Hammer, F., Sandham, Neil D. and Sandberg, Richard D. (2018) Large eddy simulations of a low-pressure turbine: roughness modeling and the effects on boundary layer transition and losses. In Turbomachinery. vol. 2B-2018, American Society Of Mechanical Engineers (ASME).. (doi:10.1115/GT2018-75796).
Abstract
Large eddy simulations of a linear low-pressure turbine cascade with the T106A profile and different surface roughness patches were carried out. The aim was to investigate the effects on the laminar and turbulent boundary layer on the blade suction surface. Two different approaches were used to represent the roughness patches. Firstly, a forcing model, reducing the computational costs compared to fully resolved roughness surfaces, was incorporated. Secondly, an immersed boundary method representing an as-cast roughness surface was used, for a more detailed analysis of flow mechanisms over roughness. It was found that the roughness model was able to induce boundary layer transition and alter the turbulent boundary layer, with the results in line with findings in the literature. The instantaneous flow data at different time instants of the as-cast roughness case showed the development of streaks due to distinct roughness peaks, resulting in highly uneven transition positions across the spanwise direction.
Full text not available from this repository.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Aeronautical and Astronautical Engineering
Aeronautical and Astronautical Engineering - Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Aeronautics, Astronautics & Comp. Eng (pre 2018 reorg) > Aerodynamics & Flight Mechanics Group (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Aeronautical and Astronautical Engineering > Aeronautics, Astronautics & Comp. Eng (pre 2018 reorg) > Aerodynamics & Flight Mechanics Group (pre 2018 reorg)
Aeronautical and Astronautical Engineering > Aeronautics, Astronautics & Comp. Eng (pre 2018 reorg) > Aerodynamics & Flight Mechanics Group (pre 2018 reorg) - Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Aeronautical and Astronautical Engineering > Aerodynamics and Flight Mechanics Group
Aeronautical and Astronautical Engineering > Aerodynamics and Flight Mechanics Group
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.