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ABSTRACT 

Comparing regions while adjusting for differences in characteristics of sites located 

in those regions is valuable since it identifies possible inter-regional dissimilarities in 

crash risk propensities according to specific safety performance measures (e.g., crash 

frequency of a specific type). This paper describes a framework to benchmark 

different regions (neighborhoods, provinces, etc.) in terms of a selected safety 

performance measure. To avoid issues relating to aggregated (macro-level) data, we 

use disaggregate (micro-level) data to draw inferences at a macro/region-level, which 

is often needed for developing large-scale transportation safety and planning 

programs and policies. To overcome unobserved heterogeneity, we employ a 

multilevel Bayesian heteroskedastic Poisson lognormal model with grouped random 

parameters allowing heterogeneity in both mean and variance parameters. The 

proposed approach is illustrated through a comprehensive study of highway railway 

grade crossings across Canada. The results indicate that the proposed model 

addresses unobserved heterogeneity more efficiently and provides more insight 

compared to conventional random parameters models. For example, we found that 

as traffic exposure increases, grade crossing safety deteriorates at a higher rate in the 

Canadian Prairies than in the other regions. Our benchmarking framework is also 

affected by different model specifications. The results indicate the need for further in-

depth investigations, which could help to identify possible reasons for inter-region 

differences in terms of specific safety indicators. This study provides valuable 

guidelines to Canadian transportation authorities, revealing important underlying 

crash mechanisms at highway railway grade crossings in Canada. 

1. Introduction 

The presence of a vast railway network in Canada imparts some risk to road/rail users 

and to residents living around railway lines. As reported by the Transportation Safety 

Board of Canada, 11,736 rail accidents of various forms have been observed over a ten-

year period from 2006 to 2015 (Transportation Safety Board of Canada, 2015). According 

to these data, around 17% of all rail accidents have occurred at highway-railway grade 

crossings. Despite improvements in the recent years, the number of grade crossing 

crashes remains high so that grade crossing safety is still a significant concern for 

transportation authorities and Canadian society as a whole. For example, the 

Transportation Safety Board of Canada reports 1,953 crossing accidents for the years 

2006-2015, causing 219 fatalities and 267 serious injuries (Transportation Safety Board of 

Canada, 2015).   
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To address the safety concerns at grade crossings, Transport Canada initiated a funding 

program called “grade crossing improvement program” that provides contributes to the 

eligible costs of crossing improvements completed by railways and road authorities 

across Canada. More recently, another funding program, rail safety improvement 

program has started, which invests millions of dollars each year on various safety 

improvement programs across Canada.  One of the emerging needs to support improved 

decision-making for this program is to develop knowledge and tools for fair distribution 

of funding among Canada’s vastly dispersed and different regions. This need calls for 

research to better understand the complex crash mechanisms at highway-railway grade 

crossings and develop robust methodology for benchmarking regions in terms of grade 

crossing safety. 

1.1.  Unobserved heterogeneity  

A key issue in modeling crash data is addressing unobserved heterogeneity – which is 

caused by unobserved variables (Mannering and Bhat; 2014; Mannering et al., 2016). 

That is, there are factors (e.g., driver behavior) that contribute to the safety at a site; 

however, data on these factors may not be available in crash data sets. Consequently, 

differences between sites, which are similar in their known characteristics, with different 

crash frequencies may go unexplained by the data. Essentially, an important question 

that arises here is: could the effects of explanatory variables on safety vary across 

observations or groups of observations? The answer to this question is affirmative; 

therefore, approaches such as random parameters modeling and latent class modeling  

that allow model parameters to vary across sites (or groups of sites) are frequently used 

in traffic safety studies (Anastasopoulos and Mannering, 2009; El-Basyouny and Sayed, 

2009; Dinu and Veeraragavan, 2011; Anastasopoulos et al., 2012; Venkataraman et al., 

2014; Chen and Tarko, 2014; Barua et al., 2016; Coruh et al., 2015; Park et al., 2016; Bhat 

et al., 2017; Heydari et al., 2017a).  

A number of traffic safety studies accounted for group effects (instead of site effects) in 

random effects, random parameters, and latent class modeling to capture variations in 

unknown/unmeasured factors that vary across groups (Wu et al., 2013; Heydari et al., 

2014a; Heydari et al., 2016b; Sarwar et al., 2017; Fountas et al., 2018a and 2018b; Cai et 

al., 2018). A discussion on the importance of accounting for group (e.g., region) effects 

in traffic safety research is provided in Heydari et al., 2016b. For example, the latter study 

discusses how spatially and non-spatially related unobserved factors can be captured to 

some extent through accounting for group (e.g., region) specific effects. In this paper, we 

focus on random parameters (slopes) models. Interested readers are referred to 
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Mannering et al. (2016) for a comprehensive discussion on the unobserved heterogeneity 

problem and other statistical approaches that help mitigate this problem.  

Recently, a few traffic safety studies have attempted to address the unobserved 

heterogeneity issue by employing random parameters models placing covariates on 

varying means and/or variances (so-called heterogeneity in means and/or variances 

models) mostly in crash injury-severity analysis (Seraneeprakarn et al., 2017; Behnood 

and Mannering, 2017; Xin et al., 2017). Venkataraman et al. (2014) developed a 

heterogeneity in mean count model for evaluating the effects of interchange type on 

heterogeneous influences of interstate geometrics on crash frequencies. The above 

studies highlight the advantages of the latter approach over conventional random 

parameters models. Basically, the heterogeneity in mean/variance approach models the 

within covariate variability (in both mean and variance) as a function of explanatory 

variables available in data. This could add robustness to the random parameters 

modeling approach while allowing the analyst to explain variability in model 

parameters through existing explanatory variables, shedding more light on the 

underlying mechanisms of traffic safety.  

Most traffic safety studies, including those adopting a heterogeneity in mean and/or 

variance approach, have assumed homoskedasticity in their analysis. One could instead 

allow for heteroskedasticity that considers a heterogeneous variance. For example, Hong 

et al. (2016) considered heteroskedasticity in pedestrian exposure modeling. To 

accommodate heteroskedasticity, a potentially robust approach is to model the variance 

of the observational level error term as a function of explanatory variables. This allows 

the analyst to discover the source of heteroskedasticity or dispersion in a data set. Note 

that Bayesian methods could be extremely useful in terms of the ease of implementing 

heterogeneity in mean and/or variance models. The use of Bayesian statistics however 

has been rare if nonexistent in developing heterogeneity in mean/variance models in the 

extent of traffic safety literature.  

While a general discussion on Bayesian methods and their advantages can be found in 

Gelman et al. (2004), here we provide a brief discussion. The Bayesian approach is 

promising not only in extending standard models to include more complex components 

including random parameters models, multilevel models, and multivariate models, but 

also easily enables combining these models together. While in frequentist statistics, new 

(often simulation-based) algorithms are needed to estimate more complex models, in 

Bayesian statistics standard Markov chain Monte Carlo (MCMC) algorithms are mostly 

used, without any need for developing tailored algorithms. In particular, using freely 
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available software such as WinBUGS (Lunn et al., 2000), complex extensions and their 

computation through standard MCMC methods is often straightforward. The Bayesian 

approach propagates uncertainty in all layers and across all parameters of a model better 

(more fully and more intuitively) than its classical counterpart. In fact, it provides full 

probability densities for model parameters, whereas the frequentist approach typically 

provides only point estimates and confidence intervals. Bayesian (credible) intervals 

directly imply the probability of a true parameter value being in an interval, given the 

data and any prior information included in the modelling process; however, the 

probability of the true parameter value belonging to any given confidence interval is 

either 0 or 1. So the Bayesian approach is more sensible when communicating 

uncertainty in traffic safety applications, which require a continued evaluation of risk 

and safety. Predictions made by a Bayesian model also tend to include all inherent 

uncertainty and are more easily communicated, presenting a more complete picture of 

uncertainties and traffic safety dynamics. Interested readers are referred to Daziano et 

al. (2013) and Heydari et al. (2014b) for a detailed discussion on potential advantages of 

the Bayesian framework in transportation research. 

With regard to highway-railway grade crossing safety issues, several studies discuss 

various aspects of crossing safety (Saccomanno et al., 2004; Millegan et al., 2009; 

Chaudhary et al., 2011; Chadwick et al. 2014; Tung et al., 2015; Wang et al., 2016a; 

Heydari et al., 2016b; Haleem, 2016; Liu and Khattak, 2017; Hsu and Jones, 2017; Sperry 

et al., 2017; Zhang et al., 2017; Larue et al., 2018; Beanland et al., 2018). Many grade 

crossing studies can be divided into two categories: (1) crash-frequency studies (Hauer 

and Persaud, 1987; Austin and Carson, 2002; Saccomanno and Lai, 2005; Park and 

Saccomanno, 2005; Oh et al., 2006; Yan et al., 2010; Medina and Benekohal, 2015; Heydari 

and Fu, 2015; Lu and Tolliver, 2016; Heydari et al., 2016a; Heydari et al., 2017b; 

Guadamuz-Flores and Aguero-Valverde, 2017); and (2) crash-consequence studies 

(Eluru et al., 2012; Hao et al., 2015; Ghomi et al., 2016; Zhao et al., 2018).  

Relating to crash-frequency modeling at grade crossings, which is the focus of this paper, 

for example, Heydari and Fu (2015) investigated a Poisson Weibull model. Other 

researchers adopted alternative statistical models such as zero-inflated, hurdle, and 

generalized event count models to address issues such as the excess number of zero 

accidents and underdispersion (Lee et al., 2004; Oh et al., 2006; Lu and Tolliver, 2016; Ye 

et al., 2018). Zero-inflated models have been successfully implemented in other traffic 

safety applications as well (Anastasopoulos, 2016). However, zero-inflated count models 

have been criticized due to their assumption of safe state, which seems to be unrealistic 

in the context of road safety analysis (Lord et al., 2005; Lord et al., 2007). Previous studies 
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on grade crossings provide valuable insight; however, the use of random parameters 

models in the extent of grade crossing crash frequency modeling is rare. This is while 

advantages of using random parameters modeling are highlighted in other traffic safety 

applications. Note that unobserved heterogeneity could easily manifest itself in grade 

crossing crash data sets due to the complexity of crash mechanisms at crossings and lack 

of sufficient data. 

1.2.  Comparing sites: micro- and macro-level approaches 

In traffic safety research, comparing road infrastructures in terms of their safety 

performances is usually achieved through a high crash location identification process. 

Most studies have focused on the identification of high crash locations at a micro-level 

(e.g., intersections or highway segments) (Persaud et al., 1999; Heydecker and Wu, 2001; 

Saccomanno et al., 2004;  Miaou and Song, 2005; Cheng and Washington, 2005; Brijs et 

al. 2007; Miranda-Moreno et al., 2007; Elvik 2008; Montella, 2010; Heydari et al., 2013; 

Coll et al., 2013; El-Basyouny and Sayed, 2013; Qu and Meng, 2014; Jiang et al., 2014; Yu 

et al., 2014; Thakali et al., 2015; Sacchi et al., 2016; Lipovac et al., 2016; Fu, 2016; Fawcett 

et al., 2017; Debrabant et al., 2018). However, some recent studies have adopted a macro-

level or macroscopic (e.g., region level) high crash location identification approach (Lee 

et al., 2015; Huang et al., 2016; Dong et al., 2016).  

Micro-level models provide detailed information about safety of road infrastructure 

without the need for any substantial data aggregation. In contrast, macroscopic safety 

models (Hadayeghi et al., 2010; Ukkusuri et al., 2012; Wei and Lovegrove, 2013; Lee et 

al., 2014; Osama and Sayed, 2016; Wang et al., 2016b; Amoh-Gyimah et al., 2017; Lee et 

al., 2017) require a certain level of aggregation based on the spatial unit under 

investigation. While a macro-level approach can provide insights that are useful for 

planning and policy development (Washington et al., 2010), it may suffer from some 

shortcomings relating to the aggregation of data, which could, for instance, lead to 

ecological fallacy (Davis 2004). Previous work on grade crossing safety with a focus on 

making macro-level inferences is rare (Truong et al., 2016; Heydari et al., 2016b). To our 

knowledge, only Heydari et al. (2016b) draw macro-level inferences for grade crossings 

using disaggregates crossing-level crash data. Huang et al. (2016) discusses merits of 

both micro- and macro-level approaches. To avoid aggregation problems related to 

macroscopic analysis, the crash literature suggests using a micro-level approach and 

then summing up safety measurements (e.g., expected crash frequencies or differing 

injury-severity levels) of all sites located in each region to obtain an overall (macro-level) 

safety measure for each region (Huang et al. 2016). While allowing the identification of 
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macro level high crash locations, this method uses site specific characteristics at a micro-

level, avoiding data aggregation problems.  

Nevertheless, this approach may not be coherent for some purposes since regions with 

higher exposure or number of sites may appear at the top of the ranking list. In fact, these 

may not necessarily be the most dangerous regions in terms of crash risk because no 

adjustment is considered to account for differences in independent variables 

(contributing factors) that can exist across regions. If the purpose of a study is to simply 

identify regions with higher absolute numbers of crashes, then there is no need to adjust. 

For example, when the aim is to allocate ambulances to regions, the interest could mainly 

lie in the total injury frequency. However, such approaches are problematic when one is 

interested in fair comparison between different regions aiming to identify those with 

higher crash risk after differences in site-specific characteristics are accounted for. This 

could initiate further in-depth studies for understanding reasons for inter-region 

variations in terms of specific safety performance measures. For example, one could 

examine characteristics (sociodemographic, climate, etc.) of different regions - which 

were initially ignored - aiming at explaining revealed inter-region differences. 

1.3.  The current paper 

This paper makes four contributions: (1) it introduces a method to benchmark regions 

according to pre-specified safety performance measures using disaggregate data, 

avoiding issues related to the aggregation of data; (2) to overcome unobserved 

heterogeneity, we employ and discuss a Bayesian heteroskedastic multilevel random 

parameters Poisson lognormal model with heterogeneity in mean and variance (to our 

knowledge, this is the first instance of such a model in traffic safety research); (3) it 

provides comparisons with conventional random parameters and random intercepts 

models with a focus on discussing the dept of insights provided by each model and 

investigating how our benchmarking is affected by different model formulations; and 

(4) the empirical work undertaken in this article focuses on a country-wide study of level 

crossing safety. This could result in an enhanced understanding of grade crossing safety 

mechanisms that lend itself to safety policy, resulting in more cost-effective 

countermeasures. 

2. Canada-wide highway railway grade crossing data 

A comprehensive data set containing almost all public highway railway grade crossings 

in Canada was used. The data contains crash counts at 16,549 highway railway grade 

crossings of different types (passive and active) located in eight major Canadian 

provinces (British Columbia (BC), Alberta (AB), Saskatchewan (SK), Manitoba (MB), 
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Ontario (ON), Quebec (QC), New Brunswick (NB), Nova Scotia (NS)), for the period 

2008 to 2013. Passive crossings are those equipped with signs such as crossbucks, stop 

sign, etc., while active crossings are equipped with flashing lights and bells (FLB) or 

flashing lights, bells, and gates (FLBG) to advise road users of the presence of crossings 

and trains. Sixty percent of crossings are passive while the remaining forty percent are 

active crossings. The distribution of crossings in different provinces is shown in Fig. 1, 

and the spatial distribution of grade crossings across Canada is illustrated in Fig. 2 for 

both passive and active groups of grade crossings. The final dataset includes 860 grade 

crossing crashes for the above-mentioned period. 

To prepare the data set, we combined two databases, namely RODS (railway occurrence 

database system) and IRIS (integrated railway information system). Data relating to the 

occurrence of grade crossing crashes across Canada are recorded in RODS; grade 

crossing characteristics are collected in IRIS. Variables such as daily train volume, 

vehicle volume, geometric and operational characteristics such as train speed (rail speed 

limit), road speed (road speed limit), and type of warning devices were available in the 

data set. We used total traffic exposure, the product of train volume and vehicle flow. 

The model with this exposure term was found to provide a better fit to the data than the 

model containing train volume and vehicle flow separately. Several interaction terms 

were also considered, but these were not found to be important in explaining safety at 

Canadian crossings. Due to high co-linearity, we could not include some variables in the 

model at the same time. Summary statistics of the dataset are provided in Table 1. Note 

that our data set has a hierarchical structure, that is, crossings are nested within different 

provinces. In other words, we deal with groups of crossings that are situated within 

distinct regions; i.e., a multilevel setting. We will see in Section 3 that our models 

accommodate such structure.  

3. Methodology 

In this section, first, we discuss three different multilevel approaches: a random 

intercepts model, a grouped random parameters model, and a heteroskedastic grouped 

random parameters model with heterogeneity in mean and variance. Second, we 

introduce our risk-adjusted approach that allows for benchmarking different regions in 

a fair manner. We then discuss the elicitation of priors for our MCMC scheme, the 

computation of the models, and the model performance framework in terms of 

replicating excess zero counts. In this research we adopted a Poisson lognormal model, 

which can accommodate overdispersion in crash count data (Winkelmann, 2008). Lord 

and Miranda-Moreno (2008) recommend Poisson lognormal models - over negative 

binomial (Poisson gamma) models – when a crash data set has a low mean value. For 
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more details related to the specification of Poisson lognormal models, see Heydari et al., 

2016a.  

3.1.  Standard random intercepts model 

A standard multilevel random intercepts Poisson lognormal model can be defined as 

follows. Let yj and θj be, respectively, the observed and expected crash frequencies for 

site j (e.g., intersection, highway segment). Let X and γ represent the vectors of site 

attributes and their respective parameters. Let ηr denote the varying intercepts (here, 

region effects) that follow a normal density with the mean μr and the variance vr for 

region r. Let εj be a normally distributed error term with the mean 0 and the variance vε 

at the site (here, grade crossing) level to account for extra variation that is not captured 

by explanatory variables. This model can then be written as 

𝑦𝑗|𝑿𝒋, 𝜸, 𝜀𝑗 , 𝜂𝑟  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑗) 

(1) 

𝜃𝑗 =  𝜆𝑗 ∗ 𝑒𝜖𝑗 

𝑙𝑜𝑔(𝜆𝑗) =  𝜂𝑟 + 𝜸𝑿𝒋 

𝜂𝑟|𝜇𝜂 , 𝑣𝜂 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝜂 , 𝜈𝜂) 

𝜀𝑗|𝑣𝜀  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜈𝜀) 

In the above model, random intercepts vary from one region (e.g., province) to another, 

reflecting between-region variations in unobserved or unmeasured factors. In Poisson 

lognormal models, eε is lognormally distributed, meaning that ε follows a normal 

density. As discussed by Winkelmann (2008), this specification is appealing from a 

theoretical standpoint because the sum of a large number of unobserved independent 

variables that affect an outcome of interest is expected to follow a normal density based 

on the central limit theorem.  

3.2.  Standard random parameters (slopes) model 

A standard random parameter model that allows the effect of some covariates Z vary 

across the population can be written as follows. In this model β is the vector of random 

parameters (varying across regions) associated with Z.  This is usually assumed to be 

normally distributed with the vectors of mean and variance μβ, υβ, respectively. The 

latter parameters are assumed to be fixed across observations or groups of observations. 
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𝑦𝑗|𝒁𝒓, 𝑿𝒋, 𝜸, 𝜷𝒓 , 𝜀𝑗, 𝜂𝑟   ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃𝑗) 

(2) 

𝑙𝑜𝑔(𝜃𝑗) =  𝜂𝑟 + 𝜷𝒓𝒁𝒓 +  𝜸𝑿𝒋 + 𝜀𝑗 

𝜂𝑟|𝜇𝜂 , 𝑣𝜂 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝜂 , 𝜈𝜂) 

𝜷𝒓|𝝁𝜷, 𝒗𝜷 ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝝁𝜷, 𝒗𝜷) 

𝜀𝑗|𝑣𝜀  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜈𝜀) 

3.3.  Extension to heteroskedastic random parameters model with 

heterogeneity in mean and variance 

The extension discussed in this section allows us to infer more detailed information on 

crash propensities and potential sources of variations and dispersion in crash data. To 

this end, the means and variances of the random parameters β are not fixed anymore 

and can, respectively, be modeled as a function of vectors of explanatory variables Sμ 

and Sυ, which may or may not be a subset of principal model covariates X or Z. That is, 

for each varying mean μ (being the intercept’s mean μη or the random parameters’ means 

μβ) and each varying variance υ (being the intercept’s variance υη or the random 

parameters’ variances υβ), we can write 

𝜇𝑟 =  𝛼0 + 𝜶𝑺𝝁 

(3) 

𝜐𝑟 =  𝛿0 + 𝜹𝑺𝝊 

where α0 and δ0 are intercepts; α and δ are the vectors of coefficients associated with 

explanatory variables in the mean and variance functions. 

Note that in our model formulation, random parameters vary at the regional level r 

rather than observational level j. To allow for heteroskedasticity in the error term, we 

can allow the variance νε of the observational level error term to vary across observations 

j, where the varying variance (i.e., νεj) is modeled as a function of explanatory variables 

Sε with the intercept ω0 and the vector of coefficients ω. Also, Sε may or may not be a 

subset of principal model covariates. 

𝜀𝑗|𝑣𝜀  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜈𝜀𝑗) 

(4) 

𝜈𝜀 =  𝜔0 + 𝝎𝑺𝜺 
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3.4.  Risk-adjusted comparison of regions 

The idea here is to compare different regions after adding covariates (risk factors) to the 

model, to identify those with the highest risk of traffic accidents after adjustment for 

these risk factors. This adjustment is needed since, for example, regions (here, Canadian 

provinces) are often dissimilar in terms of traffic exposure of sites located in each region, 

the number of sites in each region, etc. Regions can be compared based on region effects 

ηr, which now represent adjusted crash risk. In comparison to macro-level models, an 

important advantage of our approach is that it provides detailed insight on factors 

(micro-level site characteristics) associated with crash frequencies. 

In the above process of ranking or comparing based on region effects, caution should be 

taken since different sets of risk factors in the model may produce different results. To 

draw more reliable conclusions in this study, we first used several explanatory variables 

in the model to make sure no important variable is dropped from the model, affecting 

the adjusted risk drastically. Second, we computed probabilities that the adjusted crash 

risk in one region exceeds that of the other regions. Doing so, we were able to account 

for uncertainties associated with the estimated region effects. Consequently, our 

benchmarking framework is a fully probabilistic approach that allows us to account for 

uncertainties in our benchmarking framework.  

By computing the above probabilities, we make pairwise comparisons between different 

regions. Under the Bayesian framework computing the above probabilities is 

straightforward. To this end, we create an NxN matrix of indicator variables [Iik]NxN 

comparing region i with region k at each iteration of our MCMC simulations based on 

their region effects η: 

𝐼𝑖𝑘 = {
0  𝑖𝑓 𝜂𝑖 ≤ 𝜂𝑘  
1  𝑖𝑓 𝜂𝑖 > 𝜂𝑘

 (5) 

Averaging this indicator variable value over all iterations results in the probabilities of 

interest. We also compare regions summing up expected crash frequencies of sites 

nested within each region – as this is suggested in traffic safety literature discussed in 

Section 1.2. Recall that the latter approach (summing up) does not adjust for differences 

in site characteristics and the number of sites in each region. In contrast, the risk adjusted 

approach discussed in this section accounts for such differences, providing a fairer 

comparison. 
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3.5.  Prior specification and posterior inference 

We used non-informative priors across all model parameters. Specifically, gamma priors 

for the inverse of the variances and normal priors for other model parameters were used. 

We estimated the above models employing MCMC simulations using WinBUGS. The 

posterior inferences for model parameters are obtained from two chains with 30,000 

iterations. The first 10,000 iterations were discarded to ensure convergence. Therefore, 

posterior inferences are drawn from a total of 40,000 samples. We ensured the sufficiency 

of the samples using Monte Carlo error estimates, history plots, and BGR diagrams 

based on the Gelman-Rubin statistic (Gelman and Rubin, 1992). 

3.6.  Model performance based on replicating excess zero counts 

Due to the large number of zero counts in our data set, it is important to examine whether 

our model adequately predicts the observed number of zero-crash highway-railway 

grade crossings. We investigated this issue by computing a Bayesian p-value statistic 

based on the following algorithm.  

i. Using the estimated expected crash frequency for each grade crossing j, predict 

accidents for each crossing - at each iteration of the MCMC simulations. 

𝑦𝑗(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑗)                               (6) 

ii. At each iteration verify whether the predicted and observed crash frequencies 

(for each crossing) are equal to zero, creating two indicator variables Ipredicted and 

Iobserved. 

𝐼𝑗(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = {
1  𝑖𝑓 𝑦𝑗(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 0 

0  𝑖𝑓 𝑦𝑗(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) ≠ 0
 (7) 

𝐼𝑗(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = {
1  𝑖𝑓 𝑦𝑗(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = 0 

0  𝑖𝑓 𝑦𝑗(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) ≠ 0
 

(8) 

iii. At each iteration, compute another indicator variable IIj for each crossing to 

compare Ipredicted and Iobserved.  

𝐼𝐼𝑗 = {
1  𝑖𝑓  (𝐼𝑗(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) − 𝐼𝑗(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑))  ≥ 0

0  𝑖𝑓 (𝐼𝑗(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) − 𝐼𝑗(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑))  < 0
 (9) 

iv. Estimate the Bayesian p-value by averaging the above quantity IIj over all 

iterations and across all crossings in the data. 
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The above algorithm can be readily implemented in WinBUGS. A value of 0.5 indicates 

an ideal match between observed and predicted crash counts. See Gelman et al. (1996) 

for a detailed discussion. 

4. Results and discussions  

We discuss our findings in the following three sections, focusing on posterior estimates 

of the parameters, interpretation of the explanatory variables, potential explanations for 

our findings, and implications for benchmarking different regions. Since we analyze 

crash data covering a six-year period, temporal instability (Mannering, 2018) could affect 

our results, that is, the effect of covariates on safety could change over time. It would be 

interesting to investigate temporal instability; however, addressing this issue is beyond 

the scope of this paper. In this paper we did not include hierarchical-level (province-

level) explanatory variables in our models because with an effective sample size of only 

8 (i.e., our data are generated from 8 provinces), such coefficients would not be estimated 

accurately. Without loss of generality, one could include region-level variables in 

implementing our proposed approach when a data set allows. Also, the focus here is to 

show how to use disaggregate (micro-level) data to make inferences at a macro-level. As 

discussed in Section 1.1, macro-level inferences may be useful; for example, for planning 

large-scale transportation and safety policy so integrating macro and micro-level models 

is valuable.  

4.1.  Posterior estimates   

Table 2 provides a summary of the estimated model parameters. Traffic exposure, train 

speed, road speed, and the number of roadway lanes have an increasing effect on grade 

crossing crash frequencies across Canada. In contrast, automated warning devices (FLB 

and FLBG) have a decreasing effect on crossing crash frequencies. In our random 

parameters setting, we found that the effect of traffic exposure (i.e., product of train and 

vehicle volumes at crossings) varies across provinces. We did not find any important 

support for a varying effect of other explanatory variables. Considering a random 

parameter for traffic exposure improved the model fit considerably: the deviance 

information criterion (DIC) (Spiegelhalter et el., 2002) reduces from 5796.19 in the 

random effects (intercepts) model to 5789.47 in the conventional random parameters 

model. We found that the standard deviation of the observational level error term 

reduces from 0.982 to 0.947, perhaps due to the fact that part of the extra variability is 

captured in the random parameter. Coefficient estimates obtained from the above 

standard models are similar.  
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When allowing for heterogeneity in mean and variance, we found that variation in the 

mean of the random parameter associated with traffic exposure can be explained by the 

variable Prairies (Alberta, Manitoba, and Saskatchewan) - which indicates the spatial 

location of grade crossings. Specifically, the results showed that the mean of the traffic 

exposure parameter in the Canadian Prairies is higher than in other provinces by a factor 

of 0.287. The mean of the traffic exposure parameter in the Prairies and other regions are, 

respectively, 1.159 and 0.872, a relatively large difference. This information on the 

association between traffic exposure and safety (this does not imply causality) could not 

be inferred from the standard models, which do not estimate the possibly varying effects 

of risk factor coefficients across sites. An empirical explanation of this finding is 

provided in Section 4.3. Interestingly, when using Prairies as a main explanatory variable 

in the model, it did not have any important effect on safety. But using such variable in 

the traffic exposure mean function provides more insights than just using it as a main 

regressor. Also, we are not directly entering any province as a main variable in the model 

since we use a hierarchical intercept term (province-effect), which allows for borrowing 

of strength across provinces, resulting in more efficient estimates. Therefore, it is 

redundant to also enter provinces as standard regression variables.  

We found that the variance of the heteroskedastic error term can be explained by the 

variable urban. In particular, the variance for the Canadian highway railway grade 

crossings located in urban areas increases by a factor of 0.134 compared with non-urban 

areas. This means that grade crossing crash frequencies are more dispersed in urban 

areas. A detailed study (including data collection) is thus required to find the source of 

dispersion in urban areas. That said, one important advantage of the proposed model is 

that it allows targeting the exact point where improvements are needed to better 

overcome unobserved heterogeneity. We did not find any other variables that explained 

variations in the variance of the regression parameter associated with traffic exposure, 

nor did we find any variable that explained variations in the mean or variance of the 

random intercepts. Hence, variances for the latter parameters are fixed across provinces. 

Using a varying mean and a heteroskedastic error term seems to be able to capture most 

of the variability in random parameters variances. We also ran a model with randomly 

varying variances for random parameters (without specifying any model for them), but 

the model fit did not improve so in the favour of parsimony there is no need to have 

these variances as random variables in our study. In fact, in the presence of a 

heteroskedastic error term with variances varying at grade crossing level, fixed 

variances across provinces appear to be satisfactory. 
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Under the latter model, the average value of the standard deviation of the observational 

level error term reduces to 0.65 (average value) from 0.947 in the standard random 

parameters model, indicating that a significant portion of variability in the data is now 

captured through the heteroskedastic heterogeneity in mean/variance specification. 

Recall that the observational level error term represents the portion of data variability 

that cannot be explained or accounted for by the available variables. Interestingly, with 

the same set of covariates in the model, we were able to capture this variability partly, 

employing a more complex random parameters model. In other words, we are able to 

better account for unobserved heterogeneity without adding other explanatory variables 

to the model, so that the proposed model makes a more efficient use of the available 

data. The fit of the latter model improved relative to both standard models, with an 

estimated DIC of 5776.76. Following the procedure outlined in Section 3.6, an estimated 

Bayesian p-value of 0.58 was obtained. Therefore, the proposed model performs 

satisfactorily in replicating excess zero counts in our data. 

Note that Heydari et al., (2016b), using a Dirichlet process mixture approach, found that 

the normality assumption in the random effects does not hold for Canadian grade 

crossings equipped with flashing lights and bells. Here, we did not find any evidence of 

non-normality, perhaps because in this paper we are analyzing all Canadian public 

grade crossings. This may indicate that the use of a larger set of data could help create a 

more homogeneous sample.  

4.2.  Interpretation of the estimated coefficients 

With respect to the interpretation of explanatory variables and the magnitude of 

association between these variables and crash frequencies, we use elasticities for 

continuous variables and relative risk for categorical variables. The estimated values are 

reported in Table 3. For the continuous variables, the estimated coefficients correspond 

to elasticity for log-transformed explanatory variables: traffic exposure, number of lanes, 

train speed, and road speed. In general, elasticities of these variables are similar under 

both random intercepts and random parameters models. However, the interpretation 

based on the heteroskedastic random parameters model with heterogeneity in mean and 

variance is somewhat different. For example, 10% increase in road speed increases grade 

crossing crash frequencies by approximately 2.69% and 3.26% under the random 

intercepts model and the proposed random parameters model, respectively. Thus, the 

random intercepts model underestimates the association between road speed limit and 

crash frequencies for the Canadian highway-rail crossings.  
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The major difference emerges in the interpretation of traffic exposure under the 

heteroskedastic model with heterogeneity in mean and variance since, as explained 

above, the mean of the random parameter for traffic exposure varies across the 

population of grade crossings according to their geographical location, captured in the 

variable Prairies. Under the latter model, 10% increase in traffic exposure results in 

approximately 11.59% and 8.72% increase in the expected crash frequency in the Prairies 

and in other regions, respectively. In contrast, 10% increase in traffic exposure would, 

respectively, lead to approximately 4.86% and 4.66% increase in the expected crash 

frequency under the random intercepts and the conventional random parameters 

models, which underestimate the effect of traffic exposure. Note that the standard 

models cannot capture the difference between the Prairies and other regions. 

For the ease of interpretation for categorical variables FLB and FLBG (warning device 

types), we estimated the relative risk by exponentiating their respective coefficients; i.e., 

exp(β). With respect to these categorical variables, we did not find any important 

difference between our three models. According to the proposed model, the expected 

crash frequency among FLB crossings is lower than passive crossings (reference group) 

by a factor of 0.471 (= exp(-0.752)), meaning that the crash frequency is on average 52.9% 

(100*(0.471-1)) lower among FLB crossings relative to passive crossings. Similarly, the 

expected crash frequency is lower by a factor of 0.23 (i.e., 76.6% lower) for FLBG 

crossings in comparison to passive crossings (see Table 3). 

4.3.  Why does crossing safety deteriorate at a higher rate in the Canadian 

Prairies as traffic exposure increases? 

Conducting a more detailed investigation, we found the following potential 

explanations for the fact that an increase in traffic exposure leads to a higher increase in 

grade crossing crash frequencies in the Prairies relative to other regions. By summarizing 

the data, we found that the average crash frequency in the Prairies provinces and other 

provinces are very similar (0.05 vs .053, respectively). Nevertheless, the average traffic 

exposures are very different: 5652.8 in the Prairies vs. 20492.2 in other regions. This is in 

accordance with what we have inferred from our proposed model. The next question is 

why does this happen? 

We found that only 13% of crossings in the Canadian Prairies are located in urban areas; 

the remaining 87% are mostly in rural and remote areas. We can speculate that in non-

urban areas (i) speeding and risk-taking behaviors are more frequent; (ii) illumination 

conditions often are not as suitable as in urban areas, limiting drivers’ visibility; and (iii) 

road conditions in inclement weather remain less favorable (in comparison to urban 
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areas) from a traffic safety perspective, for example, due to the lack of adequate winter 

road maintenance in non-populated areas (see e.g. Usman et al. (2010) who studied the 

effect of winter road maintenance on traffic safety). We also found that the average road 

speed limit in proximity of crossings in the Prairies is higher than other regions (65.81 

km/h vs. 59.91 km/h). These factors together could obviously result in a higher operating 

speed in the proximity of crossings in the Prairies than in other Canadian regions. In 

addition, we can observe that around 80% of crossings in the Prairies (analyzed in this 

study) are passive, being equipped only with simple road signs such as crossbucks - not 

flashing lights, bells and/or gates that advise road users of the presence of crossings and 

trains.  

4.4.  Implications for benchmarking different regions 

We computed expected pairwise probabilities of adjusted crash risk in each province 

exceeding that of other provinces according to the algorithm discussed in Section 3.4. 

While complete results are provided in Appendix A, as an example, Fig. 3 clearly 

highlights the differences between the examined models in this study. It can be inferred 

from Fig. 3 that in terms of adjusted crash risk, the inferences drawn from the random 

intercepts model are different from both random parameters models. Fig. 3(a) indicates 

that the adjusted crash risk in Alberta exceeds that of other Canadian provinces with a 

probability of almost 1. However, Fig. 3(b) and Fig. 3(c), for instance, indicate that the 

adjusted crash risk in Alberta exceeds that of British Columbia with a probability smaller 

than 40%. Similarly, Alberta exceeds adjusted crash risk in Ontario with a probability 

around 60% under the proposed random parameters model (see Fig. 3(c)). This indicates 

that a simple random intercepts model may mask true inter-region variations in adjusted 

crash risks.  

Differences in macro-level ranking criteria based on adjusted crash risk and total 

expected crash frequency are displayed in Fig. 4. Again, one can notice an obvious 

difference between the simple random intercepts model and both random parameters 

models when it comes to the risk adjusted benchmarking exercise. We found that 

comparing regions based on total expected crash frequencies of each region is not 

sensitive to model specification. As we discussed in Section 1.2, the latter approach falls 

short in drawing a full picture, neglecting differences in characteristics of road 

infrastructures located in each region. Based on the total expected crash frequency 

criterion, for instance, Ontario seems to be a higher crash province compared to British 

Columbia according to Fig. 4(c-2). After accounting for grade crossing differences (e.g., 

traffic exposure) and the number of crossings in both provinces, however, Ontario 
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appears to have a lower risk of grade crossing crashes than British Columbia (see Fig. 

4(c-1)). Note that since we adjust for differences in regions, we can state which region 

has a higher crash risk relative to other region(s) under similar circumstances among 

sites nested within each region.  

The results discussed in Section 4.4 could be particularly useful in terms of country-wide 

safety policy, highlighting the need for further investigation into the reasons for such 

differences in regional safety performances in Canada. Our findings suggest that further 

in-dept study is necessary for identifying the potential contributing factors such as 

sociodemographic characteristics, driver demography and behavior, traffic regulations, 

weather, and policies that may explain differences in crash risk propensities.  

5. Summary  

This study presented a method to compare different geographic areas (e.g., 

neighborhoods, provinces, etc.) in terms of a pre-specified safety performance measure 

such as crash frequency of a given type, integrating both micro- and macro-level 

approaches. The proposed method – being fully probabilistic – allows for the 

identification of macro-level high-crash-risk regions while adjusting for differences 

between sites (intersections, road segments, etc.) located in each region. In contrast to 

the usual macroscopic high crash location identification approaches, our model isolates 

the regional differences in site-specific characteristics such as variations in traffic 

exposure. An important advantage of our method is that, while we make between-region 

(macro-level) comparisons, we use detailed site-specific attributes that can explain 

safety. However, macro-level models use aggregated data and therefore cannot be used 

for such purpose at a disaggregate level.  

We utilized a comprehensive country-wide highway railway grade crossing data as our 

empirical setting. The sample contains 16,549 public highway railway crossings located 

in eight major Canadian provinces. To overcome unobserved heterogeneity, we 

developed a heteroskedastic random parameters Poisson lognormal model with 

heterogeneity in mean and variance. We compared the proposed model with commonly 

used random intercepts and random parameters models. The results indicate that 

modeling the mean and/or the variance of the random parameters as a function of 

explanatory variables available in data could better capture the underlying structure of 

crash data. We found, for example, that the Canadian grade crossing crash frequencies 

are more dispersed among sites located in urban areas relative to non-urban areas. More 

interestingly, the results also revealed that safety at grade crossings located in the 

Canadian Prairies is more sensitive to traffic exposure. We provide a number of potential 
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explanations for the latter finding. This study indicates the need to open up a new line 

of inquiry that aims at explaining the above findings. Following the benchmarking 

exercise conducted in this paper, further research can be initiated to investigate reasons 

behind safety performance differences across Canadian provinces. This work could be 

useful in planning safety improvement programs at both micro- and macro-levels. 
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Table 1.    Summary statistics of the data 
Variables Mean Std. Dev. Min Max 

Crash frequency 0.05 0.26 0.00 4.00 

Traffic Exposure (product of train and vehicle counts) 12,229.19 61,469.00 0.10 3,000,000.00 

Number of tracks 1.18 0.50 1.00 9.00 

Number of lanes 1.97 0.55 1.00 7.00 

Angle (deviation from 90°) 19.57 19.43 0.00 87.00 

Road speed (km/h) (road speed limit) 63.20 20.62 5.00 110.00 

Train speed (km/h) (rail speed limit) 57.18 31.45 1.61 160.80 

     

Dummy Variables Frequency Percent   

FLB (1 if equipped with flashing lights and bells) 4,202.00 25.39 - - 

FLBG (1 if equipped with flashing lights, bells and gates) 2,410.00 14.56 - - 

Passive (1 if passive; 0 otherwise) 9,937 60.05 - - 

Active (1 if active; 0 otherwise) 6,612 39.95 - - 

Urban (1 if urban area; 0 otherwise) 3,055 18.46 - - 

Whistle (1 if prohibited; 0 otherwise) 962 5.81 - - 

Prairies (1 if located in the Canadian Prairies; 0 otherwise)  9,215 55.68 - - 
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Table 2. Posterior estimation summary 

Random intercepts model  Mean SD 95% Credible Intervals 
Province effect mean -9.631 1.190 -11.040 -8.308 

SD Province effect 0.564 0.235 0.265 1.150 

ln(exposure) 0.486 0.040 0.436 0.541 

ln(train speed) 0.407 0.133 0.266 0.558 

ln(road speed) 0.269 0.200 0.071 0.537 

ln(lanes) 0.347 0.173 0.025 0.642 

FLB -0.702 0.150 -0.933 -0.476 

FLBG -1.459 0.250 -1.789 -1.145 

SD obs. level error term 0.982 0.073 0.836 1.125 

Model fit (DIC) 5796.190 - - - 

Random parameters model  Mean SD 95% Credible Intervals 

Province effect mean -9.530 0.623 -10.730 -8.277 

SD Province effect 0.643 0.299 0.237 1.380 

ln(exposure) 0.466 0.049 0.369 0.561 

SD ln(exposure) 0.106 0.038 0.056 0.201 

ln(train speed) 0.416 0.068 0.275 0.543 

ln(road speed) 0.286 0.117 0.065 0.512 

ln(lanes) 0.325 0.152 0.031 0.620 

FLB -0.730 0.114 -0.957 -0.509 

FLBG -1.439 0.153 -1.744 -1.143 

SD obs. level error term 0.947 0.064 0.816 1.071 

Model fit (DIC) 5789.470 - - - 

Heteroskedastic random  

parameters model with heterogeneity  

in mean and variance  Mean SD 95% Credible Intervals 
Province effect mean -9.651 0.696 -11.030 -8.308 

SD Province effect 0.648 0.293 0.260 1.367 

ln(exposure):     

Constant 0.872 0.122 0.653 1.115 

Prairies 0.287 0.168 0.003 0.612 

SD ln(exposure) 0.090 0.036 0.047 0.180 

ln(train speed) 0.430 0.073 0.284 0.566 

ln(road speed) 0.326 0.128 0.074 0.586 

ln(lanes) 0.291 0.156 0.032 0.601 

FLB -0.752 0.115 -0.982 -0.529 

FLBG -1.454 0.155 -1.757 -1.153 

Heteroskedastic error term variance:         

Constant 0.404 0.056 0.292 0.514 

Urban 0.134 0.079 0.012 0.293 

Model fit (DIC) 5776.760 - - - 

 

 

 



Heydari, Fu, Thakali, Joseph 

 

30 

 

 

 

Table 3. Approximate elasticities and relative risks 

Random intercepts model   
Continuous variables Elasticities(1)  

Traffic exposure 4.86% 

Train speed 4.07% 

Road speed 2.69% 

Lanes 3.47% 

Categorical variables Relative risk(2) 

FLB crossings 0.50 

FLBG crossings 0.23 

Random parameters model    

Continuous variables Elasticities 

Traffic exposure 4.66% 

Train speed 4.16% 

Road speed 2.86% 

Lanes 3.25% 

Categorical variables Relative risk 

FLB crossings 0.48 

FLBG crossings 0.24 

Heteroskedastic random  

parameters model with heterogeneity  

in mean and variance    
Continuous variables Elasticities 

Traffic exposure non-Prairies 8.72% 

Traffic exposure Prairies 11.59% 

Train speed 4.30% 

Road speed 3.26% 

Lanes 2.91% 

Categorical variables Relative risk 

FLB crossings 0.47 

FLBG crossings 0.23 
(1)Elasticities are based on a 10% increase in continuous variables 
(2)Relative risks should be interpreted as indicated in Section 4.2 with respect to 

passive crossings (the reference group).  
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Figure 1. Distribution of passive and active crossings in different provinces  

(see Section 2 for description of provincial abbreviations) 
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Figure 2. Spatial distribution of crossings across Canadian provinces 
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Figure 3. Expected exceeding probability of adjusted crash risk in Alberta vs. other 

major Canadian provinces: (a) Random intercepts model; (b) Standard random 

parameters model; and (c) Proposed random parameters model.  

(see Section 2 for description of provincial abbreviations) 
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Figure 4. Log-scaled adjusted crash risk (1) vs. sum of expected crash frequency (2): (a) 

Random intercepts model; (b) Standard random parameters model; and (c) Proposed 

random parameters model  

(see Section 2 for description of provincial abbreviations) 
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Appendix A. 

Fig. 1.A displays a gray-scale plot of pairwise probabilities of exceeding adjusted crash 

risks, obtained under three different model formulations, for eight Canadian provinces. 

darker squares indicate larger probabilities of exceeding. For example, Fig. 1.A(c) 

indicates that adjusted grade crossing crash risk in Ontario is highly likely (with a 

probability greater than 70%) to be higher than crossing crash risk in New Brunswick, 

Nova Scotia, Manitoba, Saskatchewan, and Quebec. Similarly, the adjusted crash risk in 

Saskatchewan has a low probability of exceeding crash risk in other provinces. While 

estimated pairwise probabilities of exceeding are similar in both random parameter 

models (see Fig. 1.A(b) and 1.A(c)), these estimates are considerably different under the 

random intercepts model (see Fig. 1.A(a)). According to Fig. 1.A(c), British Columbia has 

the highest chance of grade crossing crash risk after adjusting for the effect of 

explanatory variables used in our study. 
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 AB BC MB NB NS ON QC SK 

AB 0.000 0.998 0.998 1.000 1.000 1.000 1.000 0.999 

BC 0.002 0.000 0.567 0.975 0.999 0.990 0.997 0.577 

MB 0.002 0.433 0.000 0.969 0.999 0.997 0.998 0.503 

NB 0.000 0.025 0.031 0.000 0.897 0.315 0.427 0.028 

NS 0.000 0.001 0.001 0.103 0.000 0.030 0.055 0.001 

ON 0.000 0.010 0.003 0.685 0.970 0.000 0.730 0.001 

QC 0.000 0.003 0.002 0.573 0.945 0.270 0.000 0.001 

SK 0.001 0.423 0.497 0.972 0.999 0.999 0.999 0.000 

 (a)               

  AB BC MB NB NS ON QC SK 

AB 0.000 0.362 0.991 0.872 0.964 0.769 0.925 1.000 

BC 0.638 0.000 0.988 0.902 0.970 0.830 0.935 0.997 

MB 0.009 0.012 0.000 0.322 0.624 0.063 0.266 0.665 

NB 0.128 0.098 0.678 0.000 0.751 0.263 0.484 0.774 

NS 0.036 0.030 0.376 0.250 0.000 0.093 0.231 0.476 

ON 0.232 0.170 0.937 0.737 0.907 0.000 0.773 0.978 

QC 0.075 0.065 0.735 0.516 0.769 0.227 0.000 0.850 

SK 0.000 0.003 0.335 0.226 0.524 0.022 0.150 0.000 

 (b)        

  AB BC MB NB NS ON QC SK 

AB 0.000 0.267 0.992 0.784 0.940 0.625 0.843 0.999 

BC 0.733 0.000 0.992 0.882 0.970 0.804 0.923 0.999 

MB 0.008 0.008 0.000 0.206 0.517 0.032 0.162 0.680 

NB 0.216 0.118 0.794 0.000 0.765 0.292 0.509 0.879 

NS 0.060 0.030 0.483 0.235 0.000 0.097 0.221 0.599 

ON 0.375 0.196 0.968 0.708 0.903 0.000 0.760 0.993 

QC 0.157 0.077 0.838 0.491 0.779 0.241 0.000 0.927 

SK 0.001 0.001 0.320 0.121 0.401 0.007 0.073 0.000 

 (c)               

Figure 1.A Gray-scale plot of pairwise probabilities of exceeding adjusted crash risks: 

(a) Random intercepts model; (b) Standard random parameters model; and (c) 

Proposed random parameters model.  

(see Section 2 for description of provincial abbreviations) 


