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Abstract—In this paper, a novel sampled-data control
approach is proposed for DC-DC converters. The DC-DC
power electronic converter is modeled as a sampled-data
switched affine system according to the status of the power
switch. A novel switching control algorithm is synthesized
by using the switched Lyapunov theory. The proposed ap-
proach is able to not only drive the output to a prescribed
set point from any initial condition but also track a vary-
ing reference signal, and the switching frequency can be
adjusted online with guaranteed stability. In addition, with
this approach, CCM and DCM operations can be treated in
a unified way. The effectiveness and merits of the proposed
method are illustrated by experiments on a laboratory pro-
totype.

Index Terms—DC-DC conversion, sampled-data control,
variable switching frequency

I. INTRODUCTION

DC-DC power electronics converters have been widely

used in practical applications, e.g., power supplies [1],

DC motor drives [2], portable electronic devices [3], avionic

systems [4] and RF transmitters [5], [6], etc. One of the most

popular control techniques used for DC-DC converters by

far is the linear control methods based on the small-signal

averaging model proposed by Middlebrook in the 1970s [7]

and the Pulse Width Modulation (PWM) technique [8]. Al-

though these conventional control approaches may be adequate

in some cases, the controller performance is quite limited,

and the design involves a number of heuristic procedures,

which lack theoretical guarantees. This motivates the study

of advanced control technology for DC-DC converters, and

a large number of control methods have been developed or

tailored to control problems of DC-DC converters, e.g., sliding

mode control [9], [10], fuzzy logic control [11], adaptive

control [12], robust control [13] model predictive control [14],

[15], artificial neural network control [16], Lyapunov-based

control [17], [18], to just mention a few.
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Despite the effectiveness of these approaches, there are still

a number of challenges that need to be tackled. In some

applications, the output voltage of DC-DC power converter

are required to track a changing reference signal or adjust

manually, e.g., the power system of microprocessors [19] or

the power supply of a variable envelope radio frequency power

amplifier [20], [21]. Many small-signal control approaches

may not perform well for this scenario and even become

unstable [22], since the controller is usually designed based

on a model linearized or discretized at an operating point of

interest. For large-signal control design, quantitative character-

izations on stability, robustness, and performance are usually

unavailable, and their stability, robustness, and performance

need to be evaluated through experiment. In addition, digital

implementation of most nonlinear controllers remains a prob-

lem.

Another issue in the design of DC-DC converters is the

tradeoff between performance and efficiency. For fixed switch-

ing frequency control design, fast dynamic response and low

output ripples can be achieved by adopting a high switching

frequency. However, over-rapid switching will impair energy

efficiency and pose a challenge to thermal management [23].

And the switching load does not scale with load [24] which

results in poor light load efficiency. Therefore, variable switch-

ing frequency based controller has been adopted to tackle

this issue . For instance, in battery-operated systems, variable

frequency operation is shown to give better energy efficiency

and provide wider rage of usable power [25]. Although there

are some preliminary results along this direction [26], [27],

the problem has not been fully investigated.

In this paper, the DC-DC converters are considered to be

controlled by a digital controller. A sampled-data switched

model is established to describe the closed-loop dynamics.

Our goal is to design a switching controller with guaranteed

closed-loop stability in the entire state space for varying

reference points. Comparing with the existing results, the main

contributions of this paper are summarized as:

1) The proposed sampled-data switched model captures full-

time information instead of a discrete-time model without

the inter-sample behaviour of the power electronic con-

verters, and the switching controller can be implemented

easily with digital devices.

2) The designed controller is able to track changing ref-

erence signals without re-design, and this is guaranteed

theoretically.
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3) Switching frequency can be adjusted online without los-

ing closed-loop stability.

4) The parameters of the switching controller is calculated

offline, thus significantly reducing the online computation

burden.

5) CCM and DCM operations can be treated in a unified

approach.

This paper is organized as follows. In Section II, a unified

switched system model for a class of DC-DC converters is

established. In Section III, a switching control law is designed

off-line by solving a set of matrix inequalities. The closed-

loop stability with the designed controller is also established

through the use of the switched Lyapunov theory. In Section

IV, a practical DC-DC buck converter is used as an example

for case study. A laboratory prototype is employed to show

the effectiveness and merits of the proposed approach. In the

end, conclusions are drawn in Section V, and the proofs of all

the theorems and corollaries are presented in Appendix.

Notation: The transpose of a matrix P is denoted as PT . The

symbol ∗ denotes a block that can be inferred by symmetry.

For a square symmetric matrix, P > 0 (P < 0) means that P is

positive definite (negative definite). For a piecewise function

σ � argmin( fi(x))(i ∈ {1,2}), σ = 1 if f1(x)< f2(x) and σ =
2 if f2(x) < f1(x). eigmin(P) is the minimum eigenvalue of

matrix P. The symbol co{Ψ} denotes the convex hull of the

set Ψ.

II. SWITCHED MODEL FOR DC-DC CONVERTERS

WS

gV

Li

Figure 1: Topology of DC-DC Buck Converters

In this section, a switched model of DC-DC buck converters

is presented. The topology of a non-isolated DC-DC buck

converter is shown in Fig. 1. Vg is the source DC voltage;

L is the inductance of a inductor; C is the capacitance of

a capacitor; and R represents load resistance. The current

through the inductor and the voltage across the capacitor are

iL and vC respectively. Due to the space limit, the modelling

and control design is focused on the DC-DC buck converters.

However, it should be stressed that the results could be

extended to different DC-DC topologies with no extra effort

as the switched models for different topologies have the same

structure.

For each switching state, the continuous dynamics of the

converter can be described by a state-space model:

ẋ(t) = Aσ x(t)+Bσ , σ ∈ Ξ � {1,2} (1)

where

A1 = A2 =

[
0 − 1

L
1
C − 1

RC

]
B1 =

[ Vg
L
0

]
B2 =

[
0

0

]

with the system states x(t) = [iL,vC]
T ∈ R

2. (A1,B1) and

(A2,B2) are the system matrices for the ON state and OFF

state respectively.

Due to the operation of the transistor SW , the evolution of

the system state is determined by the continuous dynamics

together with the status of the switch (σ = 1 for ON or 2

for OFF). It is stressed here that although similar models

have been used for the simulation of DC-DC converters,

control design, particularly sampled-data control, based on the

switched model remains rare.

From the standpoint of control theory, the system in (1)

has discontinuous vector field, and thus classic equilibrium

solution is no longer applicable. However, our goal is to

regulate the output voltage to some reference points, which are

some sorts of “equilibria". To solve this issue, we employ the

so-called Filippov solutions to obtain the attainable reference

points [28]. The basic idea is to replace the right-hand side of

(1) with a differential inclusion, that is,

ẋ(t) = A(λ )x(t)+B(λ ), (2)

where A(λ ) = λA1 + (1 − λ )A2, B(λ ) = λB1 + (1 − λ )B2,

and λ ∈ [0,1]. With this “averaged" system, the attainable

equilibrium can be obtained as

xe = [iL,e, vC,e]
T =−A−1(λ )B(λ ), λ ∈ [0,1]. (3)

III. SAMPLED-DATA CONTROLLER DESIGN

A significant difference between the proposed method and

the most digital control schemes for DC-DC converters such as

DPWM [29] and model predictive control [14] is that: in order

to capture more transition information of the converters, the

design is based on a continuous-time plant (1) with full-time

information rather than a discrete-time model that neglects

the inter-sample behaviour of the converters. On the other

hand, the proposed method is considerably different from the

sliding mode control [9] [10], which is also commonly applied

in power converters control and is based on a large signal

representation of the system. The attractive properties of the

sliding mode control lie in the fact that the design procedure

is straightforward and it is robust to parameters variations.

However, the main drawback is its high switching frequency.

For the proposed method in this paper, the switching frequency

is bounded by the sampling frequency and even tunable based

on the real-time demand which could potentially reduce the

switching losses.

The system state is sampled as x(kT ), where T is the

sampling period and k = 0,1,2,3 · · ·. For notational simplicity,

k stands for kT in the remaining part of paper.

A state-feedback switching control law σ(∗) is proposed as

σ(x(k)) = arg min
(i, j)∈Ξ×Ξ

{2w1

(
(x(k)− xe)

T Pj(Aix(k)+Bi)
)

+2w2|i−σ(x(k−1))|}, (4)

where xe = [ie,ve]
T is the reference point obtained by (3); Ξ =

{1,2}, w1, w2 are two positive weighting factors for adjust-

ment of switching frequency; Pj ∈R
2×2 are parameter matrices

to be determined later. It should be mentioned here that the

control design is based on the Lyapunov stability theorem [30].
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The switching control law σ(∗) should firstly guarantees the

system stability by finding fastest converging direction of the

Lyapunov functional. This feature is fulfilled by the first part

of the switching function
(
(x(k)− xe)

T Pj(Aix(k)+Bi)
)
, which

is the derivative of the Lyapunov functional. The second part

of the switching law |i−σ(x(k−1))| penalizes the switching

action. In this way the switching frequency is adjusted by

tuning the weighting factor w2. The two weighting factor w1,

w2 are utilized to make a trade off between the transient

performance and the switching frequency adjustment. The

following theorem with proof in Appendix A states that under

some conditions the proposed switching control law will drive

the system to the neighborhood of the desirable reference

points. The proof of the theorem 1 can be found .

Theorem 1: For given positive scalars ξ , ρ , ε , β , κ , a

Lyapunov-Krasovskii functional candidate is defined as

V (φ(t), t) =V1(φ(t))+V2(φ(t), t), (5)

where φ(t) = x(t)− xe, and

V1(φ(t)) = min
j∈Ξ

{φ T (t)Pjφ(t)} (6)

V2(φ(t), t) = (T − τ)
∫ t

t−τ
eξ (s−t)φ̇ T (s)Qσ φ̇(s)ds (7)

τ = t − tk, t ∈ [k,k+1).

If the following condition is satisfied

V̇ (φ(t), t)+ξV (φ(t), t)< ρT +κ ||xe||2+(ε +2β )
w2

w1
,

∀t ∈ [k,k+1), (8)

then under the switching signal σ(x(k)) the state of the DC-

DC converters x(t) will converge to a finite region Θ around

the reference point xe, where

Θ � {x(t) ∈ R
2 : min

j∈Ξ
{eigmin(Pj)}||x− xe||2

≤ T ρ +κ||xe||2
ξ

+
ε +2β

ξ
w2

w1
}, (9)

Therefore, if the system is practically stable under proposed

switching signal σ(x(k)), the inductor current iL and capacitor

voltage vC will be stabilized around the desired DC steady state

ie and ve respectively with bounded ripples. Furthermore, The

boundary of the current ripple and voltage ripple are defined

by the region Θ.

Remark 1: The minimum function V1(φ(t)) ensures that the

abstract energy associate with the system will not increase

at the switching instant. To guarantee that the energy will

decrease along the trajectory of the system, it suffices to

require that the Lypuanov function does not increase during the

sampling interval [k,k+ 1). A discontinuous term V2(φ(t), t)
is added to achieve this.

We are now in a position to present the main result of the

paper. The details of how to solve the unknown Lyapunov

matrices Pj, with which the practical stability condition (8)

is satisfied, is demonstrated in the form of Bilinear Matrix

Inequalities (BMIs). The explicit proof of Theorem 1 can be

found in Appendix B.

Theorem 2: Consider the switched model (1) with sampling

period T and given parameters ξ > 0, ρ > 0, ε > 0, κ > 0, w1 >

0, w2 ≥ 0, for a specific reference point xe with corresponding

λ ∈ [0,1], if there exist matrices Pj > 0, Qi > 0, scalars β > 0,

μ jr > 0, for ∀(i, j) ∈ Ξ×Ξ, r ∈ Ξ such that

Ψ(0,0,λ )< 0, Ψ(T,T 2,λ )< 0, (10)

where

Ψ(τ,τ2,λ )

= Π(τ)+β (Ω(τ,τ2)+Ω(τ,τ2,λ ))−
Ξ

∑
r

μ jrϒ j(τ,τ2),

Π(τ) =

⎡
⎢⎢⎣

Π(τ)11 Π(τ)12 0 Π(τ)14

∗ Π(τ)22 0 Π(τ)24

∗ ∗ −τQie−ξ T 0

∗ ∗ ∗ Π(τ)44

⎤
⎥⎥⎦ ,

Π(τ)11 = AT
i Pj +PjAi +ξ Pj +(T − τ)AT

i QiAi,

Π(τ)12 = (T − τ)AT
i QiAi +PjAi,

Π(τ)14 = (T − τ)AT
i QiBi +PjBi,

Π(τ)22 = (T − τ)AT
i QiAi −κ,

Π(τ)24 = (T − τ)AT
i QiBi,

Π(τ)44 = (T − τ)BT
i QiBi −ρT − (ε +2β )

w2

w1

Ω(τ,τ2) =⎡
⎢⎢⎣

−AT
i Pj −PjAi −PiAi τ(AT

i Pj +PjAi) −PjBi
∗ 0 τAT

i Pj 0

∗ ∗ −τ2(AT
i Pj +PjAi) τPiBi

∗ ∗ ∗ 2 w2
w1

I

⎤
⎥⎥⎦ ,

Ω(τ,τ2,λ ) =⎡
⎢⎢⎣

AT (λ )Pj +PjA(λ ) 0 −τ(AT (λ )Pj +PjA(λ )) 0

∗ 0 0 0

∗ ∗ τ2(AT (λ )Pj +PjA(λ )) 0

∗ ∗ ∗ 0

⎤
⎥⎥⎦ ,

ϒ j(τ,τ2) =

⎡
⎢⎢⎣

Pj −Pr 0 −τ(Pj −Pr) 0

∗ 0 0 0

∗ ∗ τ2(Pj −Pr) 0

∗ ∗ ∗ 0

⎤
⎥⎥⎦ ,

the condition (8) is fulfilled. Then the DC-DC converter is

practically stabilizable to the region Θ around the desired

reference point xe under the switching signal (4).

Remark 2: The tightness of the region (9) is proportional

to the sampling period T . Thus, for other fixed parameters, a

higher sampling rate will result in a tighter boundary, which

means a smaller converter output voltage ripple.

It should be mentioned that unlike the traditional PWM

control which has a fixed switching frequency, the switching

frequency is unfixed for the proposed method. As the switch-

ing signal keeps constant during each sampling cycle, the

average switching frequency of proposed method is bounded

by the sampling frequency which is more applicable in practice

than the other similar stability based methods [31] with the

assumption of infinite switching frequency. It is obvious that

the switching frequency is inversely proportional to the ripple.

Hence, it is crucial to reach a compromise between ripple
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minimization and switching frequency reduction because over-

rapid switching will reduce the energy efficiency of the con-

verter and pose a challenge to thermal management.

In the proposed switching signal function

σ(x(k)) = arg min
(i, j)∈Ξ×Ξ

{2w1

(
(x(k)− xe)

T Pj(Aix(k)+Bi)
)

+2w2|i−σ(x(k−1)|},
the weighting factor w1 and w2 are introduced to adjust the

average switching frequency. For the term |i−σ(x(k−1)|, if

i is equal to the previous switching state σ(x(k− 1), it will

be zero; otherwise it will be one. Due to the min property of

the switching signal function, it will prevent the change of the

switch state if the practical stability can be guaranteed. By this

way, some unnecessary switching can be avoided.

The region Θ is proportional to the weighing factor w2 for

a fixed w1. Hence, if w2 is increasing, the region become

larger which means larger current and voltage ripples. In the

meantime, the average switching frequency is decreased. One

may argue that the change of the factor w2 will result in the

invalidity of inequalities (10). In the following corollary, the

practical stability holds when the weighting factor w2 changes.

The proof is presented in Appendix C.

Corollary 1: Consider the switched model (1) with sampling

period T and parameters ξ > 0, ρ > 0, ε > 0, κ > 0 for a

specific reference point xe with corresponding λ ∈ [0,1]. If

there exist matrices Pj > 0, Qi > 0, scalars β > 0, μ jr > 0, for

∀(i, j) ∈ Ξ×Ξ, r ∈ Ξ such that

Ψ(0,0,λ )< 0, Ψ(T,T 2,λ )< 0, (11)

with a given w1 > 0 and w2 = 0, then the condition (8) is

fulfilled and the DC-DC converter is practically stabilizable

to the region Θ around the desired reference point xe under

the switching signal

σ(x(k)) = arg min
(i, j)∈Ξ×Ξ

{2w1

(
(x(k)− xe)

T Pj(Aix(k)+Bi)
)

+2w2|i−σ(x(k−1)|},
with the same w1 > 0 and any w2 ≥ 0.

Remark 3: According to Corollary 1, the weighting factor

w2 can be adjusted online without re-design the switching

function σ(x(k)). The benefit is that the balance between

ripple minimization and switching frequency reduction can be

adapted depending on the practical situation in real-time.

Remark 4: Even though the practical stability preserves

theoretically for any w2 > 0, one should be careful when

increasing the weighting w2. A very large w2 will result in

very large current and voltage ripples. In such a situation, the

DC-DC converter is practically unstable.

Remark 5: For simplicity, in this paper, we assume there is

no delay of measuring the system state. However, in practice

if the sampling of the state is slow and delayed, it might be

troublesome due to measurements are mismatched. This issue

may be solved by introducing the predictive technique for the

system state [32].

Until now, the proposed method is design for a specific ref-

erence point xe. As we mentioned before, in some applications,

the output voltage of DC-DC power converter are required to

track a changing reference signal or adjust manually. In the

following corollary, the proposed control scheme is extended

to a range of reference points. Therefore, the switching signal

function can drive the state of DC-DC converter tracking

different reference points within the range in real-time without

re-design. The proof of the corollary is given in Appendix D.

Corollary 2: Consider the switched model (1) with sampling

period T and given parameters ξ > 0, ρ > 0, ε > 0, κ > 0,

0 < λmin < λmax < 1. If there exist matrices Pj > 0, Qi > 0,

scalars β > 0, μ jr > 0, for ∀(i, j) ∈ Ξ×Ξ, r ∈ Ξ such that

Ψ(0,0,λmin)< 0,

Ψ(T,T 2,λmin)< 0,

Ψ(0,0,λmax)< 0,

Ψ(T,T 2,λmax)< 0,
(12)

with a given w1 > 0 and w2 = 0, then the condition (8)

is fulfilled and the DC-DC converter is practical stabilizable

to the region Θ around any desired reference point xe with

corresponding λ ∈ [λmin,λmax] under the switching signal

σ(x(k)) = arg min
(i, j)∈Ξ×Ξ

{2w1

(
(x(k)− xe)

T Pj(Aix(k)+Bi)
)

+2w2|i−σ(x(k−1)|}
with the same w1 > 0 and any w2 ≥ 0.

In the previous parts, it is assumed that the parameters of

DC-DC buck converters are accurate and invariant. However,

in practice this is hard to guaranteed, especially for the load

R. This issue could be addressed by modifying the switched

model (1) as follow to include the parameter uncertainty.

ẋ(t) =

(
Aσ +

q

∑
m=1

δ m
σ Âm

σ

)
x(t)+

(
Bσ +

q

∑
m=1

δ m
σ B̂m

σ

)
, (13)

σ ∈ Ξ � {1,2}, δ m
σ > 0,

q

∑
m=1

δ m
σ = 1,m ∈ N+,

Aσ and Bσ are system matrices with nominal parameters, while

Âm
σ and Âm

σ represent the vertices of the perturbations.

For examples, if we assume the load R varies between Rmin
and Rmax with nominal value RN . The perturbations matrices

should be calculated as follow:

Â1
1 = Â1

2 =

[
0 0

0 Rmax−RN
RNCRmax

]
Â2

1 = Â2
2 =

[
0 0

0 Rmin−RN
RNCRmin

]

B̂1
1 = B̂1

2 =

[
0

0

]
B̂2

1 = B̂2
2 =

[
0

0

]

For simplicity, here we assume the switching law is based

on the continuous state and without switching frequency

adjustment.

σ(x(k))= arg min
(i, j)∈Ξ×Ξ

{
2
(
(x(t)− xe)

T Pj(Aix(t)+Bi)
)}

(14)

The following theorem states that under some BMI condi-

tions, the switching control law (14) will drive the system to

the neighborhood of the desirable equilibrium (3). The proof

of the theorem is given in Appendix E.

Theorem 3: Consider the switched model (13) with given

parameters ξ > 0, for a specific reference point xe with
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corresponding λ ∈ [0,1], if there exist matrices Pj > 0, scalars

β > 0, for ∀(i, j) ∈ Ξ×Ξ, such that[
(A(λ )+ Âm

i )
T Pj +Pj(A(λ )+ Âm

i )+ξ Pj PjB̂m
i

∗ −β

]
< 0,

(15)

the condition

V̇1(φ(t), t)+ξV1(φ(t), t)< β . (16)

is fulfilled. Then the DC-DC converter is practically stabiliz-

able to the region Θ̂� {x(t)∈R
2 : min

j∈Ξ
{eigmin(Pj)}||x−xe||2 ≤

2β
ξ }, around the desired reference point xe under the switching

signal (14).

One drawback of the proposed control techniques is the

dependence on correct model parameters. In the case of load

varying, for example, errors may be inferred in the steady state

output voltage. To minimize this error, a common practice is

to introduce a outer integration loop to correct the reference

points xe by adjusting the λ as follow:

λc = λ −
k

∑
j=1

α
(
vC, j − vC,e

)
(17)

Figure 2: The laboratory prototype of a DC-DC buck converter.

IV. PRACTICAL APPLICATION TO DC-DC BUCK
CONVERTERS

A. Experimental Setup
In order to test the effectiveness of the proposed control

algorithm, the switching controller is applied on a DC-DC

buck converter as shown in Fig. 1. A laboratory prototype has

been designed based on the conventional design procedure in

[33] as shown in Fig. 2. The parameters of the buck stage

are L = 616.3 μH, C = 880 μF , R = 4.90 Ω (CCM load),

R = 30 Ω (DCM load), Vg = 20 V . The test platform consist

of a dSPACE MicroAutoBox(1401/1511) 2nd generation with

built-in IBM PPC 750GL, 900 MHZ processor, a current

sensor board with current transducer LAH 25-NP and a voltage

sensor board with voltage transducer LV25-P both connected

to separate ADC channels of the dSPACE. A MOSFET drive

board is also designed to convert the switching signal from

dSPACE to MOS level and isolate the buck converter and

dSPACE for safety. The proposed algorithms are implemented

on the dSPACE. The experimental data is automatically saved

by the dSPACE control software ControlDesk and then read

offline by Matlab.

* Switch ON
* Switch OFFλ

λ

λ

λ

λ

λ

λ

C
 (V

)

( )

Figure 3: Switching surface for different reference points.

B. Switching signal function analysis

Although the stability condition for the switching signal

function design seems complicated, the precalculation of the

parameters makes it very simple to implement. The nature

of the switching signal function σ(x(k)) is to partition the

state space into different regions. After searching the state

space, the switching surface for different reference points

can be calculated. The state space partition can be seen in

Fig. 3. For the Buck converter, A1 and A2 are equal and the

matrices P1, P2 are similar. Hence, the switching surfaces are

almost linear as seen in Fig. 3, which are presented by the

dashed lines. The switching signal is defined as ON if the

system state is recognized in the left of the selected switching

surface, otherwise the switching signal is defined as OFF .

In Fig. 3, the transition behaviour of the system state with

three different reference points is presented as examples. The

colours of asterisks mean different switching signals, that is:

red means ON, black means OFF ; and the arrows indicate the

time revolution of the system state x(t). As one can seen, if

the state is away from switching surface, the switching signal

will drive the state towards the switching surface. If the state

is around the switching surface, then it will be driven to the

origin along the surface. Finally, the system state x(t) will be

stabilized around the desired reference point.

C. Implementation Procedure

The proposed control scheme could be implemented in two

step: offline calculation of the controller parameters and the

online implementation. In the following algorithm, the step-by-

step instruction is presented about how to solve the controller

based on Corollary 2. After obtaining the required controller

parameters Pj, the online implementation could follow the flow

chart in Fig. 4.
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Figure 4: Flow chart of the online implementation.

Algorithm 1 Offline calculation based on Corollary 2
Require: DC-DC converter parameters, T , λmin, λmax

1: repeat
2: Tuning ξ , ρ , ε , and κ � Based on the required Θ (9)
3: Solving the optimization problem (12) using Matlab

LMI control toolbox

4: until The optimization problem (12) is feasible

5: return Pj

D. Continuous Conduction Mode (CCM)
In this mode, the load is set as 4.90Ω.

a) Start-up response under different sampling frequency:
In this part, the switching controller in Corollary 2 are solved

for different sampling frequency. The tuning parameters are

given as: ξ = 2×10−4, ρ = 1×10−4, ε = 2, κ = 1×10−4. The

conditions (2) are feasible for different sampling frequency:

fs = 10,20,40 kHz. Figs. 5–7 show the experimental behavior

of the system state under different sampling frequencies. The

averaged switching frequency fa is also presented in each

scenarios. One can clearly observe that the proposed methods

can be applicable to a wide sampling frequency range and

generate similar transition performance as shown in simulation

results.
b) Reference tracking: As we claimed in Corollary 2,

the proposed switching controller is solved for ∀λ ∈ [0,1] ,

which means that the switching controller is able to drive the

converter to track different reference point xe. In the part, the

sampling frequency is 10 kHz with parameters ξ = 2×10−4,

ρ = 1×10−4, ε = 2, κ = 1×10−4. As pointed out previously,

the controller is robust to the change of the reference points

as shown in Fig. 8. Both the capacitor voltage and the induc-

tor current have been controlled to track the corresponding

reference effectively.
c) Switching frequency tuning: As we proposed, the

average switching frequency can be optimized by tuning a set

of weighting factors. It gives more flexility for the balance

between the voltage ripple and switching frequency. This

is also verified in the real experiment. A high sampling

frequency 40kHz is used to solve the switching controller in
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Figure 5: The response of vC and iL ( fs = 10 kHz, fa = 5.1
kHz, CCM)
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Figure 6: The response of vC and iL ( fs = 20 kHz, fa = 10

kHz, CCM)

Corollary 2 with parameters ξ = 2×10−4, ρ = 1×10−4, ε = 2,

κ = 1×10−4. The result is shown in Fig. 9. As we can see,

as w2 increases, the average switching frequency decreases

rapidly but the voltage ripple just increases slightly.

d) Load variation (Simulation Results): In this part, sim-

ulation work has been carried out to verify the switching law

(14) when the load R is varying. The sampling frequency is set

to 20kHz. The BMI (15) is solved offline with Rmax = 10Ω and

Rmin = 4.9Ω. The tuning parameter α of the outer integration

loop is set to 1×10−3. Hence, the switching law should work

when the load is varying between Rmin and Rmax. In Fig. 10, the

worst scenario is given when the load step up to 10Ω from the

nominal value 4.9Ω at 0.01s and step back to nominal value

at 0.02s. As we can see from Fig. 10, during 0.01s to 0.02s,

the voltage follows the reference without steady state error,

while the current does not due to load variation.

e) Comparison with PI Controller (Simulation Results):
In this part, the proposed switching control approach is

further compared with a traditional industry-standard PI-type

controller tuned on the basis of a linearized averaged model
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Figure 7: The response of vC and iL ( fs = 40 kHz, fa = 20.3
kHz, CCM)
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Figure 8: The response of vC and iL to different reference

points (CCM mode).

(averaged control scheme) [34]. The sampling frequency of the

proposed method and the switching frequency of PWM signal

are both set to 20kHz. And the weighting factor w2 is set to 0

for a fair comparison. The output voltage and inductor current

responses under these two control scheme are shown in Fig.

11. obviously, the proposed method presented better transient

performance than the PI controller for both the voltage and

current response.

The phase diagrams for both proposed method and PI

controller are shown in Fig. 12. As explained in the previous
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Figure 9: Experimental behaviour of vC, iL and switching

signal σ when tuning the weighting factor w2 (CCM mode).
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Figure 10: Load variation from 4.9Ω to 10Ω at 0.01s and back

to 4.9Ω at 0.02s

subsection B and Theorem 1, the proposed control method

defines a switching surface Fig.3 and a converged region (9).

Hence, the designed controller will drive the system state

to the switching surface first and to the converged region

along the switching surface. In addition, as the controller will

choose the switching action which is able to drive the system

state along the fastest possible converging direction. All these

characteristic will result in a trajectory with shorter transition

period and no/smaller state overshoot for both current and

voltage state.
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Figure 11: The responses of vC and iL under proposed method

and a PI controller (Simulation).

E. Discontinuous Conduction Mode (DCM)

In this mode, the load is set as 30Ω and sampling frequency

is fixed as 40 kHz. The parameters that is used to solve the

switching controller σ(x(k)) in Corollary 2 are ξ = 2×10−3,

ρ = 1 × 10−4, ε = 2, κ = 1 × 10−4. The start-up response

is shown in Fig. 13. One can easily notice that the inductor

current iL is discontinues. Furthermore, the converter is also

controlled to track different reference points by the proposed

switching controller as depicted in Fig. 14. From Fig. 15, it

can be seen that when tuning the weighting factor w2, the

average switching frequency presents similar behaviour as the

CCM mode.
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Figure 12: Phase diagrams of the proposed method and a PI

controller.
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Figure 13: The start-up response of vC and iL (DCM mode)

V. CONCLUSIONS

We have proposed a novel switching controller for DC-DC

converters. The converters have been modeled as sampled-data

switched systems. A composite Lyapunov functional has been

used to design the switching signal function with guaranteed

stability and tracking property. Furthermore, the switching fre-

quency can be adjusted in real-time with guaranteed stability.

The future work may include developing different Lyapunov

functional to compare the conservatism, extending the results

to more complicated power electronic converters, such as
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Figure 14: The response of vC and iL to different reference

points (DCM mode).
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Figure 15: Experimental behaviour of vC, iL and switching

signal σ when tuning the weighting factor w2 (DCM mode).

multilevel inverters, bidirectional converters, and improve the

robustness of the closed-loop system.

APPENDIX A: PROOF OF THEOREM 1

Proof: We note from the min property of V1(φ(t)) that at

the switching instant k,

V1(φ(k), t+k ) = φ T (k)Pj(σk)φ(k)
≤ φ T (k)Pj(σk−1)φ(k) =V1(φ(k), t−k ) (18)

which means that the Lyapunov functional V1(e(t)) does not

grow after each switching instant. By using the comparison

principle, we have that if (8) holds, then

V1(φ(t), t)≤ e−2ξ (t−tk)V1(φ(k), t+k )+θ
∫ tk+1

tk
e−2ξ (t−s)ds

≤ e−2ξ (t−tk−1)V1(φ(k−1), t+k−1)

+θ
∫ t

tk−1

e−2ξ (t−s)ds

≤ . . .≤ e−2ξ tV1(φ(0),0)+θ
∫ t

0
e−2ξ (t−s)ds,

where

θ = ρT +κ||xe||2 +(ε +2β )
w2

w1
,

which means that for t → ∞, x(t) exponentially converges to

the region Θ. �

APPENDIX B: PROOF OF THEOREM 2

Proof: Without loss of generality, we assume that at

time k, σ(x(k)) = i and V1(φ(k)) = min
j∈Ξ

{φ(k)T Pjφ(k)} =

φ(k)T Pjφ(k). Then along the solution of (1), the derivative

of the chosen Lyapunov functional (6) can be calculated:

V̇1 = min{φ̇ T (t)Pjφ(t)+φ T (t)Pjφ̇(t)}
= min{2φ T (t)Pj(Aiφ(t)+Aixe +Bi)}
≤ φ T (t)(AT

i Pj +PjAi)φ(t)+2φ(t)Pj(Aixe +Bi). (19)
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Applying Jensen’s inequality [35] yields,

V̇2 +ξV2 ≤(T − τ)(Aiφ(t)+Aixe +Bi)
T Qi(Aiφ(t)+Aixe +Bi)

− τvT (t)Qiv(t)e−ξ T , (20)

where v(t) = x(t)−x(tk)
τ , τ = t − tk.

Define η(t) =
[

φ(t) xe v(t) 1
]T

, the condition (8)

holds if

ηT (t) Π(τ) η(t)< 0. (21)

Based on the proposed switching signal function (4), for

∀l ∈ Ξ, the following inequality holds:

2w1φ(k)T Pj(Alφ(k)+Alxe +Bl)+2w2|l −σk−1| ≥
2w1φ(k)T Pj(Aiφ(k)+Aixe +Bi)+2w2|i−σk−1|. (22)

Rearranging the inequality yields,

2w1φ(k)T Pj(Alφ(k)+Alxe +Bl)+2
w2

w1
(|l −σk−1|− |i−σk−1|)

≥ 2w1φ(k)T Pj(Aiφ(k)+Aixe +Bi). (23)

Since −1 ≤ |l−σk−1|−|i−σk−1| ≤ 1, ∀l ∈ Ξ, if (23) holds,

the following inequality holds:

2w1φ(k)T Pj(Alφ(k)+Alxe +Bl)+2
w2

w1

≥ 2w1φ(k)T Pj(Aiφ(k)+Aixe +Bi). (24)

When l = 1, multiplying the inequality (24) by λ yields,

2w1φ(k)T Pj(λA1φ(k)+λA1xe +λB1)+2
w2

w1

≥ 2w1φ(k)T Pj(λAiφ(k)+λAixe +λBi). (25)

When l = 2, multiplying the inequality (24) by (1 − λ )
yields,

2w1φ(k)T Pj((1−λ )A2φ(k)+(1−λ )A2xe +(1−λ )B2)+2
w2

w1

≥ 2w1φ(k)T Pj((1−λ )Aiφ(k)+(1−λ )Aixe +(1−λ )Bi).
(26)

Summing up (25) and (26), the following inequality holds:

2φ T (k)Pj(A(λ )−Ai)φ(k)−2φ T (k)Pj(Aixe +Bi)+2
w2

w1
≥ 0,

(27)

where the relations A(λ ) = λA1 +(1−λ )A2, B(λ ) = λB1 +
(1−λ )B2, and A(λ )xe +B(λ ) = 0 are used.

For φ(k) = φ(t)− τv(t), and using the same variable η(t),
the above inequality becomes:

ηT (t)(Ω(τ,τ2)+Ω(τ,τ2,λ ))η(t)≥ 0. (28)

Another assumption V1(φ(k)) = min
j∈Ξ

{φ(k)T Pjφ(k)} =

φ(k)T Pjφ(k) is satisfied only if

φ T (k)Pjφ(k)≤ φ T (k)Prφ(k), ∀r ∈ Ξ (29)

Using the expression φ(k)= φ(t)−τv(t) and the same variable

η(t), the above inequality becomes:

ηT (t) ϒ j(τ,τ2) η(t)≤ 0. (30)

Therefore, (8) holds if (21) holds in the condition of (28),

(30), that is,

ηT (t) Π(τ) η(t)< 0

s.t. ηT (t)
(
Ω(τ,τ2)+Ω(τ,τ2,λ )

)
η(t)≥ 0

ηT (t) ϒ j(τ,τ2) η(t)≤ 0 ∀(i, j) ∈ Ξ×Ξ
Applying the S-procedure, the above condition holds if

ηT (t) Π(τ) η(t)+βηT (t)
(
Ω(τ,τ2)+Ω(τ,τ2,λ )

)
η(t)

−
Ξ

∑
r

μ jrηT (t)ϒ j(τ,τ2)η(t)< 0

∃β > 0, ∃μ jr > 0, ∀(i, j) ∈ Ξ×Ξ. (31)

Rearranging the inequality yields,

Ψ(τ,τ2,λ )

= Π(τ)+β (Ω(τ,τ2)+Ω(τ,τ2,λ ))−
Ξ

∑
r

μ jrϒ j(τ,τ2)< 0

(32)

Since Ψ(τ,τ2,λ ) ∈ co{Ψ(0,0,λ ),Ψ(T,0,λ ),Ψ(T,T 2,λ )},

∀τ ∈ [0,T ], (32) holds if

Ψ(0,0,λ )< 0 (33)

Ψ(T,0,λ )< 0 (34)

Ψ(T,T 2,λ )< 0. (35)

Because (35) implies (34), the conditions (33)–(35) are suf-

ficient to guarantee the stability with the proposed switching

law. �

APPENDIX C: PROOF OF COROLLARY 1
Proof: Continuing with the proof of Theorem 2, the inequal-

ity (32) can be separated as two parts: one with the weighting

factor w1 and w2 and the other without.⎡
⎢⎢⎣

0 0 0 0

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ −ρT − ε w2
w1

⎤
⎥⎥⎦+Δ < 0 (36)

Δ represents the inequality without the weighting factor w1

and w2. For simplicity, the details of the Δ is omitted.
Obviously, the inequality (36) with a given w1 > 0 and any

w2 > 0 holds, if the inequality (36) with a given w1 > 0 and

w2 = 0 holds. Hence, when the inequalities (11) hold, Theorem

2 is satisfied. �

APPENDIX D: PROOF OF COROLLARY 2
Proof: Continuing with the proof of Theorem 2, Ω(τ,τ2,λ )

is the only term dependent on λ . By substituting A(λ )= λA1+
(1−λ )A2 into Ω(τ,τ2,λ ) and rearranging the matrix, one can

have:

Ω(τ,τ2,λ ) = λM+(1−λ )N = λ (M−N)+N (37)

where

M =

⎡
⎢⎢⎣

AT
1 Pj +PjA1 0 −τ(AT

1 Pj +PjA1) 0

∗ 0 0 0

∗ ∗ τ2(AT
1 Pj +PjA1) 0

∗ ∗ ∗ 0

⎤
⎥⎥⎦ (38)

N =

⎡
⎢⎢⎣

AT
2 Pj +PjA2 0 −τ(AT

2 Pj +PjA2) 0

∗ 0 0 0

∗ ∗ τ2(AT
2 Pj +PjA2) 0

∗ ∗ ∗ 0

⎤
⎥⎥⎦ . (39)
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Because λ ∈ [λmin,λmax], we can define:

λ = pλmax +(1− p)λmin, p ∈ [0,1]. (40)

The condition (2) can be written as:

Λ(0,0)+β (λmin(M−N)+N)< 0 (41)

Λ(T,T 2)+β (λmin(M−N)+N)< 0 (42)

Λ(0,0)+β (λmax(M−N)+N)< 0 (43)

Λ(T,T 2)+β (λmax(M−N)+N)< 0, (44)

where Λ(τ,τ2) = Π(0)+βΩ(0,0)−
Ξ
∑
r

μ jrϒ j(0,0).

Then multiplying (1− p) to (41)–(42) and multiplying p to

(43)–(44), one obtains:

(1− p)Λ(0,0)+β ((1− p)λmin(M−N)+ pN)< 0 (45)

(1− p)Λ(T,T 2)+β ((1− p)λmin(M−N)+ pN)< 0 (46)

pΛ(0,0)+β (pλmax(M−N)+(1− p)N)< 0 (47)

pΛ(T,T 2)+β (pλmax(M−N)+(1− p)N)< 0. (48)

Summing up (45)–(47) and (46)–(48) respectively yields,

Ψ(0,0,λ ) = Λ(0,0)+β (λ (M−N)+N)< 0 (49)

Ψ(T,T 2,λ ) = Λ(T,T 2)+β (λ (M−N)+N)< 0. (50)

Now we can claim, if the conditions (2) hold, the conditions

(10) hold for ∀λ ∈ [λmin,λmax]. �

APPENDIX E: PROOF OF THEOREM 3
Proof: Similar to the proof of Theorem 1, the condition

(16) yields:

V1(φ(t), t)≤ e−2ξ tV1(φ(0),0)+2β
∫ t

0
e−2ξ (t−s)ds, (51)

which means that for t → ∞, x(t) exponentially converges to

the region Θ̂.
We assume that at time t, σ = i and V1(φ(t)) =

min
j∈Ξ

{φ(k)T Pjφ(t)}= φ(t)T Pjφ(t). Then along the solution of

(1), the derivative of the chosen Lyapunov functional (6) can
be calculated:

V̇1 = min

{
2φ T (t)Pj

((
Ai +

q

∑
m=1

δ m
i Âm

i

)
φ(t)

+

(
Ai +

q

∑
m=1

δ m
i Âm

i

)
xe +

(
Bi +

q

∑
m=1

δ m
i B̂m

i

))}

= 2φ T (t)Pj

((
Ai +

q

∑
m=1

δ m
i Âm

i

)
φ(t)

+

(
Ai +

q

∑
m=1

δ m
i Âm

i

)
xe +

(
Bi +

q

∑
m=1

δ m
i B̂m

i

))

Define η̂(t) =
[

φ(t) xe 1
]T

and using convexity argu-
ments, the condition (16) holds if[ (

Ai + Âm
i
)T Pj +Pj

(
Ai + Âm

i
)T

+ξ Pj Pj(Bi + B̂m
i )+PjÂm

i xe
∗ −β

]
< 0
(52)

According to the switching law (14), similar to (27), the

following inequality stands:

2φ T (k)Pj(A(λ )−Ai)φ(k)−2φ T (k)Pj(Aixe +Bi)≥ 0, (53)

Applying the S-procedure, the conditions (52) (53) hold if (15)

holds. �
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