
Study of the circularity effect on drag of disk-like

particles

L.B. Estebana, J. Shrimptona,∗, B. Ganapathisubramania

aUniversity of Southampton, Faculty of Engineering and Physical Sciences, Highfield
Road, Southampton, UK

Abstract

This paper presents a study of the terminal fall velocity, drag coefficient

and descent style of ‘wavy-edge’ flat particles. Being highly non-spherical

and with a size of up to a few centimetres, these particles show strong self-

induced motions that lead to various falling styles that result in distinct

drag coefficients. This study is based on experimental measurements of the

instantaneous 3D velocity and particle trajectory settling in water. A disk of

D = 30 mm, t = 1.5 mm and ρ = 1.38 g/cm3 is manufactured as a reference

particle. The disk was initially designed to lie within the Galileo number

- dimensionless moment of inertia (G − I∗) domain corresponding to the

fluttering regime. A total of 35 other particles with the same frontal area

and material properties were manufactured. These are manufactured to have

different amplitudes (a) of the sinusoidal wave on the edge and number of

cycles (N) around the entire perimeter. Thus, 5 sets of particles are manu-

factured with different relative wave amplitudes; i.e. a/D = 0.03, 0.05, 0.1,
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0.15, 0.2. Each set consisting of 7 particles from N = 4 to N = 10. The

isoperimetric quotient is used as a measure of the particle circularity and is

also linked with different characteristic settling behaviours. Disks and other

planar particles with small a/D ratio were found to descent preferably with

‘Planar zig-zag’ behaviour with events of high tilted angle. In contrast, par-

ticles with high a/D ratio were found to follow a more uniform descent with

low tilted angle to the vertical motion. The differences in projected frontal

area were shown not to be sufficient to compensate the differences in descent

velocity, leading to unequal drag coefficients. Therefore, we believe that the

falling styles of these irregular particles go hand by hand with characteristic

wake structures, as shown for disks with various dimensionless moment of

inertia, that enhance the descent of particles with low circularity.

Keywords: Drag Coefficient, Irregular particle, Settling, Circularity

1. Introduction

The motion of particles in a viscous continuum appears in many industrial

applications; from pneumatic conveyors in the food industry to pulverized-

fuel boilers in the generation of thermal energy. It is in the design and

modelling processes of such facilities when the size, shape and subsequent

fluid dynamic effects of the solid particles gain importance, since these are

directly linked to key features such as dispersion and the heat transfer rate.

Although industrial facilities deal with a large number of solid characteristics,

the understanding of the effect of shape of these particles on their trajectory

is limited.

The motion of freely falling non-spherical particles is complex, even for
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relatively simple geometries such as disks. These particles show a variety

of falling regimes that go from steady fall to tumbling, through fluttering

and chaotic motion. The first phase diagram showing the falling scenarios

of a disk was defined by Willmarth et al. (1964) in the Reynolds number

(Re) and the dimensionless moment of inertia (I∗) domain. The Reynolds

number defined as Re = VzD/ν, where Vz is the average settling velocity, D

is the diameter of the disk and ν is the kinematic viscosity of the fluid. The

dimensionless moment of inertia as I∗ = Ip/ρfD
5, where Ip is the moment

of inertia about the diameter of the disk and ρf is the density of the fluid.

They carried out a series of experiments and mapped the different falling

regimes they observed: steady, fluttering and tumbling. They discussed that

the phase diagram held for disks, as long as the aspect ratio (χ) defined as

χ = D/h was large (where h is the thickness of the disk).

Field et al. (1997) identified a new falling regime within the phase diagram

defined by Willmarth et al. (1964) between flutter and tumbling regimes.

This new regime was labelled as ‘Chaotic’ and has been investigated in more

detail during the past decades, especially for two-dimensional rectangular

plates; Belmonte et al. (1998), Andersen et al. (2005b) and (Andersen et al.,

2005a).

Zhong et al. (2011) focused on thin disks (χ ≥ 10) and showed experi-

mentally that the trajectory of a disks transitions from ‘Planar zig-zag’ to

‘Spiral’ motion for a region in the phase diagram associated with fluttering

motion. They showed that this transition is determined by the relative par-

ticle to fluid inertia (I∗). They also carried flow visualization and showed

that the change in path style comes with a drastic change in the turbulent
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structures present in the wake. They discussed that the transition between

these three sub-regimes, i.e. ‘Planar zig-zag’, ‘Transitional’ and ‘Spiral’, is

Reynolds number dependent. They also showed that this phenomenon was

not sensitive to initial tilt. Lee et al. (2013) extended the work of Zhong

et al. (2011) by doing planar Particle Image Velocimetry measurements on

the particle wake. They found that disks with moderate inertia followed a

‘Planar zig-zag’ motion and with decreasing I∗ the particles transitioned to

a ‘Spiral’ motion.

On the other hand, numerical investigations on the falling styles of disks

have shed light on the descend mechanisms at low to moderate Re numbers.

Auguste et al. (2013) carried out a thorough numerical investigation on the

dynamics of thin disks falling under gravity in a viscous fluid medium at

Re < 300 and found two new three-dimensional paths in which the plane

of motion slowly rotates about the vertical axis. Similarly, Chrust et al.

(2013) performed direct numerical simulations of the solid-fluid interactions

of infinitely thin disks and presented a parametric study on the effect of the

Galileo number (G =
√
|ρp/ρf − 1|gD3/ν), which is an alternate form of Re,

and the non-dimensional mass (m∗), being m∗ = m
ρfD3 . They also studied

‘three-dimensional states’ and found similar falling styles for disks with I∗ =

3.12× 10−3 and Re = 320 as reported in Auguste et al. (2013), Zhong et al.

(2011) and Lee et al. (2013). They showed that the saturated ‘Spiral’ state

was reached after a fall distance of ≈ 60D. The distance travelled by the disk

to reach the ‘Spiral’ state greatly differs between studies, suggesting that not

only the dimensionless moment of inertia but the Reynolds number affects

the duration of the transient effects. Similarly, Zhou et al. (2017) performed
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direct numerical simulations for freely falling oblate spheroids with aspect

ratios 1 < χ < 10. They also found that several drastically different descent

modes coexist for the same parameter space. This shows that the falling

motion of these particles is not unique and therefore should be examined

through statistical analysis.

Fewer studies are available for planar non-spherical particles other than

disks or rectangular plates. In the early 70’s, List and Schemenauer (1971)

investigated the steady fall of different shapes including hexagonal plates,

broad-branched crystals, dendrites and stellar crystals. In addition to vari-

ation of drag coefficient (CD) with Reynolds number (due to viscous ef-

fects), small oscillations in the fall trajectories of hexagonal plates and broad-

branched models were observed. These oscillations were reported to be

smaller than those of circular disks with the same frontal area, but no quan-

titative measurements were taken. Jayaweera (1972) studied experimentally

the free fall behaviour of various planar particles within the same range of

Reynolds number (Re < 50). These planar particles were manufactured

with the same frontal area and thickness of a reference disk for comparison.

They showed that the terminal velocity of hexagonal plates was practically

the same of the equivalent disk while for the case of star-shape particles the

differences in the terminal velocity were up to 25%. However, the severe

difference in the viscous effect (Re < 50) associated with increasing the par-

ticle perimeter was considered to be the only mechanism responsible for the

change in the particle descent velocity. Kajikawa (1992) studied the free-fall

patterns and the variation in the vertical and horizontal velocities of “snow

crystal shapes”. They found a very small fluctuation in the settling velocity
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for all particles investigated, which suggests that they were close to the sta-

ble fall regime. They also found that dendritic crystals with large internal

ventilation fall with a stable pattern over a larger Re range compared to sim-

ple hexagonal plates. This suggests that the stability of the falling motion

was influenced by the internal ventilation of the crystals, as confirmed later

by Vincent et al. (2016) for disks. More recently, Maggi (2015) showed how

fractal structures can modify the resistance of granular aggregates moving

through water whereas Bagheri and Bonadonna (2016) presented a compre-

hensive analytical and experimental investigation on the drag coefficient of

non-spherical particles, where particle secondary motion, the effect of par-

ticle orientation and the effect of particle-to-fluid density ratio on the drag

coefficient were discussed. Also, several polygonal shapes have been recently

investigated through water tank experiments in (Esteban et al., 2018); show-

ing the edge effect on the descent style of these particles.

Despite these isolated studies on the frontal geometry effect on the descent

velocity, there is still a lack of understanding on when a flat particle originally

falling under fluttering motion transitions to a more stable regime due to

changes in frontal geometry. Similarly, it is not known if the effect of the

effective particle projected area under these new conditions is the reason for

the change in drag coefficient.

Therefore we propose to study the effect of the gradual change in the

perimeter geometry (from disks to particles with very low circularity) on the

particle trajectory. This will also tackle one of the questions suggested in

Moffatt (2013) regarding the dynamics of disks: the effects of the perimeter

geometry on the settling characteristics of flat irregular particles moving in
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a viscous media. In here we include the effect on the particle dispersion, the

mean and instantaneous descent velocity, and the types of secondary motion

that are directly linked to particle orientation and therefore drag coefficient.

2. Methods

In order to investigate how the waviness of the perimeter affects the set-

tling dynamics of the disk, we manufactured a reference disk with a diam-

eter D = 30 mm, thickness h = 1.5 mm and density ρ = 1.38 g/cm3 that

falls in the fluttering regime with a Reynolds number Re ≈ 1800 and non-

dimensional inertia I∗ = 3.4 × 10−3. Then, keeping the disk thickness (h)

and frontal area A constant we vary the amplitude of the sinusoidal wave on

the edge (a) and the number of cycles, or peaks, around the entire perimeter

(N), as sketched in figure 1. Thus, we manufactured 5 sets of particles with

different relative wave amplitudes; i.e. a/D = 0.03, 0.05, 0.1, 0.15, 0.2, each

set consisting of 7 particles from N = 4 to N = 10 with the corresponding di-

mensionless moment of inertia shown in table 1. The parameter space (a/D,

N) is chosen to cover a wide geometric range. As these two parameters in-

crease, the particle becomes less similar to a disk and more like a star-shape

particle. The combined effect of these parameters can be also seen from a

circularity point of view. In here, the isoperimetric quotient (Q = 4πA/P 2)

is the parameter used to characterize geometric changes, shown in brackets

in table 2. The hypothesis is that as a/D and N increases (and therefore

Q), the characteristic fluttering motion of the solid disks becomes less pro-

nounced as discussed in Kajikawa (1992) for particles with inner ventilation.
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N

a/D 4 5 6 7 8 9 10

0.03 2.5 2.5 2.5 2.5 2.5 2.5 2.5

0.05 2.1 2.1 2.1 2.1 2.1 2.1 2.1

0.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5

0.15 1.1 1.1 1.1 1.1 1.1 1.1 1.1

0.2 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Table 1: Dimensionless moment of inertia (I∗ ×103) based on the diameter of the circum-

scribed disk.

All particles were laser cut within a precision of ±0.5 mm. Table 2 shows

the length of the perimeter of the particles manufactured, whereas table

3 summarizes the mass of the particles after the manufacture process was

completed. Small differences in the mass of the particles were caused by the

addition of black paint (to facilitate the image treatment).

In water, the particles were released from about 2D below the surface so

that entry and surface effects were avoided. The particles were released with

zero initial velocity and zero tilted angle using a release mechanism that used

active suction. All particles were held in their initial position by a suction

cup smaller than their internal diameter. The suction cup was part of a rigid

frame attached to the water tank, ensuring that the particle initial conditions

were the same in all realizations. The water tank was 0.8 m high with a cross-

section of 0.5 m × 0.5 m. All particles used were made of polyester with a
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N

a/D 4 5 6 7 8 9 10

0.03 96(0.97) 96(0.96) 97(0.94) 98(0.92) 100(0.90) 101(0.87) 102(0.85)

0.05 98(0.93) 100(0.89) 102(0.85) 105(0.81) 108(0.76) 111(0.72) 115(0.68)

0.1 108(0.76) 115(0.68) 122(0.59) 131(0.52) 139(0.46) 149(0.40) 158(0.36)

0.15 122(0.59) 135(0.49) 149(0.40) 163(0.33) 178(0.28 ) 194(0.24) 210(0.20)

0.2 139(0.46) 158 (0.36) 178(0.28) 199(0.22) 220(0.18) 242(0.15) 264(0.13)

Table 2: Particle perimeter (P ) in millimeters for shapes with same area to a disk with

P = 94.2 mm. Isoperimetric quotient Q is represented in brackets

density of approximately 1.38 g/cm3, frontal area of 7.07 cm2 and a thickness

of 1.5 mm.

Two cameras were used to capture the falling particle. One camera cap-

tured a frontal view of the descent motion of the particle while the other

captured the planar (X − Y ) motion of the particle through a mirror at 45◦

underneath the tank. The cameras were both focused on the mid-plane of the

tank to minimize image distortion. The trajectories were recorded at 60 fps.

This frame-rate was sufficient to resolve the translational motion during all

parts of the descent to within 2%D. A diffused light source was used to back

illuminate the water tank. In each frame the dark particle projection was

recorded onto the white background and the position of the centre of mass

of the particle was obtained by locating the geometric centre of each particle

projection. As discussed in Esteban et al. (2018), the shadow of the particle

can hide individual peaks during the fall, leading to an erroneous location of
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N

a/D 4 5 6 7 8 9 10

0.03 1.50 1.50 1.49 1.50 1.51 1.50 1.48

0.05 1.50 1.49 1.49 1.48 1.47 1.51 1.50

0.1 1.52 1.51 1.50 1.50 1.50 1.50 1.50

0.15 1.58 1.57 1.57 1.54 1.55 1.53 1.54

0.2 1.63 1.64 1.63 1.60 1.60 1.59 1.59

Table 3: Particle Mass in grams.

a)

a
D

b) c)

Figure 1: a) Sketch of a ’wavy-edge’ particle about the reference disk perimeter; b) Wavy-

edge particles with constant N = 4 and a/D = 0.2, 0.1, 0.03; c) Wavy-edge particles with

constant N = 10 and a/D = 0.15, 0.05.
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the center of gravity (only in the Z component for this camera arrangement)

and could be maximum for the N = 5, a/D = 0.2 particle (±0.05D). This

is only relevant for particles with an odd number of peaks when they have a

symmetry plane parallel to the camera focal plane. Also, the particle has to

be at a high incidence angle for this effect to be noticeable. These conditions

make this specific particle alignment extremely rare and we do not observe

any bias in the results due to this potential measurement error. However, the

measured trajectories were smoothed with a polynomial filter of 3rd order

and frame length of 5 points to filter out high frequency noise from this and

other measurement errors.

A set of releases for a sphere falling in air was performed to establish

limitations on the accuracy associated with the suction mechanism as well as

the camera alignment and account for image distortion from the lens. The

variance in the landing position was interpreted as the uncertainty of the

complete system. This was found to be two orders of magnitude smaller than

the sphere diameter. This is in accordance with the uncertainty typically

found in the literature for similar drop mechanisms, (Heisinger et al., 2014).

The method followed to obtain the particle centre of mass from the raw

images did not add any uncertainty.

To build a baseline from which to compare the motion of the ‘wavy-edge’

particles a first set of 50 repeated drops of the disk in water was performed.

All trajectories were recorded prior to their release instant. The determi-

nation of the distance at which the particle motion is not influenced by the

initial transient dynamics is non-trivial. Chrust et al. (2013) performed sim-

ulations of an infinitely thin disks with I∗ = 3.12 × 10−3 and G = 300 and
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showed that it reached a saturated path at a vertical distance of ≈ 60D from

the release point, whereas Heisinger et al. (2014) showed experimentally that

for disks with I∗ ≈ 3×10−3 and G ≈ 4180, the disk trajectory was saturated

after a distance of 7D. Here the reference disk lies closed to the parameter

space in Heisinger et al. (2014), with I∗ = 3.4×10−3 and Re ≈ 1800. We also

found that the disk and other particles with small a/D ratios showed a sat-

urated state at a distance of 7D, whereas for larger a/D ratios this distance

was reduced. Thus, a distance of 7D is given to the particle to accommodate

to the fall before the trajectories are analysed. This is consistent with the

distance found in Esteban et al. (2018) for disks and other n-polygon planar

particles lying in a similar location in the Re− I∗ domain.

As discussed in Esteban et al. (2018), the bottom of the tank influences

the landing position of the particle not only due to hydrodynamic interactions

but because the particle slides over the glass surface after the impact. To

overcome these influences we do not process the particle trajectory once

it reaches a distance of 2D from the bottom of the tank. The method

to discard the last section of the trajectory is the following: we use the

images recorded by the top camera (frontal view of the descent) to monitor

the vertical position of the particle and when it reaches the desired vertical

location; i.e. 2D from the bottom, we save the specific frame number. Then,

when we read the frames from the bottom camera to find the particle X−Y

position we stop the analysis at the frame number previously saved. Thus, we

now have a trajectory section that goes from 7D from the top (corresponding

to a location were the particle trajectory is at a saturated state) to 2D

from the bottom (unperturbed by the glass surface). This trajectory section
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Figure 2: a) Probability density function of finding an a/D = 0.2 particle with variable

N at a certain radial distance (R) from the release point. b) Probability density function

of finding a particle at a radial distance normalized with the particle diameter and the

isoperimetric quotient. Data taken at z > 7D

corresponds to ≈ 15D and at least 7 particle periods.

Each particle is released 50 times in water at room temperature, ρf =

0.998 g/cm3 and ν = 1.004×10−6 m2/s, the waiting time between drops being

of 20 min, corresponding to more than 600 times the particle time-scale of

the oscillatory motion.

3. Results

3.1. Planar dispersion, normal to the descent direction.

The raw radial dispersion of particles with a/D = 0.2 and variable N

together with the radial dispersion of the reference disk is shown in figure 2

a). The radial distribution of the disk is the broadest of all particles tested,

having its mean value at about 45 mm from the origin (≈ 1.5D). Then, as

the isoperimetric quotient of the particle reduces, the radial dispersion of the
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Figure 3: Contour plots of the probability density functions of finding a particle of a

given family (a/D) at a radial distance normalized with the particle diameter and the

isoperimetric quotient. The solid dot represents the peak of the contour plot and the

horizontal line the dispersion on the peak location from particles with variable N

particles becomes narrower, with particles of N = 10 having its mean value

at about 17 mm from the origin (≈ 0.5D). Figure 2 b) shows a collapse of

the statistics for the probability of finding a particle at a given radial distance

from the origin once the perimeter of the particle (P ) and the isoperimetric

quotient (Q) are considered. The family of particles with a/D = 0.2 is chosen

for representation since these are the particles characterized by the smaller

circularity. This result suggests that the amplitude of the planar oscillations

are not only dependent on the particle perimeter but also on the frontal

geometry (here defined by the isoperimetric quotient). Thus, Q is the correct

parameter to make radial dispersion self similar with perimeter shape. The

same approach is followed for all a/D families of particles and the contours

of the probability density functions are shown in figure 3. The peaks of the

distributions are represented with a solid dot, whereas the uncertainty on the

peak location coming from the dispersion of the results for different particles
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within the same family is represented with solid lines. The evolution of the

peak location suggests that this normalization on the radial dispersion might

overcompensate the results for the case of very irregular particles (a/D >

0.2), since it starts to deviate from the nearly constant value of 0.4 for a/D ≤

0.15.

3.2. Secondary motion

The differences observed in the particle planar dispersion suggest that

these might exhibit different secondary motions depending on the charac-

teristics of the particle perimeter. In this section, individual particle tra-

jectories are plotted and compared to identify the main differences between

geometries. Figure 4 shows trajectory samples of different particles, where

maximum and minimum velocity events are shown with solid and empty dots

respectively.

From the inspection of these trajectories one can observe that the disk,

figure 4 a) and figure 5 a) , describes a zig-zag motion that is approximately

contained in a single plane of motion. We observe that as the number of

waves around the perimeter increases the particle gains more out-of-plane

motion, leading to a quasi-spiral motion for the case seen in figure 4 c)

and 5 c). There is another new type of trajectory in between these two

clearly different styles of descent that remains stable for the length of the

trajectories recorded. This type of descend is in fact a mixture of the zig-

zag and quasi-spiral motion (figure 4 b)), with the velocity in the X − Y

plane being a combination of angular and linear velocity. This leads to

the characteristic descent footprint shown in figure 5 b), where the particle

15



a)

9

8

3

7

32

Y/D

6

X/D

21

5

1

4

Z
/D

0 0

3

2

1

0

b)

9

8

3

7

2

Y/D

6

2

X/D

1

5

1

4

Z
/D

0 0

3

2

1

0

c)

9

8

2
2

7

Y/D X/D

1 1

6

0

5

0

4

Z
/D

3

2

1

0

Figure 4: 3D trajectory sections of the reconstructed particle fall: a) Disk, b) planar

particle with a/D = 0.2 and N = 6, c) planar particle with a/D = 0.2 and N = 10. Solid

and empty dots represent events of maximum and minimum descent velocity respectively.
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Figure 5: X − Y trajectory sections of the reconstructed particle fall shown in figure

4. Solid and empty dots represent events of maximum and minimum descent velocity

respectively.
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trajectory in the X − Y plane resembles a rhodonea curve, as shown in

Zhong et al. (2011) for disks with small dimensionless moment of inertia

I∗. Minimum and maximum descent velocity events appear at the same

relative locations for the trajectory types of figure 4 a) and b), with the

turning trajectory section being always bounded in between a minimum and

maximum descent velocity event. In contrast, quasi-spiral trajectories; as in

4 c), do not show this clear distribution of fast and slow events in favour

of a less organized arrangement of minimum and maximum descent velocity

events. Thus, in the following sections we investigate if the various descent

styles observed are associated with differences in descent velocity, particle

orientation and drag coefficient.

3.3. Descent Velocity and Drag Coefficient

Results from the particle planar dispersion and particle secondary mo-

tion show strong differences in the settling characteristics of planar irregular

particles. In this section, the descent velocity associated with the different

falling styles observed is investigated. A mean descent velocity per trajectory

is obtained from 7D to the release point to 2D from the bottom (≈ 15D),

corresponding to at least 7 periods of oscillation. Then, a unique descent ve-

locity per particle geometry is obtained as the mean of 50 realizations. The

results from the descent velocity can be used to obtain the Reynolds number

of the particles, see table 4, that allow us to locate them in the Re−I∗ phase

diagram of disks. It is interesting to note that when the diameter of the cir-

cumscribed disk is taken as a characteristic length scale of the particle, the

results regarding the particle secondary motion agree well with their loca-

tion in the phase diagram as shown in figure 6. Thus, as a/D increases (and
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therefore I∗ decreases) the falling style of the particle transitions towards the

helical motion.

Figure 7 a) shows the variation of the measured mean terminal velocity

(Vz) of all planar particles considered in this study. The mean terminal ve-

locity is shown relative to that of the circular disk (Ṽz = Vz/Vzdisk). The

mean terminal velocity is plotted as a function of the number of peaks (N)

around the perimeter. The standard deviation from the 50 realizations is be-

low 10% for all geometries investigated and it is not shown to help the figure

visualization. The experimental data shows that particles with N = 4 and

small a/D ratio; i.e. a/D = 0.03, a/D = 0.05 and a/D = 0.1, have a descent

velocity that is slightly higher than the reference disk descent velocity. Also,

there is a consistent increase in descent velocity for these families of particles

as the number of peaks (N) around the perimeter increases. On the other

hand, the decent velocity of the families with a/D = 0.15 and a/D = 0.2 lies

below the disk descent velocity for N = 4 but rapidly increases, exceeding

the descent velocity values of the particles with small a/D ratios for N > 7.

The Drag Coefficient combines the mean descent velocity with the mass of

the particle and the particle projected area to give a more robust comparison

between perimeter shapes than figure 7 a). The Drag Coefficient based on the

projected area is of particular interest in this study because of the following

reason: all particles share the same frontal area; however, when falling in

quiescent flow they show strong differences in the descent style, as shown in

the previous section. This leads to severe differences in the projected frontal

area, as can be observed in table 5 from the change in the particle nutation
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N

a/D 4 5 6 7 8 9 10

0.03 2048 2050 2041 2136 2173 2228 2234

0.05 2091 2156 2206 2277 2245 2329 2360

0.1 2279 2314 2399 2496 2473 2448 2546

0.15 2441 2513 2665 2632 2738 2794 2878

0.2 2540 2716 2725 2784 2893 3088 3165

Table 4: Particle Reynolds number (Re) based on the diameter of the circumscribed disk

and descent velocity.

angle, θ. Thus, this definition of the drag coefficient, can be understood as

a measure of how efficient these geometries are to descend. Here, the Drag

Coefficient based on the projected area is obtained as

CD =
2meffg

ApV 2
z

(1)

where meff = mp−ρV is the apparent weight (buoyancy balanced) measured

prior to the experiments, g is the gravity, Vz is obtained as the mean descent

velocity for all particle realizations and Ap is the area of the particle projected

to the descent direction. Since the disk is used as a reference particle, the

Drag Coefficient of the disk is used to make this parameter dimensionless.

Figure 7 b) shows the variation in Drag Coefficient (ĈD =
CDp

CDd

) as a function

of the particle number of peaks (N). The variation in the Drag Coefficient

across the entire range of particle geometries becomes more pronounced as

the a/D ratio increases, maintaining the trends discussed in the particle de-

scent velocity.
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Figure 6: Phase diagram spanned by I∗ and Re. Solid lines correspond to the diagram

originally defined in Field et al. (1997) and broken lines to the subregimes found in Zhong

et al. (2011). The circle corresponds to the disk (Re ≈ 1800, I∗ ≈ 3.4103) and the crosses

to the disk-like particles in the present work.

We believe that small a/D ratios are capable of changing the scale, and

hence the lifetime of the turbulent structures present in the wake of disks,

reducing the suction effect over the top surface of the particle and therefore

increasing the particle descent velocity. In contrast, particles with large a/D

ratios and small number of peaks (N = 4) tend to move in the X − Y plane

with a given peak facing the planar motion, with a pair of peaks to each

side at almost 90◦ with respect to the incoming flow, as shown in figure 8.

This configuration clearly favours lift production and therefore the particle

descent velocity is reduced. As the number of peaks around the perimeter

increases this particle-incoming flow configuration is gradually lost. We be-
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N

a/D 4 5 6 7 8 9 10

0.03 36 36 36 35 34 35 33

0.05 36 35 35 34 35 34 33

0.1 31 31 30 30 30 30 30

0.15 27 27 26 26 22 23 22

0.2 27 26 22 20 16 11 11

Table 5: Mean of the local maxima of the nutation angle, θ, of the particles during the

fall. θ in degrees.

lieve that the increase in the number of large peaks around the perimeter

leads to the formation and shedding of complex vortical structures around

the periphery of the particle with no preferential configuration. Thus, the

particle descends following a more stable path with small inclination angles

relative to the descent direction, an almost uniform descent velocity and a

severe reduction of the X − Y footprint. This tendency can be observed in

the Drag Coefficient ratio plotted in figure 7 b), where particles belonging

to the a/D = 0.2 family exhibit a strong drag reduction as N increases, ex-

ceeding the reduction observed all other particles for N > 8.

Figure 9 a) depicts the evolution of the instantaneous descent velocity (vz)

of planar particles with the same number of peaks (N = 10) but increasing

the amplitude of the peaks from a/D = 0.03 to a/D = 0.2. The differences

observed in the peak to peak velocity for individual trajectories in figure 9
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Figure 7: a) Relative mean descent velocity and b) Drag Coefficient ratio (ĈD) based on

the mean descent velocity (Vz) and particle projected area (Ap). Red and blue fitted lines

show the trends for the particles belonging to the families of most (a/D = 0.03) and least

(a/D = 0.2) circular particles respectively.

a) are consistent for all realizations, and this can be seen in the standard

deviation of the descent velocity for all individual trajectories detailed in

figure 9 b). The standard deviation of the descent velocity of each trajectory

is obtained from the trajectory section corresponding to 7D from the release

point to 2D from the bottom. Then, a unique value of the standard deviation

per particle geometry is obtained as the mean of the 50 realizations. The

standard deviation of the descent velocity is shown relative to the measured

for the disk (σ̃Vz = σVz/σVzdisk). The standard deviation of the descent

velocity for particles with small a/D is marginally higher than the one found

for disks. This is also consistent with the values shown for the mean descent

velocity; both of these families show mostly quasi planar zig-zag motion with

slow and fast events (as in figure 4 a)) but with a higher mean descent
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VIEW A-A

A A

Figure 8: Sketch of a reconstructed 3D trajectory of a N = 4, a/D = 0.2 particle at three

different locations during the fall. The sketch illustrates the particle describing a wide

helical fall with a given peak orientated towards the X − Y particle motion.

velocity and therefore we also expect the oscillations about the mean to be

stronger. In contrast, for a/D > 0.1 the descent style resembles more to the

rhodonea curve shown in figure 5 b) with a descent becoming more steady

as both a/D and N increases. Interestingly, for families of particles with

a/D > 0.1 the standard deviation of particles with N = 4 becomes smaller

as the former ratio increases. We observe a change in the descent style for

these four-peaks particles, which describe also a spiral-like paths but with

greater X − Y footprint than for the case of high N number. We believe

these particles represent a special geometry case, for which the production

of lift dominates the settling dynamics.
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Figure 9: a) Evolution of the descent velocity of different particles with N=10 during

specific realizations. From top to bottom: a/D = 0.03, a/D = 0.05, a/D = 0.1, a/D =

0.15 and a/D = 0.2. b) Standard deviation of the descent velocity along individual

trajectories of all particles tested relative to the reference disk.
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Figure 10: Drag coefficient relative to the reference particle based on the mean projected

area during descent as a function of the isoperimetric quotient Q and relative peak ampli-

tude a/D. Broken lines are fitted to the experimetal data of particles belonging to each

a/D family following equation 2.
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4. Vertical Drag correction for planar irregular particles

There are a large number of empirical correlations for predicting the drag

coefficient of non-spherical particles associated with different ranges of va-

lidity and accuracy in the literature, as in Bagheri and Bonadonna (2016),

Mando and Rosendahl (2010), Holzer and Sommerfeld (2008), Loth (2008),

Cong et al. (2004), Leith (1987) and Haider and Levenspiel (1983) among

others. However, in most studies the shape descriptor used to characterize

particles is the sphericity. Sphericity ψ is defined as the ratio of surface area

of a sphere with equivalent volume as the particle to the true surface area of

the particle, ψ = πd2eq/Ap. As a result, particles with very different geometry

can have the same value of sphericity, and this is in fact what occurs for all

particles in this study, therefore the need of an alternative empirical corre-

lation to characterize the settling dynamics of these particles. Although the

isoperimetric quotient has a non-unique value for the particles in this study,

particles with the same a/D ratio do not have the same isoperimetric mag-

nitude. Therefore, Q is used for the aforementioned purpose. As described

in the previous sections, the geometry of the perimeter of planar irregular

particles is directly linked to differences in the particle falling style and Drag

Coefficient. In figure 10, the mean Drag Coefficient relative to the equiva-

lent disk ĈD is shown as a function of the particle circularity (here defined

by the isoperimetric quotient Q) and the relative amplitude of the peaks

(a/D). Experimental data of particles belonging to different a/D families

show distinctive linear trends as the isoperimetric quotient decreases. These

trends are represented with straight lines on the ĈD −Q−1 domain, defined

by equation 2, where the slope of the linear trends is defined as a function of
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the relative amplitude of the peaks (a/D).

ĈD = m(a/D)Q−1 + 1.3 (2)

where m(a/D) is defined as

m(a/D) = 0.204 + 0.17 log(a/D) (3)

Thus, the mean Drag Coefficient of a planar irregular particle relative to the

equivalent disk can be approximated once the a/D ratio and the isoperimet-

ric quotient Q are known.

Similarly, the fluctuations of the Drag Coefficient can be also captured

by considering the complete range of values of the particle descent velocity

along trajectories. Thus, one can predict the particle behaviour using the

mean descent velocity (Ṽz) and the standard deviation of the descent velocity

(σ̃vz) from figures 7 b) and 9 b) to construct quasi-periodic signals.

5. Conclusions

This work investigated the effect of the particle edge waviness on the free

falling motion of planar particles. The reference particle was chosen to be

a circular disk that is known to exhibit a ‘planar zig-zag’ motion (for the

Re− I∗ values chosen). The Galileo number of the different planar particles

was held a constant and the isoperimetric quotient (a measure of particle

circularity) was varied by altering edge waviness of the particle to different

wave amplitude (a/D) and number of oscillations (N) around the perimeter.

Disks and other disk-like families of particles with small a/D ratios were

found to describe ‘planar zig-zag’ trajectories most of the time and this agrees
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well with their location on the Re − I∗ regime map. This planar motion

is characterised by a gliding phase followed by a turning phase. Particles

belonging to families with large a/D ratios but only a few peaks (N = 4

and 5) also show a strong tendency to glide but with a given peak facing

the horizontal motion. The pair of peaks to each side are at almost 90o with

respect to the incoming flow, clearly favouring lift production and therefore

the particle descent velocity is reduced.

As the number of peaks around the perimeter increases the lift production

configuration is gradually lost. We believe that the presence of large peaks

around the perimeter leads the formation and shedding of complex turbulent

structures around the periphery of the particle with no preferential configu-

ration. Thus, the particle descends following a more stable path with small

inclination angles relative to the descent direction, an almost uniform descent

velocity and a severe reduction of the X − Y footprint. It is important to

mention that although these trajectories appear to be qualitatively similar to

the ones observed for disks with low inertia, as in Lee et al. (2013), the vortex

shedding mechanisms might severely differ. While long helical vortices are

shed continuously from the disk edge, we expect to observe a more complex

wake behind these irregular particles that might reduce lift production and

therefore enhance particle descent.

These falling styles are shown to be directly linked to the particle ra-

dial distribution, mean descent velocity and Drag Coefficient. The radial

distribution of particles from the same a/D family collapses when the parti-

cle perimeter and isoperimetric quotient are used to make particle dispersion

non-dimensional. On the other hand, Drag Coefficient based on the projected
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area of planar particles reduces with reducing the isoperimetric quotient for

any given a/D family of particles, with the family a/D = 0.2 having more

than 15% speed-specific drag reduction for N = 9 and 10.

We propose an empirical correlation for the mean Drag Coefficient of these

particles based on the isoperimetric quotient (Q) and the relative amplitude

of the peaks around the perimeter (a/D) and show that the fluctuations in

drag are well captured using normal distribution functions.

We believe that with information such as this, it is possible to simulate

the vertical trajectory content of these particles using Monte Carlo type

simulations with Lagrangian points, as discussed in Zastawny et al. (2012),

and also that this same approach can be used to obtain a prediction of the

speed-specific drag and drag coefficient of any planar irregular particle whose

equivalent disk lies in the fluttering region. Similarly, data from the particle

radial dispersion can also be used to predict the X − Y particle behaviour

during the descent.
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