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Abstract To improve the efficiency of solving uncertainty design optimization problems, a 

gradient-based optimization framework is herein proposed, which combines the dimension 

adaptive polynomial chaos expansion (PCE) and sensitivity analysis. The dimensional adaptive 

PCE is used to quantify the quantities of interest (e.g. reliability, robustness metrics) and the 

sensitivity. The dimensional adaptive property is inherited from the dimension adaptive sparse grid, 

which is used to evaluate the PCE coefficients. Robustness metrics, referred to as statistical 

moments, and their gradients with respect to design variables are easily derived from the PCE, 

whereas the evaluation of the reliability and its gradient require integrations. To quantify the 

reliability, the framework uses the Heaviside step function to eliminate the failure domain and 

calculates the integration by Monte Carlo Simulation with the function replaced by PCE. The PCE 

is further combined with Taylor’s expansion and the finite difference to compute the reliability 

sensitivity. Since the design vector may affect the sample set determined by dimension adaptive 

sparse grid, the update of the sample set is controlled by the norm variations of the design vector. 

The optimization framework is formed by combining reliability, robustness quantification and 

sensitivity analysis and the optimization module. The accuracy and efficiency of the reliability 

quantification, as well as the reliability sensitivity, are verified through a mathematical example, a 

system of springs, and a cantilever beam. The effectiveness of the framework in solving 

optimization problems is validated by multiple limit states example, a truss optimization example, 

an airfoil optimization example and an ONERA M6 wing optimization problem. The results 

demonstrate that the framework can obtain accurate solutions at the expense of a manageable 

computational cost.  

Keywords: polynomial chaos expansion, dimensional adaptive sparse grid, reliability, reliability 

sensitivity 

1 Introduction 

Due to uncertainties in practice, reliability and robustness have become critical issues in 

design optimization (Hu et al. 2016; Lopez and Beck 2012; Rackwitz 2001; Verma et al. 2016; 

Yao et al. 2011). Uncertainties are treated with safety factors or worst-case design methods in a 

deterministic optimization. However, these methods do not guarantee the required level of safety, 

and the impact of uncertainty parameters on safety cannot be quantified. Typical uncertainty 

optimization methods include the reliability-based optimization (RBDO) method and the robust 

optimization method. The RBDO method assures the safety level by formulating the design 

feasibility as a reliability constraint (Du and Chen 2004). Robust design optimization (RDO) 

approaches model robustness by correlating the expectation and the variance of the system 

response with the objective function to make the response insensitive to small changes in system 
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parameters (Lelievre et al. 2016).  

In uncertainty optimization, quantifications of the reliability and the robustness are needed. 

For the robustness quantification, commonly used methods are the Taylor-based method, Gaussian 

quadrature, the stochastic expansion, and simulation-based methods (Beyer and Sendhoff 2007; 

Keshavarzzadeh et al. 2016; Padulo et al. 2011; Schillings and Schulz 2015; Wu et al. 2018). 

Primary methods used to determine the reliability metric include the First-Order Reliability 

Methods (FORM), the Second-Order Reliability Methods (SORM), the probability density 

evolution method (PDEM), and the simulation-based methods (Li 2016; Park et al. 2015; Yang 

and Liu 2014). Commonly used uncertainty optimization frameworks are derived from the FORM 

and the SORM. Based on the coupling between the uncertainty analysis and the optimization 

process, the methods can be divided into three groups: double loop approach (Keshtegar and Hao 

2017; Meng et al. 2015; Youn et al. 2005), single loop approach (Keshtegar and Hao 2016; 

Keshtegar and Hao 2018) and decoupled approach (Du and Chen 2004; Meng et al. 2016). The 

framework based on gradient-based optimization has attracted attention in recent years 

(Keshavarzzadeh et al. 2017; Keshavarzzadeh et al. 2016; Torii et al. 2017).  

In gradient-based uncertainty optimization, the gradients of the metric of reliability and 

robustness are needed. The gradients of robustness are easily derived from the robustness 

quantification method such as the Taylor-based method of moments, Gaussian quadrature, the 

stochastic expansion and the simulation-based methods (Beyer and Sendhoff 2007; 

Keshavarzzadeh et al. 2016; Padulo et al. 2011; Schillings and Schulz 2015; Wu et al. 2018). In 

the RBDO, the gradient of the reliability with respect to the design variables is also called the 

reliability sensitivity. Theories and methods of reliability sensitivity analysis are roughly divided 

into two categories: approximation-based methods and simulation-based methods (Valdebenito et 

al. 2018; Yanfang et al. 2011; Zhang and Zhang 2016).  

Approximation-based methods for reliability sensitivity are mainly based on the FORM or 

SORM method. Hohenbichler and Rackwitz (1986) developed a method based on the FORM. 

Enevoldsen and Sørensen (1993) extended the method for parallel systems. However, the method 

cannot be used to estimate sensitivities of slopes or curvatures, and it is not inapplicable with 

SORM (Karamchandani and Cornell 1992). Therefore, a method is proposed which is applicable 

to estimate the reliability sensitivity with the FORM and SORM (Karamchandani and Cornell 

1992). Kwak and Lee (1987) presented an analytical approach based on the advanced first-order 

second-moment (AFOSM) method. Yanfang et al. (2011) proposed a FORM-based approach to 

solve the problem with strongly non-linear limit state functions with independent normal random 

variables. To reduce the computational cost, Zhao et al. (2011) employed the support vector 

regression algorithm to construct the limit state function approximation and used FORM/SORM 

for the gradient estimation. Moreover, (Papadimitriou and Papadimitriou 2016) proposed a 

method that combines sparse grid techniques and FORM for uncertainty aerodynamic shape 

optimization. However, when the problem has high nonlinearity or the random variables do not 

obey the Gaussian distribution, the FORM and SORM encounter large errors. Moreover, when 

using FORM and SORM in RBDO, the procedure of searching for the most portable point 

involves a hard-to-solve nested optimization (Keshavarzzadeh et al. 2016), which makes the 

method inefficient. 

Simulation-based reliability sensitivity methods use samples to directly calculate the 

reliability metric and combine the FORM or the finite difference to carry out the reliability 

analysis. Ditlevsen and Bjerager (1989) presented a method using the directional simulation to 

estimate the reliability metric and the gradient. Wu (1994) proposed an adaptive importance 

sampling (AIS) method to compute the reliability metric and the gradient. The approach based on 

a conditional sampling technique was further introduced to improve the efficiency (Au 2005; 

Ching and Hsieh 2007; Taflanidis and Jia 2011). Jensen et al. (2015) developed a method based on 
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subset simulation for high-dimensional problems. Royset and Polak (2004) proposed an algorithm 

for estimating the gradient using either Monte Carlo simulation (MCS) or Importance Sampling 

(IS). A procedure was proposed combining the MCS methods and the FORM to ease the 

computational burden in the estimation of the reliability gradient for the MCS method (Melchers 

and Ahammed 2004). The method was further extended for the non-normal distribution 

uncertainty (Ahammed and Melchers 2006). The main disadvantage of the simulation-based 

approach is that the method usually requires many function evaluations. Simulation-based 

methods are often used for verification purposes. 

The surrogate model has the potential to improve the efficiency and the accuracy, while the 

polynomial chaos expansion (PCE) has drawn increasing attention in uncertainty optimization 

(Keshavarzzadeh et al. 2016; Papadimitriou and Papadimitriou 2016; Schillings and Schulz 2015; 

Torii et al. 2017). PCE is attractive due to its high computational efficiency and the powerful 

ability to generate functional representations of uncertain variances (Eldred and Burkardt 2009). 

Du et al. (2014) proposed a method based on non-intrusive PCE and the reliability sensitivity is 

derived from the FORM/SORM method. This method is suitable for the problem with independent 

normal distribution uncertainty variables. Wang et al. (2006) used the PCE and MCS for reliability 

analysis and estimated the reliability sensitivity by integrating the gradient of the distribution 

function. Torii et al. (2017) proposed algorithms that establish the PCE separately for both 

reliability analysis and reliability sensitivity analysis. Keshavarzzadeh et al. (2017; 2016) 

presented a computational framework that uses the Heaviside function as the indicator function, 

and the sensitivity is computed by the integration of the gradient of the Heaviside function. The 

derivative of the Heaviside step function is a Dirac delta function, which makes the integration 

complicated. To calculate the integral, the Heaviside function is approximated by a continuous 

function, and the parameters are chosen empirically, which leads to a shortage of error analysis of 

the method.  

With the above paragraphs as background, it is evident that PCE is an attractive method for 

the uncertainty quantification problem. A computational framework based on PCE coupled with 

gradient optimization becomes attractive for the uncertainty optimization problem. However, there 

is an opportunity to improve the framework by constructing the PCE more efficiently. Building 

upon the work (Keshavarzzadeh et al. 2017; Keshavarzzadeh et al. 2016; Torii et al. 2017), the 

dimensional adaptive sparse grid is introduced to calculate the PCE coefficients in this paper. In 

addition, in order to eliminate the empirical parameters given by Keshavarzzadeh et al. 

(Keshavarzzadeh et al. 2017; Keshavarzzadeh et al. 2016) in reliability sensitivity analysis, the 

proposed framework combines the PCE, the Taylor expansion and the finite difference to evaluate 

reliability sensitivity, which is derived through analytical derivation. The error criterion of the 

sensitivity analysis is also established. 

The rest of the paper is organized as follows. In Section 2, the formulation of the problem is 

described, and then the proposed framework is presented in Section 3. Seven test cases are used to 

validate the effectiveness and the accuracy of the framework in Section 4. Finally, conclusions are 

given in Section 5. 

2 Problem statement 

Reliability is explicitly considered in the constraints as the success probability of the system 

or structure, which has to be higher than a given threshold targetPr . Robustness is considered in the 

objective function, which is the sum of the expected value E  and the variance Var , of the cost 

function. The model is defined as follows:  
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where d  is the deterministic variable vector, x  is the random variable vector, and ω is the 

distribution parameter. The term d  may affect x  when d  is the mean value of x . The term  

0g   indicates the safe state of the system under investigation, and ,Prg j is the reliability 

according to each safe mode. Finally, ng  indicates the number of constraint functions, and nd  

is the dimension of the design vector. 

Prg  is the integral of the probability density function (PDF) ( )x over the region 

g( , ( )) 0 d x . However, the calculation of the integration region is not trivial. Therefore, the 

Heaviside step function is adopted to eliminate the region of g( , ( )) 0 d x . As a result, Prg  

may be defined as Eq.(2). 

Pr H(g ( , )) ( )g d


  d x x x  (2) 

where H is the Heaviside step function: 

1,g ( , ) 0,safe state
H( ( , ))

0,g ( , ) 0,failure state
g d x


 



d x

d x
 (3) 

Since the Heaviside step function is not continuous and the breakpoint g( , ) 0d x is 

unknown, Eq. (2) is usually evaluated by MCS. Due to the inefficiency incurred in using MCS 

directly, an alternative method based on the dimensional adaptive PCE is discussed in the next 

Section. 

3 A framework based on dimensional adaptive PCE 

3.1 Non-intrusive PCE  

PCE is widely used in reliability and robustness quantification. (Keshavarzzadeh et al. 2016; 

Papadimitriou and Papadimitriou 2016; Schillings and Schulz 2015; Torii et al. 2017) PCE is 

based on multidimensional orthogonal polynomial approximation. For a random vector ( )x  

with dim  random variables and a multi-index dimi , the PCE of the function ( , ( )g d x  is 

written as Eq.(4) (Schillings 2010). 

 1
0

( B ( ( ))( , ( ) g )
j j

g 


  

   i i

i i

xd x d  (4) 

where 
1 1

dim

jj
i


i  is the 𝑙1 norm of the index vector, (g )

i
d  is the vector of deterministic 

coefficients, B ( ( ))x 
i  is the polynomial bases determined by the Wiener-Askey scheme (Xiu and 

Karniadakis 2002), in which the Hermite, Legendre, Laguerre, Jacobi and generalized Laguerre 

orthogonal polynomials are used to simulate the effects of continuous random variables with 

normalized, uniform, exponential and gamma probability distributions, respectively. These 

polynomials are orthogonal with respect to the PDF. For example, the multi-dimensional Hermite 

bases polynomial is defined as Eq.(5). 

2 2

0
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0
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e e
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
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
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The infinite expansion is truncated at a finite number in practice. The 𝑝 − order truncated 

expansion is written in a term-based form in Eq.(6). 

 
1

0 0 0 =0

0

( ( ( ))

( ( )= B ( )=1{ ( ( ))} B ( )

g ( ( ) g )
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n

i i

pn

i i

i

x x


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







  

 

i i

x

x x

d,x d

，

，
 (6) 

As shown in Eq.(6), the PCE separates the solution into the deterministic portion ( )ig d  and 

the random portion ( ( ))i  x . PCn  is the number of expansion terms, that are determined by 

Eq.(7). 

( )!
1

! !
PC

s p
n

s p


   (7) 

where s  is the number of random variables. 

The non-intrusive method that uses the simulation code as a black-box is adopted to calculate 

the coefficients ( )ig d . Based on the orthogonal characteristics with respect to PDF ( ( )) x , the 

coefficients are evaluated using the projection method as given in Eq.(8). 
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 (8) 

After identifying the PCE coefficients, the statistical quantities of interest (QOI) are 

evaluated by replacing the original function by the PCE. The mean value and variance of the 

output are obtained from Eq.(9). 
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The reliability can be quantified through Eq.(10).  

g

0

( ( ( ))Pr H( g ) ) ( )
PCn

i i

i

d 
 

  x xd x  (10) 

 Using Eq.(8) to obtain the PCE coefficients requires multidimensional integration. Next 

section will introduce the dimensional adaptive sparse grid to discretize the probabilistic space 

method and to evaluate the multi-dimensional integral. 

3.2 Dimensional adaptive sparse grid 

The dimensional adaptive sparse grid is one of the quadrature-based approaches for high 

dimensional integration problems. Quadrature-based approaches generally approximate the 

integral by weighted summation of function values of the specified interpolation points within the 

integration domain. For multi-dimensional integral, the most straightforward general technique is 

to employ a tensor product of one-dimensional quadrature rules, called the full tensor grid method, 

given in Eq.(11). 

1 2
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1 2 1 2

1 2 1 2

1 21 1 1
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Q k dim Q Q Q g

xQ k d x x w w wim
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
  

   

 

x
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where im  is the number of interpolation points. k N  is the order of the tensor grid. The 

collection of the multivariate quadrature points can be expressed as a grid given in Eq.(12). 

1 2

1 2, , ,

dim

dim

ii i

i i i k

  G G G  (12) 

The full tensor grid method needs 1 j

dim

j im  function evaluations. It results in the exponential 

growth of function evaluations as the dimension increases, which is named as the curse of 

dimensionality (Da Ronch et al. 2011).  

The sparse grid method initially developed by Smoljak (1963) aims at overcoming the curse 

of dimensionality. The sparse grid combines the higher-order integral formula of some dimensions 

with the lower-order integral formula of other dimensions. With k dim , the sparse grids 

integrand is given as Eq.(13). 

1 1 2

1
1 1

1
( , ) ( 1) . .( )dim

k ii i

k dim k

dim
S k dim Q Q Q

k



   

 
       


i i

i  (13) 

The collection of the multivariate quadrature points for sparse grids can be expressed as a 

grid:  

1 2

1
dim 1

dimii i

k k   

  
i

G G G . (14) 

In comparison with the full tensor grid method as given in Eq.(12), which combines the 

univariate quadrature formulas in each dimension up to order k , the sparse grid limits the total 

sum of all dimensions within the range [ 1, ]k dim k  . For functions from spaces with bounded 

mixed derivatives up to order 𝑟 > 1, the error bound of the full tensor grid method is ( )rO N 
 

and the error bound for the sparse grid method is 
( 1)( 1)( (log ) )r r dO N N   (Schillings 2010). Thus, 

the sparse grid method is capable of overcoming the curse of dimensionality and is suitable for 

high dimensional integration problems. 

By using the nested rules, a difference formula 
1i i iQ Q    can be defined with 

0 0Q 

and the difference points set 
1 \i i i

 G G G . With the difference formula defined, the sparse grid 

method can be expressed in an incremental form as Eq.(15)-(16).  

1 2

1

( , )                        dimii i

k

S k dim


    
i

 (15) 

1 2

1

( ( 1, ) , ) dimii i

k

S k dk m imS di


      
i

 (16) 

The dimensional adaptive sparse grid based on the incremental form adds points sequentially 

considering the importance of each dimension (Bungartz and Dirnstorfer 2003; Garcke et al. 2001; 

Gerstner and Griebel 2003; Klimke 2006). Starting with a coarse sparse grid, the multi-index is 

collected in the set 
1

1{ }: k dim k   i iI . The sparse grid integral with the index set I  is : 

1 2( , ) dimii i
S k dim



    
i I

. (17) 

A forward neighbourhood set of I  is given as  

nei nei nei nei{ : , , ,1 ,1 }j k j dim k dim         I i i i e i e I i I . (18) 

After evaluating the PCE coefficients by Eq.(17), statistical QOI are obtained by Eq.(9) and 

Eq.(10). For a multi-index nei neii I , an error indicator of the QOI can be defined by Eq.(19). 

nei nei{ }(QOI) QOI QOI  
i I i I  (19) 

The subscript of QOI
I  indicates that the PCE used in Eq.(9)-(10) is constructed by the 

index set I . neii  with the maximum quadrature error is sequentially added to I . The 
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identification of the multi-index, which causes the maximum quadrature error, can be formulated 

as an optimization problem given in Eq.(20). The optimization problem is solved by the ergodic 

method. 

nei_m

nei_m

nei

Find  such that:

arg max (QOI)

s.t.: 

 



i

i

i

i I

 (20) 

In the evaluation of the PCE coefficients, the main advantage of using dimension adaptive 

refinement strategy is that the PCE can be constructed to be dependent on the problem. This 

advantage reduces function evaluations. 

3.3 Summary of the Framework 

The process of the quantification of the QOI is summarized in Fig.1. Since this method is 

based on non-intrusive PCE and dimensional adaptive sparse grids, this method is denoted as 

NIPCE-DASG. The subscript of d
I  indicates that the design is assigned as d . The initial 

multi-index set is specified as 
1

:{ }1k dim k   
d

I i i , which generates a sparse grid as 

given in Eq.(14). In this work, k is set to 0.   denotes the accuracy required for reliability and 

robustness quantification problems, which can be assigned according to the accuracy requirements 

of specific problems. 

Evaluate PCE   coefficients ____ by Eq.(8) and Eq.(17) 

using the index set ___.

Yes

No

Get the forward neighborhood set           using Eq.(18).
neiI

Find the multi-index                         that induces in the 

maximum quadrature error                        using Eq.20).

nei{ } 
d d

I iI

Output   _______,___________________

the PCE Coefficients ___.

  the index set_____  _ __ . _                  

   the sample set _   ______.__

d
I

d
I

gi

Use the solver to compute _________________.(g , ),  
dI

d x x X

gi

dΙ
X

Use the solver to compute _________________.
nei

(g , ),  
I

x Xd x

nei_m neii I

nei
(QOI)

i

nei
nei_m nei

max (QOI)  ?


 
i

i I

QOI
dI

1
,  { : }1k dim k   

d
i id I

Quantify the __    ___ by Eq.(23)-(24) .QOI
dI

 

Fig.1 The process of index selection and QOI quantification 

The required interpolation samples of the random vector by the dimensional adaptive sparse 

grid are expressed as a sample set 1 2{ , , }ns
Ι

X x x x . The PCE coefficients and the PCE can be 

expressed as Eq.(21) and Eq.(22), respectively. 
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Based on the PCE construct by Eq.(21) using the sample set 1 2{ , , }nsX x x x , the 

reliability can be quantified through Eq.(23),  and the integral is evaluated through MCS. 

g

0 0

( ( ( ))Pr H( g , ) ) ( )
PC sn n

j ij i

i j

dw  
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  x xd x x  (23) 

The mean value and the variance of the output are obtained from Eq.(24). 
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





 



 





 



   

 




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x x

x x

d x x

d x

d x x

 (24) 

To evaluate reliability sensitivity, the gradient of the Heaviside step function is needed. The 

derivative of the Heaviside step function is the Dirac delta function shown in Eq.(25). 

,  0H( )
( )

0,     0

xx
x

xx


 
  

 
 (25) 

Therefore, the reliability sensitivity is expressed as: 

Pr g ( , )
(g ( , )) ( )

g

k k

d
d d

 


 


 
d x

d x x x . (26) 

However, the Dirac delta function makes the computation of the integral complex. The 

difficulty is to determine the surface of g( , ) 0d x  accurately. Furthermore, MCS is not 

applicable since it is hard to sample a set randomly with g( , ) 0d x . Therefore, the 

finite difference given in Eq.(27) is adopted to evaluate the reliability sensitivity. 

Pr Pr (g ( , ) 0) Pr (g ( , ) 0)kg g g

k

h

d h

    




d e x d x
 (27) 

The Taylor’s expansion introduces the function gradient g( , ) / kd d x  and makes an 

approximation as Eq.(28). 

g ( , )
g( , ) g( , )k

k

h h
d


  



d x
d e x d x  (28) 

Combining the Heaviside step function, Taylor’s expansion and the finite difference method, 

the reliability sensitivity is expressed as Eq.(29). 

g ( , )
H(g ( , ) ) ( ) H(g ( , )) ( )

Prg k

k

d dh
d

d h

 
 


 

 




 
d x

d x x x d x x x
 (29) 

The approximation error for g( , )khd e x  given as Eq.(28) is 
2( )O h . Using the numerical 

quadrature method in the reliability sensitivity analysis, the total error of the integration will be the 

sum of the error caused by the approximation and the integral error caused by the numerical 
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quadrature method. The analytical error for Eq.(29) is ( )O h . Therefore, to achieve the accuracy 

( )O h , the numeric quadrature error should be less than 
2( )O h . 

g( , ) / kd d x , in Eq.(29), is calculated by Eq.(30), which is the derivative of the PCE given 

by Eq.(22).  

0 0

(
( ( ))

g , )g ( , ) PC sn n
j

i

k

i

k

j

i j

w
d d


 




 
 

 x
d xd x

 (30) 

The gradient of the mean value and the variance of the output are obtained from Eq.(31). 

  

0

2

0

1 0 0

(

(
( ( ( ))

g , )E(g)

g , )Var(g)
2( g , ) ) ( ) ( ) ( )

s

PC s s

n
j

j

i i

n n n
j

j ij ij i

i i

j

i j j

d

w
d d

w w
d d

 




  






 


  

 



    x x

d x

d x
d x x

 (31) 

The QOI quantification given in Eq.(23)-(24) and the QOI sensitivity analysis given in 

Eq.(29)-(31) are coupled with the optimization module to construct an optimization framework. 

The optimization framework is illustrated in Fig.2. 

Output _________. 

Quantify the QOI by Eq.(23)-(24) .

Analyze the QOI sensitivity by Eq.(29)-(31).

Optimizer

Optimization

 converged ?

Yes

No

Yes

Initialize ______.
0=d d

Use the  process illustrated in Fig.1 to identify

 the required  index set___ and sample set _   __.
d

I
dΙ

X

Use the solver to compute 

____________________________.(cost( , ), g , ), 
dΙ

d x d x Xx

Evaluate PCE   coefficients  by Eq.(8) and Eq.(17) 

using the index set ___.
d

I

Use the solver to compute function 

_________________                                       ______.(cost( , ) / ,  g , ) / ,  k kd d    
dI

xd x Xd x

Output _________. ,  QOId

QOI QOI eps 
dI

, QOId

Use the  process illustrated in Fig.1 to identify the 

required  index set___, the required sample set ____ ,

and _          __.
d

I
dΙ

X
QOI

dI

No

Yes

0

2
 ?d d d

0 d d No

 

Fig.2 The optimization framework 
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In the index selection process given in Fig.1, the samples in set  need to be evaluated, 

which increases the computational burden. However, the required index set d
I  remains the same 

when the design varies within a restricted region. Therefore, to reduce the computation induced by 

the function evaluations of 
neiI

X , the update of the index selection process is controlled by the 

criteria 
0

2
d d d , where d  is the restricted norm variations of the design vector. When the 

optimization is converged, the QOI is rechecked by the process given in Fig.1. QOI
dI  is the 

output given by the process provided in Fig.1. eps  is the acceptable error for QOI. The 

computation burden caused by the index selection process is released by eliminating the index 

section process when 
0

2
d d d  is satisfied. In the next section, the proposed method is 

demonstrated by several examples.  

4 Examples and discussion 

4.1 Mathematical example 

The mathematical example is adopted from Yang and Liu (2014). As is given in Eq.(32)-(33), 

the two mathematical functions have disjoint failure domains (Yang and Liu 2014). Table 1 and 

Table 2 give the descriptions of the uncertain parameters. In the reliability quantification problem, 

FORM, SORM, PDEM and NIPCE-DASG are compared. 

2

1 1 2 3 1 2 3g ( , , ) 0.25(sin( 3)( 1) ( 1) ) 1x x x x x x       (32) 

2

2 1 2 3 4 1 2 3 4g ( , , , ) 0.25(sin( 3)( 1) ( 1) ) 3x x x x x x x x       (33) 

Table 1 Parameters of random variables for performance function 1g  

Random variables Distribution Ranges 

1x  uniform [0, 10] 

2x  uniform [6, 16] 

3x  uniform [0, 10] 

Table 2 Parameters of random variables for performance function 2g  

Random variables  Distribution Ranges 

1 2 3 4, , ,x x x x  uniform [0, 10] 

 

The reliability quantification problem is defined as follows:  

 
,Pr = H( g ( ( ))) , = 1, 2g j j jg d j  x x . (34) 

The index selection iteration steps for constructing the PCE are shown in Fig.3. For function 

1g , the multi-index set is given as { 0,0 0 0 01 10( ) ( ) ( ) (0 2 0 0 010 }) ( ), , , , , , , , , , , ,, , and the final error indicator 

for reliability quantification is 31.429 10 . For function 2g , the multi-index set is given as 

( ) ( ) ( ) ( ) ({ 0,0 0,0 0,10,0 1,0 0,0 1,10,0 0,01,0 2,0 0,0 0,0 0,1 0,01,1 2,10,0) ( ) ( ) ( ) ( )}, , , , , , , , , , , , , , , , , , and the final error 

indicator for reliability quantification is -3 2.42 10 . 

neiI
X



 

11 

 

 

Fig.3 Mathematical example: index selection iteration steps of the functions 

The curves of PDF for the mathematical functions using NIPCE-DASG are shown in Fig.4, 

and these agree well with the ones by MCS. 

  

Fig.4 Mathematical example: the PDFs of functions 

Table 3 lists the reliability quantification results for different thresholds g  and compares the 

results of the different methods. 

Table 3 Mathematical example: comparison of methods 

1gg   g =0 g =10 g =20 Number of function calls 

MCS 0.2878 0.7742 0.9929 610  

FORM 0.3095 0.6851 0.9560 96 

SORM 0.2010 0.8619 0.9919 123 

PDEM 0.2860 0.7491 0.9901 135 

NIPCE-DASG 0.2844 0.7740 0.9926 11 

2gg   g =0 g =10 g =20 Number of function calls 

MCS 0.4931 0.8753 0.9875 610  

FORM 0.3486 0.6435 0.8739 130 

SORM 0.3305 0.8818 0.9836 172 

PDEM 0.4897 0.8702 0.9905 180 

NIPCE-DASG 0.4896 0.8745 0.9879 29 

 

The non-linear inner point (NIP) optimization algorithm in the OPT++ (Meza et al. 2007) 

library was used to search for the most probable point (MPP) for the FORM and the SORM 
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(Eldred et al. 2007). Due to the optimization process in MPP search, FORM and SORM require 

more function evaluations than the methods using PCE. Also, the first-order (FORM) and 

second-order approximations (SORM) are less accurate than the PCE. Therefore, the accuracy of 

the FORM and SORM reliability quantification is lower compared to the method using the PCE. 

Compared to PDEM, NIPCE-DASG also shows the advantage of obtaining the same level of 

accuracy with less function evaluation. 

4.2 System of springs 

The spring example was proposed in Keshavarzzadeh et al. (2016). As shown in Fig.5, the 

system consists of two springs with linear stiffness denoted by 1 k  and 2 k . The system is subject 

to two external forces 
(1) (2)( , )F FF . The displacement of the two nodes is denoted as 

(1) (2)( , )V VV . 

2 1
1k2k

(2) (2),V F (1) (1),V F

 

Fig.5 The system of springs problem 

In order to show the influence of the uncertainty, two independent random variables 1x  and 

2x  are included in the expression of spring stiffness and external force as follows: 

1 1 1

2 2 1

(1) 2

(2)

2

1
( 1) 1,

2

1
( 1) 1,

2

3
,

2

2

k d x

k d x

x
F

F x

  

  




 

 (35) 

where, 1 2( , )d dd  are the deterministic variable that is defined as = (0.5, 1.5) d . The strain 

energy TC  V F , widely used in structural optimization, is taken as the performance function. 

The analytical expressions of V  and C  with respect to the random variables are given as 

follows: 

(1) 1 2 1 2 1 2 2

2

1 2 1 1 2 1

(2) 2

2 1

(1) (2)

2 2

( 1)( (0.75 0.25 ) 1.75 0.75 ) 2 5

0.25 ( 1) 0.5( )( 1) 1

1.5 3.5

0.25 ( 1) 1

1 3
( ) ( 2)
2 2

x x d d d d x
V

d d x d d x

x
V

d x

C x V x V

     


    




 

   

 (36) 

The reliability quantification problem is defined as the probability that C  exceeds a specific 

value C , as is given in Eq.(37).  

 
1 2=0.5, =1.5 1 2Pr H( ) |C d dC C dx dx  . (37) 

The index selection iteration steps for constructing the PCE when 20C  1( ~ U( 1,1) x  and 

2 ~ U( 1,1))x  , are shown in Fig.6. After six iterations, the error indicator as given in Eq.(19) is 
57.1 10 . The multi-index set is presented as {(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)} . 
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Fig.6 System of springs: index selection iteration steps 
1 2( ~ U( 1,1),  ~ U( 1,1))x x   

 

Fig.7 System of springs: samples distribution 

Eq.(38) gives the expression of the strain energy when = (0.5, 1.5)d . 1x  appears mainly in 

the denominator of the expression, while 2x  only appears in the numerator, which means that 1x  

induces greater nonlinearity than 2x . Therefore, as is shown in Fig.7, more values are selected for 

1x  than for 2x . 21 samples are determined through the index set. 

2 2 2 1 2 2

2

11 1

2( 3)(8 (3 8)( 1) 20) 2(3 7)( 2)

3 716 3( 1) 32

x x x x x x
C

xx x

      
 

  
 (38) 

 

Fig.8 System of springs: PDF of the strain energy C  

Keshavarzzadeh et al. (2016) studied the non-intrusive and the intrusive PCE with sparse 

grids. Compared to intrusive methods, the non-intrusive methods allow the solver to be considered 

as a black-box, which is an essential feature in engineering applications. Hence the non-intrusive 

method is chosen for comparison. The FORM and the SORM are also selected for comparison. As 

for the reliability sensitivity analysis, NIPCE-DASH is compared with direct use of MCS in the 
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calculation of 1PrC d  . 

Table 4 System of springs: comparison of methods 

= (0.5, 1.5)

20

 

C 

d
 Method 

Number of 

evaluations 

for PrC
 

PrC
 

Relative Error 

of PrC
 1PrC d   

Relative 

Error of 

1PrC d   

1

2

~ U( 1,1)

~ U( 1,1)

x

x




 

Analytical —— 0.0472 —— -0.00683742 —— 

MCS 610  0.047208 0.0169% -0.00642 6.1049% 

FORM 40 0.07310775 54.8893% —— —— 

SORM 48 0.048613548 2.9948% —— —— 

Non-intrusive 

method in 

Keshavarzzadeh 

et al. (2016) 

33 0.0471 0.2119% —— —— 

NIPCE-DASG 21 0.047205 0.0106% -0.0064 6.3974% 

1

2

~ (1,1)U

N~ (0,1)

x

x
 

MCS 610  0.1327 —— -0.0181 —— 

FORM 30 0.140902 6.18% —— —— 

SORM 38 0.129039 2.76% —— —— 

NIPCE-DASG 13 0.132187 0.39% -0.0189 4.42% 

 

It can be seen from the results in Table 4 that the accuracy of FORM and SORM reliability 

quantification is lower than that of PCE. Compared to the non-intrusive method of 

Keshavarzzadeh et al. (2016), DASG's goal-oriented features lead to fewer calculations required 

by NIPCE-DASG. As for the reliability sensitivity analysis, the accuracy of the proposed method 

is at the same level of MCS. 

4.3 Cantilever Beam 

The cantilever beam problem shown in Fig.9 is referenced from Yi et al. (2008). The beam 

has a length of 𝐿 and the dimensions of the cross section define the design vector ( )= b,hd . The 

cantilever beam is subject to two external forces 
(1) (2)( , )F FF . The uncertainty is induced by the 

external forces, the elastic modulus E , and the yield strength y . 

L=100"

(2)F

(1)Fh

b

(1) (2)

6 6

~N(500, 100)lb, ~N(1000, 100)lb , 

~N(40000, 2000)psi, E~N(29 10 , 1.45 10 )psi

F F

y  

  

Fig.9 The cantilever beam optimization problem 

(2) (1)

1 2 2

3 (2) (1)
2 2

2 0 2 2

600 600
g ( , ) ( )

4
g ( , ) ( ) ( )

y F F
bh b h

L F F
D

Ebh h b

  

  

d x

d x

 (39) 

As is given in Eq.(39), there are two functions concerned. 1g ( , )d x  is the constraint on the 

maximum stress which is at the fixed end of a corner of the cantilever, where y  is the allowable 

stress. 2g ( , )d x  is the tip displacement, where 0 2.5 inD   is the permissible displacement. The 

design vector is defined as [2.0, 4.0]d .  
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Fig.10 Cantilever beam: index selection iteration steps of the functions 

The index selection for the PCE construction to quantify the reliability is shown in Fig.10. 

The error is (QOI)
i  defined by Eq.(19). The fourth index of the 1g  is (0, 0, 2), while the error 

is zero. Since 1g  is linear with respect to the random variables, 1g  is also normally distributed 

and the PDF can be easily obtained. Seven samples identified by the dimension adaptive grid are 

capable of making the PCE an accurate agent. Therefore, seven samples are used to construct the 

PCE. However, 2g  is non-linear with respect to the random variables, there are more index 

selection steps for 2g  than 1g . It is apparent that the PCE with dimensional adaptive grid 

method can identify the non-linearity. As given in Fig.11, the proposed method coincides with 

analytical analysis and MCS in evaluating the PDFs of 1g  and 2g .  
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Fig.11 Cantilever beam: the PDF of the functions 

Table 5 Cantilever beam: accuracy verifications on reliability quantification and sensitivity analysis  

[2.0,4.0]d   1g ( , ) 0d x  2g ( , ) 0d x  

Method MCS NIPCE-DASG Error MCS NIPCE-DASG Error 

Number of evaluations for PrC
 610  7 —— 610  15 —— 

PrC
 0.7048 0.7049 -0.0001 0.5840 0.5843 -0.0005 

1PrC d   2.19 2.2280 -0.0380 3.09 3.1291 -0.0127 

2PrC d   1.08 1.0740 0.0060 0.8287 0.8301 -0.0017 

  

In Table 5, the results of the reliability quantification and sensitivity analysis evaluated by 

NIPCE-DASG and MCS are compared. The maximum reliability error is at the level of 410  and 

the maximum sensitivity error is at the level of 210 . Only seven samples are needed for the linear 

function 1g ( , )d x , and 21 samples are required for the non-linear function 2g ( , )d x . The results 

indicate that the NIPCE-DASG achieves good efficiency and provides excellent accuracy in 
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reliability quantification and sensitivity analysis. 

The optimization problem defined in Eq.(40) is to minimize the volume while satisfying 

probabilistic constraints on the maximum stress and the tip displacement.  

opt

opt

Find  such that:

          arg min  

s.t.     Pr (g ( , ) 0)  0.9987, 1,2

       0.   ,  1 10 0.1 10

j

 

bh

j

b h



  

   

d

d

d

d x
 (40) 

The optimization results by the different method are listed in Table 6. The results by PMA 

based methods and RIA based methods are adopted from Yi et al. (2008). The computational cost 

of each approach is measured by the number of constraint function evaluations (NCE) required to 

obtain the optimum design. 

Table 6 Cantilever beam: uncertainty optimization methods comparison  

Initial 

solution  
PMA bi-level PMA with SAP RIA bi-level RIA with SAP Proposed method 

d(0) =

（2.0,4.0） 

NCE 520 176 328 128 176 

Optimal 

solution 

9.528 

(2.450,3.889) 

9.527 

(2.453,3.884) 

9.528 

(2.439,3.906) 

9.529 

(2.439,3.907) 

9.5326 

(2.3347,4.0830 ) 

d(0) =

（3.0,3.0） 

NCE 448 224 1240 432 286 

Optimal 

solution 

9.528 

(2.453,3.884) 

9.527 

(2.455,3.880) 

9.528 

(2.441,3.903) 

9.532 

(2.437,3.911) 

9.5330 

(2.4516, 3.8885) 

d(0) =

（5.0,5.0） 

NCE 584 336 1096 704 374 

Optimal 

solution 

9.529 

(2.436,3.912) 

9.529 

(2.438,3.908) 

9.523 

(2.451,3.885) 

9.528 

(2.452,3.887) 

9.5237 

(2.4840,3.8340) 

 

As shown in Table 6, the proposed framework and the PMA with SAP have similar efficiency. 

In the optimization process, g( , ) / kd d x  is obtained by the finite difference method which has 

low efficiency. More efficient design sensitivity analysis can improve the efficiency of the 

proposed framwork. The initial solution has a small impact on the final solution.  

4.4 Multiple limit states optimization 

The multiple limit states optimization problem given as Eq.(41) is referenced from Torii et al. 

(2017). The problem is performed to investigate the effectiveness of the proposed approach in 

handling multiple nonlinear limit state functions. The efficiency of the proposed approach is 

assessed against available methods in the literature.  

2

1 1 2

2 2

2 1 2 1 2

opt

opt 1 2

1 20.0

Find  such t

10 0.0

hat:

    

1

      arg min  

s.t.     Pr (0 g ( , ))  0.0228, 1, 2,3

          ,  

where

          

          

  

0
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Results obtained by the proposed approach and referenced from Torii et al. (2017) are listed 

in Table 7. The maximum probability of failure among the three limit states is presented. The NCE 

measures the computational cost of each approach. 



 

17 

 

Table 7 Multiple limit states optimization: comparison of uncertainty optimization methods  

Approaches Optimal solution NCE P(MCS) 

FORM based 
PMA 7.172 (3.626, 3.545) 604 0.0127 

PMA-SAP 6.869 (3.521, 3.348) 132 0.0498 

Polynomial 
First order 7.194 (3.627, 3.567) 636 0.0114 

Second order 7.061 (3.581, 3.479) 1485 0.0229 

Proposed framework 7.0645 (3.5825,3.4820) 304 0.0227 

 

In this case, it can be noticed that the FORM-based optimization approaches are inaccurate. 

The optimal solution by the PMA is too conservative while the PMA-SAP does not meet the 

reliability constraints. Compared to the polynomial based method, the DASG used in the proposed 

framework which has goal-oriented features leads to fewer functions calculations. The proposed 

framework is very competitive in efficiency and accuracy in solving this problem.  

4.5  Truss optimization 

The truss optimization problem in Fig.12 is referenced from Duan (2006). The system 

consists of 7 bars and is subject to two external forces 
(1) (2)( , )F FF . Assume that bars 1, 2 have 

the same cross-sectional area 1A , bars 3, 4, 5 have the same cross-sectional area 2A , and bars 6, 

7 have the same cross-sectional area 3A . Uncertainties in the system are quantified by the 

independent normal random variables N(0, 1) as 1 2 3 4 5 6 7 8( , , , , , , , )x x x x x x x xx . The random 

variables are collected as 1Ex x , 2 3 4( , , )Dx x x x , 5 6( , )Gx x x and 7 8( , )Lx x x , which 

correspond to the uncertainties in the modulus of elasticity yE , the actual cross-sectional areas 

A , the node coordinates xyN , and the external nodes F . The design vector is 1 2 3( , )= d ,d dd , 

where the components are the mean values of the cross-sectional areas. 
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Fig.12 The truss optimization problem 

The optimization problem is to minimize the volume (Vol) while satisfying probabilistic 

constraints on the maximum allowable strain energy. The objective function is the sum of the Vol 

mean value of Vol E(Vol) , and its variance Var(Vol) . By adding the variance to the objective, 

the significant performance fluctuations relative to the random variables can be avoided. The 

optimization problem is formulated by Eq.(43). 
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The initial design vector is defined as 
(0) (5.0,10.0,15.0)d .  
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Fig.13 Truss: index selection iteration steps 

The index selection iteration steps for constructing the PCE of the truss problem are shown in 

Fig.13. During the iterations, the QOI for Vol is the Var(Vol) , and the QOI for the strain energy is 

Pr ( 25)C  . For Vol, after 13 steps the error falls from 42.8 10  to 31.6 10 , while Var(Vol)  is 
51.6 10 . The final relative error for Var(Vol)  is 81 10 , which is acceptable. The number of 

samples to generate the PCE of Vol is 44. For the strain energy, the final error for Pr ( 25)C   is 
66 10 . The sample number to construct the PCE of C is 52. 

Table 8 Truss: QOI comparison of the initial and optimal solutions 

 1d  2d  3d  
3E(Vol) cm/  

6Var(Vol / cm)  Pr (g( , ) 0)d x  

Initial 5 10 15 23489.2 161619 0.9420 

Uncertainty optimization 3.4040 7.8270 13.4058 19078.4 149950.9 0.9042 

Deterministic optimization 0.7186 1.4787 3.1726 4033.71 115922 0.6580 

Fig.14 shows that the optimization converges in 8 iterations. The optimal solution is 

3.4040,7.8270,13.4( )058d  . The initial and optimal solutions are compared in Table 8. It is found 

that E(Vol)  and Var(Vol)  decrease while the Pr (g( , ) 0)d x  constraint is satisfied for the 

uncertainty optimization. Compared with the deterministic optimal solution, the optimal solution 

of the uncertainty optimization has a larger volume, which is necessary for satisfying the 

reliability constraint. 

 

Fig.14 Truss: iteration for solving the uncertainty optimization problem 
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Fig.15 Truss: MCS results of the initial (Init.) and uncertainty optimal (Opt.) solutions 

To further verify the uncertainty optimization, the MCS results of the initial and optimal 

solutions are compared in Fig.15. For the strain energy, the cumulative function over the range 

[0,50] is clearly decreased. The MCS results of Pr (g( , ) 0)d x  is 0.9035. For the volume, the 

mean is 19,078.4 3cm  , and the variance is 149,803 6cm . Both the accuracies of the constraint 

and the objective function are acceptable. 

4.6 Airfoil optimization 

In flight, changes in freestream conditions, such as velocity, the angle of attack (AoA), 

pressure, etc., may occur randomly. Therefore, in aerodynamic optimization, the uncertainty 

should be considered. The shape optimization of a RAE2822 profile in transonic, inviscid flow is 

investigated in the following example. 

Table 9 Airfoil optimization: freestream conditions 

 
Distribution Mean Variance 

Velocity/(m/s) Normal 248.08 10 

AoA/(o) Normal 2 0.5 

Pressure/(Pa) Normal 101325.0 5066.25 

The geometry is parameterized using 18 Hicks-Henne bump functions. The x-axis 

coordinates of the control points are fixed while the y-axis coordinates are the design variables. 

The details are shown in Table 10. The sketching of geometric parameters is shown in Fig.16, in 

which the solid black points represent the control points of the bumps. The movements along the 

y-axis of the control points are defined as design variables within a given design range of [-0.01, 

0.01]. 

Table 10 Airfoil optimization: specification of the design variables 

Des. Var. (Index) 1 2 3 4 5 6 7 8 9 

X-axis (𝒙/𝑪) 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Des. Var. (Index) 10 11 12 13 14 15 16 17 18 

X-axis (𝒙/𝑪) 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

x/C
0 0.2 0.4 0.6 0.8 1

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18  

Fig.16 Parameterization of the RAE2822 airfoil 
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The optimization problem is to minimize the drag while satisfying probabilistic constraints 

on the lift. The objective function is the sum of the drag mean value E(Drag)  and its variance 

Var(Drag) . 

opt

3

opt

Find  such that:

          arg min  E(Drag( , )) 10 *Var(Drag( , ))

s.t.     Pr (g ( , ) 0

0.01

) 0.9

          Area(d) 0.06

          ,
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d d x d x

d x

d x d x

 (44) 

The initial design vector is defined as 0, 1,2, ,20id i  . In the example, the flow field is 

discretized by a grid with 13550 elements. The grid around the airfoil and the contours of the 

pressure coefficient of the initial design are shown in Fig.17. The RAE2822 airfoil presents a 

strong upper-surface shock wave. In the optimization process, the gradients of drag and lift with 

respect to the design variables are calculated by the continuous adjoint method in the SU2 

software (Economon et al. 2016; Yang et al. 2018). 

 

Fig.17 Grid and pressure coefficient of the initial solution (Ma=7.29, AoA= o2 ) 

The index selection iteration steps for constructing the PCE of the airfoil problem are shown 

in Fig.18. During the iterations, the QOI for drag is the Var(Drag) , and the QOI  for the lift is

Pr (Lift 24689.4) . For drag, the final error for Var(c )d  is 1.64041. For lift, the final error for 

Pr (Lift 24689.4)  is 44.075 10 . The sample set containing 25 samples is used to construct  

the PCE of the lift and the drag. 

 

Fig.18 Airfoil optimization: index selection iteration steps  
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The QOI of the initial and the optimal solutions are compared in Table 11. It is evident that 

both E(c )d  and Var(c )d  decrease while the Pr (g( , ) 0)d x  constraint is satisfied in the 

uncertainty optimization. The drag of the uncertain optimal solution has greater mean and variance 

than that of the deterministic optimal solution, which means that the optimization is the tradeoff 

between resistance and lift. 

Table 11 Airfoil optimization: QOI comparison of the Initial, Optimal solutions 

 
E(Drag) /(N) Var(Drag) /(N2) Pr (Lift 24689.4)  

Initial 751.5433  906941.3411  0.89444 

Deterministic Optimal 335.3753  363384.5819  0.475843 

Uncertainty Optimal 494.7771  545454.4891  0.905447 

 

The contours of the pressure coefficient of the optimal solutions with Ma=7.29, AOA=
o2  are shown in Fig.19 and Fig.20. The intensity of the shock wave on the upper surface is 

weaker compared to the initial design.  

  

Fig.19 The pressure coefficient contours comparison (Ma=7.29, AOA= o2 ) 

 

Fig.20 The airfoil surface pressure coefficient comparison (Ma=7.29, AOA= o2 ) 

Table 12 Airfoil optimization: geometric characteristics comparison 

 
Leading edge radius Maximum thickness Maximum camber 

Initial 0.008496 0.1211 0.00126 

Deterministic Optimal 0.00728 0.122829 0.005274 

Uncertainty Optimal 0.0073 0.101475 0.013667 

 

The geometric characteristics of the initial and optimal solutions are listed in Table 12. 

Compared with the initial design, the maximum camber angle of the uncertainty optimal solution 

increases naturally, which increases the lift to meet the reliability constraint. 
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Fig.21 Airfoil optimization: sample set comparison  

To further verify the optimization framework, the sample sets of the initial and the optimal 

solutions are compared in Fig.21. As is shown in Fig.21, the drag of the uncertainty optimization 

results are decreased, and the lift of the uncertainty optimization results are increased compared to 

the initial design for most of the samples.  

4.7 ONERA M6 Wing optimization 

The ONERA M6 wing optimization problem referenced from the literature (Palacios 2013) is 

modified to take into the aerodynamic uncertainty. The uncertainty parameters are listed in Table 

13.  

Table 13 ONERA M6 Wing optimization: freestream conditions  

 
Distribution Mean Variance 

V/(m/s) Normal 285.68 10 

AoA/(o) Normal 3.06 0.5 

Pressure/(Pa) Normal 101325.0 5066.25 

The geometry is parameterized using the free-form deformation (FFD) method. As shown in 

Fig.22, the solid black points represent the FFD control points of the FFD box, which are used to 

parameterize the ONERA M6 Wing. The z-axis coordinates of these FFD control points are the 

design variables. The movements of the control points on the z-axis direction are defined as design 

variables within a given design range of [-0.1, 0.1]. 

 

Fig.22 Parameterization of the ONERA M6 Wing 

The uncertainty optimization problem defined in Eq.(45) is to minimize the drag while 

satisfying probabilistic constraints on the lift. The objective function is the sum of the drag mean 

value E(Drag)  and its variance Var(Drag) . 
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The initial design vector is assigned as 0, 1,2, ,176id i  . In the example, the flow field is 

discretized by a grid with 582752 elements. The grid on the wing surface and the symmetry plane 

and the contours of the pressure coefficient of the initial design upper surface are shown in Fig.23. 

In the optimization process, the gradients of drag and lift with respect to the design variables are 

calculated by the continuous adjoint method in the SU2 software (Economon et al. 2016; Yang et 

al. 2018). 

 

Fig.23 Grid and pressure coefficient of the initial solution (V=285.68m/s, AoA= o2 , 

Pressure=101325.0Pa) 

The index selection iteration steps for constructing the PCE of the wing problem are shown 

in Fig.24. During the iterations, the QOI for drag is the Var(Drag) , and the QOI  for the lift is

26992Pr (Li .91ft )662 . For drag, the final error for Var(Drag)  is 48.63772. For lift, the final 

error for 26992Pr (Li .91ft )662  is 57.13333 10 . The same sample containing 33 samples is 

used to construct PCE of lift and drag of the wing. 

 

Fig.24 ONERA M6 Wing optimization: index selection iteration steps  
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The QOIs of the initial and optimal solutions are compared in Table 14. Compared with the 

initial solution, both the lift and drag of the optimized solutions are improved. The uncertainty 

optimal solution has the largest increasing in lift to satisfy the reliability constraint, while the 

increasing of drag is also the largest. It clears that the optimization is a compromise between the 

lift performance and drag performance. 

Table 14 ONERA M6 Wing optimization: QOI comparison of the Initial and Optimal solutions 

 
E(Drag) /(N) Var(Drag) /(N2) 26992Pr (Li .91ft )662  

Initial 770.891312 288978.0503 0.002785 

Uncertainty 

optimization  3262.808868 1148540.468 
0.904385 

Deterministic 

optimization 
1911.880519 653316.417 0.496382 

 

The deformation of the FFD box and the wing are shown in Fig.25. As can be seen, the 

camber of the wing airfoil has increased in both the deterministic and uncertainty optimization. 

The increase in the wing airfoil increases the lift of the wing. 

 

Fig.25 FFD box and the wing deformation 

The contours of the pressure coefficient on the upper surface of the optimal solutions with 

V=285.68m/s, AoA= o2 , Pressure=101325.0Pa are shown in Fig.26 and Fig.27. Compared with 

the initial solution, the thickness and camber of the wing slices of the optimized solution are all 

improved. The uncertainty optimal solution has even larger increasing which results in lager lift 

and drag. 

 

Fig.26 Pressure coefficient of the optimal solutions (V=285.68m/s, AoA= o2 ,Pressure=101325.0Pa) 
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Fig.27 Pressure coefficient and airfoils of the wing slices (V=285.68m/s, AoA= o2 , 

Pressure=101325.0) 

   

Fig.28 ONERA M6 Wing optimization: sample set comparison  

To further verify the optimization, the sample sets of the initial and optimal solutions are 

compared in Fig.28. As shown in Fig.28, both the lift and the drag of the uncertainty optimization 

results are the largest among the solutions. 
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5 Conclusion  

To solve the design optimization problem based on robustness and reliability using 

gradient-based algorithms, a framework is presented with the PCE to evaluate the statistical 

indicators and their sensitivity. The PCE coefficients are evaluated by the dimensional adaptive 

sparse grid, which relieves the computational burden incurred by the curse of dimensionality. The 

statistical moments and their gradients are derived directly from the PCE. The reliability is 

obtained by the integration of the Heaviside step function with the MCS. The reliability sensitivity 

is derived by combining the PCE derivative, Taylor’s expansion, and the finite difference. The 

optimization framework is formed by combining reliability, robustness quantification, sensitivity 

analysis and the optimization module. 

The accuracy and efficiency of reliability quantification and the reliability sensitivity analysis 

are verified through a mathematical example, a system of springs, and a cantilever beam. For the 

mathematical example and the system of springs, by comparing the proposed method with the 

FORM, the SORM, the PDEM, and a method available from the literature, it was found that the 

proposed method could obtain the same level of accuracy as directly using the MCS with but 

fewer function evaluations. The cantilever tube example shows that the framework can identify 

the linearity and non-linearity of the functions, and the proposed criterion is effective. The 

effectiveness of the framework used in several optimization problems is verified through a 

cantilever beam optimization problem, a multiple limit states example, a truss optimization 

example, an airfoil problem, and an ONERA M6 wing optimization problem. In the cantilever 

beam optimization problem and the multiple limit states example, the comparison between the 

proposed framework and the method from the literature shows that the proposed framework has 

the advantage in accuracy and efficiency in solving the uncertainty optimization problem. In the 

truss optimization example, an airfoil problem, and an ONERA M6 wing optimization, the results 

show the effectiveness of the proposed framework in solving the engineering uncertainty 

optimization problem. The framework has the shortage inherited from the gradient optimization 

algorithm, which may converge with the local minimum solution. The ability of the proposed 

framework reduces the computation burden of using a gradient-based algorithm to solve 

uncertainty optimization problems. 
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