpredicted by only

0.01 %. Variation is again overpredicted, likely due to the extrapolated sections below 0.1 and above 0.9

span: CVs are 16.19 %, 20.70 % and 2.80 % larger than those of the original scans. In short, results in

Fig. 14 show that artificially constructed blades are able to faithfully model the performance of real blade

scans. The defeatured CFD model can do so a little bit better, probably because it lacks the extrapolated

sections used in the fully-featured case.

Figure 14 also reveals the impact of the manufacturing variations on blade performance. For the fully-

featured blade, mean efficiency drops by about 0.06 %, mean capacity is 0.21 % higher and work produced is

0.08 % lower. Hence, mean capacity is very similar in both models, whereas there are larger differences for

efficiency and work. The shift in capacity is attributable to the relatively large deviations from the nominal

CAD geometry near the TE, as previously depicted in Fig. 2. Due to the manufacturing variations, most

blades are skewed with widened throat areas and this has lead to the increase in mean capacity.

B. Sensitivity Analysis Results

Before optimizing, it is common practice to conduct a sensitivity analysis to reduce the required number

of parameters in the model. This can bring about significant computational savings as each omitted vari-

able reduces the size of the sampling space exponentially. Important and potentially irrelevant parameters
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(a) Defeatured CFD model.
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(b) Fully-featured CFD model.

Figure 14 Comparison of CFD results of 100 artifical blades (samples ∎ and mean —) and
all 58 original blade scans (samples ∎ and mean —) relative to the nominal CAD design intent
(—).

can be revealed, but the analysis also helps to verify and to understand the model better. Here, for brevity,

this is only presented for the noise parameters. Both correlation coefficient-based and surrogate model-

based approaches are used, since already evaluated points can be reused and no additional effort is required.

Although usage of Spearman’s rank correlation coefficient is ill-advised due to the inherent parameter cor-

relations, it is still often used. Other coefficients such as partial correlation coefficients (PCC) or coefficients

of importance (COI) overcome this problem somewhat by canceling out effects of other parameters, e.g.,

see Ref. [33]. Here, the COI is used since it is far less sensitive towards correlated input parameters than the

rank correlation coefficient. The COI is defined in Eq. (19) as

COI = R2 −R2
o, (19)
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where subscript o indicates the model built with one omitted parameter [2]. Figure 15 presents both the

rank correlation coefficient and COI computed with 100 samples and the defeatured CFD model. Many

rank correlation coefficients in Fig. 15a are not statistically significant, so no conclusions can be drawn

from this data. However, TE position and maximum thickness parameters seem to be important. COI-based

sensitivities in Fig. 15b place much more weight on few individual parameters and many relations found

through rank correlations are not corroborated by the COI. Stagger angle and TE position seem to have the

largest effect on efficiency. Similarly, the COI singles out the stagger angle as the most important parameter

for capacity and work, but R2
o < 0.8 is not a reliable result. This corroborates previous results based on a

smaller 50-point sample from an earlier UQ-only study based on an older parameterization and a different

blade sample [2].

(a) Rank correlation coefficient (SS if p < 0.05 black, else white).

(b) Normalized COI (reliable if R2
o > 0.8 black, else white).

Figure 15 Sampling-based sensitivity analysis results.

Surrogate model-based sensitivities were computed to verify the coefficient-based results. Kriging’s θ

hyperparameters when suitably non-dimensionalized can serve as a statistical measure of parameter activity

and can be used to produce parameter rankings [22]. Here, maximum likelihood estimation as described

in Sec. III. A is used to tune Kriging θ hyperparameters within the log-search bounds log10(θ) ∈ [−10,3].
Logarithmic results are presented in Table 2 to help identify irrelevant parameters. The previous coefficient-

based results are corroborated and the stagger angle is singled out again as the most important parameter for

capacity and work, whereas the TE position again is most important for efficiency. Many other parameters
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are also found to have a meaningful impact. Most importantly though, Kriging identifies the influence of

∆tanpos, the tangential position of the blade, as insignificant for all three outputs. Hence, this is the prime

candidate for removal from the model. To test whether or not ∆tanpos indeed has no significant influence,

100 simulations were repeated without this parameter. Since it still required to build turbine blades though,

the value of ∆tanpos was fixed to an average taken from the original scan sample matrix P . The results,

omitted here for brevity, show that ∆tanpos can indeed be held fixed.

Table 2 Kriging surrogate-based sensitivity analysis (log10(θ) ∈ [−10,3]).

Hyperparameters ∆axpos ∆tanpos ∆lc ∆γ ∆βLE ∆βTE ∆tmax ∆postmax ∆ctmax ∆cmax ∆posc,max ∆rLE ∆posTE ∆tTE
log10(θη) −2.38 −10.00 −2.38 −1.88 −4.41 −4.62 −2.20 −2.51 −3.39 −2.34 −2.73 −3.92 −2.68 −1.14
log10(θφ) −2.60 −10.00 −1.47 −0.96 −10.00 −3.86 −1.52 −1.81 −3.52 −1.25 −3.05 −5.82 −2.69 −1.50
log10(θw) −3.65 −10.00 −2.78 −2.07 −10.00 −4.36 −2.46 −3.04 −4.32 −2.40 −4.44 −5.42 −3.94 −2.27

C. Optimization Results

Following Sec. IV. A’s findings that artificial blades match the real scans performance and the sensitivity

analysis and parameter reduction study in Sec. IV. B, the main optimization was carried out. First, a 400-

point space-filling Latin hypercube was generated and evaluated. Iman and Conover’s method is applied

to all noise variables and this does not interfere with the space-filling structure of the Latin hypercube. 14

update points were requested in every iteration. A threshold of 800 points in total was chosen. For efficiency

and accuracy, statistics are computed with 100 UQ samples at the start and up to 1000, with incremental

increases by 50 samples in between. Design parameter update points were selected from predicted Pareto

front and combined with space-filling noise parameter update points to construct proper blades. For NSGA-

II, the number of generations was set to 300 and the population size to 100. Also, it should be noted

that the optimization was carried out with all 14 noise variables. The final result of the workflow is the

Pareto front depicted in Fig. 16. Frequent constraint violations are particularly evident. The axis grid line

spacing reveals that mean efficiency is two orders of magnitude larger than the standard deviation. The Krig-

predicted performance of the selected Pareto-optimal point is predicted to improve by 0.11 % for the mean

and 127.25 % for the standard deviation (compared to the nominal design’s performance) and the constraints

are predicted to be met. The mean performance improvement is also much larger than the known epistemic

uncertainties. A separate validation study is required to verify these surrogate-based predictions, however.

As a first step towards validation, it is straightforward to assess all surrogate model accuracies by com-

paring the predictions to the baseline design’s known performance. Based on 1000 samples, the surrogate
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Figure 16 Final predicted Pareto front in objective space.

can be used to predict mean efficiency and standard deviation of the nominal blade. Respective percentage

errors are 0.03 % and −25.67 %. The prediction of the mean efficiency is hence very accurate, whereas the

standard deviation is underpredicted. The surrogate model error metric estimates in Table 3 also suggest

that discrepancies exist. The efficiency surrogate is the least accurate of the three with an MAE of 14.88 %.

Update points were added only to the Pareto front and no space-filling update points were added to improve

the global accuracy, so it comes as no surprise that the final surrogates are found to be less accurate.

Table 3 Cross-validated surrogate accuracy metrics.

Error metric ηis φ w
Beginning (400 points)

R2 [%] 95.7897 99.9620 97.2490
RMSE [%] 3.5985 0.2768 3.0048
MAE [%] 15.2438 1.7487 10.2997

End (800 points)
R2 [%] 97.5879 99.933 97.5152
RMSE [%] 3.1168 0.0311 2.3619
MAE [%] 14.8887 2.3565 10.6251
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D. Validation of Results

Any surrogate model’s predictions must be validated, especially given the estimated error in the standard

deviation’s prediction of 25.67 %. Using the rotor’s black box function and one of the designs from the

Pareto front, it has to be proven without the surrogates that the probabilistic performance really is better than

that of the baseline design and that is does indeed satisfy the constraints. The encircled design in Fig. 16 is

selected for this purpose. Figure 17b depicts the selected blade’s shape. The comparison with the nominal

model’s shape in Fig. 17c highlights the new design.

100 correlated samples for this selected design were created and evaluated with full CFD to test the

probabilistic response, which is depicted in Fig. 18. The comparison to the baseline design’s response

shows that the mean efficiency has indeed been improved by 0.11 % but the standard deviation in actual

fact by 32.79 %. Then, the surrogates predictions can also be taken into account. The improvement of the

standard deviation was overpredicted by the surrogates with 127.25 %, which is far too optimistic, whereas

the mean performance prediction is excellent in comparison. The difference between the predicted and the

actual improvement is only 2.12 % and −16.88 % for mean and standard deviation respectively. In addition,

it is evident in Fig. 18 that all constraints are satified and that the optimizer has driven them very close to

the upper and lower constraint limits. One likely cause for the differences is that the improvement of the

standard deviation is more affected by UQ sampling noise than the mean (cf. Fig. 12). Also, the real noise

model is more complex to approximate for the surrogates than the simple shape in Sec. III. A’s analytical

example. Compared to 1000 points in the analytical example with only four dimensions, i.e., 250 points per

dimension, now 800 points are used to approximate a much larger space. Consequently, it is no surprise that

the surrogates are somewhat inaccurate. Nevertheless, if so desired, prediction errors could be reduced by

adding more points, e.g., space-filling update points. It should also be stressed that the practical purpose of

surrogate models is to guide the optimizer to regions with better designs and that the surrogate’s accuracy

itself is not a priority as long as a superior design can be found, as has been the case here. All in all,

the entire approach has been shown to be a viable option for robust design optimization. While standard

deviation predictions are unmistakably less accurate than with the simple analytical noise model, a robust

design with respectable performance gains for both objectives has been found. The mean constraints were

accurately modeled too. Validation results have shown that the probabilistic performance prediction must

be verified in any case.
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(a) Baseline design. (b) Selected optimized de-
sign.

(c) Comparison of both
shapes.

Figure 17 Turbine blade shape comparison.

Figure 18 Robustness assessment of baseline (samples ∎ and mean —) and selected robust
blade (samples ∎ and mean —) relative to the nominal CAD design intent (—).

V. Conclusions

A complete workflow for robust design optimization of turbine blades given real manufacturing varia-

tions was presented. The performance impact of these deviations was analyzed and assessed. It was shown

that artificial blades with the same performance statistics as the original scans can be constructed and used

for UQ. Through a sensitivity analysis, it was shown that prior to optimization parameters could be removed

from the model. Finally, a robust aerodynamic optimization of a turbine rotor was presented. Validation of

one selected Pareto-optimal design showed that both probabilistic objectives were improved and that tight

constraints for average capacity and specific work were met. In the future, the workflow could be extended

to include other geometric features such as film cooling holes and their positional variations, heat transfer

computations and a cold-to-hot transformation.
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