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Summary

Small area estimation typically requires model-based methods that depend on isolating

the contribution to overall population heterogeneity associated with group (i.e. small

area) membership. One way of doing this is via random effects models with latent group

effects. Alternatively, one can use an M-quantile ensemble model that assigns indices

to sampled individuals characterising their contribution to overall sample heterogeneity.

These indices are then aggregated to form group effects. The aim of this article is to

contrast these two approaches to characterising group effects, and to illustrate them in

the context of small area estimation. In doing so we consider a range of different data

types, including continuous data, count data and binary response data.
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1 Introduction

Sample surveys are commonly used to measure characteristics of a population within

a large region, such as a country. These regions are often divided into subregions (or

1



subpopulations) for which estimates may also be required. Due to cost and time con-

straints the sample sizes within the subregions may not be large enough to give reliable

estimates based just on the sample data from the subregion. In such cases indirect meth-

ods must be used for inference. For an indirect estimate to be useful it is crucial that

there are strong predictors available from a reliable population level data source such as

a national census. Small area estimation (SAE) then combines these predictors with an

appropriate model for between-subregion heterogeneity. In many cases the subregions

are geographically defined, such as provinces within a country. However, they can also

correspond to socio-economic and demographic classifications of the population. Because

of this generality, we refer to these subregions of interest as “groups” in what follows.

For a comprehensive overview of modern SAE methods see Rao & Molina (2015).

SAE can be divided into two broad methodological areas corresponding to whether

inference is based on unit-level or area-level models. The models used in the latter case

rely on group-specific covariates and characterise the stochastic behaviour of the direct

estimate for a group. In contrast, the models used in the former case characterise the

stochastic behaviour of the unit-level population values and assume the availability of

unit-level covariates. For simplicity, this article focusses on unit-level models, and in

particular how one can characterise the group effect associated with each population

unit as well as the within-group variation of these units.

It is fundamental to SAE that the covariates used in the indirect estimators define a

“good” predictor of the within-group values of the population characteristic of interest,

where by “good” we mean that this predictor is at least unbiased for these values. The

purpose of the group effect is then to “explain” the between-group component of the

variance of the resulting prediction errors, in the sense that it reflects or characterises

the (unobserved) variability of a group-level contextual variable that has been omitted

from the prediction model. In effect, it corrects for contextual misspecification in the

prediction model, but not unit-level misspecification. In practice there are many ways

in which these models can be specified so that they include group effects, depending on

data types and measurement scales. In all cases, however, it is clear that a fundamental
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purpose of these models is to characterise the heterogeneity between the groups.

Typically it is expected that two randomly chosen members of a group will possess

attributes that are more similar than two randomly chosen members of the population. In

other words, there will be significant between-group variation. Most of this variation will

be due to variability in known population covariates. However, in many cases there will

be residual between-group variability even after allowing for covariate induced between-

individual variability. A good SAE model will ensure that both the within and between-

group variation are appropriately characterised. A common approach to doing this is

via a random effects specification where the group effects characterise the heterogeneity

between groups. Note that term random effects model is used to refer to any model

with random effects, including those which also have fixed effects; these models are also

known as mixed models. In this case the fixed effects in the model correspond to model

covariates, and are used to distinguish individual predictions within each group.

There are alternative approaches to SAE which do not require a random effects model.

One such approach utilises an ensemble approach based on fitting robust M-quantile

regression models. M-quantiles were introduced in Breckling and Chambers (1988) and

are a generalised form of “quantile-like” estimators which include quantiles as a subclass.

Using ensemble models for SAE offers a different way of characterising between-group

heterogeneity. A suitable ensemble regression function that covers the full spectrum of

variability for the characteristic of interest is first used to index the population. Group

heterogeneity is present if these index values cluster within groups, and SAE is based on

the particular regression function within the ensemble that corresponds to a group-specific

“average” index. There is no random group effect, with its consequent distributional

assumptions, to complicate matters, and the estimators are robust.

It is worth noting that model-based SAE is not restricted to random effects models and

M-quantile regression models. Another approach reweights data from the entire sample

to reflect census or known group characteristics and then bases group-specific estimation

on these weights. In this case between-group heterogeneity for the variable of interest

is purely reflected in the between-group heterogeneity of the group-level characteristics
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underpinning these weights. This approach is referred to as spatial microsimulation by

Rahman and Harding (2016).

This article focuses on comparing the random effects and M-quantile approaches to

capturing group-level heterogeneity in SAE. Simple examples are provided which high-

light the practical differences between the two approaches in this context. Various data

types are explored, including continuous, count and binary data, and the advantages and

disadvantages of the different approaches for SAE are discussed and contrasted. Through-

out we assume that the sampling method used is non-informative for within-group vari-

ability given information about group membership and the within-group distribution of

population covariates. This allows us to fit population-level models with group-level het-

erogeneity to sample data, and to then calculate population-level predicted values using

the resulting parameter estimates.

2 Random effects models for characterising group

heterogeneity

We start by assuming that the variable of interest is continuously distributed. A com-

mon approach to characterising group heterogeneity in SAE for a continuous variable is

through a linear random effects model. Such a model specifies conditional means for a

group specific random effect, which then serve to distinguish the groups in the popula-

tion, and which are predicted for each group in the sample. Let yij be the continuous

variable of interest for the i-th unit in group j. The vectors xij and zij represent rows

from the respective fixed and random effects design matrices, which are known for the

entire population. In practice, zij is usually specified as the binary vector that “picks

out” group j. The fixed and random effects parameters are given by β and γj respec-

tively, where the latter specifies the random effect for the j-th group. Finally, ǫij denotes

the unit-level residual. The linear mixed model with random intercepts is then

yij = x′
ijβ + z′

ijγj + ǫij (1)
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where γj and ǫij are independently distributed random effects, each with an expectation

of zero. It is common to assume that each of these effects is normally distributed,

but other distributional assumptions are possible. Between group and between unit

independence is also often assumed, but this is not always the case.

Since the fixed effects component of the model is the same for all population units,

the γj parameter (i.e. the group effect) can be seen to adjust the intercept in the linear

specification to allow the group conditional mean for yij to deviate from its population

average. As a consequence it makes sense to refer to γj in (1) as the parameter that

characterises group heterogeneity.

In some cases it may be reasonable to assume that group heterogeneity also depends

on differences in the distribution of the covariates within the groups. In this case a linear

mixed model with random slopes can be used,

yij = x′
ij(β + γ

1j) + z′
ijγ0j + ǫij (2)

which is similar to (1) except with an additional random effects term γ
1j that adjusts

the slope parameter for each group (and also has distributional constraints). A simple

conceptual depiction of how these two types of random effects models capture group

heterogeneity is shown in Figure 1. This figure uses simulated data and can be used

to compare and contrast to the M-quantile approach in Figure 2, introduced in a later

section.

2.1 Random effects models for discrete data

Random effects models for continuous response variables can be extended to other data

types, such as count and binary data, through the use of a generalised linear mixed model

(GLMM). Let g(·) be a link function, yij be the random variable of interest, assumed to

follow a distribution from the exponential family with E(yij) = µij . The GLMM with

random intercepts is then specified by

g(µij) = x′
ijβ + z′

ijγj.
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a) b)

c)

Random intercepts

d)

Random slopes

Figure 1: Characterising group heterogeneity through random effects models in a simple

scalar y and scalar x scenario: random intercepts and/or slopes allow for group-level

fitted lines. Note that the four groups in these plots are indicated by different colours.

Plot a) shows the raw data; b) superimposes group membership on these data; c) shows

group specific means under a linear random intercepts specification; and d) shows these

means under a linear random slopes specification.
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Random slopes can be added to the model in exactly the same way as in the continuous

case, see (2). A GLMM is typically used to characterise group heterogeneity in count and

binary data, in which it is common to assign g(·) = logit(·) and g(·) = log(·) respectively.

2.2 Small area estimators using random effects models

The most common indirect approach to SAE is through the use of random effects models

(Rao and Molina, 2015). Once a random effects model is fitted using the sample data,

it is relatively straightforward to calculate a predicted value of the population mean ȳj

for small area j, a standard objective in small area estimation. The only additional data

required to compute this predicted value are the auxiliary variables for the non-sampled

units in the small areas; often extracted from Census data. The usual predictor of ȳj

under the linear mixed model is its empirical best linear unbiased predictor or EBLUP

under this model, which for a linear random intercepts specification is of the form

ˆ̄yEBLUP
j = N−1

j





∑

i∈sj

yij +
∑

i∈rj

(

x′
ijβ̂ + z′

ijγ̂j

)



 (3)

where a “hat” denotes a sample estimate (or predicted value), Nj is the population size

of small area j, sj denotes the labels of the nj sampled units in area j, and rj denotes

the labels of the Nj − nj non-sampled population units in area j. It is straightforward

to modify (3) to accommodate a random slopes model for the population data.

Since the GLMM is just a linear mixed model specification for the group-conditional

mean of y, it is simple to write down a plug-in empirical predictor (EP) of the area j

mean of y under the GLMM that is almost identical to the EBLUP shown in (3),

ˆ̄yEP
j = N−1

j





∑

i∈sj

yij +
∑

i∈rj

g−1

(

x′
ijβ̂ + z′

ijγ̂j

)



 . (4)

2.3 Random effects models for categorical data

Small area estimators for categorical data can be defined by extending estimators based

on binary data models. In the context of a random effects approach this requires a random

7



effects model for a categorical response. Hartzel et al. (2001) unified multinomial logistic

random effects model ideas and presented a model for hierarchical non-ordered categorical

data. Molina et al. (2007) used a multinomial logistic random effects model for SAE

applied to labour force status, with three categories: unemployed, employed and inactive.

However the model they used had exactly the same area effect for each category, which is

restrictive. A random effects structure without this constraint was described by Hartzel

et al. (2001), and was utilised for SAE by Scealy (2010) and Saei and Taylor (2012). Here

there is a different random effect for each response category with no restriction on the

covariance structure of the effects. Generally, this more general model yields improved

results compared with the constrained model suggested by Molina et al. (2007). López-

Vizcáıno et al. (2013) also applied the multinomial logistic random effects model to

SAE, but with the assumption of an independent random effect for each category of the

variable of interest.

3 M-quantile models for group heterogeneity

M-quantile models (Breckling and Chambers, 1988) offer an alternative way of charac-

terising group heterogeneity. The M-quantile of order q defined by an influence function

ψ for a variable Y with density function f(y) is the value mq satisfying the functional

equation

E[ψq(Y −mq)] =

∫ ∞

−∞

ψq(y −mq)f(y)dy = 0. (5)

Here ψq denotes the “quantile version” of ψ, i.e. ψq(u) = 2 [(1− q)Iu≤0 + qIu>0]ψ(u).

Note that when ψ(u) = sgn(u), mq is the quantile of order q for the distribution of Y .

Conversely, when ψ(u) = u, mq is the so-called “expectile” of order q for this distribution.

It is easy to see that when q = 0.5 and ψ(u) = sgn(u),mq is the median of the distribution

of Y , while when q = 0.5 and ψ(u) = u, mq is the mean, or expected value, of Y . For

arbitrary influence function ψ, mq is therefore the quantile generalisation of the location

parameter for Y defined by q = 0.5 and this influence function. It is well known that

choosing ψ so that it is a bounded skew-symmetric function is equivalent to defining a
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location parameter for Y that is robust to f(y) being “outlier-prone”. Consequently the

M-quantiles for f(y) defined by the same ψ will also be outlier robust.

Extending (5) to the regression case is straightforward. In the same way that the

regression of Y on a vector of covariates x is defined as the expectation of Y given x, the

regressionM-quantile of order q for Y given x is defined as the correspondingM-quantile

of the conditional distribution of Y given x. More formally, it is the function mq(x) of

x that is the solution to the functional equation

E[ψq(Y −mq(x))|x] =

∫ ∞

−∞

ψq(y −mq(x))f(y|x)dy = 0. (6)

One can specify a model for a regression M-quantile function in exactly the same way

as one can specify a model for a regression function. This naturally leads to the concept

of a linear regression M-quantile function, where we put mq(x) = x′βq. Note that the

regression parameter βq in this model depends on the quantile index q, which can take

any value in the unit interval (0, 1). Consequently this linear specification for the regres-

sion M-quantiles of Y corresponds to an “ensemble” model for the complete conditional

distribution of Y given x, which makes it particularly useful for modelling the sources of

heterogeneity in this conditional distribution.

Estimation of linear regression M-quantiles is usually carried out by solving an em-

pirical version of (6), assuming mq(x) = x′βq. Let (yi,xi; i = 1, . . . , n) be the observed

values of Y and x, with x′
i = (xi,0, . . . , xi,p) denoting the i-th row of the n×(p+1) design

matrix X. Without loss of generality we assume xi,0 = 1 ∀i, with the other columns of

this matrix defined by the values of the explanatory variables or covariates. The estimate

β̂q of βq then satisfies

n−1

n
∑

i=1

ψq(yi − x′
iβ̂q)xi = 0. (7)

In practice, (7) is usually solved via iteratively reweighted least squares (IRLS), with

weights

wiq =
ψq(yi − x′

iβ̂q)

yi − x′
iβ̂q

.

A very commonly used specification for the influence function ψ is the Huber speci-
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fication, see Huber (1981). This depends on a tuning constant k and is given by

ψk(u) =























−k, if u ≤ −k

u, if − k < u < k

k, if u ≥ k.

(8)

Put ψq,k(u) = 2 [(1− q)Iu≤0 + qIu>0]ψk(u). The corresponding estimate of the Huber-

type regression M-quantile function of order q is then the function m̂q,k(x) satisfying

n−1

n
∑

i=1

ψq,k

(

yi − m̂q,k(xi)

σq,k

)

xi = 0. (9)

where σq,k is a nuisance scale parameter required to ensure that m̂q,k(x) is scale invariant,

i.e. m̂q,k(cx) = cm̂q,k(x) when c is a constant. It is standard to set this scale parameter

equal to the median absolute deviation (MAD) of the residuals yi − m̂q,k(xi), and to

solve (9) using IRLS as previously described. Note that under a linear specification,

m̂q,k(xi) = x′
iβ̂q,k and furthermore, survey weights can be easily incorporated into the

model.

The Huber influence function is often favoured as it depends on a tuning constant k

which provides a balance between robustness and efficiency when (9) is used to estimate

the M-quantile. It also provides an intuitive middle ground between quantile regression

(Koenker and Bassett, 1978) and expectile regression (Newey and Powell, 1987). In par-

ticular we obtain the regression expectile when k → ∞ and the regression quantile when

k → 0. With any finite choice of k, the Huber influence function remains bounded, and

so estimation remains robust. Furthermore, continuity of ψk(u) guarantees the existence

of a unique solution to the M-quantile functional equation for every value of q ∈ (0, 1)

for any variable with support over the real line. We therefore focus on this definition of

ψ from now on. Throughout the remainder of the article the term “M-quantile” will im-

ply a Huber M-quantile unless otherwise stated, with the M-quantile of order q defined

by tuning constant k denoted by mq,k. Furthermore, we sometimes do not distinguish

between the estimated M-quantile and M-quantile itself, referring to both as the M-

quantile. This is done to be concise, and only when the context makes the distinction

clear.
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3.1 Using M-quantile q-scores to characterise group hetero-

geneity

One of the earlier applications of M-quantile modelling was Kokic et al. (1997). In this

article, M-quantile regression was used to calculate a performance measures which had

very practical uses. The data set used for this purpose contained variables measuring

productivity for Australian dairy farms. The response variable of interest was the gross

returns from each farm, with five covariates: labour, land, livestock, capital and materials.

The performance measure q∗i that was calculated for the i-th farm was based on a fitted

M-quantile regression model and was defined by the equation

m̂q∗
i
,k(xi) = yi.

These q∗i performance measures have since been referred to as M-quantile coefficients,

q-values and q-scores; the latter nomenclature will be used throughout this article. These

q-scores can be thought of as ordered indices between 0 and 1, where the larger (smaller)

the q-score, the further “to the right (left)” the observed value yi lies on the conditional

distribution of Y given xi. When the influence function underpinning the M-quantile is

sgn(u) (so M-quantile regression is just quantile regression), this q-score is the order of

that quantile of the conditional distribution whose value equals yi. It immediately follows

that q∗i is uniformly distributed over (0, 1) in this case. More generally, a q-score derived

from fitted regression M-quantiles can be viewed as being a random variable whose

distribution defines an indexing over the interval (0, 1) of the conditional distribution of

Y given xi, but not necessarily one with a uniform distribution over this interval.

The q-scores defined by the conditional distribution of Y given x on a sample can be

calculated by first fitting regression M-quantiles to the sample data with q varying over

a fine grid, e.g. q = 0.001, . . . , 0.999. In general, the collection of these fitted regression

M-quantile models is referred to as an ensemble regression M-quantile model, or just an

ensemble M-quantile model. Such an ensemble fit allows calculation of a fitted regression

M-quantile value m̂q,k(xi) for each value of q on the grid at each xi. The value of q
∗
i can

then be found quite simply by selecting the grid value of q such that m̂q,k(xi) is closest
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to yi. In some instances when q is close to 0 or 1 the computation may not converge on a

solution, in which case the grid of values may need to be narrowed, for example, between

q = 0.05 and 0.95.

Chambers and Tzavidis (2006) exploited the fact that q-scores characterise the marginal

heterogeneity of the conditional distribution of Y given x in the sample, and so can be

used to do SAE based on the fit of the ensemble M-quantile model. In particular, they

argued that if grouping structure underpins this heterogeneity than q-scores would tend

to be more similar in groups, and could therefore be suitably “averaged” within groups

or areas to obtain “group-specific” q-scores. These group-averaged indices could then

be used to distinguish between the conditional distributions of Y given x in the differ-

ent groups by linking each group q-score to its component regression M-quantile fit in

the ensemble M-quantile model. In effect, the group q-score plays the same role as the

group effect in a mixed effects model, but without the need to pre-specify the grouping

structure. This use of q-scores for effectively modelling group heterogeneity opened up a

new area of possible applications. Chambers and Tzavidis (2006) suggested that the ro-

bustness properties of the regression M-quantile models, as well as their semi-parametric

nature (no distributional assumptions) make them particularly useful with the small

sample sizes found in SAE. They can also be easily adapted to multilevel estimation

problems, as was done by Tzavidis and Brown (2010) in their application to modelling

pupil performance in London schools. Figure 2 provides a simple explanation of how

heterogeneity is characterised using M-quantile regression and q-scores.

In the linear case, with continuous Y , the M-quantile estimators of the small area

means for this variable are simply their predicted values based on the linear M-quantile

fits corresponding to the group q-scores. More precisely, let q̂∗j be the group q-score for

group j, e.g. q̂∗j = n−1

j

∑

i∈sj
q∗i if there are sampled group members, otherwise q̂∗j = 0.5.

The M-quantile estimator for the group mean of Y is then

ˆ̄yMQ
j = N−1

j





∑

i∈sj

yij +
∑

i∈rj

(

x′
ijβ̂q̂∗

j
,k

)



 . (10)

SAE based on M-quantiles is essentially a semi-parametric approach. That is, there
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a) b)

c) d)

Figure 2: Characterising group heterogeneity through linear regression M-quantile mod-

els: The data and set-up here are the same as those set out in Figure 1, with plot a)

identical. In plot b) an ensemble M-quantile regression model with k = 1.345 is fitted

where each observation has a corresponding fitted line and q-score. These q-scores and

associated fitted regression M-quantile lines are then grouped by colour in c) and the

mean q-score calculated for each group. The fitted lines shown in plot d) correspond to

those defined by these group q-scores.
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is a parametric assumption about the behaviour of the regression M-quantiles in the

population, but no further distributional assumptions after that.

The obvious advantage of theM-quantile estimator over the EBLUP is its robustness

to outliers and its lack of distributional assumptions. These are useful attributes, espe-

cially under small sample sizes which can often be the case. However, the EBLUP does

minimise the mean squared error (MSE) under an assumed mixed model, and so must

be more efficient if this model is true (which is rather unlikely in practice). Nevertheless,

Chambers and Tzavidis (2006) report results from a simulation study that shows the

M-quantile small area estimator (10) performs similarly to the EBLUP (3) even when

the random effects model underpinning the EBLUP is used to generate the population

data.

3.2 A real data example: farm data

We illustrate the differences in the two approaches to characterising group heterogeneity

for continuous variables using a real data set, rather than the simulated data presented

in Figures 1 and 2. These data are from 1,652 broadacre farms spread across 29 climatic

regions of Australia. The response variable of interest is the total value of the farm

in dollars, with the farm area in hectares the only explanatory variable. The aim is

to characterise differences in the relationship between these variables between the 29

regions. We can characterise this regional heterogeneity using either a random effects

model or an M-quantile model. Two random effects models were fitted to these data;

a random intercepts model and a random slopes model. Figure 3 shows the fit of these

two models, as well as the fit of an ensemble-based set of regional M-quantile regression

models with k = 1.345. The colourful fitted lines represent estimates of the conditional

mean for each of the 29 regions. It seems clear that the random intercepts model fit fails

to adequately reflect the regional heterogeneity in these data, while the random slopes

model fit appears rather unstable. In contrast, the M-quantile ensemble fit seems stable

and does a reasonable job of characterising regional heterogeneity in the relationship

between farm value and farm area.
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4 M-quantile models for discrete data

The definition and interpretation of M-quantiles, as well as their estimation, requires

more care when applied to discrete-valued variables. To start, we note that the discretised

version of the defining functional equation (6) always has a solution provided ψ is a

continuous influence function, soM-quantiles specified in this way always exist. However,

there are issues with developing an appropriate empirical version of (6) for this case.

Chambers et al. (2014) develop M-quantile estimation for disease mapping, based on

estimating the M-quantiles of the negative binomial distribution, while Tzavidis et al.

(2015) consider the modelling of counts more generally, based on the M-quantiles of the

Poisson distribution. Chambers et al. (2016) focus on the important case of binary

data and extend these approaches to define M-quantiles for the Bernoulli distribution.

In all of these developments, the M-quantile estimates are obtained by extending the

Cantoni and Ronchetti (2001, referred to as CR below) quasi-likelihood approach to

defining robust estimating equations for a generalised linear model. In addition to using

a bounded influence function to control sample outliers, and weights to control sample

leverage values, the CR approach includes an additional term in the estimating function

to ensure Fisher consistency for the estimates. The CR estimating equations are of the

form
n

∑

i=1

{

ψ(ri)
1

σ (µi)
µ′

i − a(β)

}

= 0, (11)

where ri = (yi − µi) /σ (µi), µi = g−1(x′
iβ), µ

′
i = ∂µi/∂β, g(·) is a link function, σ(µi) is

the standard deviation of the fitted value and

a(β) =

n
∑

i=1

{

E [ψ(ri)]σ
−1 (µi)µ

′
i

}

. (12)

CR argue that addition of the consistency term a(β) is necessary to protect against

inconsistent estimators of the mean, particularly for asymmetric distributions.

The quasi-likelihood approach of CR can be extended to estimation of regression

M-quantiles for discrete data through solution of the estimating equations

n
∑

i=1

{

ψq,k(ri,q,k)
1

σ (mq,k(xi))
m′

q,k(xi)− a(βq,k)

}

= 0 (13)
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with ri,q,k = (yi −mq,k(xi)) /σ (mq,k(xi)),mq,k(xi) = g−1(x′
iβq,k),m

′
q,k(xi) = ∂mq,k(xi)/∂βq,k,

σ (mq,k(xi)) is the standard deviation of the fitted value, and

a(βq,k) =

n
∑

i=1

{

E [ψq(riq)] σ
−1 (mq,k(xi))m

′
q,k(xi)

}

. (14)

This a(βq,k) term ensures that mq,k(xi) is Fisher consistent for the corresponding re-

gression expectile regardless of choice of the tuning constant k. The necessity for this

constraint in the discrete case is debatable, however, and there are strong arguments for

omitting it from (13) on the basis that the resulting estimates have better qualitative

robustness properties. Further research is ongoing in this area.

4.1 Discrete data and q-scores

We have already seen that q-scores offer a way of characterising group heterogeneity

in continuous data without requiring the assumption of group-specific random effects.

In particular, q-scores can be computed very simply for continuous data since their

estimating function yi = mq∗
i
,k(xi) will always have a solution. However this is not

necessarily the case when the response is discrete such as with count and binary data.

In both these cases this estimating function will not always have a solution because

when yi = 0 there is no such estimated M-quantile that equals 0. This is a direct

consequence of the fact that the link function ensures that all M-quantile estimates are

greater than 0. One could argue that in this case q∗i should equal 0, but then problems

arise when one considers that every yi = 0 will likely have a different xi. This means

that their corresponding q∗i values be 0 regardless of their varying xi values, which is an

undesirable property.

Tzavidis et al. (2015) and Chambers et al. (2014) suggest almost identical approaches

to calculating q-scores given data from a Poisson and a negative binomial distribution

respectively. The q-score q∗i for a count datum yi is obtained as the solution to

mq∗
i
,k(xi) =















min

[

1− ǫ,
1

exp(x′
iβq=0.5,k)

]

, if yi = 0

yi, if yi = 1, 2, . . .

(15)
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where ǫ > 0 is a small prespecified constant. This is essentially the same definition as in

the continuous case except when yi = 0, where an adjustment is made. Unfortunately,

there are two issues with this approach. Firstly, adjusting only when yi = 0, and not a

general adjustment to all values of yi, creates an artificial skewness in the q-scores, and

secondly solution of (15) requires a subjective selection of a nuisance parameter ǫ.

A similar problem with defining q-scores for zero valued response data arises in the

context of binary data. Chambers et al. (2016) suggest three methods to calculate q-

scores in this case, but (for logistic link functions) focus on one that defines q∗i as the

solution to y∗i = x′
iβq∗

i
, where

y∗i = logit

(

1

2
[mq=0.5,k(xi) + yi]

)

. (16)

This equation corresponds to finding a halfway point between the estimated probability

and the yi ∈ 0, 1, from which the estimate of q∗i can be made. This ensures that the

less probable the value of yi given mq=0.5,k(xi), the more extreme the q-score which is an

intuitive property of the q-score.

As in the continuous response case, M-quantile approaches to SAE for discrete data

use an averaged q-score within a small area to define an area level q-score, which then

defines an appropriate regression M-quantile to use for predicting the average of the

unobserved responses from the small area, see (10). This corresponds to a predictor of

the area j mean of the discrete valued response Y of the form

ˆ̄yMQ
j = N−1

j





∑

i∈sj

yij +
∑

i∈rj

m̂q̂∗
j
,k(xij)



 (17)

where m̂q̂∗
j
,k(xij) = g−1(x′

ijβ̂q̂∗
j
,k). In the case of binary data the M-quantile estimate

m̂q̂∗
j
,k(xij) can be viewed as a robust estimate of the probability that yi = 1 given xij

within area j.

4.2 A real data example (contd.): binary responses

In Figure 3 we illustrated the differences in the mixed model and M-quantile approaches

for characterising regional heterogeneity for continuous responses using a farm survey
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data set. These same farm data can also be used to display the differences between these

modelling approaches in the case of a binary response. In particular, we transformed

the continuous response variable corresponding to total farm value to a binary valued

variable, replacing it by the indicator for whether this value is large or not. That is,

we put yi = 1 when it was greater than 12 × 105 and set yi = 0 otherwise. Again, the

focus is on modelling the conditional distribution of this binary Y given the covariate,

farm area. Two random effects models (GLMMs) were therefore fitted to these data;

both based on a logistic specification with random effects on the linear scale, one with

random intercepts and the other with random slopes. In addition, we fitted an M-

quantile ensemble regression model with k = 1.345 based on a linear logistic specification

for the M-quantile regression functions. Figure 4 compares the fit of these three models

in terms of the different fitted regional models for the probability that a farm is valued

highly given its size. It is again clear that the random intercepts model does not fit

well, while the random slopes model exhibits considerable instability. The M-quantile

model fits on the other hand seem to provide a good compromise between stability and

adequately reflecting regional heterogeneity in these probabilities.

4.3 M-quantile models for categorical data

Research is ongoing on an appropriate way of defining M-quantiles for categorical data

that follow a multinomial logistic distribution. This is mainly due to the fact that with

more than two categories the intuitive restriction that the sum of the M-quantiles at a

particular value of xi should equal one for all values of q is inappropriate. This research

will be reported elsewhere.

5 Conclusion

This article outlines two distinct ways in which group-level heterogeneity in data can

be characterised, and then applied in SAE. The random effects approach assumes group

differences are essentially due to a latent group effect. That is, group heterogeneity is
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a consequence of the distribution of values of these group effects. On the other hand,

ensemble M-quantile regression models require no a priori specification of a group effect

structure. The M-quantile approach to characterising group level heterogeneity in this

case first associates an index of individual level heterogeneity with each sample response.

These indices are then averaged appropriately within groups to define a group level index

which can be used to identify an appropriate M-quantile model for the group within the

M-quantile ensemble model. Simply put, the random effects model assumes group effects

a priori, whereas the M-quantile model develops group effects a posteriori. These two

approaches to characterising group effects can be utilised for a wide range of data types;

including continuous, count and binary data. The preferable method will depend on the

data available, with random effects models having superior theoretical properties under

ideal model conditions. However M-quantile methods for characterising heterogeneity,

particularly in the context of SAE, provide a useful alternative, as well as a superior

approach when distributional assumptions are not met or when outliers are present.
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