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Abstract—Intrusion detection is one of the important ap-
plications of Wireless Sensor Networks (WSNs). Prior research
indicated that the barrier coverage method combined with Mobile
Sensor Networks (MSNs) can enhance the effectiveness of intru-
sion detection by mitigating coverage holes commonly appeared
in stationary WSNs. However, the trajectories of moving sensors
and moving intruders have not been investigated thoroughly,
where the impact between two adjacent moving sensors and
between a moving sensor and a moving intruder are still under-
determined. In order to address these open problems, in this
paper, we firstly discuss the virtual potential field between
sensors as well as between sensors and intruders. We then
propose to formulate the mobility pattern of sensor node using
elastic collision model and that of intruder using point charge
model. The point charge model describes an hitherto-unexplored
mobility pattern of empowered-intruders, which are capable of
acting upon the virtual repulsive forces from sensors in order to
hide them away from being detected. With the aid of the two
models developed, analytical expressions and simulation results
demonstrate that our proposed design achieves a higher k-barrier
coverage probability in intrusion detection when compared to
that of the conventional designs. It is also worth mentioning
that these improvements are achieved with shorter average
displacement distance and under the much more challenging
MSNs settings.

Index Terms—Mobile sensor networks, intrusion detection,
k-barrier coverage, empowered intruders

I. INTRODUCTION

1.1 Motivation

Intrusion detection can be defined as the technique to
detect unapproved entrance into specific territory and it has
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become the basis of other monitoring applications such as
border surveillance and sabotage detection. Traditional radar
systems can be utilized in intrusion detection tasks but face the
limitations of high cost and high false alarm rates. Moreover,
radar systems need to be built in security areas with a long
construction cycle. Therefore, distributed target detection sys-
tems are proposed in order to address the above problems and
provide better performance. Wherein, wireless sensor networks
(WSNs) have been widely applied as a kind of low-cost
and easy-deployed distributed intrusion detection systems [1]
through continuously sensing and transmitting environmental-
related data [2], [3]. Multiple sensors may collaboratively
judge whether an intrusion event occurs based on decision
fusion [4]–[6] and local voting [7]; and multiple sensors
also may collaboratively detect the intruder’s movement and
crossing trajectory by trans-location and coverage optimiza-
tion, which is exactly the concern of this paper. This issue
usually focuses on how to effectively deploy sensor nodes on
a specific zone boundary in order to capture an intruder with
high probability.

Prior research indicated that the coverage optimization
methods, especially the barrier coverage method, are capable
of improving the intrusion detection capability in WSNs.
Barrier coverage was firstly introduced in [8] for stationary
WSNs, where sensors deployed over a belt region are used to
carry out intrusion detection and the region is said to provide
k-barrier coverage if every path that crosses the width of
the belt is covered by at least k distinct fixed sensors (k ≥
1). In stationary WSNs, there may exist exposed paths for
intruders which cannot be covered by any deployed sensor
owing to their ‘static’ nature. Hence, it is believed that Mobile
Sensors Networks (MSNs), where every sensor can move to an
appropriate position according to coverage requirements, are
capable of enhancing coverage and of avoiding exposed paths
appeared in stationary WSNs. However, if the trajectories
of moving sensors and moving intruders were completely
stochastic, it would be very challenging to justify whether
MSNs still provide k-barrier coverage. As a result, it becomes
highly desirable to develop a rigorous model for characterizing
the k-barrier coverage probability of MSNs.

In this context, virtual potential field based modeling
between moving sensors and moving intruders appears to be
attractive. This model was firstly adopted in [9], where the
field is constructed in such a way that each sensor is repelled
by both obstacles and other sensors, thereby forcing the
network to spread itself throughout the environment. However,
the existing studies of [10], [11] only considered general



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2872848, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 2

MSNs setting, where the intruder’s crossing trajectories were
not taken into account comprehensively. Furthermore, some
intruders who are probably equipped with sensing magnetic
field scanner may strategically hide them away from sensors.
And these intruders are called as empowered intruders who
achieve the dodging when acting upon the virtual repulsive
forces between sensors and them. Little existing research
considers such scenario with the empowered intruders, and
meanwhile the barrier coverage probability obtained from
current approaches may be further improved. This motivates us
to study this hitherto-unexplored problem with novel system
models and powerful intrusion detection strategies, where both
of them will be treated in this paper.

1.2 Related work
Intrusion detection was first introduced in sensor-based

robotic systems [12]. It has been an important branch of the
coverage problem, which can be divided into two categories:
full coverage and barrier coverage. Full coverage needs to
ensure the connectivity and maximize the detection rate of
the coverage area, while barrier coverage needs to minimize
the probability of undetected enemy penetration through the
barrier.

The problem of full coverage has been extensively studied
in [9], [13] and [14], among which the approach based on
virtual potential field [9] attracts considerable attention. [13]
and [14] respectively consider the enhanced virtual potential
field algorithm and the optimal mobile sensor redeployment
strategy, for the purpose of the minimum nodes and the
maximal coverage. H. Mahboubi et al. combine the Voronoi
diagram with virtual force algorithm and propose a distributed
approach of coverage optimization [15]. F. J. Parrado-Garcia
et al. study the WSNs deployment configuration for in-situ
lunar surveys in which simulated annealing algorithm is used
to solve a constrained coverage optimization problem in this
application scenario [16]. However, it is difficult for full
coverage to thoroughly address the intrusion detection problem
due to lack of considerations of moving trajectories of sensors
or intruders, and subsequently plenty of research contents have
begun to explore barrier coverage in WSNs.

Based on distinctive views of barrier coverage, many
solutions are proposed to adapt to different requirements in
stationary WSNs. B. Liu et al. present an efficient distributed
algorithm to construct sensor barriers on long strip areas of
irregular shape without any constraint on crossing paths [17].
A. Chen et al. design a set of metrics in order to measure the
quality and performance of barrier coverage in [18]. Taking
the moving trajectory, speed and location of moving target (i.e.
moving intruder) into account, [19], [20] and [21] respectively
provide the effective proposal, where S. Kumar et al. consider
the movements of intruder are likely to follow a shorter path
when the intruder crosses a belt region [19], and J. M. Chen
et al. restrict the farthest distance that an intruder can move
without being detected [21], both of which motivating the
pattern of intruder’s pass-through in this paper. The existence
of the exposed path in stationary WSNs hinders it from being
the ideal solution in critical intrusion detection tasks where
any unmonitored crossing is intolerable.

Currently, mobile WSNs have gradually become the con-
cern of barrier coverage, which are investigated in [10], [11]
and [22]–[29]. Where [23]–[25] and [11] illustrate that node
mobility may improve the coverage performance of WSNs.

H. Xu et al. design a barrier coverage method in a
hybrid sensor networks where the mobile sensors with ad-
justable sensing ranges can efficiently mend the barrier gaps
produced by the stationary nodes [22]. S. J. Li et al. suggest
a barrier coverage method which minimizes the maximum
sensor movement distance by characterizing critical permu-
tation switches [23]. M. Rout et al. propose two distributed
deployment schemes where mobile sensor nodes are randomly
deployed over a rectangular belt to form sensor barriers by
self-adjustment [24]. Particularly for the scenario of sparse
WSNs, S. B. He et al. design a periodic monitoring scheduling
(PMS) algorithm in which each point along the barrier line
is monitored periodically by mobile sensors to guarantee
the high coverage [25]. D. Van et al. extend the traditional
virtual force algorithm with interest-driven virtual force to
provide monitoring of a moving phenomena in an unknown
and open area [28]. G. Y. Keung et al. introduce the gas kinetic
theory and mean free path from physics to facilitate the study
regarding the intrusion detection problem [11]. Based on these
physics models, it derives the inherent relationship between the
k-barrier coverage performance and a set of crucial dynamic
aspects of MSNs and calculates the detection probability for
at least k number of sensor coverage [11]. Nevertheless, the
movement pattern of sensor nodes in [11] is purely stochastic
so that their sensing area may overlap, which results in a
decreased overall detection probability.

Furthermore, literature [10], [26] and [27] focus on devel-
oping algorithms to reposition mobile sensors. C. Shen et al.
formulate the problem of minimum-energy barrier-coverage,
and realize the energy-efficient sensor relocation by utilizing
fewer mobile sensors than stationary sensors to achieve barrier
coverage [10]. N. Bartolini et al. focus on the vulnerabilities
of the deployment based on Voronoi diagrams and put for-
ward a solution to coordinate mobile sensors and guide their
movements to new positions [26]. Z. B. Wang et al. mainly
study how to efficiently use the reposition of mobile sensors
to achieve k-barrier coverage in directional sensor networks
[27]. B. Xu et al. investigates the potential of using mobile
sensor nodes to strengthen the barrier coverage of WSN by
adopting the first-order grey model to determine the vulnerable
part of the barrier and relocate mobile nodes to cover the
possible loopholes [29]. Particularly, for the bistatic radar
(BR) sensor networks, [30] and [31] respectively consider the
placement and deployment problem in order to maximize the
coverage and minimize the vulnerability of a barrier. However,
current deployment strategies of MSNs do not take empowered
intruders into consideration and the obtained barrier coverage
probability needs to be further improved by designing an
effective mobility model of sensor.

To the best of our knowledge, we are the first to study the
k-barrier coverage probability in intrusion detection scenario
with empowered intruders in MSNs. Based on the virtual
potential field, by leveraging the elastic collision model and
the point charge model from physics, we investigate the
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dynamic relationships between moving intruders and mobile
sensors and then evaluate the k-barrier coverage performance
in intrusion detection tasks with empowered intruders.

1.3 Novelty

In the above-mentioned challenging MSNs setting with
empowered intruders, moving sensors are assumed randomly
deployed over a belt region, where the movement of each
sensor is affected by the virtual repulsive forces between itself
and the others. The virtual repulsive forces are considered
in this paper because it naturally reduces the overlapping
coverage areas between two sensors in order to avoid coverage
holes if they are close to each other or causing a collision. We
found that the sensor mobility pattern is reminiscent of the
elastic collision model. As for empowered intruders, from
the view of physical phenomenon, their objective is to cross
the parallel boundary of the belt region, with the strategy of
acting upon the virtual repulsive forces from moving sensors
in order to keep them away from being detected. It turns
out that the intruder mobility pattern is very similar to the
point charge model. Hence, with the aid of the above two
models, we will be able to establish the inherently dynamic
relationships between moving sensors and intruders.

Against the above background, the contributions of this
paper can be summarized as follows:
• We propose the elastic collision model and the point

charge model to describe the mobility patterns of sensors and
intruders, respectively. These two models are used for charac-
terizing the k-barrier coverage probability of the challenging
MSNs setting, when considering moving trajectories of sensors
and empowered intruders.
• With model developments, we further describe the

reposition strategies and the dynamic procedure including the
collisions among moving sensors and reactions between sen-
sors and empowered intruders. Based on theoretical analysis,
experimental results demonstrate that, even under a challeng-
ing MSNs setting, our proposal for intrusion detection is
capable of achieving a desirable k-barrier coverage probability
with less number of sensors when compared to conventional
solutions.

1.4 Organization

The rest of this paper is organized as follows. Section II
describes the problem formulation, mobility model, intrusion
detection strategy and gives further discussions on intruders’
path-crossing. Simulation results are presented in Section
III, and meanwhile further discussion about significance of
intruder mobility model is put in this section. Section IV
concludes this paper. In addition, the list of primary math
symbols can be seen in Tab. I.

II. SYSTEM DESCRIPTION

2.1 Problem Formulation

Consider a MSN consisting of several moving sensors
deployed in a rectangular belt region Z as shown in Fig. 1.

TABLE I: DESCRIPTION OF MAIN NOTATIONS

Notation Description
R The sensing radius of sensor nodes
k The multiplicity of barrier coverage requirement
NZ The total number of sensor nodes
NG The total number of grids
W , H Width and Height of region Z
Si The i-th sensor node
dij The distance between Si and Sj
τ̄ The average time for the intruder to cross a grid
pi The probability of one sensor existing in grid i in time interval of τ
NX The total number of grids an intruder crosses along with its path
kv The virtual force constant
~vi The velocity of sensor Si
~vij The relative velocity of sensor Si with respect to sensor Sj
β The angle between ~vij0 and ~n
U The union of neighboring sensors simultaneously colliding with Sj
U The union of neighboring sensors of one given sensor
RI The radius of the intruder’s circular track in the point charge model
ρ The central angle of the circular arc of the intruder’s trajectory in the

point charge model
θ Half the central angle corresponding to the intruder’s trajectory in the

straight crossing model
vj0 The initial speed of sensor Sj
vi0 The initial speed of the intruder

H

W

2R

Intruder

p1

p2

p3
pNG

Sensors

Belt Region

Fig. 1: Intrusion detection problem considered in a MSN.

Initially, these moving sensors are independently deployed
with uniform distribution.

The aim of an intruder is to travel across the parallel
boundary of region Z, as shown in Fig. 1. We define an
intruder which is capable of detecting and escaping from
nearby sensors as empowered intruder. The detail analysis of
the movement pattern of the empowered intruder can be seen
in Point Charge Model in Section 2.2. The intrusion is said to
be detected, if the intruder falls within the sensing region of
the moving sensors. As a result, a MSN is considered to be
k-barrier covered if an intruder is cumulatively detected by at
least k moving sensors along its crossing path.

To formulate the probability of k-barrier coverage (de-
noted by P (Λ ≥ k)), the belt region is divided into quantities
of grids as shown in Fig. 1 and the following assumptions
should be made:

1. The grid is a square with side length of 2R (R is
the sensing radius of node). At some point, only one sensor
can appear inside one specific grid according to the criterion
whether the centroid of this sensor occurs in this grid.

2. R�W and R� H , which indicates that the size of
the belt region should be considerably large compared to that
of the grid.

3. For mathematical tractability, we adopt the disc-based
sensing model, meaning that a sensor can detect an intruder
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with probability 1 when the intruder is inside its sensing range
and with zero probability of false alarm.

4. The velocity of the intruder is usually considered to
be greater than that of the sensor node, otherwise the intruder
will be caught easily with high probability. The time it takes
for the intruder to cross a grid is denoted by τ .

5. An empowered intruder equipped with sensing mag-
netic field scanners is able to approximately locate the sensor
nodes around itself.

Based on the aforementioned assumptions, we now con-
sider the probability of k-barrier coverage.

As mentioned in assumption 4, the velocity of the intruder
is greater than that of the sensor node. Therefore, for a certain
grid i, there will be either no sensor nodes (negative event)
or at most one sensor node (positive event) inside of it during
time interval of τ . For grid i, let pi be the probability of the
aforementioned positive event in time interval τ (and 1 − pi
be the probability of the negative event accordingly). Note
that due to the continuous effect of the elastic collision and
virtual force, the frequency of nodes appearing in different
grids will vary which results in different value distribution of
pi. This indicates the non-homogeneous property of the spatial
distribution of sensor nodes.

Assume that the intruder has crossed a total of NX grids
along its path and is detected by exactly j sensor nodes.
Namely, among the NX grids, there are exactly j grids in
which there is one sensor node inside (positive event) when
the intruder is crossing it. For a certain event case (among
all the possible combinations), the IDs of these j grids can be
denoted as λ1, λ2, ..., λj , and the rest of the grids are identified
as µ1, µ2, ..., µNX−j , the appearance probability of such an

event case is then
j∏
l=1

pλl ·
NX−j∏
m=1

(1− pµm).

Assume that the intruder is cumulatively detected by
exactly j sensor nodes, to formulate the probability of such
cumulative detection, we need to sum up all the possible
combinations as

P (Λ = j) =

CjNX∑
i=1

(

j∏
l=1

pλl ·
NX−j∏
m=1

(1− pµm)) (1)

It can be seen that there are totally CjNX items in this
summation.

Therefore, the probability of the intruder being cumula-
tively detected by at least k nodes can be derived as

P (Λ ≥ k) =
NX∑
j=k

P (Λ = j) = 1−
k−1∑
j=0

P (Λ = j)

= 1−
k−1∑
j=0

(

CjNX∑
i=1

(
j∏
l=1

pλl ·
NX−j∏
m=1

(1− pµm)))

(2)

In order to estimate the value of the average time of
intruder crossing a grid (denoted as τ ) which determines the
sampling interval of pi, we propose a novel mobility model
in Section 2.2 and an intrusion detection method in Section
2.3. In addition, the distribution characteristic of pi will be
adequately discussed in Appendix A.

2.2 Mobility Model

Let us now introduce the mobility model used for model-
ing the behaviors of the sensors and the empowered intruders
based on the virtual potential field.

1) Virtual Potential Field

k
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kj
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Fig. 2: Illustration of repulsive forces between two sensors or between a sensor and an
intruder.

According to the notion of traditional virtual potential
field, the virtual repulsive forces usually exist between two
adjacent moving sensors. As shown in Fig. 2, considering two
sensors Si and Sj , there exist virtual repulsive forces ~Fij and
~Fji acting on the centroids of the two sensor discs. These
forces represent action and reaction to each other with the
equal strength and opposite direction. Apart from the virtual
repulsive forces between two sensors, we further expand the
notion of virtual potential field to include the virtual repulsive
forces between a moving sensor and a moving empowered
intruder. As shown in Fig. 2, similarly, there exist virtual
repulsive forces ~Fkj and ~Fjk acting on the centroid of a sensor
Sj and an intruder Ik, when the intruder enters the Sj’s sensing
range. In physics, repulsion is inversely proportional to the
square of the distance between two entities. Analogously, the
virtual repulsive forces can be expressed as∣∣∣~Fij∣∣∣ =

∣∣∣~Fji∣∣∣ = kvd
−2
ij or

∣∣∣~Fkj∣∣∣ =
∣∣∣~Fjk∣∣∣ = kvd

−2
kj (3)

where dij or dkj is the distance between two sensors or that
between a sensor and an intruder, while kv is the virtual force
constant [13]. Under the effect of virtual potential field, motion
states of sensors including location and velocity are varying
all the time; a collision will occur if two moving sensing
discs achieve a adjacently tangent according to the principle
of under-mentioned elastic collision model. The instantaneous
velocity before elastic collision needs to be calculated, it es-
tablishes an important bond between virtual potential field and
elastic collision model, and the detailed derivations regarding
their relationship can be found in Appendix B.

2) Elastic Collision Model
In principle, the virtual repulsive forces can naturally

reduce the overlapping areas covered by two adjacent sensors
and collision between their sensing discs, which hence leads
to an increased coverage rate. More importantly, this repulsive
process is reminiscent of the elastic collision model, which is
discussed as follows.
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Fig. 3: The change of velocities when single or multiple elastic collisions occur.

Let us first consider the single elastic collision model of
two moving sensors, Si and Sj , which, before the collision,
have the velocities denoted by ~vi0 and ~vj0 respectively (the
velocity can be solved in Appendix B). Without loss of any
generality, let us take sensor Sj as the reference. In this
case, |~vij0|=|~vi0 − ~vj0| is established, which represents the
relative velocity between sensor Si and sensor Sj before their
collision, as shown in Fig. 3(a). Similarly, after the collision,
~vij (or ~vji) represents the relative velocity of sensor Si (or
Sj) with respect to sensor Sj (or Si). Furthermore, we adopt
the perfect elastic collision model, meaning that the moment
of collision is only affected by the virtual repulsive forces
between sensors Si and Sj without any external forces. Then,
the interaction between the two sensors obeys the law of
conservation of momentum. As a result, with referring to
Fig. 3(a), the following system of equations is established
(The detailed derivations from (4) to (7) can be referred
in Appendix C.)
mi |~vij | sin(α+ β) = mi |~vij0| sinβ (4− 1)

mi |~vij | cos(α+ β) +mj |~vji| = mi |~vij0| cosβ (4− 2)

mi |~vij | sinα = mj |~vji| sinβ (4− 3)

|~vij | cos(α+ β)− |~vji| = − |~vij0| cosβ (4− 4)
(4)

where mi and mj are the masses of sensors Si and Sj
respectively, while α (or β) is the angle between ~vij (or ~vji)
and ~vij0. After some arrangements of the equations in (4), we
can obtain

|~vji| = 2 cosβ · |~vij0| ·mi/(mi +mj) (5)

|~vij | = |~vij0|
√

1− 4 cos2 β ·mimj/(mi +mj)2 (6)

α = arcsin

(
sin 2β ·mj/

√
(mi +mj)2 − 4mimj · cos2 β

)
(7)

Note that, when sensors Si and Sj have the same mass,
|~vij |=|~vij0| sinβ, |~vji|=|~vij0| cosβ and α = π/2 − β can
be readily derived. Hence, after the collision, sensors Si
and Sj exchange their normal velocities, while keeping their
tangential velocities constant, as shown in Fig. 3(b). Moreover,
the collision is in the direction of the normal vector ~n. As
seen in Fig. 3(b), the vertical direction of ~n is in the direction
determined by the tangential vector of ~γ.

As shown in Fig. 3(c), when multiple elastic collisions
occur between sensor Sj and its neighbors simultaneously, and
when assuming that all the sensors have the same mass, the
velocity of Sj after the collision can be obtained by summing
up all the normal velocities in different directions and be
expressed as

~vj =
∑
l∈U

~vjl + ~vj0 (8)

where ~vj0 is the initial velocity of sensor Sj , U is the union
of the neighbor sensors simultaneously colliding with Sj , and
~vjl is the relative velocity of Sj after the collision with Sl.

3) Point Charge Model
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Fig. 4: Illustration of an intruder Ik crossing the sensing region of Sj .

When an intruder enters the sensing region of a sensor,
we assume that the intruder’s velocity rotates with a constant
speed as the result that the virtual repulsive force pushes it
away from the sensor. On the other hand, we assume that the
sensor’s velocity is not affected by the virtual repulsive force
between itself and the intruder. Upon considering these effects,
we can then model the resultant trajectory of the intruder using
the Point Charge Model (PCM) in physics. To elaborate a
little further, consider a reference sensor Sj and an intruder
Ik. As the virtual repulsive forces between them are internal,
the angular momentum of intruder Ik is conservative. We also
assume that the intruder’s speed is constant, hence its kinetic
energy is conservative. Consequently, as shown in Fig. 4, the
resultant trajectory of intruder Ik relative to its own position
is a circular arc with a radius of RI , which can be obtained
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from the equations of

∣∣∣~Fkj∣∣∣~er = mkd~v/dt (9− 1)

mk · d2
kj · dσ/dt = mk |~vkj | b (9− 2)∫

d~v = 2 |~vkj | sin(ρ/2) (9− 3)∫
~erdρ = 2 cos(ρ/2) (9− 4)

(9)

where ~Fkj represents the virtual repulsive force between
sensor Sj and intruder Ik, ~vkj is the velocity of intruder
Ik relative to sensor Sj , and meanwhile sinσ = b/R and
tan(ρ/2) = R cosσ/(RI + b), as seen in Fig. 4. Furthermore,
in (9), ~er is the unit direction vector of the repulsive force
between sensor Sj and intruder Ik, σ ∈ (0, π/2) is the angle
between the relative velocity ~vkj and the line connecting Sj
and E, as seen in Fig. 4, and finally, ρ is the central angle
corresponding to the circular arc of the intruder’s trajectory.
After some derivations and solutions for the equations in (9),
as shown in Appendix D, we obtain

ρ = 2arccot(Rmk |~vkj |2 sinσ/kv) (10)

Furthermore, the radius RI of the intruder’s circular track can
be explicitly expressed as

RI = R cosσ/ tan(ρ/2)− kv cot(ρ/2)/(mk · |~vkj |2) (11)

where kv is a constant of virtual potential field.

2.3 Intrusion Detection

1) Average Relative Speed
As shown in Fig. 4, elastic collisions happen when there

are virtual repulsive forces existing between sensors and in-
truders. The limiting case is that two sensing discs are tangent
to each other. This happens when the centroids of the neighbor-
ing sensors are exactly on the circle with the center of Sj and
the radius of 2R. Given the width and height of the region Z as
W and H respectively, as shown in Fig. 1, the average number
of neighbor sensors is given by U = 9πR2NZ/(WH) − 1,
where NZ/(WH) can approximately denote the density of
the region. Assume that all sensors have the same mass, after
the elastic collisions simultaneously occur between sensor Sj
with the initial velocity ~vj0 and its U neighbors with the
initial velocities ~v1j0, ~v2j0,· · · , ~vUj0 respectively, the velocity
of sensor Sj relative to the lth neighboring sensor is given by
|~vjl|=|~vlj0| cosβjl, l=1,2,· · · ,U . Consequently, as detailed in
Appendix E, the average relative speed between the reference
sensor Sj and its U neighbor nodes before the collisions can
be obtained from the recursive equations in (67), given as

v1∼U = (v1∼(U−1) + |~vjU |)E1∼U (12)

where E1∼U is defined in (68).
As the result, the average speed of sensor Sj after the

collisions can be figured out as

vj = (v1∼U + |~vj0|)Ej (13)

with Ej given by

Ej =
2

π

∫ π/2

0

√
1− 4v1∼U |~vj0| sin2 ϕ

v2
1∼U + |~vj0|2+2v1∼U |~vj0|

dϕ (14)

Similarly, after the collision, the average speed of intruder
Ik relative to sensor Sj can be derived, which can be expressed
as

vkj = (vk + vj)Ekj (15)

where vk is the average speed of intruder Ik and

Ekj =
2

π

∫ π/2

0

√
1− 4vkvj/(v

2
k + v2

j + 2vkvj) sin2 ϕdϕ.

(16)
2) Average Cross Time
As shown in Fig. 4, for a given period of time τ , the

length of the intruder travels is vkjτ . Correspondingly, the
intruder has turned ρ = vkjτ/RI degrees, as seen in Fig. 4,
which means the intruder has kept away from the current
sensor and the average cross time can be obtained by

τ =
RIρ

vkj

= 2ω · (arccotω) · (
√
R2m2

kv
4
ij − k2

vω
2 − kv)/(mkv

3
kj)

(17)

where ω = (2π)−1
∫ π/2

0
ωdσ = Rmkv

2
kj/(2πkv).

During the average cross time τ , whether an intruder is
detected by a sensor needs to be judged according to the
probability pi for each grid, which is the precondition of
achieving the k-barrier coverage probability. In addition, based
on Monte Carlo simulation, the value of NX can be determined
as an intruder crossing through a belt region given a specific
experimental scenario.

2.4 Further Discussions

In addition to the PCM considered so far, for comparison,
in this paper we also consider two mobility models for model-
ing the intruders’ trajectories, which are the Straight Crossing
Model (SCM) [11] and the Random Crossing Model (RCM),
as demonstrated in Fig. 5(a) and Fig. 5(b), respectively.

Specifically, for the SCM shown in Fig. 5(a), the length
of the crossing path is 2R sin θ. Given the average traveling
speed vkj of an intruder, the time required to cross can be
evaluated by (18)

τ = (2R sin θ)/vkj (18)

Furthermore, when considering all the possible crossing paths,
the average cross time of the intruder can be expressed as (19)

τ =
4R

πvkj

∫ π/2

0

sin θdx =
4R

πvkj
(19)

On the other hand, when assuming the RCM, we may
approximate the random trajectory using many short straight
crossing paths. As shown in Fig. 5(b), the mobility pattern of
the RCM may be described as the intruder conducts a uniform
motion for a short period ∆t, which is then followed by
another uniform motion for the same period ∆t with a random
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change in moving direction and this continues repeatedly.
When the moving duration ∆t tends to zero, the intruder’s
mobility pattern becomes random. Once the intruder gets out
of the node sensing disc, all the ∆t will be accumulated to
achieve the cross time τ . When this process is repeated, we
can obtain the average cross time τ .

kI

jS

R

q

kjvv

(a) The intruder crosses a sensor’s re-
gion straightly

kI

kjvkjv

iS

1
q

2
q

(b) The intruder crosses a sensor’s
region randomly

Fig. 5: The intruder crosses a sensor’s region by SCM and RCM.

III. SIMULATION RESULTS

3.1 Evaluation Methods and Settings

In this section, we conduct simulations to evaluate the
coverage performance of the proposed models and to discuss
the dynamic procedure from a new perspective. Unless oth-
erwise specified, the MSN’s default simulation settings are
shown in Tab. II. For simplicity, the k-barrier coverage of
MSNs based on elastic collision and virtual potential field
proposed in this paper is called “VMSN” for short, the k-
barrier coverage in stationary WSNs is called “WSN” for
short, and k-barrier coverage of general MSNs based on gas
kinetic theory proposed in [11] is called “gMSN” for short,
and the scheme based on classic virtual potential field in [9]
and that based on improved virtual potential field in [28]
are abbreviated as “CVF” and “VirFID” respectively. The
approach based on Grey forecasting model in [29] is abbre-
viated as “GM”. In this paper, “VMSN” is realized by two
ways: theoretical evaluation combined with simulations and
complete Monte Carlo simulation, denoted as “VMSN(TE)”
and “VMSN(MC)”, respectively. For the former, equation (1)
and (2) are used to calculate the k-barrier coverage probability
when pi, τ and NX is obtained; while for the latter, actions of
both intruders and sensors are completely simulated and the
total number of the intruder detected by sensors is recorded in
order to achieve the statistical analysis of k-barrier coverage
probability. In addition, the k-barrier coverage probability can
be figured out in “WSN” and “gMSN”. Yet, it is achieved by
simulations in “CVF”, “VirFID” and “GM”. It should be noted
that an empowered intruder who obeys point charge model
(PCM) is just adopted in “VMSN” and intruders crossing the
region randomly (RCM) are used in other schemes. When
NZ = 100, R=10m and vi0=30m/s, the comparisons between
different schemes regarding the k-barrier coverage probability
are shown in Fig. 6.

TABLE II: THE PARAMETERS SETTINGS OF K-BARRIER COVERAGE

Parameter Names Parameter Values
Size of area 400m (height) × 1200m (width)
Mass of sensor and intruder 1unit
Node number of sensor (NZ ) 100, 200 and 400
Sensing range R = 10m, 15m or 20m
Sensor’s initial speed 10m/s
Intruder’s initial speed (vi0) 30m/s, 45m/s or 60m/s
The value of k From 0 to 40
The value of kv 1, 2
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Fig. 6: Probability of k-barrier coverage in different schemes when NZ = 100,
R=10m and vi0=30m/s.

From Fig. 6 we can find that the trend of “VMSN(TE)”
based on the theoretical evaluation combined with simulations
is similar to that of “VMSN(MC)” based on Monte Carlo,
and both of them achieve satisfactory performance. The tiny
difference between them is originated from limitations of the
number of experiments, and the curve of “VMSN(MC)” stays
a slightly random fluctuation due to statistical property of
simulation results. Actually, due to the influence of estimation
of pi and NX , even if the curve of “VMSN(TE)” shows more
smooth, it is still an approximation of physical truth. Simulta-
neously, this approximation presents instability which causes
that sometimes “VMSN(TE)” is superior to “VMSN(MC)”
sometimes on the contrary. In actual, these slight fluctuations
of simulation curves are inevitable due to the fact that the
number of experiments are not really infinite.

Stationary “WSN” never considers optimizing locations
of sensors, so it has a worst performance of detection in most
instances. “gMSN” introduces mobile sensor nodes to compen-
sate the coverage holes, yet independent moving tracks may
cause overlapping regions, which may decrease the probability
of detection. “CVF” employs classic virtual potential field to
reduce the overlapping areas among sensors. However, the
tending to eventually becoming a static network will weaken
the intrusion detection ability of “CVF”, and sometimes it
shows to be inferior to “WSN” as k value increases. “VirFID”
considers the influence of interest event based on virtual
potential field, when an intruder is detected by one node, it
owns a better interest value, which can attract other nodes to
find the intruder. So, its performance is better than “CVF”
and even better than “gMSN” in some occasions. However,
the network of “VirFID” stays static as well after a period
when each node reaches its appropriate position, which will
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Fig. 7: Probability of k-barrier coverage in different schemes when R = 10m,
vi0 = 30m/s and NZ changes.

reduce the probability to catch intruders. Actually, both “CVF”
and “VirFID” fail to achieve desirable k-coverage when facing
higher k value requirement due to their finally static and
relative uniform network characters. And this phenomenon
probably results in less sensors gathering in some passing-
through paths in “CVF” or “VirFID”, which cannot provide a
high k-coverage detection. “GM” utilizes the mobility of mo-
bile nodes to cover the loopholes caused by vulnerable static
nodes and achieves better k-barrier coverage than “gMSN”
when k ≤ 3. However, the barrier coverage of “GM” with
higher k values is not desirable because its design focuses
on providing 1-barrier coverage. On the whole, “VMSN”
has the best performance because it takes full advantage of
virtual potential field and avoids overlapping regions by elastic
collisions.

3.2 Effect of Node Number

The k-barrier coverage probabilities of “VMSN”,
“WSN”, “gMSN”, “CVF”, “VirFID” and “GM” with two sets
of sensor number (NZ=200 and 400) are shown in Fig. 7(a)
and Fig. 7(b) respectively. It can be seen that the k-barrier
coverage probability of “VMSN” are always greater than those
of others under the same situations, which benefit from that
the sensor mobility can be exploited to compensate for the
coverage holes. From Fig. 6, it can be found that the average
probability of k-barrier coverage has an increase when NZ
increases, which is consistent with common sense.

3.3 Effect of Intruder’s Initial Speed

Fig. 8 shows the effect of intruder’s initial speed on the
k-barrier coverage in different mobility models, where vi0
changes into 45m/s in Fig. 8(a) and 60m/s in Fig. 8(b). It can
be seen that for each scheme, the faster the intruder moves,
the harder the sensors detect him. The change of intruder’s
initial speed causes more significant effect on “VMSN” and
“gMSN” as compared with the other three schemes. Further
investigation suggests that when vi0 is equal or greater than
60m/s and increases rapidly, the k-barrier coverage probability
tends to be mitigatory recession and each scheme provides
nearly the same detection level. It can be explained that the
time of intruders to cross the region becomes extremely tiny,
which makes dynamic mobile network similar to stationary
one.
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Fig. 8: Probability of k-barrier coverage in different schemes when NZ = 100,
R = 10m and vi0 changes.

Fig. 8(c) demonstrates the k-barrier coverage of “VMSN”
when vi0 grows from 10m/s to 60m/s and the inital speed
of sensor node is set as 10m/s. It can be seen that the
probability of the intruder being k-covered decreases with the
increase of vi0, which is consistent with the cases in Fig. 8(a)
and Fig. 8(b). In (17), the average cross time is in inverse
correlation to the average relative speed vkj . Greater vi0 means
greater vkj and less average cross time, therefore leads to the
decrement in k-coverage probability.

3.4 Effect of Radius
Fig. 9 describes the effect of radius on the k-barrier

coverage in different mobility models when R changes. As
expected, increasing R improves the coverage of sensor nodes
and meanwhile raises the chances of intruders being detected.
Furthermore, it is shown that “VMSN” provides a better
barrier coverage performance than any of others for three
values of radius (R = 10m in Fig. 6, R = 15m in Fig. 9(a),
R = 20m in 9(b)), which convinces the advantage of
“VMSN”. From Fig. 9 we can find that when R is above 10m,
the performance of “gMSN” gets worse because the raise of
R increases the area of overlap regions. In “CVF”, “VirFID”
and “VMSN”, nodes separate from each other, which causes
a higher probability of k-barrier coverage than “gMSN”. The
barrier coverage of “GM” also improves when R increases.
In fact, greater R means it is easier for the mobile sensors to
cover the loopholes.

3.5 Average Displacement Distance
Furthermore, we also carry out experiments to display

the average displacement distance of “VMSN” and “gMSN”
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Fig. 9: Probability of k-barrier coverage in different schemes when NZ = 100,
vi0=30m/s and R changes.
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Fig. 10: Comparisons of average displacement distance between VMSN and gMSN
when NZ and kv change.

respectively. We assume an area with 400 × 1200 size as
simulation scene, which tends to be a belt for a practical
application involved moving sensor nodes. At the same time,
we assume that the whole running time T is partitioned
into quantities of unit periods of ∆t so that the sensor’s
motion can be treated as a uniform motion with a straight
line approximately within ∆t. Every sensor’s force, velocity
and location are recorded. And the virtual force constant kv
is used to calculate the value of virtual force. We use the
same parameters setting as simulation experiments in Fig. 7
in order to effectively measure average displacement distance
on the premise that VMSN has better k-barrier coverage
performance than gMSN. The average displacement distance
of gMSN where sensors move at a constant velocity would not
be influenced by the change of parameters due to the moving
behaviors of sensors are mutual independent. However, the
displacement will probably be varying in VMSN due to the
effect of virtual forces and elastic collisions between sensors.
Therefore, different kv and NZ should be considered in
different experimental scenarios to measure the displacement
of sensors in VMSN. Fig. 10 (a) shows the comparisons
between VMSN and gMSN when NZ = 200, kv = 1 and
kv = 2 respectively. Similar comparisons are depicted in
Fig. 10 (b) and the distinction from (a) lies in NZ is set
as 400. It can be found that VMSN achieves the minimum
average displacement distance when NZ = 400 and kv = 2
through vertical contrasts of (a) and (b) in Fig. 10. Based
on observations of experimental process, VMSN can achieve
less average displacement distance with the increase of sensor
number or virtual force (i.e. kv).

The increase of sensor nodes in the same belt region
will cause the increase of neighbor nodes of any given sen-
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Fig. 11: k-barrier coverage of “PCM”, “SCM” and “RCM” in VMSN.

sor, which indicates the resultant force from these neighbors
will offset each other. Therefore, the average velocities of
most sensors especially those located in intermediate region
(more neighbors) become slow which results in the decrease
in average displacement distance. Furthermore, the virtual
force increases between two sensors with the raise of kv ,
which means the time spent for sensor deceleration should
be extended and the distance traveled in the same time period
should become shorter. Simultaneously, in VMSN the average
instantaneous velocity after elastic collision trends to a slight
decline, this also alleviates the growth of average displacement
distance.

It is noted that some random setting in experimental
scenarios such as sensor’s initial position and velocity may
cause the instability of simulation results because the moving
state of sensor is affected by all kinds of resultant forces
and elastic collisions from others. And this kind of instability
results in fluctuating curve instead of smooth one in VMSN. In
addition, not in all cases, VMSN can maintain the advantage
of average displacement distance over gMSN. In the same
application scenario, appropriate sensor number and virtual
constant kv will enable VMSN to achieve better moving
efficiency and k-barrier coverage compared with gMSN.

3.6 k-barrier coverage among PCM, SCM and RCM
The point charge model is adopted to describe the tra-

jectory of an empowered intruder who can keep away from
being detected by deployed sensors. If models proposed in this
paper can still contribute to a high possibility to capture the
empowered intruder, it can be convinced that VMSN would
obtain more satisfactory performance in general situations with
normal intruders.

As mentioned in section 2.4, “SCM” and “RCM” are
considered as the models of normal intruder’s passing-through
instead of empowered intruder’s. Fig. 11 shows the average
k-coverage performance of “PCM”, “RCM” and “SCM” in
VMSN (NZ = 100 or NZ = 200) based on virtual potential
field, where “SCM” or “RCM” always has a higher possibility
to capture a normal intruder than “PCM” to capture an
empowered intruder. It is emphasized that both “SCM” and
“RCM” models do not take Point Charge Model into account.
Furthermore, it can be found that “RCM” achieves better k-
barrier coverage performance compared with “SCM” due to
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the fact that the intruder in “RCM” may take more time to
cross a node’s detection region. The average crossing time τ̄
in “RCM” and “SCM” can be shown in Fig. 12 based on
amount of experimental analysis and average. As the raise of
τ̄ , the value of pi for each grid increases as well, which brings
an increase of the detection probability.
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Fig. 12: the value of τ̄ in SCM and RCM.

This is the reason that PCM is just employed in our
proposal, which will cause the worse detection performances
in other schemes.

IV. CONCLUSION

In this paper, we have studied the intrusion detection
problem of mobile sensor networks with empowered intruders.
We firstly discuss the virtual potential field between sensors
as well as between sensors and intruders in order to model
the trajectories of moving sensors and moving intruders.
Elastic collision model and point charge model are respectively
employed to formulate the mobility of sensors and that of
empowered intruders who are capable of acting upon the
virtual repulsive force from sensors in order to keep away from
being detected. And then the dynamic relationship between
k-barrier coverage probability and the mobility models is
established. Simulation experiments combined with theoret-
ical evaluations regarding k-barrier coverage probability are
conducted in different schemes, in order to show the more
satisfactory coverage performance of VMSN. Furthermore, the
average displacement distance is measured between “VMSN”
and “gMSN”, and the advantage of “PCM” has been veri-
fied through the experimental comparisons with “SCM” and
“RCM”. Consequently, our proposal not only obtains more
desirable k-coverage performance but also achieves a guid-
ing significance in future exploration of empowered intruder
detection based on MSNs.

In the future, we plan to adopt the probabilistic sensing
model to improve the practicability of our current approach. In
addition, how to design the moving strategy taken by sensor
nodes through tracking and positioning empowered intruders
will become the concern of the next research plan in order
to further enhance the effectiveness of intrusion detection.
In addition, the future work will be implemented in a well-
designed testbed to factually verify the intruder detection
effectiveness.

APPENDIX A
HYPOTHESIS TESTING REGARDING THE DISTRIBUTION OF

pi

For one given experimental scenario, pi for each grid
should be measured in order to calculate the k-coverage
probability. Meanwhile, we analyze the distribution characters
of pi. At some moment, nodes can only appear in NZ grids
totally while there are no sensors in the remainder grids.
The elastic collisions between nodes and region boundaries
make nodes to be pushed toward the intermediate region and
then spread around due to the collisions with other nodes.
Consequently, nodes appearing in the grids which are located
at the intermediate region have the higher frequency than
nodes appearing in those in the border. Through quantities of
simulation experiments of different scenarios, we analyze the
statistical property of pi based on the histogram which obeys
normal distribution approximately.

To verify the above guess, hypothesis testing regarding
distribution of pi is necessary aiming at different scenarios.
These scenarios involve different scales of regions, different
numbers of nodes, different sensing radius, different node
motion velocities and different running time in order to reduce
the randomness of the experiments. The snapshoot of each
grid will be caught to determine whether a sensor arises at
a tiny periodic interval (for example, once every τ ). After
a period of time, the count of node appearing in each grid
can be achieved and the histograms regarding the occurrence
frequency divided by the total number of experiments can
be depicted. Due to the limited space, we cite an example
to describe the process of hypothesis testing aiming at one
specific scenario. For the convenience of data processing, we
observe the statistical frequency of node appearing in each grid
(denoted as a random variable x) within the interval τ , and the
intensity of frequency is approximate to that of pi due to the
fact that the experiments are numerous and the same for each
grid. χ2 hypothesis testing method is adopted to verify the
normal distribution of x with the significance level α = 0.05.
The hypothesis H0 is described as follows: the probability
density function of x is

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,−∞ ≤ x ≤ ∞ (20)

However, the accurate values of parameters µ and σ
cannot be obtained, so the moment estimation method should
be utilized. We set µ̂ and σ̂ to represent the estimated values
of µ and σ respectively. A data set D can be used to store
the counts of grids with the same frequency for each x (for
example, there are total 73 grids with the same frequency of
sensor arising i.e. “x = 25”), and meanwhile the length of D
(denoted as Le) can be used to denote the value range of x (in
the scenario form 0 to 38). Considering the independent event
Ai = P (x = i), and if H0 is true, the estimated probability
density function of x can be represented as

f̂(x) =
1√
2πσ̂

e−
(x−µ̂)2

2σ̂2 ,−∞ ≤ x ≤ ∞ (21)
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Fig. 13: Hypothesis testing.

and

Σ =

Le∑
i=1

(NGf(i)−Xi)
2

NGf(i)
(22)

where Σ denotes the sum of deviations between the real data
and the data from the fitting curve, NG is the total number
of grids, Le is the length of D, Xi denotes the frequency of
sensor arising in one grid. If Σ ≤ χ2

0.05(Le − r − 1) (where
r denotes the number of parameters, r = 2 in this case: µ̂ =
23.252, σ̂ = 5.739), then accept H0 with the significance level
0.05, i.e. the random variable x obeys the normal distribution.

Fig. 13(b) shows the distribution of x given a specific
scenario shown in Fig. 13(a) (L1 = 1000m, L2 = 300m,
NZ = 80, R = 10m, the total running time is 15 mins, Le =
38, D = {0, 0, 0, 0, 1, 0, 2, 3, 2, 8, 11, 12, 19, 20, 19, 26,
25, 37, 40, 38, 51, 54, 59, 67, 73, 63, 63, 48, 43, 32, 28, 20,
14, 9, 6, 4, 1, 2}).

We use matlab tools to examine the hypothesis and
distribution property of pi. Aiming at the case in Fig. 13(a),
H0 is accepted with α = 0.05. Lots of simulations with
different scenarios are conducted to verify this hypothesis
of normal distribution of pi, and most of them have passed
the validation with the satisfactory confidence intervals (or
significance level). In Fig. 13(b), it can be found that the data
of real distribution is similar to that of the fitting curve of
normal distribution with the parameters µ̂ and σ̂.

APPENDIX B
NODE VELOCITY CALCULATION BASED ON VIRTUAL
POTENTIAL FIELD WHEN NODE COLLISION OCCURS

Node Si initial position xi0

initial velocity vi0
initial velocity vj0

dijiS

Node Sj initial position xj0

jS

Fig. 14: the initial state of Si and Sj .

As is shown in Fig. 14, we assume that the initial velocity
and position vector of sensor Si is ~vi0 and ~xi0, respectively;
and that the initial velocity and position vector of sensor Sj is

~vj0 and ~xj0, respectively; and that the distance vector (from
Sj to Si) between these two sensors is ~dij . Apparently ~dij
is a function of time t and satisfies with ~dij = ~xi − ~xj and
~dij0 = ~xi0 − ~xj0.

Suppose the quality of Si and Sj can be denoted as mi

and mj , respectively. The virtual force the sensor Si bears
can be figured out based on the expression |~Fi| = kv/|~dij |2.
According to Newton’s second law, the acceleration of Si is
~ai =

~Fi
mi

, and its force direction is consistent with that of
~dij , so ~ai = kv

mi|~dij |3
~dij can be derived. For the sensor node

Si, the expression of its velocity vector can be denoted as
~vi = ~vi0 +

∫ t
0
~aidt, and that of its position vector can be

denoted as ~xi = ~xi0 +
∫ t

0
~vidt. Finally, we can derive the

following expression

~xi = ~xi0 +

∫ t

0

(~vi0 +
kv
mi

∫ t

0

~dij

|~dij |3
dt)dt (23)

Similarly, we can derive the expression regarding ~xj for
sensor Sj (its force equals ~Fi but in the opposite direction)

~xj = ~xj0 +

∫ t

0

(~vj0 −
kv
mj

∫ t

0

~dij

|~dij |3
dt)dt (24)

In (23) and (24), ~xi, ~xj , ~vi, ~vj and ~dij are vector
functions of time t.

When t = 0, the initial conditions can be represented as
follows


~xi(0) = ~xi0

~xj(0) = ~xj0

~vi(0) = ~vi0

~vj(0) = ~vj0

(25)

Subtracting (24) from (23), the final expression regard-
ing ~dij can be derived

~dij =(~xi0 − ~xj0)+∫ t

0

(
(~vi0 − ~vj0) + 2kv(m

−1
i +m−1

j )

∫ t

0

~dij

|~dij |3
dt

)
dt

(26)

The first derivative for (26) can be denoted as

~d′ij = (~vi0 − ~vj0) + 2kv(m
−1
i +m−1

j )

∫ t

0

~dij

|~dij |3
dt (27)

And then the second derivative can be denoted as

~d′′ij = 2kv(m
−1
i +m−1

j )
~dij

|~dij |3
(28)

Decomposing the vector ~dij along the x and y axis,
respectively, we can derive
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d
′′
ij:x(t) = 2kv(m

−1
i +m−1

j )
(
d2
ij:x(t) + d2

ij:y(t)
)3/2 · dij:x(t)

d′′ij:y(t) = 2kv(m
−1
i +m−1

j )
(
d2
ij:x(t) + d2

ij:y(t)
)3/2 · dij:y(t)

(29)

and further we can achieve the solution of the differential
equations in (29) as

{
dij:x(t) = f(t, C1, C2)

dij:y(t) = g(t,D1, D2)
(30)

where C1, C2, D1 and D2 are constants.
Take the initial conditions into (30), we can derive


dij:x(0) = xi0:x − xj0:x

dij:y(0) = xi0:y − xj0:y

d′ij:x(0) = vi0:x − vj0:x

d′ij:y(0) = vi0:y − vj0:y

(31)

The values of C1, C2, D1 and D2 will be solved, among
which xi0:x and xi0:y are the respective components of ~xi0 on
x and y axis; xj0:x and xj0:y are the respective components
of ~xj0 on x and y axis; the same meaning for vi0:x, vi0:y and
vj0:x, vj0:y.

Considering elastic collision occurs between two sensors,
we have the following condition

√
d2
ij:x(t) + d2

ij:y(t) = 2R (32)

Substituting the solutions regarding dij:x(t) and dij:y(t)
into (32), we can achieve the collision time t = tc.

Subsequently the velocity before the coming collision
between two sensors can be calculated


~vi = ~vi0 +

∫ tc

0

~aidt

~vj = ~vj0 +

∫ tc

0

~ajdt

(33)

So far, we complete the velocity calculation procedure
when two sensors collide under the virtual force.

If multiple sensor nodes (p in total) exist, we can observe
any one node Si with its mass mi, initial velocity vector ~vi0
and initial position vector ~xi0. Suppose the positions of other
nodes are denoted as ~x1, ~x2, ~x3..., ~xp−1, according to the
principle of electric potential superposition, the acceleration
of sensor node Si can be derived as

~ai =

p−1∑
j=1

kvm
−1
i

|~xi − ~xj |3
(~xi − ~xj) (34)

And its position at time t can also be calculated

~xi = ~xi0 +

∫ t

0

~vi0 + kvm
−1
i

∫ t

0

p−1∑
j=1

~xi − ~xj
|~xi − ~xj |3

dt

dt

(35)

We can divide time t into so many slots denoted by ∆t for
the purpose of ∆t→ 0. During ∆t, we consider the uniformly
accelerated rectilinear motion for each node, so its forward
distance approximates to that of uniform rectilinear motion.
During the first ∆t, the velocity vector and position vector of
node Si can be expressed as (36) and (37), respectively

~vi = ~vi0 + kvm
−1
i

p−1∑
j=1

~xi − ~xj
|~xi − ~xj |3

·∆t (36)

~xi = ~xi0 + ~vi ·∆t (37)

Similarly, the vectors of velocities and positions of other
p− 1 nodes can be calculated and updated by (36) and (37).

APPENDIX C
DERIVATIONS FOR AFTER-COLLISION RELATIVE VELOCITY

As shown in Fig. 3, for the purpose of calculating the
after-collision relative velocity of sensor Si (or Sj) with
respect to sensor Sj (Si), detailed derivations and explanations
from (4) to (7) can be described as follows.

Based on the principle of momentum conservation in
direction ~γ, we have

mi · proj(~vij0, ~γ) = mi · proj(~vij , ~γ) (38)

where proj(~x, ~y) represents the projection value of vector ~x
with respect to vector ~y. So (38) can be transformed to (4-1).

Similar to the derivations of (4-1), based on the principle
of momentum conservation in direction ~n, we have

mi · proj(~vij , ~n) +mj · ~vij = mi · proj(~vij0, ~n) (39)

which can be transformed to (4-2).
In Fig. 3, ~vij0 is the relative velocity between moving

sensors Si and Sj if without any collision. After collision
occurs, the resultant momentum of both moving sensors keeps
0 in the direction perpendicularly to ~vij0, and this direction
can be denoted as ~w. So, we have

mi · proj(~vij , ~w) +mj · proj(~vji, ~w) = 0 (40)

Considering that the respective projections of ~vij and ~vji
with respect to ~w have the opposite direction, (40) can be
transformed to (4-3).

Due to the characteristics of Perfect Elastic Collision
Model, the recovery coefficient (denoted as e) is always 1.
Aiming at the direction ~n, we have

e =
|proj(~vij , ~n)| − |~vij |
0− |proj(~vij0, ~n)|

= 1 (41)

Based on (41), (4-4) can be achieved.
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From (4-2) and (4-4), we can derive

mi |~vij | cos(α+ β) = mi |~vij0| cosβ −mj |~vji|
= mi(|~vji| − |~vij0| cosβ)

(42)

And (42) can be further simplified to

|~vji| = 2
mi

mi +mj
|~vij0| cosβ (43)

Based on (4-1) and (4-4), we derive (44) and (45) respectively

sin(α+ β) =
|~vij0|
|~vji|

sinβ (44)

cos(α+ β) =
|~vji| − |~vij0| cosβ

|~vji|
(45)

Moreover, based on (44) and (45), we can obtain

(
|~vij0|
|~vji|

sinβ)2 + (
|~vji| − |~vij0| cosβ

|~vji|
)2 = 1 (46)

And (46) can be further simplified to

~v2
ij = ~v2

ji + ~v2
ij0 − 2 |~vji| |~vij0| cosβ (47)

Based on (43) and (45), we have

~v2
ij = ~v2

ij0(
4m2

i cos2 β

(mi +mj)2
+ 1− 4mi(mi +mj) cos2 β

(mi +mj)2
)

= v2
ij0(1− 4mimj cos2 β

(mi +mj)2
)

(48)

So

|~vij | = |~vij0|

√
1− 4mimj cos2 β

(mi +mj)2
(49)

Based on (4-3), (43) and (49), we have

sinα =
mj |~vji| sinβ
mi |~vij |

=
2mj cosβ sinβ√

(mi +mj)2 − 4mimj cos2 β
(50)

And (50) can be solved to obtain

α = arcsin
mj sin 2β√

(mi +mj)2 − 4mimj cos2 β
(51)

APPENDIX D
DERIVATIONS FOR CRITICAL PARAMETERS RI AND ρ

In order to depict the intruder’s trajectory accurately,
detailed derivations and explanations about critical parameters
RI and ρ can be shown as follows.

Although the direction of force ~er from moving sensor
Sj to intruder Ik changes at each time point, the value of force∣∣∣~Fkj∣∣∣ is kept as a constant. Based on Newton’s Second Law

of Motion ~F = mα = m(d~v/dt), we can obtain (9-1).
From Fig. 4, we can calculate the palstance of intruder

ωk = dσ
dt , and the initial value of angular momentum for

intruder Ik can be described as
∣∣∣~L∣∣∣ = |m(~v × ~r)|. So, we

have ∣∣∣~Lk(inital)

∣∣∣ =
∣∣∣mk(~vkj × ~SjE)

∣∣∣
= mk |~vkj |R sinσ = mk | ~vkj | b

(52)

The value of angular momentum for Ik at any time point can
be calculated with

∣∣∣~L∣∣∣ =
∣∣md2ω

∣∣. So, we have∣∣∣~Lk∣∣∣ = mkd
2
kjωk = mkd

2
kj

dσ

dt
(53)

Since angular momentum is conserved, i.e.
∣∣∣~Lk(inital)

∣∣∣ =∣∣∣~Lk∣∣∣, we can get (9-2).
Just as shown in Fig. 4, the resolution of velocity ~vkj

is performed and two sub-velocities ~v1 and ~v2 are generated.
The angle between ~vkj and ~v1 is denoted as δ. Because of
symmetry, the integral of ~v2 remains 0. During the whole
crossing-process of intruder, δ starts from ρ/2 to 0 and then
back to ρ/2. So, we have∫

d~v =

∫
d~v1 = 2

∫ ρ/2

0

|~vkj | cos δdδ = 2 |~vkj | sin(δ)|ρ/20

= 2 |~vkj | sin(ρ/2)
(54)

And (9-3) can be derived from (54).
Similarly, we decompose the virtual repulsive forces ~Fkj ,

which now consists of two sub-forces ~F1 and ~F2. The angle
between ~Fkj and ~F1 is denoted as ϕ. Because σ+ϕ is kept as
a constant, we have dσ = −dϕ. During the whole crossing-
process of intruder, ϕ starts from π/2 − ρ/2 to 0 and then
back to π/2− ρ/2. And meanwhile, |~er| = 1. Hence,∫

~erdσ = −
∫
~erdϕ = 2

∫ π/2−ρ/2

0

1 · cosϕdϕ

= (2 sinϕ)|π/2−ρ/20 = 2 cos(ρ/2)

(55)

And (9-4) can be derived from (55).
Based on the geometrical relationship in Fig. 4, we can

get tan(ρ/2) = R cosσ/(RI + b), i.e.

RI = R cosσ cot
ρ

2
− b (56)

We multiply (9-1) with (9-2) and get∣∣∣~Fkj∣∣∣~ermkd
2
kj · dσ/dt = m2

k |~vkj | b · d~v/dt (57)

Due to
∣∣∣~Fkj∣∣∣ = kv

d2kj
(seen in (3)), (57) can be transformed to

kv~erdσ = mk |~vkj | b · d~v (58)

Both sides of (58) are performed an integral operation, which
is represented by kv

∫
~erdσ = mk |~vkj | b

∫
d~v. Based on (3)

and (4), kv · 2 cos(ρ/2) = mk |~vkj | b · 2 |~vkj | sin(ρ/2) is
established, which can be transformed to (59)

mk~v
2
kjbtan(ρ/2) = kv (59)

And the solution regarding b is

b =
kv

mk~vkj2
cot(ρ/2) (60)

Based on (60), we obtain ρ = 2arccot
mk~v

2
kjb

kv
, and then we

substitute R sinσ for b and get

ρ = 2arccot(
mk~v

2
kjR

kv
sinσ) (61)
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We further put (10) into (56) to eliminate b and achieve (11)
(i.e. (62))

RI = R cosσ cot
ρ

2
− kv
mk~v2

kj

cot
ρ

2
(62)

APPENDIX E
DERIVATION OF THE AVERAGE RELATIVE SPEED OF

MOVING SENSORS

The details of (12) and (13) will be derived as follows.

First, assume two velocities ~x and ~y, their lengthes are
expressed as |~x| and |~y|, respectively, while the angle between
~x and ~y is expressed as ϕ. Then, the relative speed |~x− ~y|
can be expressed as

|~x− ~y| =
√
~x2 + ~y2 − 2 |~x| |~y| cosϕ

= (|~x|+ |~y|)

√
~x2 + ~y2 − 2 |~x| |~y| cosϕ

~x2 + ~y2 + 2 |~x| |~y|

= (|~x|+ |~y|)

√
~x2]+~y2+2 |~x| |~y|−2 |~x| |~y| (1+cosϕ)

~x2+~y2+2 |~x| |~y|

= (|~x|+ |~y|)

√
1− 2 |~x| |~y| (1 + cosϕ)

~x2 + ~y2 + 2 |~x| |~y|
(63)

Considering that the angle ϕ obeys a uniform distribution in
[0 2π), the average relative speed of |~x− ~y| can be expressed
as

|~x− ~y| = 1

2π

∫ 2π

0

|~x− ~y| dϕ

=
|~x|+ |~y|

2π

∫ 2π

0

√
1− 2 |~x| |~y| (1 + cosϕ)

~x2 + ~y2 + 2 |~x| |~y|
dϕ

=
|~x|+ |~y|

π

∫ π

0

√
1− 4 |~x| |~y| (1 + cosϕ)

2(~x2 + ~y2 + 2 |~x| |~y|)
dϕ

(64)

Let M~x,~y = 4|~x||~y|
~x2+~y2+2|~x||~y| , ϕ

′ = 2ϕ. Then, (64) can be
simplified to

|~x− ~y| =2(|~x|+ |~y|)
π

∫ π/2

0

√
1−M~x,~y sin2 ϕdϕ

=(|~x|+ |~y|)E~x,~y (65)

where E~x,~y is given by

E~x,~y =
2

π

∫ π/2

0

√
1−M~x,~y sin2 ϕdϕ

=
2

π

∫ π/2

0

√
1− 4 |~x| |~y|

~x2 + ~y2 + 2 |~x| |~y|
sin2 ϕdϕ (66)

In order to calculate the average relative speed between
the reference sensor Sj and its U neighbor nodes before
collisions, (65) is recursively used U -1 times with each time

considering two sensors, which can be expressed as
v1∼2 = (|~vj1|+ |~vj2|)E1∼2

v1∼3 = (v1∼2 + |~vj3|)E1∼3

...
v1∼U = (v1∼(U−1) + |~vjU |)E1∼U

(67)

where the first equation has the same form as (65), while for
the others we have

E1∼(l+1)

=
2

π

∫ π/2

0

√√√√1−
4v1∼l

∣∣~vj(l+1)

∣∣ sin2 ϕ

v2
1∼l +

∣∣~vj(l+1)

∣∣2 + 2v1∼l
∣∣~vj(l+1)

∣∣dϕ
(68)

Finally, the average relative speed between the reference
sensor Sj and its U neighbor nodes before collisions is given
by v1∼U .
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