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Abstract 

An analytical vibration response in the time domain for an axially translating and 
laterally vibrating string with mixed boundary conditions is considered in this paper. The 
domain of the string is a constant, dependent upon the general initial conditions. The 
translating tensioned strings possess different types of mixed boundary conditions, such 
as fixed dashpot, fixed spring-dashpot, fixed mass-spring-dashpot. An analytical solution 
using a reflected wave superposition method is presented for a finite translating string. 
Firstly, the cycle of boundary reflection for strings is provided, which is dependent upon 
the string length. Each cycle is divided into three time intervals according to the 
travelling speed and direction of the string. Applying D'Alembert's principle and the 
reflection properties, expressions for the reflected waves under three different 
non-classical boundary conditions are derived. Then, the vibrational response of the 
axially translating string is solved for three time intervals by using a reflected wave 
superposition method. The accuracy and efficiency of the proposed method are 
confirmed numerically by comparison to simulations produced using a Newmark-β 
method solution. The energy expressions for a travelling string with a fixed dashpot 
boundary condition is obtained and the time domain curves for the total energy and the 
change of energy at the boundaries are given.  
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1. Introduction 

In the present study, a uniform finite length string model with uniform density ρ is 
considered, which is travelling over two smooth supports under constant speed v and 
constant tension T. The concept of wave propagation is used in this model, where the 
reflections of waves occur at both boundaries, which represents many real engineering 
slender systems, such as conveyor belts, elevator cables, power transmission belts and 



magnetic tapes. The phenomena of propagation and reflection of waves in 
one-dimensional wave bearing systems, such as strings, have been studied for many 
years, it is though still of great research interest due to their theoretical importance and 
application.  

A large number of examples have been studied on the reflection phenomena, such 
as, the classical D'Alembert principle was used to study the reflection phenomenon in 
either an infinite or a semi-infinite stationary string with classical boundary 
conditions[1,2]. Akkaya, Gaiko and Van Horssen [3,4] obtained the exact free, linear, 
lateral vibration of both a stationary [3] and an axially travelling [4] semi-infinite string 
applying the same method. Various alternative approaches have been applied to solve 
and obtain the response of axially moving materials. Yang and Tan [5] studied both a 
travelling string and beam using a transfer function method, which for the latter 
considered a damped, axially moving beam over a set of different boundary conditions. 
Based on the transfer function formulation and wave propagation, Tan and Ying [6] 
subsequently derived an exact solution for the response of a translating string with 
general boundary conditions. Van Horssen [7] used a Laplace transform method instead, 
constructing exact solutions of the lateral vibrations in travelling strings due to small 
lateral vibrations of the supports. Miranker[8] studied a constant length model for the 
transverse vibrations of a tape moving between a pair of pulleys, which is a similar type 
of problem as considered in this paper. The solution [8] comprises two travelling waves 
or by a modal description and includes reflection from the classical fixed-fixed 
boundaries, but not the reflection of non-classical boundaries. Lee [9] analyzed free 
vibration of a string with time-varying length, by dealing with travelling waves and 
obtained an exact solution.  

Simple models which describe these vibrations can be expressed as initial-boundary 
value problems. Darmawijoyo [10,11] studied such an initial-boundary value problem 
with a non-classical boundary condition, constructing asymptotic approximations of the 
solution for an axially travelling string by a multiple-timescales perturbation method. 
Chen and Ferguson [12] more recently studied the lateral vibration and the energy 
dissipation in a travelling string attached to a viscous damper at one end, using a time 
varying state space function method and the Newmark-β method. In terms of dissipative 
boundaries, Gaiko and Van Horssen [13] also gave a complete and accurate description 
of the damping and the low frequency oscillatory behaviour of the travelling string with 
an attached spring–mass–dashpot system at one end. Chen’s previous study [14] 
considered a reflected wave superposition method for vibration and energy of a 
travelling string. In that study, the translating tensioned strings possess either fixed-fixed 
or fixed-free boundaries. Furthermore, vibration control of a fixed-length string system 
have been studied extensively, and the study of the variable length string was extended. 



 
 

Chang [15] and Ngo [16] investigated an active vibration control and an adaptive 
boundary control at one end of the axially travelling string modelled based on the 
Hamilton’s principle. 
  Previous work on a travelling string defined on a finite domain covers both classical 
boundaries or a semi-finite domain with non-classical boundary, In contrast, more 
recently the classical D’Alembert formula in conjunction with the characteristic 
coordinates method was used to solve an initial value problem for a wave equation on a 
bounded interval with a Dirichlet type of boundary condition at one end and a Robin 
boundary condition at the other [17]. The present work focuses on the analytical free 
lateral vibration of an axially translating string with mixed boundary conditions and 
constant length. The solution of the vibration response with the mixed boundary 
conditions and the multiple reflections will exist in a finite domain. A reflected wave 
superposition method is proposed and completely developed in this study. At both ends 
of the axially travelling string the multiple reflections of the propagating waves are 
studied. The expressions for the reflected waves at the two boundaries are derived. 
Superposition of all of the incident and reflected waves provides results for the free 
vibration of the string over the three time intervals. This work provides an analytical 
methodology to solve the translating media problem defined over a finite domain with 
different mixed boundary conditions and the details of the process are given.  
This paper is organized as follows. As a first step, the governing equations for the lateral 
vibration of an axially travelling finite string with the relevant boundary conditions are 
derived using the extended form of Hamilton’s principle, and the dimensionless problem 
is given in Section 2. Section 3 shows the derivation of the formula for the reflected 
wave at both ends of a mixed boundary. In Section 4, the time varying cycle is 
investigated. Next, the reflected wave superposition method is used to obtain the 
response due to the initial conditions of a travelling string between two types of 
boundaries separated by a constant distance, i.e. the length of string between the 
boundaries is also constant. In section 5, the fixed dashpot (viscous damper) boundary 
condition is considered as an example for which the vibrational energy is obtained using 
the proposed reflected wave superposition method. Finally, Section 6 provides the main 
conclusions. 

2. Establishment of motion model of travelling string system 

The model of an axially travelling string system with classical and non-classical 
mixed boundaries is shown in Fig.1, where ρ is the uniform string mass per unit length, 
T is the uniform tension, v is the assumed constant translational speed of the string and l0 
is the length of the string. The viscous damping coefficient at the right boundary is ƞ, the 
stiffness of the spring is k and the mass at the right boundary in Fig.1(c) is m. u(x,t) 
represents the transverse displacement of the axial moving string at the coordinate x and 
the time t. To avoid the divergence instability [18] in the string and to allow any 
propagating wave in the string direction to be reflected at the other end, the string 
translational speed v is assumed to be less than the free wave propagation speed c, i.e  . 



| v |< c. 
In addition, this model is based on the following assumptions: (1) In the process of 

movement, the density, cross sectional area, elastic modulus and tension of the string 
remain constant. (2) The model neglects the effect of longitudinal vibration of the 
moving string. (3) The effect of various frictional forces on the system is also neglected. 

The equation of motion for the lateral vibration of a travelling string between two 
boundaries can be obtained by Hamilton’s Principle [13,19,20] and is given by 

( )2 22 0tt xt xxu vu v c u+ + − =              （1） 
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Fig.1 Simplified model of classical and non-classical mixed boundary of axially moving string. 
(a) is fixed dashpot boundary, (b) is fixed spring-dashpot boundary and (c) is fixed 
mass-spring-dashpot boundary. 
 
The corresponding boundary equations for the axial moving string model shown 
respectively in Fig.1 (a), (b) and (c) are given by [4,13] 
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3. The reflection law for waves incident upon the mixed boundary condition 
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The general one-dimensional wave solution of Eq. (1) for the string displacement 
using the D'Alembert method is well known [2,21]. It is given by 

( ) ( ) ( ), r lu x t F x v t G x v t= − + +            （5） 

Here, F(x- vrt) is the right-propagating wave with speed of vr = c + v and G(x + vlt) is 
the left-propagating wave with speed of vl = c - v. The initial conditions for the string 
vibration are assumed as follows 
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Substituting Eq. (5) into Eq. (6),one has the expressions for F(x) and G(x) given by 
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where, C is an integral constant. 

3.1 Fixed dashpot boundary reflection 

According to Fig.1 (a), substituting the general solution in Eq. (5) into the boundary 
conditions in Eq. (2), one can obtain 
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where, 
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Defining s = l0+vlt > 0, the second equation in Eq. (8) can be transformed into
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The integration of Eq. (9) gives the following equation 
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Then the solution of G (x) can be obtained 
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Combining Eq.(8) and Eq.(11), one has the equation for the boundary reflection with the 



fixed dashpot boundary condition: 
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where, Fi, Gi represent the incident waves (i = 1, 2, 3, …) and Fr，Gr represent the 
reflected waves (r = i + 1). 

3.2 Fixed spring-dashpot boundary reflection 

According to Fig.1 (b) and substituting Eq. (5) into the boundary condition of Eq. (3), 
one can obtain Eq. (13) and Eq. (14) as follows 
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Introducing the following notations for convenience into Eq. (14) 
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one has 
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Defining s = l0 + vlt > 0, the above form can be converted to: 
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Using the integrating factor e-αs, the integration for Eq. (17) yields: 
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Hence, we have the solution: 
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As a final step, combining Eq.(13) and Eq.(19), one has the equation for the boundary 



 
 

reflection with the fixed spring-dashpot boundary condition: 
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where, Fi, Gi represent the incident waves (i = 1, 2, 3, ...) and Fr, Gr represent the 
reflection waves (r = i + 1). 

3.3 Fixed mass-spring-dashpot boundary reflection 

According to Fig.1 (c) and substituting Eq.(5) into the boundary conditions of Eq. (4) 
and Eq. (13) one can obtain the expressions as follows: 
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In order to simplify Eq. (22), the following symbols are introduced: 
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Substituting Eq. (23) into Eq. (22),one has 
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where, 
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In combination of Eq. (24) with Eq. (7), one knows that the function G(s) in Eq. (24) 
satisfies the following expressions: 
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For convenience, one sets the integral constant C = 0 in the following calculations. 
The method of variation of parameters [2,3] is used for solving the second order 
differential equation (24). The corresponding characteristic equation for Eq. (24) is 
given by  
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corresponding to overdamped, critically damped, and underdamped system, respectively.  
 

3.3.1 The overdamped case ( β0 >1) 

For the case of the damping ratio β0 > 1, the roots of Eq. (27) are given by: 
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By using these roots and the method of variation of parameters, one obtains the 
general solution for G(s) as follows: 
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The parameters of C1and C2can be obtained through Eq. (26): 
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3.3.2 The critically damped case ( β0 = 1) 

In this case, when 0β = 1, a pair of repeated real roots is obtained: 

1 2 0=µ µ αβ= −                      （32） 

According to the solution of G (s) with over damping conditions above, the 
expression of G (s) with the similar condition can be obtained as follows: 
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where, from Eq. (26) and Eq. (33), the parameters of C3 and C4 are obtained by: 
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3.3.3 The underdamped case ( β0 < 1) 

When 0β < 1, the roots of Eq. (27) are the complex conjugate pair is given by: 
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For convenience, introduce the parameters 2
0 0, 1=κ αβ γ α β− = − , then 1µ and 2µ are 

expressed as:
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Hence, the expression of G (s) with under damped condition follows as: 
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where, 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

0

0

0
5 6 0

0

'
0 0 0 0 0 0 0

6

= tan
e cos

cos sin cos cos
=

e

r
l

r l

r r
l

r l

v l
C C l

v v l

v l l v l l l l l
C

v v

κ

κ

φ
γ

γ

γ φ φ γ γ κ γ ψ γ
κγ


−

+


+ − +   
 +

（37） 

To summarize, combining Eqs.(21), (30), (33) and Eq.（36）, one has the 
expressions for the boundary reflection with a fixed mass-spring-dashpot boundary 
condition: 
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where, Fi, Gi represent the incident wave (i = 1, 2, 3, ...) and Fr, Gr represent the 
reflection wave(r = i +1), which are shown in Fig.2. 

4. The solution for the vibration response based on boundary reflection laws 

4.1 The cycle of boundary reflection 

The cycle of motion of a travelling wave is defined as the minimum cycle time T0 

required to return to the initial deflection shape of a string with constant length after a 



 
 

series of boundary reflections which is given by [18]: 
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where vl and vr are the wave propagation speeds to the left and to the right, respectively, 
according to the fixed coordinate system. So T0 is divided into three time intervals: [0, 
ta], [ta, tb] and [tb, T0]. The definitions and detailed expressions for ta and tb are shown in 
the reflected wave superposition method given in Ref [14]. The left-propagating waves 
Gi and the right-propagating waves Fi (i = 1, 2, 3) during three time intervals are shown 
in Figure 2. The analytical solutions for the vibration responses are given next for these 
three time intervals for three kinds of non-classical boundary conditions.  
 

     

     
Fig.2 The propagating waves in a travelling string during three time intervals.  (a) is for [0, ta], 
(b) is for [ta, tb] when v > 0, (c) is for [ta, tb] when v < 0 and (d) is for [tb, T0]. F2 and G2 are the 
reflection of waves G1 and F1. F3, and G3 are the reflection of waves G2 and F2. 

4.2 Fixed dashpot case 

In this case, according to the division of the boundary reflection process in a single 
cycle, the following three steps are taken to obtain the vibration response of the axial 
travelling string system. 
4.2.1 0 < t < ta 

According to Eq.(7), the expressions for initial travelling wave F1 and G1 are as 
follows: 
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In this time interval as shown in Fig.2 (a), G2 is the reflected wave of F1 at the 
right-side boundary. Using the equation of boundary reflection Eq.(4) and the continuity 
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condition, i.e.G2(l0) = G1(l0), one has            
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F2 is the reflected wave of G1 at the left-side boundary. Using the equation for a 
boundary reflection Eq.(4), one has 
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Hence, one has the expressions: 
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Finally, the expressions for the general solution of the equation of motion is 

( ) ( ) ( ), , 0r l au x t F x v t G x v t t t= − + + < <        （46） 

4.2.2 ta < t < tb 
 

When the string is translating to the right i.e. v > 0, as shown in Fig. 2(b), one can 
see that the left end of F1 disappears at the right boundary and G3 is the reflected wave 
of F2 at the right boundary. Using Eq.(12),one has 
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According to the continuity conditions, one can obtain: 

( ) ( ) ( ) ( )

( ) ( ) ( )

3 0 2 0 2 0 1 0 1 0 0

0 0

2=

0

l l r
l a r a

r r l l

l l l lr

r l r r l r r l

v v vcG l G l v t G l F l F l l v t
v v v v

v v v vv l l
v v v v v v v v

β β

φ β φ β φ

 
= + + − − − 

 

= + −
+ + +  

(47.a) 

( )2 0 2 0( ) ( )- 0
r l

r
r a

v
F F

v v
l l v t φ= = −

+        
(47.b) 

Substituting Eq. (47.a) and Eq. (47.b) into Eq. (47), the expression for the specific 
wave G3 can be obtained as follows: 
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when v < 0, one can see that the right end of G1 disappears at the left boundary and 
F3 is the reflected wave of G2 at the right boundary. Using Eq.(12) and Eq.(42), one has 
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According to the continuity conditions, i.e. G2(l0) = G2(l0+vltb), F1(l0) = F1(l0-vrtb), one 
has 
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Substituting Eq. (48.a) and Eq. (48.b) into Eq. (48), the expression for F3 can be 
obtained as follows: 

( ) ( )
2

3 0 0
1 2l l l

r r r
r l r r r l l

v v v cF x v t v l l x v t
v v v v v v v

β φ β φ
  

− = − + + + −  + +   
（48.c） 

In total, one has the expressions: 
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Finally, the expressions of the general solution of the equation of motion is 

( ) ( ) ( ), ,r l a bu x t F x v t G x v t t t t= − + + < <      （51） 

4.2.3 tb < t < T0 
In this time interval, as shown in Fig. 2(d), the expressions for the propagating 



waves F2, F3, G2 and G3 are the same as the previous ones except for the different ranges 
of values of x. One has the expressions: 
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Finally, the expressions for the general solution of the equation of motion is 

( ) ( ) ( ) 0, ,r l bu x t F x v t G x v t t t T= − + + < <      （54） 

Taking into account the continuity and the first order smoothness, the initial out of 
plane string velocity and displacement conditions are chosen to be 
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where, Н is the Heaviside step function and A0 is amplitude of incident wave. 
 

The dimensionless displacement at a point on the travelling string using the 
proposed wave superposition method are compared with numerical solutions of an FE 
model solved using the Newmark-β method[12],which are shown in Fig. 3. The 
parameters for the axial travelling string system are selected as: an initial amplitude A0 = 
0.01 m, the length of string is l0 = 1 m, the linear damping coefficient is ƞ = 0.5 Ns/m 
and the dimensionless translational speed of the string is V = v/c.  
  



 
 

 

 

(a)                                                (b) 

 

(c) 

Fig.3 Dimensionless travelling string free vibration transverse displacement response with a 
fixed dashpot boundary at the dimensionless travelling speeds of (a) V = 0.1, (b) V = 0.2 and (c) 
V = 0.9. The curves are identified by: ○○○ wave superposition method; −−−Newmark-β method. 

The proposed method is well in agreement with the Newmark-β method solution of a 
FE model at low travelling speed, while there are increasing differences as the travelling 
speed increases. When the travelling speed is close to the critical speed c in Fig.3(c), the 
proposed method is stable while the Newmark-β method has begun to diverge. It can be 
seen clearly in Fig.3(a) that the string vibrates from the top to the bottom and the phase 
of all points on the string change by π in the time interval of [0, T0]. The amplitude of all 
points at time T0 is different from the initial ones due to the exchange of energy at the 
boundaries. 

4.3 Fixed spring-dashpot case 

Similarly, according to the reflection relationships at the fixed and spring-dashpot 
boundaries given in Section 3.2, the expressions for the propagating waves in the 
corresponding three time intervals [0, ta], [ta, tb] and [tb, T0] can be obtained as follows 
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where, the expressions for G1 and F1 are identical to Eq. (41). Replacing G2, F2, G3, F3 
in Eq. (42), Eq. (43), Eq. (47.c) and Eq. (48) with the corresponding ones in Eqs.(56) - 
(59), respectively, one can obtain the analytical expressions for transverse displacement 
during the three time intervals in this case. At the same time, in order to satisfy the 
continuity condition [14, 21]at the boundaries, i.e. 
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The initial velocity and displacement are chosen as follows 
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Fig. 4 shows the dimensionless string displacement for this case, whose parameters 
are identical to those in section 4.2 except for the additional stiffness of k = 0.5 N/m. It 
is clear in Fig.4(c) that, the Newmark-β method is very divergent compared with the 
proposed method. 



 
 

 

(a)                                      （b） 

 

(c) 
Fig.4 Displacement response of free transverse vibration with fixed spring-dashpot boundary at 
the dimensionless travelling speeds of (a) V = 0.1, (b) V = 0.2 and (c) V = 0.9.The curves are 
identified by: ○○○ wave superposition method; −−−Newmark-β method. 

4.4 Fixed mass-spring-dashpot case 

In this case, the expressions for G1 and F1 are identical to Eq. (41). According to 
the reflection equations Eqs. (38-39) for the fixed mass-spring-dashpot boundaries, one 
has the detailed expressions for the moving waves of F2, G2, F3, G3 during the three time 
intervals: 
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Replacing G2, F2, G3, F3 in Eq. (42), Eq.(43), Eq.(47.c) and Eq.(48) with the 
corresponding ones in Eqs.(62) - (65), respectively, one can obtain the analytical 
transverse displacement for the travelling string during three time intervals in the fixed 
mass-spring-dashpot case. In order to satisfy the boundary continuity condition of Eq.(4), 
the initial conditions for the velocity and displacement are given as follows: 
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Fig. 5 shows the dimensionless string displacement for this case whose parameters are 
identical to those in section 4.3 except for the attached mass of m = 0.01kg. As the initial 
conditions in Eq.(68) for this case are different from the first two cases, the vibration for 
the string during the time interval of [0,T0] starts at the bottom and ends at the top. 
  

 
(a)                                   (b) 

Fig.5 Displacement response of free transverse vibration with a fixed mass-spring-dashpot 
boundary at the dimensionless travelling speeds of (a) V=0.1and (b) V=0.2. The curves are 
identified by: ○○○ wave superposition method; −−−Newmark-β method. 
 

5. Vibrational energy analysis 

In this section, the fixed dashpot boundary condition is taken as an example to 

obtain vibrational energy based on the proposed reflected wave superposition method. 

The relationship between energy and velocity of string is also discussed. 

The total mechanical energy E(t) of the axially travelling string comprises the 

kinetic and potential energy in the following way [6]: 
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Incorporating the Eq. (70) into Eq. (69), one has: 
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In Ref.[14], the energy calculation method for an axially travelling string with 
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fixed-fixed boundary condition is given analytically. Here, the energy expressions for a 

travelling string with a fixed dashpot boundary condition can be obtained simply by 

using the new formulae for G2, G3 and F3 given in Eqs.(42), (47.c) and (48.c) to replace 

the corresponding functions in the energy calculation method proposed in [14]. 

Fig.6 shows the curves for the total energy for a travelling string (V = 0.5) with 

fixed dashpot boundary conditions and different levels of viscous damping for the first 

five response cycles. When ƞ = 0 Ns/m, the values of energy are equal at the beginning 

and end of the cycle, but fluctuate during the cycle. The energy curves of subsequent 

cycles are identical as that of the first cycle. These indicate that the energy gained by the 

travelling string at the downstream boundary at an instantaneous moment is not equal to 

the energy lost at the upstream boundary, but the total energy gained during a cycle is 

equal to the total energy lost. When ƞ > 0, the energy of the travelling string system 

decreases in every cycle, and the larger the viscous damping the more rapid the 

attenuation. 

 

 
Fig.6 The change in the transverse free vibration energy of an axially travelling string for fixed 

dashpot boundary conditions with viscous damping constant ƞ = 0 Ns/m, 0.1 Ns/m, 0.5 Ns/m and 0.9 
Ns/m during the first five cycles. 
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Fig.7 Variations in the energy of the propagating waves (F1, F2, F3 and G1, G2, G3) in a travelling 
string (V = 0.5) with viscous damping of ƞ = 0.1 Ns/m at the boundaries. The effect due to their 
reflections at boundaries of (a) x = 0 during time interval [0, ta], (b) x = l0 during time interval [0, ta], 
(c) x = 0 during time interval [tb, T0] and (d) x = l0 during time interval [tb, T0]. EL and ER are the 
variations of energy for the travelling string system due to the left boundary (x = 0) and the right 
boundary (x = l0) respectively from 0 to t at (a) and (b) or from tb to t at (c) and (d). ∆EL and ∆ER are 
the change in the energy due to the left boundary (x = 0) and the right boundary (x = l0) respectively, 
∆EL(i) = EL (i) - EL(i-1) and ∆ER(i) = ER (i) - ER(i-1). 
   Fig.7(a) shows the reflection at the fixed boundary of x = 0 during time interval [0, ta] with the 
incident wave G1 and reflected wave F2. The energy of G1 decreases and the energy of F2 increases. 
The change in the energy EL for the travelling string system due to the left boundary (x = 0) is less 
than zero, which indicates that the energy flows out of the system from the left boundary. In Fig.7(b), 
EL is greater than zero, which indicates that the energy flows into the system from the right boundary. 
However, the energy gained at the right boundary is less than the energy lost at the left boundary, e.g. 
EL(ta) ≈ -0.18 and ER(ta) ≈ 0.14. This is due to the viscous damper at the right boundary dissipating 
energy, so the overall energy of the system is reduced, as shown in Fig.6. From ∆EL and ∆ER, one can 
judge whether the energy is flowing into (∆EL or ∆ER >0) or out of (∆EL or ∆ER < 0) the system from 
the respective boundaries. 

6.  Conclusions 

Based on Hamilton’s principle and the Lagrangian function, three types of model of 
an axially travelling string with mixed boundary conditions are derived and the 
boundary equations for the axially moving string model are also obtained. 
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The general one-dimensional wave solution of equation of motion for the string 
displacement is obtained using the D'Alembert method. Combining the general solution 
of the equation of motion and the boundary conditions, the boundary reflection law for 
different boundaries was derived. 

A propagating and reflected wave superposition method is then proposed in this 
paper to obtain the analytical solutions for the free vibration of an axially translating 
string with a mixed boundary support. From application of this method, one can 
consider and examine the physical nature of the string vibration based on the concept of 
wave propagation. The reflected wave superposition method is very consistent with 
numerical solution obtained using the Newmark-β method by comparing the 
displacement response, which verifies the accuracy of the proposed method.  

Finally, we take the fixed dashpot boundary condition as an example to obtain 
vibrational energy based on the proposed reflected wave superposition method. The 
quantitative relationship between energy and velocity of string is discussed. 
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