AIF-EL – An OWL2-EL-Compliant AIF Ontology

Federico CERUTTIa, Alice TONIOLOb, Timothy J. NORMANc, Floris BEXd, Iyad RAHWANe and Chris REEDf

a Cardiff University, UK
b University of St. Andrews, UK
c University of Southampton, UK
d University of Utrecht, NL
e MIT, USA
f University of Dundee, UK

Abstract. This paper briefly describes AIF-EL, an OWL2-EL compliant ontology for the Argument Interchange Format.

Keywords. argumentation, AIF, OWL2

1. The Argument Interchange Format and its Current OWL Version

The Argument Interchange Format (AIF) \cite{1,4,3} is the current proposal for a standard notation for argument structures. It is based on a graph that specifies two types of nodes: information nodes (or I-nodes) and scheme nodes (or S-nodes). These are represented by two disjoint sets, \(N_I \cup N_S = N \) and \(N_I \cap N_S = \emptyset \), where information nodes represent claims, premises, data, etc., and scheme nodes capture the application of patterns of reasoning belonging to a set \(S = S^R \cup S^C \cup S^P \), \(S^R \cap S^C = S^C \cap S^P = S^P \cap S^R = \emptyset \). Reasoning patterns can be of three types: rule of inference \(S^R \); criteria of preference \(S^P \); and criteria of conflicts \(S^C \).

The relation fulfils \(\subseteq N_S \times S \) expresses that a scheme node instantiates a particular scheme. Scheme nodes, moreover, can be one of three types: rule of inference application nodes \(N^{SA}_S \); preference application nodes \(N^{PA}_S \); or conflict application nodes \(N^{CA}_S \), with \(S = N^{RA}_S \cup N^{PA}_S \cup N^{CA}_S \), and \(N^{RA}_S \cap N^{PA}_S = N^{PA}_S \cap N^{CA}_S = N^{CA}_S \cap N^{RA}_S = \emptyset \).

Nodes are connected by edges whose semantics is implicitly defined by their use. For instance, an information node connected to a RA scheme node, with the arrow terminating in the latter, would suggest that the information node serves as a premise for the inference rule.

In 2012 an OWL version of the AIF was released1 and, to date, it is the only version available. However, the OWL profile checker2 reports 4 errors due

1http://www.arg.dundee.ac.uk/wp-content/uploads/AIF.owl (on 13 Apr 2018)
2https://github.com/stain/profilechecker (on 13 Apr 2018)
to illegal redeclaration of entities, where the same URI is used both for a Data Property and an Annotation Property [2]. In addition, when checked against the OWL2 profiles, it returns 277 violations for OWL2_EL profile.

2. AIF-EL

AIF-EL3 is a fully OWL2-EL [5] compliant version derived from the previous AIF OWL version. The OWL 2 EL profile is designed as a subset of OWL 2 that is particularly suitable for applications employing ontologies that define very large numbers of classes and/or properties; captures the expressive power used by many such ontologies; and for which ontology consistency, class expression subsumption, and instance checking can be decided in polynomial time. In addition, some commercial triple stores systems come equipped with an OWL2-EL reasoner.

In this version we solved the issues behind all the violations mentioned above: redefinitions between annotation properties and data properties have been unified into data properties to enable reasoners to properly handle them; cardinality requirements on object properties have been removed, as they raise the complexity of reasoning activities; removal of universal quantification in defining classes, but adding such pieces of information to the definition of the range of the object properties, notably hasException_desc and hasPresumption_desc.

Moreover, there has been the need to remove all the disjunctions used in the definition of the various classes. The notable examples are Scheme_Application or Statement that becomes Node; NegativeConsequences_Inference or PositiveConsequences_Inference or PracticalReasoning_Inference that becomes Consequential_Inference; and ExpertOpinion_Inference or PositionToKnow_Inference that require the definition of a new superclass, namely Testimony_Inference.

References

