Solid Molybdenum Nitride Microdisc Electrodes: Fabrication, Characterisation, and Application to the Reduction of Peroxodisulfate

Saiful Arifin Bin Shafiee, Andrew L. Hector, Guy Denuault*

Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
Email: gd@soton.ac.uk

Supplementary information

Table of figures

Figure SI1: Background XRD pattern taken on the Scotch tape..2
Figure SI2: XRD pattern obtained on the cross-section of a MoN wire. The nitrided wire was sealed inside epoxy and polished with 0.3 micron alumina lapping film for 10 minutes.........................3
Figure SI3: EDS spectra of the MoN (top) and Mo (bottom) wires taken at location 1 shown in Figure 2 of the main article. ...4
Figure SI4: Optical image of a freshly polished 29 μm Ø δ-MoN microdisc electrode at 100x magnification under bright field mode observed with an Eclipse LV100ND microscope (Nikon).........4
Figure SI5: (left) Cyclic voltammogram recorded with the 26 μm Ø δ-MoN microdisc electrode in 1 mM Ru(NH₃)₆Cl₃ + deoxygenated 0.5 M KCl at 2 mV s⁻¹. The red line indicates the current and potential range selected to plot the graph of potential as a function of ln (iᵢₘᵋ – i) / i (right). The experimental data was fitted to equation 7 in the main article, (R²=0.9999). ...5
Figure SI6: Cyclic voltammograms recorded at 10 mV s⁻¹ with a 25 μm Ø bare gold disc (black), a 25 μm Ø bare Pt disc (red), and a 40 μm Ø nanostructured Pt disc (blue) in 2 mM K₂S₂O₈ + deoxygenated 0.1 M KClO₄. The cyclic voltammograms were vertically translated to facilitate comparison. The nanostructured Pt microdisc was prepared as described in [1]. ...5
Figure SI7: Cyclic voltammograms recorded with a 26 μm Ø δ-MoN microdisc electrode in 2 mM K₂S₂O₈ + deoxygenated 0.1 M KClO₄ at different scan rates. The CVs appear jagged at very high scan rates because of instrumental limitations (the highest acquisition rate available was 1 data point every 1.9 ms). ...6
Figure SI8: Linear sweep voltammograms recorded with a 26 μm Ø δ-MoN microdisc electrode at 10 mV s⁻¹ in deoxygenated 0.1 M KClO₄ with different concentrations of K₂S₂O₈; left - 0.001 (purple), 0.002 (orange), 0.005 (wine), 0.01 (cyan), and 0.02 mM (pink); right - 0.05 (black), 0.1 (red), 0.2 (blue), 0.5 (magenta), 1 (olive), 2 (navy), and 5 mM (violet)...7
Figure SII: Background XRD pattern taken on the Scotch tape.
Figure SI2: XRD pattern obtained on the cross-section of a MoN wire. The nitrided wire was sealed inside epoxy and polished with 0.3 micron alumina lapping film for 10 minutes.
Figure SI3: EDS spectra of the MoN (top) and Mo (bottom) wires taken at location 1 shown in Figure 2 of the main article.

Figure SI4: Optical image of a freshly polished 29 μm Ø δ-MoN microdisc electrode at 100x magnification under bright field mode observed with an Eclipse LV100ND microscope (Nikon).
Figure S15: (left) Cyclic voltammogram recorded with the 26 μm Ø δ-MoN microdisc electrode in 1 mM Ru(NH₃)₆Cl₃ + deoxygenated 0.5 M KCl at 2 mV s⁻¹. The red line indicates the current and potential range selected to plot the graph of potential as a function of ln (\(i_{\text{lim}} - i\) / \(i\)) (right). The experimental data was fitted to equation 7 in the main article, \(R^2=0.9999\).

Figure S16: Cyclic voltammograms recorded at 10 mV s⁻¹ with a 25 μm Ø bare gold disc (black), a 25 μm Ø bare Pt disc (red), and a 40 μm Ø nanostructured Pt disc (blue) in 2 mM K₃S₂O₈ + deoxygenated 0.1 M KClO₄. The cyclic voltammograms were vertically translated to facilitate comparison. The nanostructured Pt microdisc was prepared as described in [1].
Figure SI7: Cyclic voltammograms recorded with a 26 μm Ø δ-MoN microdisc electrode in 2 mM K₃S₂O₈ + deoxygenated 0.1 M KClO₄ at different scan rates. The CVs appear jagged at very high scan rates because of instrumental limitations (the highest acquisition rate available was 1 data point every 1.9 ms).
Figure SI8: Linear sweep voltammograms recorded with a 26 μm Ø δ-MoN microdisc electrode at 10 mV s⁻¹ in deoxygenated 0.1 M KClO₄ with different concentrations of K₂S₂O₈: left - 0.001 (purple), 0.002 (orange), 0.005 (wine), 0.01 (cyan), and 0.02 mM (pink); right - 0.05 (black), 0.1 (red), 0.2 (blue), 0.5 (magenta), 1 (olive), 2 (navy), and 5 mM (violet).

Reference: