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Abstract

Land cover maps increasingly underlie research into socioeconomic and environmental patterns

and processes, including global change. It is known that map errors impact our understanding

of these phenomena, but quantifying these impacts is difficult because many areas lack ade-

quate reference data. We used a highly accurate, high-resolution map of SouthAfrican cropland

to assess 1) the magnitude of error in several current generation land cover maps, and 2) how

these errors propagate in downstream studies. We first quantified pixel-wise errors in the crop-

land classes of four widely used land cover maps at resolutions ranging from 1 to 100 km,

then calculated errors in several representative “downstream” (map-based) analyses, including

assessments of vegetative carbon stocks, evapotranspiration, crop production, and household

food security. We also evaluated maps’ spatial accuracy based on how precisely they could be

used to locate specific landscape features. We found that cropland maps can have substantial bi-

ases and poor accuracy at all resolutions (e.g. at 1 km resolution, up to∼45% underestimates of

cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up

to 15% underestimates and nearly 20%MAE). National-scale maps derived from higher resolu-

tion imagery were most accurate, followed by multi-map fusion products. Constraining mapped

values to match survey statistics may be effective at minimizing bias (provided the statistics are

accurate). Errors in downstream analyses could be substantially amplified or muted, depending

on the values ascribed to cropland-adjacent covers (e.g. with forest as adjacent cover, carbon

map error was 200-500% greater than in input cropland maps, but ∼40% less for sparse cover

types). The average locational error was 6 km (600%). These findings provide deeper insight

into the causes and potential consequences of land cover map error, and suggest several recom-

mendations for land cover map users.



Introduction1

The functioning of the Earth System is fundamentally connected to the characteristics of land2

cover (Lambin, 1997). Our increasing modification of the Earth’s surface (Lambin et al., 2003)3

means that socioeconomic and physical processes increasingly interact through land cover. To4

fully understand these processes, it is essential to have an accurate understanding of the nature5

and distribution of land cover (Verburg et al., 2011). This importance is understood by a growing6

number of social, economic, and natural scientists, who are using land cover data to advance7

understanding of food security (Lark et al., 2015; Licker et al., 2010;Wright &Wimberly, 2013),8

carbon cycling (Asner et al., 2010; Gaveau et al., 2014), biodiversity loss (Luoto et al., 2004;9

Newbold et al., 2015), demographic shifts (Linard et al., 2010), and other important facets of10

Earth System processes.11

The value of the insights resulting from such studies depends upon the veracity of their under-12

lying land cover data (Verburg et al., 2011), much as a house requires a solid foundation in order13

to remain standing. Unfortunately, the evidence indicates that this house has shaky foundations14

(e.g. Fritz et al., 2011a). The reason is that land cover data can only practically be derived from15

satellite imaging, which has several constraints that propagate mapping errors. First, in many16

regions the characteristic scales of cover features are smaller than the sensor resolution (e.g.17

smallholders’ fields Debats et al., 2016; Jain et al., 2013b; Ozdogan &Woodcock, 2006), or the18

covers of interest are spectrally indistinct from neighboring ones (Fritz & See, 2008; Sweeney19

et al., 2015), which are factors that increase mapping complexity (Yu et al., 2014). Second, the20

act of defining a cover class can cause error, in that selected classes may have highly diverse21

spectral properties (e.g. croplands or savannas; Debats et al., 2016; Fritz & See, 2008; Verburg22

et al., 2011) and can thus be difficult for the classifier to distinguish. Discretizing a continuous23

cover type (e.g. dividing a forest into different canopy cover classes) can promote classification24

error, particularly near class boundaries (Foody, 2002), as well as confusion about the actual25

extent of the cover type (Sexton et al., 2015). Furthermore, class definitions often vary between26

maps, complicating inter-comparison (Fritz & See, 2008; Kuemmerle et al., 2013). Third, land27

cover maps are often used to detect changes (e.g. Gross et al., 2013), but seasonal variability28

and cover changes can be easily confused. Given these multiple sources of error, land cover29

maps are often inaccurate and disagree widely between products, particularly in the world’s30
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most rapidly developing regions (Fritz et al., 2010, 2013, 2011b). These errors limit our ability31

to obtain granular, mechanistic understanding of processes related to global change.32

These problems with land cover products are known (Fritz et al., 2015, 2010, 2011b; See33

et al., 2015; Verburg et al., 2011), and there are a variety of map improvement efforts underway34

(e.g. Estes et al., 2016a; Fritz et al., 2012, 2015). Likewise, the importance of assessing the35

accuracy of land cover maps is increasingly recognized, and there are well-developed, best-36

practice guidelines for gathering and using ground-truth samples to robustly quantify map error37

(Foody, 2002; Olofsson et al., 2014, 2013; Stehman et al., 2012). Because comprehensive,38

spatially representative ground truth data are typically unavailable for rapidly changing regions39

(Kuemmerle et al., 2013; See et al., 2015), what remains an open question is exactly how much40

themaps researchers typically use deviate from actual land cover, how this affects analyses based41

on these maps, and how this in turn impacts our understanding of processes being studied. Our42

current understanding of map accuracy over such areas is often based on scarce information or43

top-down ”sanity checks” made in comparison to aggregated survey data (Larsen et al., 2015;44

Yu et al., 2014).45

Since it is difficult to fully quantify map errors, it is even more challenging to gauge their46

impact on downstream analyses, where there is substantial risk of error amplification (Kuem-47

merle et al., 2013). Although previous studies have examined how map errors propagate, these48

are primarily assessed using either simulated errors, relative differences in existing land cover49

maps, or ground validation data covering relatively small areas (e.g. Ge et al., 2007; Linard50

et al., 2010; Quaife et al., 2008; Schmit et al., 2006; Tuanmu & Jetz, 2014).51

Fortunately, the recent, explosive growth in public and private initiatives to develop new52

Earth observing capabilities, which range from small drones1 to new high resolution satellite53

arrays (Drusch et al., 2012; Hand, 2015) and better mapping methods (Debats et al., 2016; Estes54

et al., 2013; Fritz et al., 2012), are providing means to more comprehensively interrogate the55

accuracy and biases in land cover products that have become commonplace in global change56

research, and which often underpin policy decisions (Searchinger et al., 2015).57

In this study, we take advantage of this recent growth in data to address the call to more thor-58

oughly assess errors in land cover maps (Kuemmerle et al., 2013; Olofsson et al., 2014, 2012),59

and further examine how these errors might impact our understanding of socioeconomic and60

1e.g. 3DRobotics, DJIA
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environmental conditions. Using a unique, high-resolution, high-quality map of South African61

croplands, which was created by expert mappers delineating individual fields visible within high62

resolution imagery, we conduct spatially comprehensive, bottom-up analyses to answer the fol-63

lowing two questions: 1)What is the extent of error in several widely used land cover products?;64

2) How do these errors propagate through downstream biophysical and socioeconomic analyses?65

The answers to these questions provide important insights into how cropland datasets can66

influence our understanding socioeconomic and environmental processes in South Africa, as67

well as more broadly throughout sub-Saharan Africa (SSA), where our current knowledge of68

the extent and distribution of cropland relies heavily on land cover maps (Fritz et al., 2010; See69

et al., 2015).70

Materials and Methods71

Datasets72

In the late 2000s, the South African government commissioned a cropland map that was made73

by manually interpreting and digitizing fields in high resolution satellite imagery (Fourie, 2009).74

The resulting vectorized field boundaries provide unique, highly accurate data on field sizes and75

distribution for the 2009-2011 period. A previous study evaluated the accuracy of this dataset76

(Estes et al., 2016a), using a visual assessment of cropland presence/absence in high resolution77

satellite images within 15,225 individual 4 ha plots (25 sub-plots within 609 1 km2 grids) to78

evaluate the ability of the vector boundaries to distinguish crop fields from other cover types.79

The results showed these data to be 97% percent accurate, with user’s accuracies of 94% and80

98% for the cropland and non-cropland classes, and producer’s accuracies of 84 and 99% (see81

SI for more description, and Estes et al., 2016a).82

We used these vector data as a reference for evaluating four land cover products represen-83

tative of those commonly used in global change studies and related areas of research (see the84

SI for an illustration of all five datasets in their original form). The first was South Africa’s85

30 m resolution 2009 National land cover map (SA-LC; SANBI, 2009), which is typical of the86

higher-resolution, Landsat-based maps that are created for individual countries (e.g. Fry et al.,87

2009). Although global-scale, Landsat-derived maps have recently become available (Chen88

et al., 2015), their reported accuracy for cultivated areas is lower (80-85% user’s accuracy) than89
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those of more intensive, national to sub-national products (e.g. 90% user’s accuracy Sweeney90

et al., 2015). The second and third were respectively the 300 m GlobCover 2009 (Arino et al.,91

2012) and 500 m resolution MODIS land cover (Friedl et al., 2010) data (for 2011, the final92

year of the reference interval), which are widely used global-scale products (e.g. Gross et al.,93

2013; Shackelford et al., 2015). The fourth dataset was the 1 km Global Land Cover Share94

(GLC-Share; Latham et al., 2014), which harmonizes and merges the classes of the best avail-95

able high and medium resolution products for each country/region, providing separate maps for96

cropland and 10 other thematic classes. Among the datasets included in the GLC-Share’s crop-97

land map is the GeoWiki cropland percentage map (Fritz et al., 2015; Waldner et al., 2016),98

which provided an important input to GLC-Share’s cropland layer (Latham et al., 2014). The99

GeoWiki map was also constructed using fusion techniques to merge multiple cropland datasets100

(including SA-LC, MODIS, and GlobCover), but further calibrated to match cropland areas re-101

ported in national agricultural statistics, and validated by crowdsourced volunteers (Fritz et al.,102

2015). GLC-Share and the multi-map fusion methodology underlying it (and the GeoWiki map103

it incorporates) represents a state of the art approach for mapping agricultural land cover. Since104

GLC-Share provides a continuous value of land cover (cropland percentage), which cannot be105

feasibly converted to a categorical value, we converted all other datasets, including the reference106

vectors, into comparable 1 km gridded cropland percentages.107

To convert the reference data to percentages, we intersected the field boundary vectors with108

a 1 km grid and calculated the percent of each cell covered by fields. In the resulting grid, we109

masked out areas classified as communal farmland (18.7% of cropland area in the reference110

data), because only their outer perimeters were digitized (Fourie, 2009), which risked overesti-111

mating cropland extent because those vectors enclosed uncropped inter-field areas. We also ex-112

cluded areas under permanent tree crops, sugarcane plantations, and commercially afforestation,113

because these classes were not common to all five cropland datasets. To remove permanent tree114

crops (3.1% of cropland area), we masked out reference vectors labeled as such, and to exclude115

the other two cover types, which are not included in the reference data, we relied on information116

from two other datasets. We used a 20 m resolution landcover map of KwaZulu-Natal to mask117

out the primarily coastal sugarcane farms (93-100% user’s and 76-98% producer’s accuracy118

for sugarcane classes; GeoTerraImage, 2013), and used the SA-LC dataset to filter out areas of119
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commercial afforestation, which are mainly located in South Africa’s montane areas and do not120

overlap with arable croplands. In both cases, we aggregated these classes, and then masked out121

any 1 km pixels that had>0% cover of each class. The resulting masked reference grid covered122

90% of South Africa (1,081,000 km2), of which 104,304 km2 was cropland.123

We extracted the cropland classes from SA-LC, MODIS, and GlobCover, and converted124

these into percent cropland estimates at 1 km resolution. Both MODIS and GlobCover had125

mixed/mosaic classes of cropland and other covers, thus we followed Fritz et al. (2015) in cre-126

ating upper, mean, and lower cropland estimates from these classes to produce three versions127

of the gridded percentages. We used the mean map for the main analysis, but estimated error128

variability using all three versions (SI).129

Assessment of cropland map errors130

We first evaluated the quality of the land cover product-derived percent croplandmaps (hereafter131

referred to as the “test maps”). Instead of the standard confusion matrix-based accuracy metrics132

(Olofsson et al., 2014, 2013), which apply to categorical land cover maps, we assessed the bias133

and accuracy of the test maps based on the gridded residuals that resulted when each test map134

was subtracted from the reference map. Here bias is the mean residual value, weighted by the135

density of reference cropland (to condition the analysis on cropland prevalence; see the SI for136

an assessment of error using other, non-weighted, variants of these measures), and accuracy is137

the mean of the absolute values of residuals (also weighted by cropland density), thus lower138

values signify higher accuracy. We calculated these metrics for the original 1 km resolution,139

and for maps that were further aggregated to 5, 10, 25, 50, and 100 km resolutions, in order to140

evaluate how bias and accuracy changes with observational grain. For these aggregated maps,141

we applied a further weight in calculating error metrics, the number of pixels contributing to142

each aggregated pixel, to prevent pixels close to national boundaries or where non-target cover143

types were masked out from having outsize influence on the statistics.144

We also assessed how land cover pattern impacts map performance by modeling the cor-145

relation between map accuracy and cropland density. To evaluate this relationship, we used146

magisterial district boundaries (n=354, mean area=3,445 km2; SI) to provide a landscape-scaled147

unit for calculating characteristic cover density. We filtered out pixels with <0.05% (0.5 ha)148

cropland, to prevent the much larger areas of non-agricultural districts from dominating the149
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signal, extracted the absolute values of test map errors and corresponding reference cropland150

percentages, and calculated their district-wide means. The relationship between mean absolute151

error (response) and cropland density (predictor) was then modeled using a generalized additive152

model (Hastie & Tibshirani, 1990), with each district weighted by its number of agricultural153

pixels (Wood, 2001). To account for potential spatial autocorrelation, we fit a two-dimensional154

smoothing spline to the coordinates of each district’s centroid.155

Impact of map error on downstream analyses156

We then used the reference and test maps to conduct four analyses typical of global change157

research: 1) estimation of carbon stocks, 2) simulation of evapotranspiration, 3) disaggregation158

of crop yield and production, and 4) simulating household dynamics using an agent-basedmodel.159

The first and third analyses were relatively simple, in that the variable(s) of interest were mapped160

onto land cover using empirical relationships. The second and fourth relied on more complex161

numerical methods, where land cover was one of several variables needed to run each model.162

For the simpler analyses, we examined how results were influenced by map aggregation, while163

for the more complex cases, our assessments were confined to each numerical model’s standard164

output resolution.165

Estimating vegetative carbon stocks166

To understand the carbon cycle and climate forcing due to land cover change, it is important167

to have accurate, high resolution maps of vegetative carbon stocks (Searchinger et al., 2015).168

One widely used vegetative carbon dataset is that of (Ruesch & Gibbs, 2008), who mapped169

estimated carbon density values for different vegetation types to the classes of a global land170

cover product. The resulting data were intended to provide a baseline for climate policy by171

the Intergovernmental Panel on Climate Change (IPCC), as well as input to other land use and172

biogeochemical analyses (Ruesch & Gibbs, 2008).173

We followed this method to create vegetative carbon maps for SouthAfrica. Since our crop-174

land percentage map provided no information on surrounding cover, we developed several vari-175

ants representing potential surrounding cover types by assigning the average carbon densities176

of five biomes (forest, secondary forest, shrubland, grassland, and sparse vegetation; Ruesch &177

Gibbs, 2008)) to the non-cropland fraction of our maps. We multiplied cropland densities by178
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cropland fractions and added these to each of the five other densities multiplied by the residual179

non-cropland fractions to create five different carbon density maps. We aggregated each carbon180

map up to 5, 10, 25, 50, and 100 km resolutions for scaling comparisons (SI). To assess carbon181

estimation error, we subtracted test map-derived carbon maps from those based on the reference182

map, and calculated bias and accuracy scores using the method described for the cropland maps183

(see previous section).184

Although this analysis ascribed hypothetical carbon densities to non-cropland areas, the se-185

lected values represent the range in potential carbon stocks in landscapes containing arable agri-186

culture (the method for calculating error metrics only affects pixels containing cropland; pixels187

without cropland do not influence the results), which allowed us to counterfactually investigate188

how carbon estimates are affected by the interaction of i) test map errors and ii) the properties189

of neighboring cover types.190

Estimating evapotranspiration191

Accurate estimation of hydrological fluxes is critical to understanding how land-atmosphere in-192

teractions impact the climate system and runoff (Liang et al., 1994). Land surface hydrological193

models are used to simulate these processes, and depend on land cover maps to provide infor-194

mation on the characteristics of vegetation and other materials covering the surface, as these195

govern the rates of runoff, infiltration, and evapotranspiration. We used the Variable Infiltra-196

tion Capacity (VIC; Liang et al., 1994) land surface hydrology model run with the Africa Flood197

and Drought Monitor’s meteorological data (Sheffield et al., 2013) to produce monthly grid-198

ded evapotranspiration estimates for South Africa for the years 1979-2010 at 25 km resolution.199

VIC’s land cover scheme (derived from AVHRR) provides values for leaf area index (LAI),200

plant rooting depth, aerodynamic roughness, and several other variables that the model uses to201

partition water vapor fluxes into their evaporative and transpirative components. We adjusted202

VIC’s base map so that its cropland fractions matched those of the 25 km reference and test203

maps (each reprojected and resampled to VIC’s 0.25◦ resolution), and correspondingly altered204

the fractions of non-cropland cover types to accommodate the adjusted cropland fractions. We205

then ran one instance of VIC for each of the five land cover schemes, and compared the mean206

annual ET produced by the reference map variant with those from the test maps to assess the207

degree to which map errors impact evapotranspiration values.208
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Disaggregating crop yield and production statistics209

The spatial variability of crop yield and production is critical for understanding food security,210

trade, and the potential for agricultural expansion and intensification (Licker et al., 2010; Mon-211

freda et al., 2008). The most reliable source of such data are national to sub-national agricultural212

statistics, often available only at relatively coarse-scaled administrative boundaries. To obtain213

higher spatial resolutions, disaggregation of these statistics using gridded land cover data is214

common (Monfreda et al., 2008; Ramankutty et al., 2008; Schierhorn et al., 2013).215

We used these methods to first disaggregate the harvested area for maize (South Africa’s216

largest crop; Estes et al., 2013) onto our cropland maps, followed by yields, which were as-217

signed to cells having harvested areas greater than zero. The first step in this process entails218

adjusting cropland percentages so that their totals match census-derived cropland area estimates219

(Ramankutty et al., 2008; Schierhorn et al., 2013). In place of census statistics, we used the ref-220

erence map to calculate total cropland areas for SouthAfrica’s nine provinces, then adjusted the221

pixel-wise cropland percentages in the four test maps so that their province-wise sums matched222

these totals (SI).We then followedMonfreda et al.’s (2008) procedure for disaggregating planted223

area and yields onto the reference and adjusted test maps. The necessary statistics were obtained224

frommagisterial district-level agricultural censuses conducted for the year 2007 (Statistics South225

Africa, 2007).226

We then used these two layers to calculate maize production, and further aggregated the yield227

and production grids to 5, 10, 25, 50, and 100 km resolutions before quantifying the bias and228

accuracy of each test map’s yield and production values. In this case, we could not convert cell-229

wise errors into percentages of the reference map values (because many cells had zero values230

for one map but not the other), so we calculated bias and accuracy from the map residuals and231

then normalized their values to the reference map means.232

Agent-based simulation of household food security233

Spatially-explicit agent-based model (ABMs) are frequently employed to understand land use234

decision-making, to analyze socio-ecological system dynamics, and to test policy impact (Berger235

& Schreinemachers, 2006). To obtain robust insights, it is important to calibrate an ABM to236

empirical data describing the characteristics of land and land users, so that the model realistically237

represents the social and biophysical features of the study region (Berger & Schreinemachers,238
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2006).239

In our example, we used anABM of household food security that simulates food production240

by individual farming households (the agents; Chen et al., 2013). The model (described in more241

detail in the SI) is initialized so that each household is allocated a share of cropland, based on242

household number and cropland area estimated derived from survey statistics. Annual household243

crop production (maize) is simulated as a function of its field area, local weather, soil properties,244

and management actions, all of which can vary between households. The initialization process245

iteratively assigns households to the landscape as a function of neighbor and cropland proximity,246

ensuring that households are grouped into communities and that their fields are within a realistic247

proximity. To achieve this, the model first randomly places 100 households onto the simulated248

landscape, allocating each household its required cropland pixels, which must be within 1.5 km249

of the household. This process is iterated until all households are assigned cropland, or all avail-250

able cropland is allocated. The model is considered to be well-calibrated when all households251

are allocated cropland, and all cropland is allocated to households.252

Like many spatial ABMs, the model is computationally intensive and requires high spatial253

resolution to match the scale of individual fields, and therefore applied to smaller regions (e.g.254

districts). To meet these computational needs, we selected four contiguous magisterial districts255

(1,037-1,329 km2) in eastern South Africa with similar climate and 28-45% of cropland cover-256

age. To create cropland surfaces for each district, we disaggregated all five cropland maps into257

100 m binary cropland/non-cropland cover maps, and then ran the model separately for each258

district and with each cropland map (20 simulations total). To examine how map errors im-259

pacted the land allocation process and household food production estimates, we calculated three260

variables: the percent of unallocated cropland, land deficit, and food deficit, which respectively261

represent: 1) the share of district total cropland that was not assigned to any household (a mea-262

sure of the model’s effectiveness in matching households to available cropland); 2) the total263

area of cropland that should have been allocated to households in each district but wasn’t (due264

to mismatches between the cropland map and the survey-based estimates of total cropland hold-265

ings); 3) the percentage shortfall in the average amount of food production that should have been266

produced by each household but wasn’t because of the land deficit.267
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The impact of map error on identifying specific locations268

The bias and accuracy metrics reflect the degree to which quantitative estimates are influenced269

by land cover map errors. However, land cover data may also be used to identify specific loca-270

tions (e.g. areas of high agricultural potential and low ecological cost; Estes et al., 2016b), as271

opposed to general quantities. It is therefore important to also assess how map errors can impact272

the spatial accuracy of maps, or the ability to accurately locate specific features of interest. To273

evaluate this, we calculated the mean Euclidean distance (in km) between pixels representing274

a specific feature within the test maps relative to their nearest neighboring pixels representing275

the same feature in the reference map. The features in this analysis were simply those locations276

falling within the upper deciles of a) cropland cover, b) carbon density (based on the average277

carbon density of non-crop vegetation types), and c) crop yield. We confined this analysis to the278

1 km resolution maps, as higher spatial resolutions are typically required when maps are used279

to identify locations rather than estimating quantities (e.g. Estes et al., 2016b).280

Results281

Cropland map errors282

Our 1 km reference cropland map indicated that crop fields covered 104,304 km2 (nearly 10%)283

of the total study area in the 2009-2011 time period, with corresponding cropland area estimates284

of 131,390, 82,358, 77,090, and 110,272 km2 resulting from the SA-LC, GlobCover, MODIS,285

and GLC-Share maps, respectively. Cropland area estimates from both the reference and test286

maps were constant for all levels of aggregation.287

Subtracting each test map from the reference maps created pixel-wise residuals, where neg-288

ative and positive values respectively represent overestimates and underestimates by the test289

map (Fig. 1a). The most pronounced errors were in the MODIS and GlobCover maps, which290

showed large positive residuals in the center of the country where cropland is most concentrated291

(blue areas in Fig. 1a), and negative residuals (red areas) along the eastern and northern margins.292

These patterns translated into substantial map bias (Fig. 1b), with GlobCover andMODIS mean293

bias exceeding 45% and 25% respectively at 1 km resolution, meaning that each map tends to294

underestimate cropland by that amount at that resolution. This bias declined with each level of295

map aggregation, being reduced to nearly 15% for GlobCover and 5% for MODIS at 100 km.296
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The magnitude of mean absolute error (MAE) was somewhat higher in all cases. The GLC-297

Share map, in contrast, was the least biased overall, showing just a ∼7% bias at 1 km and near298

0 for all other scales of aggregation, although its accuracy (23% MAE) was only half as good299

as SA-LC’s at 1 km (11% MAE), which despite its uniform overestimation bias (Fig. 1a) was300

the most accurate map at aggregation scales < 10km. Above this, GLC-Share became slightly301

more accurate, having <5% MAE at 100 km resolution. The reason GLC-Share had relatively302

poor accuracy at 1 km resolution was due to the highly heterogeneous error pattern, which traded303

between positive and negative residuals over short distances, thereby inflatingMAE at this scale.304

(a) (b)

SA
−L

C

1 km 25 km 50 km 100 km

G
lo

bC
ov

er
M

O
D

IS
G

LC
−S

ha
re

−100

−75

−50

−25

−10

−5 −1 1 5 10 25 50 75 100

% Difference 1 5 10 25 50 100
−30

−25

−20

−15

−10

−5

0

5

10

15

20

25

30

35

40

45

50

Resolution (km)

Bi
as

/M
AE

 (%
)

SA−LC
GlobCover
MODIS
GLC−Share

MAE
Bias

Figure 1: (a) Errors in the percent cropland estimates resulting from each of the four test maps

relative to the reference map at different scale of pixel aggregation. Rows indicate the test map

being assessed (by subtraction from the reference map), while columns refer to resolution of

aggregation. White indicates areas where areas under communal farmlands or permanent tree

crops were removed from analysis. (b) The bias (mean error) and accuracy (mean absolute error

[MAE]) of each test map at each scale of aggregation, weighted by the percentage cropland

in each cell of the reference map. Bias estimates are indicated by the semi-transparent bars,

accuracy (lower is more accurate) by the solid bars, with bar colors coded to specific cropland

maps.

The generalized additive model revealed primarily non-linear relationships between district305

MAE and cropland density that were best approximated by a first order polynomial function306

of cropland density (for all four cropland maps: p<0.001 on both terms of quadratic and on307

smoothing function applied to district centroids; >85% deviance explained). Map accuracy308

was typically lowest at intermediate levels of cropland density (50-60% cover) for all but the309

GlobCover map (where accuracy continues to decline with cropland cover), and was highest310
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where the landscape was dominated either by cropland or by another type (Fig. 2). In other311

words, accuracy was lowest when cropland cover was mixed evenly with other cover types.312

GlobCover’s accuracy continued to decrease with cropland density because the dominant agri-313

cultural cover class contributing to the test map was defined as 50-70% crops mingled with other314

vegetation, thus the maximum percentage was constrained by this mixture range.315
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Figure 2: The relationship between map accuracy (the mean absolute error) in test maps and the

actual cropland cover within agricultural landscapes (reference map pixels having>0.5% crop-

land), here defined by the boundaries of magisterial districts (n = 345), as fit with a generalized

additive model. Prediction curves are color-coded to the different test maps, with the solid line

indicating predicted absolute bias, and the lighter shading the standard error of the coefficients.

The impact of map error on downstream analyses316

Carbon estimates317

The spatial patterns of test map errors transmitted into substantial carbon estimation errors, with318

the sign varying as a function of the density of carbon adjacent to croplands (SI). Where crop-319

land was underestimated and the surrounding cover type was more carbon dense than cropland,320

carbon density was overestimated, but when the cover type was less dense than croplands (e.g.321

sparse vegetation), then carbon density was underestimated. The inverse was true where crop-322

land was overestimated.323

The magnitude of carbon errors varied as a function of the carbon density of surrounding324

cover, as demonstrated by the bias statistics (Fig. 3). Bias was near zero when grassland was the325

adjacent cover type (SI), as its carbon density is nearly the same as cropland. However, when326

forest was adjacent then bias was a three- to five-fold multiple of cropland map bias (Fig. 1b).327
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At the most extreme, GlobCover’s bias was -276% at 1 km, but even SA-LC and GLC-Share328

had biases of 22% and -46%, respectively. Bias could be substantial even for the least carbon329

dense vegetation type (sparse), as evidenced by the 15-25% mean error at 1 km for MODIS and330

GlobCover under this class. The mean bias across the different potential adjacent vegetation331

classes ranged between -20 for GLC-Share and -123% for GlobCover at 1 km (with MODIS332

in between these), while SA-LC’s average bias was 11%. Biases declined fairly rapidly with333

aggregation, with all datasets having an average (across cover types) bias magnitude of <10%334

at ≥25 km of aggregation, except for GlobCover, which was -12% at 100 km (SI). As with335

cropland percentages, GLC-Share produced the least biased carbon density estimates above 1336

km resolution.337
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Figure 3: Biases and accuracies (mean absolute errors) of carbon densities derived from crop-

land maps, calculated as percents relative to the reference map. Bias estimates (represented by

symbols) fall within the semi-transparent floating bars, while accuracies are contained in the

solid bars. Bar colors are coded to specific cropland map, symbols indicate which cover type

was used to calculate cropland-adjacent carbon density. The bar represents the mean biases cal-

culated across each of the 5 cover types. Shrubland and grassland bias values were near zero,

while secondary forest values were close to forest values, and thus these are not shown for dis-

play clarity (see SI for all values). MODIS and GlobCover values at 1 km exceeding the plot’s

Y limits are provided near their truncated tops.

In terms of accuracy, MAE values were essentially the same as bias magnitudes, except for338

GLC-Share’s, which were twice as large; GLC-Share’s average MAE across vegetation classes339

was 47% at 1 km, dropping to <10 only with 25 km of aggregation. In contrast, SA-LC’s340
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carbon estimates were twice as accurate at 1 km, and were slightly more accurate up to 25 km341

of aggregation, where GLC-Share achieved parity.342

Evapotranspiration estimates343

Compared to the carbon analysis, the bias and accuracy in evapotranspiration (ET) calculated us-344

ing the VIC model was negligible, averaging less than than +/-2%. However, there were several345

error hotspots in the resulting ET residual maps (Fig. 4). The most pronounced of these were the346

5-15% overestimates in the center of the country caused when VIC was initialized with MODIS347

and GlobCover, while overestimates along the southern and western coasts reached 25%. These348

locations correspond primarily to the margins of major crop production regions–in the center is349

the westernmost boundary of the summer rainfall growing region, marked approximately by the350

400 mm isohyet, where maize is the primary crop. The west coast hotspot falls at the western351

edge of the wheat-dominated winter rainfall region (Hardy et al., 2011), where growing season352

rainfall is approximately 200 mm.353

SA-LC and GLC-Share also resulted in ET errors estimates along the southern and western354

coasts, but here the tendency was to underestimate ET, while biases in the center of the country355

were either negligible to absent. All but MODIS underestimated ET by 5-15% in the northern356

tip of the country.
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Figure 4: Differences in annual mean evapotranspiration estimates from 29-year runs of the

VIC land surface hydrology model when initialized with LAI response curves derived from the

reference map, versus those from the four test maps.

357
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Downscaling crop yield and production data358

Maize yields disaggregated onto the test maps showed some marked differences relative to the359

reference map, but only at the margins of the major crop production areas where cropland is360

sparser (SI). These differences resulted when a yield value was mapped onto a grid cell where361

the reference map had no harvested area, and thus zero yield. In more densely cropped areas,362

such discrepancies were less frequent because both the reference and test maps were both likely363

to have somemaize harvested area, and therefore a yield value. Yield biases were thus fairly low364

(and accuracy high), with the largest being 20% for MODIS at 1 km, following by GlobCover365

with 10% (Fig. 5). These dropped to <10% with aggregation.366

Production biases were generally higher, but still low, for most datasets, with the exception367

of GlobCover, which had a large underestimation bias of >60% (relative to mean production)368

at 1 km, which remained above 10% even at 100 km of aggregation. MODIS production bias369

was above 20% at 1 km, but declined to below 10% at higher levels of aggregation.370

In contrast, the accuracy of production estimates was poor. Here all datasets but SA-LC371

had MAE values of ≥30% below 25 km of aggregation (Fig. 5), reaching as high as 100% for372

GlobCover at 1 km, followed by 65% for MODIS and 45% for GLC-Share. SA-LC estimated373

production was most accurate, having between 10-20%MAE between 1 and 10 km, and <10%374

at 25 km and higher. This low accuracy relative to the gridded yield measures relates to the375

disaggregation process for harvested area, which allocates a fractional value to each pixel, which376

is itself a fraction. The process of adjusting the gridded values so that their totals match reported377

statistics does relatively little to correct the map’s underlying commission or omission errors,378

and this constraint in fact appears to shorten the spatial distance between negative and positive379

residuals (SI), thereby increasing absolute errors.380

Agent-based model of household food security381

In terms of impact to agent-based model simulation, where cropland map errors were negative382

(indicating a cropland overestimate by the test maps), the percent of land left unallocated had a383

straight one-to-one relationship with the percentage of overestimation (Fig. 6a). When cropland384

was underestimated, all croplands were allocated up until the underestimation exceeded 50%.385

The MODIS-based simulation for districts 1 and 2 was most pronounced for this tendency, with386

5-10% of cropland remaining unallocated despite the fact that the majority of households were387
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Figure 5: Bias (mean error) and accuracy (mean absolute error [MAE]) in disaggregated maize

yield and production estimates. Bias estimates (represented by symbols) fall within the semi-

transparent bars, mean absolute errors in the solid bars, with bar colors coded to specific crop-

land maps. Symbols code the different variables (production and yield), normalized to their

respective means.

not assigned cropland (because cropland was underestimated by 85%). This non-linear rela-388

tionship occurred because croplands tend to cluster, and when underestimated clusters tend to389

be small and isolated, they are more likely to fall outside of the search radius used by the model390

for allocating fields to households when they are initially seeded onto the landscape.391

Land deficit (the total area of cropland that should have been allocated to households in each392

district, but wasn’t) increased exponentially in relation to cropland underestimation–reaching393

around 800% for MODIS in districts 1 and 2 (Fig. 6b)–and would become infinite in the case of394

a 100% underestimate. This contrasted with food deficit (the percentage shortfall in the average395

amount of food production that should have been produced by each household but wasn’t),396

which increased linearly with the percentage of cropland underestimate (Fig. 6c).397

Location errors398

The average distance between areas containing the highest cropland densities (upper decile)399

in the reference map and those delineated by the test maps ranged from 1.1 km for SA-LC to400

18.2 km for GlobCover, with MODIS (10.1 km) and GLC-Share (2.8 km) having intermediate401

displacements (Fig. 7). Locational errors in maps indicating the highest yielding areas showed a402
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Figure 6: Biases in agent-based model results relative to the district-wise errors (as a percent) in

total cropland area, in terms of a) the percent of cropland in each district that was not allocated to

any household, b) the land deficit, or the total area of cropland that should have been allocated

to households in each district but wasn’t (expressed as a percent of total district cropland, as

determined by test maps), and c) the food deficit, or the percentage shortfall (relative to the

reference simulation) in mean household food production resulting from inadequate cropland

allocation. Dot sizes correspond to district numbers, colors represent the land cover map.

similar pattern, with a range of 0.8-14.2 km (SA-LC and GlobCover) and intermediate errors of403

5.8-7.5 km (GLC-Share and MODIS). For areas of highest carbon density, locations identified404

by the MODIS-derived map were most distant from those shown by the reference map (11.3405

km), followed by GLC-Share (7.4 km), GlobCover (6.8 km), and SA-LC (3.7 km).406
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Figure 7: Average nearest neighbor distances (in km) between pixels representing features iden-

tified by the referencemap versus those identified from the test maps. Bar colors indicate the dif-

ferent features (and thus contributing maps), which were delineated by selecting pixels with val-

ues greater than the 90th percentile: densest cropland (solid bars); highest maize yield (medium

transparent bars); highest carbon density (most transparent bars).
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Discussion407

The preceding analyses contributes to existing work investigating land cover map error and its408

consequences (e.g. Fritz et al., 2011a; Olofsson et al., 2013; Verburg et al., 2011). Previous409

studies have assessed map errors either by using point-based accuracy assessments (e.g. Foody,410

2002; Frey & Smith, 2007; Olofsson et al., 2013), by evaluating between-map discrepancies411

(e.g. Fritz & See, 2008; Fritz et al., 2011a, 2010), or by comparing map-derived estimates to412

aggregated statistics (e.g. Fritz et al., 2010; Larsen et al., 2015; Yu et al., 2014). A smaller413

number based their assessments on contiguous ground truth maps, but these covered relatively414

small regions (<3000 km2, or<0.03% of the area covered here; Dendoncker et al., 2008; Schmit415

et al., 2006).416

Other studies have also examined how map errors impact downstream analyses, including417

simulated rainfall (Ge et al., 2007), carbon stocks and emissions (Goetz et al., 2009; Jain et al.,418

2013a; Olofsson et al., 2013; Quaife et al., 2008), nitrogen fluxes (Jain et al., 2013a; Nol et al.,419

2008), human population density (Linard et al., 2010), species distributions (Tuanmu & Jetz,420

2014), and landscape patterns (Langford et al., 2006). The majority of these used either point421

validation, map inter-comparison, or a combination of both to assess errors (Goetz et al., 2009;422

Jain et al., 2013a; Linard et al., 2010; Olofsson et al., 2013; Quaife et al., 2008; Tuanmu &423

Jetz, 2014). Others have used simulated map errors (Ge et al., 2007; Langford et al., 2006) or424

differences relative to small area ground truth maps (<1000 m; Nol et al., 2008) to examine425

error propagation.426

Our study builds on and goes beyond these previous efforts by providing a large-area, spa-427

tially continuous quantification of cropland classification errors, and by examining how these428

actual errors influence several common downstream applications. The spatially comprehensive429

nature of these analyses provides deeper insight into the causes and consequences of error than430

would otherwise be obtained from either a point-based accuracy assessment or through the impo-431

sition of simulated error. By assessing errors within a continuous estimate of cropland, we were432

also able to examine how pixel-wise errors change with scale, while minimizing the confound-433

ing effects of aggregating a categorical variable (Marceau & Hay, 1999; Moody & Woodcock,434

1995, and see discussion in subsequent Recommendations section). These analyses were en-435

abled by a high accuracy reference map that likely provides the truest measure of cropland area436
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and distribution for this region. Although this reference map is not perfect, being affected by437

the map-makers’ occasional interpretation errors (mostly of omission, SI), while temporal mis-438

matches between the reference and test maps may account for some of the error we identified,439

our assessment (SI) suggests that such discrepancies do not appreciably impact our findings.440

Sources of error in cropland maps441

Our findings showed that the most accurate cropland estimates, across all spatial scales, were442

produced by SA-LC followed by GLC-Share. In the reverse order, these two datasets were also443

the least biased, with GLC-Share having effectively zero bias at aggregation levels of 5 km444

or coarser. GlobCover was highly inaccurate and biased at all scales, with MODIS estimates445

being nearly as inaccurate but substantially less biased. These error patterns are attributable to446

two factors: sensor resolution and methodology. With respect to the former, SA-LC’s higher447

accuracy is largely because the 30 m (0.09 ha) resolution of Landsat imagery is smaller than448

the average area of South African crop fields. Previous work in agricultural remote sensing has449

shown that the sensor resolution should be finer than average field size to accurately estimate450

both the area and location of croplands(Ozdogan &Woodcock, 2006; Pax-Lenney &Woodcock,451

1997). When pixel sizes are small relative to the objects being mapped, the number of “mixed452

pixels” (those where the spectral signature is defined by more than one cover) is relatively small,453

and their number naturally increases as sensor resolution decreases (Ozdogan & Woodcock,454

2006).455

Mixed pixels introduce another potential source of error related tomethodology, which stems456

from the need to define thresholds for allocating pixels to different cover types (Ozdogan &457

Woodcock, 2006). This error is evident in the MODIS and GlobCover results, both of which458

cope with the mixing problem by assigning sub-pixel proportions of cropland to mosaic classes459

(Arino et al., 2012; Friedl et al., 2010). These classes place upper thresholds on cropland, caus-460

ing underestimation error where actual cropland proportions are higher (Fig. 2B). Over South461

African croplands, the GlobCover map was dominated by its mosaic pixel classes, leading to462

substantial underestimation bias that persisted even with aggregation. MODIS, on the other463

hand, classified more areas as pure cropland, and thus had lower underestimation bias.464

The modeled relationships between map accuracy and cropland density (Fig. 2) further465

demonstrate how pixel mixing and class definition influence error. For MODIS, SA-LC, and466
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GLC-Share, error was highest where pixels were evenly divided between cropland and other467

cover types, reflecting earlier work showing that classification accuracy is lowest when cover468

types are most mixed (Gross et al., 2013; Verburg et al., 2011). On the other hand, GlobCover469

was least accurate over pixels with 100% cropland, an error pattern imposed by the proportions470

defining cropland within GlobCover’s dominant mosaic classes; these set an upper bound that471

necessarily led to underestimation error over dense croplands. Previous work by Ozdogan &472

Woodcock (2006) shows that the threshold used for separating agricultural from non-agricultural473

classes is a significant source of error.474

GLC-Share’s cropland errors demonstrate three other possible ways in which methodology475

affects error pattern. The first is that constraining remotely sensed cropland proportions to match476

census-statistics may be effective in reducing bias (this point is attributable to the GeoWiki477

product (Fritz et al., 2011a, 2015), a statistically constrained map that is a major component of478

GLC-Share, although it is unclear how much GeoWiki’s results dominate those of other maps in479

the GLC-Share fusion process). The second is that such a constraint cannot correct the errors of480

commission and omission within the individual landcover datasets that were merged to create481

the GLC-Share map (Fritz et al., 2015), which is why its accuracy is relatively low at 1 km482

resolution (Fig. 1c). However, GLC-Share’s accuracy was substantially higher thanMODIS and483

GlobCover’s (Fig. 1b, 3, & 5), which reveals the third point, namely that the landcover fusion484

process used to create GLC-Share does help minimize such error. Fusion may be particularly485

effective for minimizing underestimation errors caused by mixed classes (as with GlobCover)486

in areas of substantial sub-pixel heterogeneity (Fritz et al., 2015; Tuanmu & Jetz, 2014). This487

fusion approach mirrors the ensemble methods used by various modeling sub-disciplines (e.g.488

crop (Asseng et al., 2013), climate (Giorgi & Mearns, 2002), and ecological modeling (Araújo489

& New, 2007)) to increase prediction confidence.490

Error propagation in downstream products491

Cropland map errors were either amplified or muted within the various downstream applica-492

tions we assessed. Both tendencies were evident in the Tier-1 carbon maps, the simplest of the493

downstream methods. Using the ratio between each carbon map’s accuracy score (MAE) and494

that of its foundational cropland map to calculate error propagation (values>1 means error was495

exacerbated, <1 means it was muted), we see that errors in the 1 km carbon map errors were496
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200 (SA-LC) to 500% (GlobCover) larger than cropland map errors when forest was the adja-497

cent cover type, but ∼40% lower for the sparse cover type. Aggregation helped to reduce error498

magnitude, but carbon maps nevertheless had 30-50%more error than cropland maps at 100 km499

resolution when forest or shrubland were sharing the pixel (the error ratio associated with the500

sparse vegetation carbon class remained relatively constant with aggregation).501

The error propagation patterns in the carbon map were therefore determined by the differ-502

ences between the carbon density of cropland and that of the adjacent cover types; forest and503

shrubland have higher carbon densities than cropland, whereas the sparse cover type is lower.504

A similarity in the values assigned to the cover types adjacent to cropland may also explain the505

low error rates in the evapotranspiration estimates produced by the VIC model, which were all506

90-95% lower than those in the input cropland maps. This dampening of error contrasts with507

results from elsewhere showing that map errors can substantially alter rainfall simulations (Ge508

et al., 2007). In the case of the ET simulations, VIC’s map-related variables (e.g. LAI curves,509

effective rooting depth) were relatively similar between cropland and the adjacent landcover510

types, which we did not alter beyond adjusting their percentages to accommodate altered crop-511

land proportions.512

The disaggregated yield and crop production maps we created also showed both error am-513

plification and muting, which in this case depended on the particular analysis. Errors within the514

yields maps were uniformly lower (50-90% less at 1 km) than those in the input cropland maps,515

whereas errors in the production maps were 70-100% higher at 1 km, and actually were exacer-516

bated at intermediate levels of aggregation (10-25 km) for GlobCover, MODIS, and GLC-Share517

(170-290%). This latter tendency was mostly caused by accuracy in the production maps im-518

proving more slowly with aggregation (Fig. 5) than in the original cropland maps (Fig. 1B).519

These contrasting results reflect differences within disaggregation methods (Monfreda et al.,520

2008). First, the yield methodology is a simple form of disaggregation that paints district-level521

yields onto pixels with >0% cropland within each district without attempting to map within-522

district yield variability. This simplicity means that it is only sensitive to errors in classifying523

cropland presence/absence, but not to errors in cropland proportions. Production, on the other524

hand, is calculated from disaggregated harvested area maps, which are created by proportionally525

allocating district-level crop harvested area onto cropland fractions, making them highly sensi-526
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tive to errors in cropland proportion. Of particular note is that harvested area maps are subject527

not only to this statistical constraint (that pixel-wise harvested area fractions sum to district to-528

tals), but cropland fractions are also adjusted to match district-level cropland area estimates (see529

Methods; Ramankutty et al., 2008). This suggests that statistical constraints are therefore not530

necessarily helpful in preventing pixel-level error propagation.531

Sensitivity to cropland area also was evident in the food security model. The ABM’s most532

important metric of food security–household-level crop production–was only impacted by un-533

derestimates of cropland area, which lowered the models’ estimates of average household pro-534

duction (in turn overstating the degree of food insecurity) because individual households were535

allocated insufficient cropland. Cropland overestimates did not cause the opposite effect, be-536

cause total households were constant and the allocation routine prevented cropland holdings537

from exceeding their assigned, census-derived hectarage. The less predictable result was that the538

model sometimes left cropland unallocated when maps substantially underestimated cropland539

area (e.g. MODIS in Fig. 6A). This initialization error was caused by the spatial arrangement540

of croplands in the district, which in the MODIS maps was clumped in relatively small islands541

within the four selected districts. This error interacted with theABM’s household placement rou-542

tine, in that some cropland islands fell beyond the 1.5 km search radius of their nearest randomly543

placed households, resulting in those croplands being left unallocated. This result demonstrates544

how map errors can propagate through more complex models as a function of both model as-545

sumptions (here the choice of search radius) and model structures (the randomized household546

placement routine).547

This latter finding also highlights the types of errors that can be caused by spatial inaccuracies548

in land cover maps, which was explicitly evaluated by the analysis of spatial distance between549

pixels containing upper decile of values in reference and test maps (Fig. 7). The relative size of550

offsets tends to follow the patterns of accuracy seen in other assessments, with SA-LC producing551

the most spatially accurate results, and GlobCover the least, with the exception that GlobCover’s552

90th percentile carbon density locations are closer to those in the reference map than those of553

MODIS or GLC-Share. Numerically, none of these nearest neighbor differences seem large, but554

they are akin to the root mean square error term used when measuring geometric distortion in a555

satellite image. Under this conception, the error in all but SA-LC’s cropland and yield examples556
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(Fig. 7) is >3 pixels (or 300%), with an overall average of nearly six pixels.557

Broader implications558

Although our study focused on a single country and a subset of possible land cover-derived559

analyses, its findings highlight issues with broader geographic and practical relevance. In ge-560

ographical terms, the key question is whether the error patterns revealed here will be similar561

outside of SouthAfrica? Land systems in many regions differ substantially from those in south-562

ernAfrica, and further research on the bias and accuracy of cropland maps is thus desirable. Yet,563

if one considers the rest of Sub-Saharan Africa (SSA), a region notorious for its lack of high-564

quality cropland maps, the answer is almost certainly yes. Previous work showing substantial565

disagreement between different cropland maps in other SSA countries (Fritz et al., 2010) sup-566

ports this contention. Another reason is that farming elsewhere in SSA is dominated by small-567

holders whose fields are substantially smaller than those in SouthAfrica (Samberg et al., 2016),568

which increases mixed pixel classification error. Additionally, smallholders’ fields often contain569

residual trees, which create a park-like appearance that classifiers struggle to distinguish from570

the savannas that dominate the region (Debats et al., 2016; Estes et al., 2016b; Sweeney et al.,571

2015).572

These factors suggest that the cropland map errors are likely to be even larger than we found,573

as well as errors in downstream products. For example, carbon map errors should be on the574

higher end of those found here (Fig. 3), given the higher potential for error in the base cropland575

maps, combined with the fact that SSA’s croplands lie mostly within savanna or forest biomes576

where the differences in carbon density between croplands and native vegetationwould be higher577

(Searchinger et al., 2015). A presumably greater difference between the LAI and rooting depths578

of crops and these dominant vegetation types may also increase ET estimation errors.579

In terms of broader practical implications, these findings also suggest howmaps errors could580

impact understanding of social and environmental processes and related policy. For example, as-581

sessments of land availability for new agricultural development could be misleading if they use582

a “residual approach” (Lambin et al., 2013), in which potential lands are identified by masking583

out existing croplands and un-cultivatable lands (e.g. Estes et al., 2016b). In such cases, crop-584

land underestimates (such as those of MODIS and GlobCover; Fig. 1), could inflate estimates585

of available land, and thereby encourage erroneous land policy (Rulli et al., 2013). Similarly,586
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spatial errors in the cropland maps (Fig. 6) could cause the wrong land to be developed, by mis-587

locating areas with preferred development characteristics (e.g. high agricultural potential and588

low environmental cost; Estes et al., 2016b; Gasparri et al., 2015). In addition to these possibil-589

ities, maps errors may misinform land use-focused emissions policies informed by analyses that590

rely on Tier-1 carbon maps (e.g. Cattaneo et al., 2010; Phelps et al., 2013). Disaggregated yield591

and harvested area maps could also mislead efforts to close crop production gaps, if specific592

interventions are targeted using finely resolved maps (e.g. the 10 km map shown in Figure 3 in593

Foley et al., 2011). Improper understanding of complex, coupled human-natural systems could594

also result from models that have calibration errors caused by land cover maps.595

Recommendations596

Our findings suggest a number of recommendations for using land cover maps, complementing597

those suggested in earlier work (Verburg et al., 2011). First, to minimize error, users should598

typically prefer maps derived from imagery with resolutions substantially finer than the scale of599

individual objects of interest (e.g. agricultural fields), assuming that availablemaps were created600

with rigorous classification methods accompanied by appropriate error metrics (Olofsson et al.,601

2014), and are thematically appropriate for the intended use (Verburg et al., 2011). Finer resolu-602

tion not only helps to improve classification accuracy (see Sources of error in cropland maps),603

but can minimize the aggregation problem, one of two fundamental components of the modifi-604

able area unit problem (MAUP; Openshaw & Taylor, 1979), in which the shape and placement605

of the non-overlapping units used to extract map values influence analyses of those values (Dark606

& Bram, 2007; Marceau, 1999). In remote sensing, the image’s pixels define the fundamental607

mapping unit, and mismatches between the pixels’ dimensions and the characteristic shapes and608

scales of natural features impact subsequent analysis (Dark & Bram, 2007). However, if the609

sensor resolution is fine enough, such mismatches can be minimized–a natural feature’s shape610

can be approximated by aggregating several square pixels–giving the analyst greater ability to611

minimize errors associated with this aspect of MAUP (Dark & Bram, 2007; Hay et al., 2003).612

Of course, high quality, fine-scaled maps such as SA-LC, which was carefully developed613

for South Africa, do not exist for many countries. Development of a new generation of Land-614

sat/Sentinel-based (i.e., 30m resolution or finer) land-cover maps is underway, as exemplified615

by the new 30 m GLOBELAND30 map (Chen et al., 2015). These maps will likely prove very616
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useful for countries and regions lacking their own focusedmaps, as well as for cross-border anal-617

yses. To assess whether such maps are fit for the specific purpose, users should first conduct618

their own, thematically-focussed accuracy assessments to better understand error rates within619

their region of interest.620

If high quality, high-resolution maps are not available, users interested in agricultural cover621

could select a new fusionmap, such asGLC-Share, GeoWiki, or its derivatives (Fritz et al., 2015;622

Waldner et al., 2016). Although these maps are relatively coarse-scaled, the fusion methodology623

helps to greatly minimize error, as does the use of fractional cover values. Calibrating against624

inventory data may also reduce pixel level biases (e.g. Fig. 1b). However, users should be aware625

that this adjustment technique introduces confounding errors where census-reported statistics626

are unreliable, such as in some SSA countries (Carletto et al., 2015, 2013). Alternatively, users627

could directly apply the fusion methodology (Fritz et al., 2011b) to create their own improved628

maps.629

If a particularly erroneous map is all that is available, and the user is chiefly interested in630

minimizing cell-wise error and less concerned about the spatial configuration of cover, then this631

may be achieved by aggregating maps expressing continuous values (e.g. fractional cover) to632

coarser scales. This approach must be undertaken with care, as its poses a number of complica-633

tions related to the scale problem, the other half of MAUP (Openshaw & Taylor, 1979), which634

include progressive declines in variance with increasing scale (even if means remain constant;635

Dark & Bram, 2007), and reduced efficiency in estimating regression parameters from coarser636

map values (Avelino et al., 2016). Nevertheless, aggregating continuous variables can reduce637

pixel errors without biasing some statistical properties (e.g. total cropland area remains constant638

using the aggregation approach demonstrated here; see Results: Cropland map errors), and has639

been shown to reduce other MAUP-related analytical problems (Avelino et al., 2016). However,640

the user must ensure that the scale of aggregation is appropriate for the particular analysis.641

Finally, users (or makers) of downstream products should rigorously ascertain how error642

propagates from the base land cover map into their derived maps (Verburg et al., 2011). In643

some cases, the providers of “off-the-shelf” products report pixel-level uncertainty values (e.g.644

Ramankutty et al., 2008), which may be sufficient. In other cases, downstream maps may lack645

quantified confidence intervals (e.g. Monfreda et al., 2008). Although such maps may provide646
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guidelines for appropriate usage2, which our analyses help to further illustrate, users should un-647

dertake their own error propagation assessments. The most straightforward way may be to use648

a Monte Carlo approach that generates artificial datasets (e.g. Avelino et al., 2016), using intro-649

duced errors drawn from reported or user-determined accuracy statistics, for both the base land650

cover and the downstream maps. For downstream products based on more complex models,651

users should examine how land cover map errors interact with particular model assumptions or652

structures, and alter these where necessary and possible to minimize confounding effects. Quan-653

tifying error propagation is important to understanding howmap error may influence subsequent654

understanding of the phenomenon of interest.655
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