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Abstract The spatial resolution requirements of the Stochastic Fields probability density
function approach are investigated in the context of turbulent premixed combustion sim-
ulation. The Stochastic Fields approach is an attractive way to implement a transported
Probability Density Function modelling framework into Large Eddy Simulations of turbu-
lent combustion. In premixed combustion LES, the numerical grid should resolve flame-like
structures that arise from solution of the Stochastic Fields equation. Through analysis of
Stochastic Fields simulations of a freely-propagating planar turbulent premixed flame, it is
shown that the flame-like structures in the Stochastic Fields simulations can be orders of
magnitude narrower than the LES filter length scale. The under-resolution is worst for low
Karlovitz number combustion, where the thickness of the Stochastic Fields flame structures
is on the order of the laminar flame thickness. The effect of resolution on LES predictions
is then assessed by performing LES of a laboratory Bunsen flame and comparing the effect
of refining the grid spacing and filter length scale independently. The usual practice of set-
ting the LES filter length scale equal to grid spacing leads to severe under-resolution and
numerical thickening of the flame, and to substantial error in the turbulent flame speed.
The numerical resolution required for accurate solution of the Stochastic Fields equations is
prohibitive for many practical applications involving high-pressure premixed combustion.
This motivates development of a Thickened Stochastic Fields approach (Picciani et al. Flow
Turbul. Combust. X, YYY (2018) in order to ensure the numerical accuracy of Stochastic
Fields simulations.
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1 Introduction

Modelling of chemical reaction terms in turbulent combustion simulations is complicated
by the non-linear dependence of reaction rates on fluctuations in composition and temper-
ature. The Probability Density Function (PDF) modelling approach is attractive because,
once the joint-scalar PDF for composition and temperature is known, the chemical reac-
tion terms needed for Reynolds-Averaged Navier-Stokes (RANS) or Large Eddy Simulation
(LES) appear in closed form. In principle, the joint-scalar transported PDF approach is
applicable in RANS and LES across all modes of turbulent combustion—including the lim-
iting cases of non-premixed and perfectly-premixed combustion—provided that turbulent
transport and micro-mixing effects are modelled adequately and that the PDF equation is
solved accurately. The present study investigates the use of the Stochastic Fields approach
[1, 2] for modelling the joint-scalar PDF evolution, and considers the requirements for
obtaining numerically accurate solutions in the challenging case of turbulent premixed
combustion.

The Stochastic Fields formulation has been developed rigorously through independent
contributions by Valifio [1, 2] and Sabel’nikov [3]. The one-point probability density func-
tion of composition throughout a spatial solution domain is modelled by an ensemble of
composition fields that also span the spatial solution domain. Each of the composition fields
evolves according to a stochastic differential equation given in modelled form by Valifio et
al. [2] as,

—% (£ — &) dt + PO y)dr. (1)

where & ;) (x, 1) is the composition vector on the ith field. The terms on the right hand side
represent the evolution of the stochastic field composition due to advection by the mean
(or resolved) velocity; spatial diffusion by molecular D, and turbulent Dr, diffusivities;
turbulent advection of fields relative to one another as modelled by a Wiener process where
dW is a normally-distributed Markovian random increment with zero mean and variance
equal to the time step dt; the unresolved scalar dissipation processes modelled by interaction
by exchange with the mean (IEM) [4] with dissipation time scale t7; and the vector of
chemical reaction source terms @ (¢ i)

The Stochastic Fields approach is an attractive way to implement transported probability
density function modelling for turbulent reacting flows for two main reasons: It guarantees
a density field that is continuous and differentiable in space, and it can exploit Eulerian
solution methods and domain decomposition schemes similar to those implemented for the
momentum equations. Following studies of the Stochastic Fields approach in a range of non-
premixed combustion scenarios including Refs. [5, 6], a smaller number of Stochastic Fields
simulations of premixed combustion have been reported [7-9]. The degree of predictive
accuracy shown in the case of premixed combustion is encouraging because the sub-models
employed, such as the interaction by exchange with the mean (IEM) micro-mixing model
[4], are essentially unchanged from those employed in previous non-premixed modelling

@ Springer



Flow Turbulence Combust

efforts. Investigations of Lagrangian particle-based implementations of transported PDF
modelling in flamelet combustion regimes suggest that turbulent flame predictions can be
improved by applying alternative micro-mixing models that enforce localness [10—12] and
also account for preferential molecular transport [13]. However, such micro-mixing models
have not yet been adapted for use with the Stochastic Fields approach and are beyond the
scope of the current work.

Given that reaction fronts found in premixed combustion have inherent length scales
that may be smaller than the Kolmogorov scale characterizing the smallest structures
of the turbulent flow [14]. It is not evident a priori from Eq. 1 what spatial resolution
is required in order to obtain an accurate solution of the Stochastic Fields in turbulent
premixed combustion. Therefore, the objective of this study is to investigate the spatial
resolution requirements of the Stochastic Fields equations in turbulent premixed com-
bustion applications. In particular, it is necessary to assess whether the usual practice
in LES of setting the filter length scale equal to the grid spacing might lead to signifi-
cant errors. In the following sections, resolution requirements are discussed in the context
of premixed combustion, then the resolution requirements are investigated numerically
in the subsequent sections, first in a simplified one-dimensional test problem, and then
with respect to an LES of a premixed piloted stoichiometric Bunsen flame experiment by
Chen et al. [15].

2 Numerical Resolution of the Stochastic Fields Equation in Premixed
Combustion

Spatial resolution requirements of the Stochastic Fields equations in LES of premixed
combustion have not been discussed in the academic literature on Stochastic Fields. In a
turbulent premixed flame, each Stochastic Field contains a reaction front that resembles a
premixed flame. Strictly, the reaction fronts of the Stochastic Fields are not required to cor-
respond to actual flame fronts in a physical flow, and therefore the term “reaction front” is
used to avoid confusion. In turbulent premixed combustion, the averaged thickness of the
reaction front across all individual Stochastic Fields is necessarily less than the thickness of
the ensemble average of all the stochastic fields.

The combined effect of an exchange with the mean micro-mixing model and an
eddy-diffusivity model for the unresolved turbulent transport is to thicken the individual
Stochastic Fields relative to the average thickness of the instantaneous flame fronts that
would be expected in the actual turbulent flame. In LES, the average thickness of the indi-
vidual Stochastic Field reaction fronts is expected to depend on the effective filter length
scale and combustion regime. It is expected that the thermal thickness of the Stochastic
Fields reaction front is somewhere between the thermal thickness of an unstrained laminar
premixed flame and the thermal thickness of the ensemble-averaged (RANS) or resolved
(LES) temperature field.

The influence of the combustion regime on Stochastic Field thicknesses and resolution is
such: Karlovitz numbers much greater than unity (i.e. broken reaction zones) have the effect
of thickening instantaneous flame fronts [14], and therefore also thicken the Stochastic Field
reaction fronts, reducing resolution requirements. Conversely, the most stringent resolution
requirements are expected for low Karlovitz number flames that characterise combustion
in the flamelet regime. Flamelet-type combustion is prevalent in most important premixed
combustion applications including spark-ignition engines and industrial gas turbines. How-
ever, it is not evident from a priori analysis of Eq. 1 whether a given grid spacing will be
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sufficient to resolve the individual Stochastic Fields, and resolution requirements need to be
investigated numerically.

The grid spacing required in order to numerically resolve a reaction-diffusion front
varies depending on the numerical discretisation employed, the details of the chemistry
and transport models employed, and the numerical accuracy desired. For high-accuracy
simulation of premixed combustion with a detailed chemistry model, more than twenty
points may be required within each reaction-diffusion front. Whereas five points within a
reaction-diffusion front may be taken as an absolute minimum requirement for less accurate
engineering simulations with simple (e.g. single-step) chemistry models [16]. Low-order
numerical methods and TVD schemes used for some LES of turbulent reacting flows can
remain stable even when the governing equations are under resolved, providing numerical
diffusion that spreads the reaction fronts across multiple grid points.

In implicitly-filtered LES, the effective filter length scale used in modelling for the
unclosed sub-filter scale terms usually depends on the grid spacing. Previous Stochastic
Fields LES studies [5-9] have set the filter length scale equal to the grid spacing (or the
cube root of the cell volume). When the filter length scale depends on the grid spacing,
the effects of numerical resolution errors cannot be distinguished from scale-dependence
of the sub-grid modelling. Vreman et al. [17] investigated the effects of numerical error
in non-reacting LES by changing the filter scale independently from the grid spacing.
For a fixed filter scale they found significant differences in LES predictions between
simulations with the grid spacing equal to either the filter scale or one half of the fil-
ter scale. They did not proceed to refine the grid to the extent that grid-independence
of the predictions was demonstrated, presumably due to the computational expense of
further refining the three-dimensional grid. The approach of refining the numerical reso-
Iution while keeping the filter length scale unchanged is also appropriate for assessment
of numerical error and resolution requirements in the Stochastic Fields equations and this
approach is employed in this study. Due to the computational expense of highly-resolved
three-dimensional Stochastic Fields simulations, the numerical resolution requirements are
assessed across a wide range of combustion regimes using in a simplified one-dimensional
test case relating to freely-propagating turbulent flames, before verifying the conclusions
from the one-dimensional study in a three-dimensional LES of a turbulent premixed Bunsen
flame [15].

3 Formulation

The statistically-stationary freely-propagating planar turbulent premixed flame test case and
the turbulent premixed Bunsen flame of Chen et al. [15] are illustrated schematically in
Fig. 1.

3.1 Freely-propagating turbulent flame

3.1.1 RANS closure

The planar turbulent premixed flame is statistically homogeneous parallel to the flame and
it is investigated initially using a one-dimensional Reynolds Averaged Stochastic Fields
simulation. The turbulence is assumed to be uniform throughout the domain and across the

flame, and specified by setting the ratio of the rms velocity fluctuation to the laminar flame
speed u’/Sy, and the ratio of the integral length scale of the turbulence normalised by the

@ Springer



Flow Turbulence Combust

L.

Air ”
Entrainment
LXS  aaa S e 7 S —
; \v\
Flame Front, ///' < .I)I.l(ll Alr =
Mixing Layer — / \ Mixing Layer
skl q u
1 —‘—l
; —_—
Flame Holder
—_—

Pilot
Stream

Pilot
Stream L,
D=12 mm 77

dp=68 mm

Fig. 1 Schematic diagrams of the turbulent premixed Bunsen flame case (left) and of the freely-propagating
planar turbulent premixed flame test case (right)

thermal thickness of the laminar flame, L1 /6, . The turbulent diffusivity and mixing time
scale required in Eq. 1 are then modelled by the following relations:

DT = C,Lu’LT, (2)
and cL
LT

T = ' . (3)

in which C,, = 0.09 [18] and Cy = 2.0 (ur/ur + 1), where the factor (ur/ur + 1)
models behaviour at low Reynolds numbers [19].

3.1.2 LES closure

Large Eddy Simulation is inherently three-dimensional. However the resolved flame front
in LES of premixed turbulent combustion is typically thin with respect to the radius of
curvature of the resolved flame front, across much of the flame surface area. Therefore, over
much of the flame area, it is valid to approximate the molecular and sub-filter scale turbulent
transport within the resolved flame front as one-dimensional in the direction perpendicular
to the resolved flame front.

In order to investigate resolution requirements in the LES context, one-dimensional
Stochastic Fields simulations are performed using sub-models for the sub-filter scale tur-
bulent diffusivity and dissipation time scale that depend on a notional LES filter length
scale A and the corresponding sub-filter scale velocity fluctuation u', . The one-dimensional
simulations may be interpreted loosely as representing the transport along a line passing
perpendicularly through a LES-resolved flame front, assuming that the propagation of the
LES-resolved flame front is quasi-steady and unaffected by other flame fronts, by curva-
ture, or by resolved strain (except to the extent that the resolved strain results in generation
of sub-filter scale velocity fluctuations characterised by u', ). The sub-filter scale diffusivity
and dissipation time scales in Eq. 1 are then modelled by Eqgs. 2 and 3, replacing the turbu-
lence length scale L7 with the filter scale A, and the turbulent velocity u’ with the sub-filter
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scale velocity u/ , and setting coefficients C,, = 0.09 and Cy = 2.0 (ur/pr + 1) as in the
RANS case.

In both the RANS and LES context, the turbulent premixed combustion regime is charac-
terised by the Karlovitz number, Ka. In terms of integral length scale, the Karlovitz number

can be approximated by
7N\ 3 1/2
u (SL
Ka=||—) — @)
{< SL ) LT }

which can be obtained though conventional scaling analysis. In the LES context, for filter
length scales in the inertial sub-range of the turbulence spectrum, the filter scale Karlovitz

number is given by,
U\ s 1/2
Kap = |(=2) 2&| . 5
an |:< 5, ) X :| (5)

With the assumption of constant dissipation in the inertial range, the Karlovitz number is
scale invariant [16] and equal to the integral scale Karlovitz number, Kap = Ka. Since LES
relies on selection of a filter length scale in the inertial sub-range, the effect of choosing
different ratios of the filter length scale to laminar flame thickness (A /81 ) for simulation
of a particular turbulent flame regime can be investigated by fixing Karlovitz number and
evaluating the corresponding sub-filter scale velocity fluctuation as,

AN/3
uy = SpKay’ (—) : (6)
or

The RANS model described previously is recovered in the limit that A — L, giving
uy —u'.

In the following one-dimensional study, combinations of Karlovitz numbers, Ka €
[0.5, 1,5, 10, 20, 30, 40, 50], and three characteristic, normalised length scales L7 /5y of
[1,2.5,5.0] are used for the one-dimensional simulations. These parameters span a range
of premixed combustion regimes that would be typical of currently advanced LES of spark
ignition and industrial gas turbines using between 10 and 100 million cells, as well as the
conditions in the three-dimensional LES test case studied here.

3.2 Turbulent Bunsen flame configuration

The F3 turbulent premixed Bunsen flame described by Chen et al. [15] is simulated using
Stochastic Fields-LES. The flame is characterised by Karlovitz numbers of order unity, indi-
cating that combustion takes place across the flamelet and thin reaction zone regimes. The
flame has relatively simple boundary conditions and has served as the basis for numerous
investigations of PDF modelling for turbulent premixed combustion [7, 10, 20-22].

A 12 mm diameter nozzle delivers a turbulent jet of 300 K stoichiometric methane-air
with bulk velocity 30 ms~!. The flame is stabilised by a ring of stoichiometric methane-air
pilot flames surrounding the nozzle with 68 mm outer diameter and bulk velocity 1.32 ms~!.
Further downstream the flame entrains 300 K air at 1 atm from a quiescent laboratory envi-
ronment. Profiles of mean and rms velocity fluctuations are reported in [15] and are used to
set the numerical inflow profiles for the simulation.

The largest source of uncertainty with this particular test case is the pilot temperature
due to heat loss between the pilot flame, the burner, and the environment. Various numerical
simulations of this series of flames have used different values of the pilot flame temperature,
however in this work, it has been estimated as in previous LES studies [7] as 1785 K. Due
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to the use of simplified chemistry and the omission of certain chemical species, the pilot
composition was modified from that outlined in [15], and is given in Table 1.

Contrary to the one-dimensional simulations, the spatially-filtered continuity and
momentum equations [7] are closed with the constant-coefficient Smagorinsky model for
the sub-filter scale turbulent stresses [23], with Smagorinsky constant equal to 0.09. The tur-
bulent diffusivity required in Eq. 1 is modelled assuming turbulent Schmidt number equal
to 0.7 and the dissipation time scale in Eq. 1 is modelled by 1/77 = Cya (D + Dr)/ A2,
with model coefficient C once again scaled as proposed in [19].

3.3 Thermo-chemical models

The premixed combustion kinetics are modelled using a one-step reaction model for
methane-air flames,

CH4+207 — CO2+2H,0. @)
The fuel reaction rate is modelled by the Arrhenius law,
) ,OYCH4)"CH4 (pY02>"02 ( Ea)
wocH, = A - <7 — exp| — , 8)
N Mcp, Mo, RT

where T, Ych,, Yo,, Mch,, Mo, and R denote temperature, fuel and oxygen mass
fractions, corresponding molar weights and the universal gas constant, respectively. The
pre-exponential factor, the activation energy and the model exponents are A = 1.1 x 1010
(cgs), E, = 20, 000 cal/mol, ncp, = 1.0 and np, = 0.5. The use of such simple chemical
modelling is justified by the focus of the present study on evaluation of the numerical res-
olution requirements of the Stochastic Fields approach, rather than assessing the absolute
physical accuracy of the Stochastic Fields approach.

Temperature-dependent thermodynamic properties are modelled with NASA polyno-
mials and, due to the inherent unity Lewis number assumption in the Stochastic Fields
formulation, the Schmidt and Prandtl numbers are both set equal to 0.7, while the mix-
ture kinematic viscosity is modelled with Wilkes law. These assumptions lead to a laminar
flame speed S; = 0.38 ms~!, a thermal thickness of 0.408 mm and a burnt gas adiabatic
temperature 7, = 2328 K in atmospheric stoichiometric conditions.

3.4 Numerical implementation and simulation setup
The Stochastic Fields equation is implemented within the block-structured BOFFIN com-

putational fluid dynamics code [7, 24]. The code is a second order accurate finite volume
method based on fully implicit low-Mach-number formulation using a staggered storage

Table 1 Pilot Stream

Composition Species Chen et al. [15] Current Work
Yo, 5.00E-4 5.00E-4
Yu,0 0.1236 0.1236
Yco, 0.15 0.15
Yco 7.800E-4 -
Y, 3.00E-5 -
You 1.20E-4 -
Yy, 0.7247 0.7259

@ Springer



Flow Turbulence Combust

arrangement. For the momentum equation convection term, an energy conserving discriti-
zation scheme is used and all other spatial derivatives are approximated by standard second
order central differences. A TVD scheme is used for the convection terms in the scalar
conservation equations. The stochastic field equations are solved using a weak first order

temporal approximation with accuracy O («/ At) based on the Euler-Maruyama scheme

[25]. The Wiener process is approximated by time-step increments dr!/ 277;’ where n} is
a {—1, 1} dichotomic random vector [3]. The chemical source terms are solved using a
Newton method-based stiff solver.

For the one-dimensional simulations, the domain was selected to be sufficiently large to
ensure zero-gradient conditions at both the inflow and outflow planes. The inflow velocity
is controlled in order to keep the flame brush position stationary in the domain. The grid
spacing is uniform and set according to the resolution requirements of each test case. It is
observed that using an equispaced numerical grid with at least 16 grid points within the
average stochastic field thickness provides a grid-independent “well-resolved” Stochastic
Fields solution. For the one-dimensional case 512 Stochastic Fields were used, which is
sufficient to make the results presented independent of the number of stochastic fields.

The turbulent Bunsen flame is simulated using two different computational grids: a fine
grid characterised by 0.5 mm grid spacing at the inlet, and a coarse grid characterised by
1.0 mm grid spacing at the inlet. Both grids are Cartesian with a region of uniform transverse
grid spacing around the inlet with transverse extent equal to twice the nozzle diameter. The
axial grid spacing increases linearly in the axial direction. Sixteen stochastic fields are used
in the three-dimensional simulations. The computational time step for the respective cases
are 4.6 us and 2.3 us. The turbulent inflow is modelled with the digital filter based method
of Klein et al. [26] using the mean and rms velocity profiles from [15].

4 Results and Discussion

In order to evaluate the resolution requirements of the Stochastic Fields equation, the ther-
mal thicknesses of the reaction fronts &) on the individual stochastic fields are evaluated as
indicated in Fig. 2, ensemble averaged according to

Ny

1 1
b)) =—y ———, 9
( ) NS Z |v§'(i)|max ( )

i=1

where N; is the number of stochastic fields, and then time averaged. (§.+) is referred to as
the “average stochastic field thickness” and should not be confused with the mean/filtered
flame thickness (6z) which is the thickness based on the maximum gradient of the ensemble
averaged progress variable field.

Additionally, the impact of resolution on the mean/filtered flame speed was examined.
These flame speeds were calculated based on the consumption rate as

1 1 &
St = / — w;ydV, (10)
puYfA v N ; ®

where p, is the unburnt gas density, Y ¢, the mass fraction of fuel in the premixed reactants,
A, the domain cross sectional area, and w(;), the instantaneous reaction rate on field i. The
instantaneous consumption speeds were also time averaged.
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Fig.2 Representative diagram illustrating the definition of the thickness of the individual stochastic progress
variable field, 8.+

4.1 Freely-propagating turbulent flame RANS

The one-dimensional RANS model is applied to the freely-propagating turbulent premixed
flame for a range of u’/Sy and L7 /8y, and the turbulent flame speed and stochastic field
thickness predictions are reported in Fig. 3. Since one objective is to apply the Stochas-
tic Fields in the LES context, in which the sub-filter Reynolds number is typically small,
the predictions are shown for values of L,/§1 up to five, corresponding to relatively low
Reynolds number. The predictions are presented alongside DNS flame speed data for freely
propagating stoichiometric methane-air flames by Nivarti and Cant [27] with similar L1 /6,
and based on a one-step chemical reaction model similar to that used in the Stochastic Fields
simulations.

4.5 T T 3.5 ! !
@ Nivarti & Cant: Ly/d, = 2.75
40t — Lp/o, =1 1
-l LT/6L = 25 i
35 T Ly/0, = 5.0 o ]
~ i
< ]l =
@ ~
~ —
5 |2 ]

u'/sg u'/sp
Fig. 3 RANS Stochastic Fields results for freely-propagating time averaged turbulent flame speed (left)

and for time averaged average thermal thickness of the stochastic fields (right) versus u’/Sy, for Lt /8; =
1, 2.5, 5, and experimental results from Nivarti and Cant [27]
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Previous experimental turbulent flame speed measurements [28] and also the low-
Reynolds number Nivarti and Cant DNS data in Fig. 3 show a near-linear increase of
St /S at low u’/Sy, followed by a bending effect. The bending effect is attributed to the
volume occupied by the turbulent flame becoming saturated with flame surface area. Pre-
vious experiments [28] indicate that the bending occurs earlier at lower Reynolds number
(smaller L7 /81). Theory [14] and experimental observations [28] indicate that, for thermo-
diffusively-stable flames, the turbulent flame speed tends towards the planar laminar flame
speed (S7/S. — 1) in the limit /S, — 0. In contrast, the DNS data of Nivarti and Cant
[27] show an unexpected value of S7/S; = 1.75atu’/S; — 0.

The Stochastic Fields predictions for S /Sy, in Fig. 3 show a similar trend to the Nivarti
and Cant [27] DNS data, including near-linear increase at low u’/S;, and a gradual bend-
ing effect over the range of u’/S; reported. The Nivarti and Cant flame speed data (with
L7 /81, = 2.75) are consistently a factor of 1.75 greater than the Stochastic Field predictions
for L7 /67, = 2.5. Since the DNS flame speeds are higher than theoretically-expected values
by the same factor, the Stochastic Fields model appears to provide satisfactory flame speed
predictions for this range of conditions. The Stochastic Fields predictions are also subject to
the uncertainties of modelling the unresolved diffusive and turbulent convective fluxes. The
use of non-local micromixing models, such as the interaction by exchange with the mean
model used here, are known to be inaccurate in Lagrangian particle RANS-PDF modelling
of premixed flames [20]. However, in the Stochastic Fields approach, the simple exchange
with the mean and gradient transport approaches adopted appear sufficient to produce
reasonable predictions for the initial gradient and bending of S7/S; with respect to u’/Sy .

The reasons for the relative success of non-local mixing models in the context of the
Stochastic Fields PDF implementation (compared to particle-PDF implementations) in pre-
mixed combustion applications may be first that the stochastic fields are continuous in space
and second, that a portion of the scalar dissipation processes are accounted for by the spatial
diffusion term in the Stochastic Fields equation. The coupling between the spatial diffusion
and reaction terms then drives the compositions in the Stochastic Fields solutions towards a
flame-like composition manifold across the reaction front, even if the micromixing model
lacks the localness property and might otherwise draw the composition into regions of
composition space that are in practice chemically-unrealisable.

The average thickness of the RANS Stochastic Fields presented in Fig. 3 shows that the
thickness reduces towards the laminar flame thickness at low u’/Sy . The thickness remains
on the order of the laminar flame thickness across a wide range of turbulence conditions.
Since RANS simulations would otherwise resolve only the large scale flow features that
drive the integral scale turbulence (i.e. length scales greater than L), the Stochastic Fields
approach, requiring resolution at scales close to the much smaller laminar flame thickness,
increases the resolution requirements dramatically when applied to premixed combustion.

4.2 Freely-propagating turbulent flame LES

The one-dimensional turbulent flame simulations are analysed next in the context of LES.
In particular, we examine the effect of using grid spacing equal to the filter scale A, = A,
compared to the “well-resolved” limit Ay < A. The simulation case with A, = A are
described as “coarse”. All cases are simulated with 512 stochastic fields to ensure statistical
convergence.

Figure 4 shows that use of the coarse grid leads to a substantial error in the propaga-
tion speed of the LES-resolved flame front, with the propagation speed in the coarse cases
around a factor of five greater than in the well-resolved cases.
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Fig. 4 One-dimensional LES Stochastic Fields results for freely-propagating turbulent flame. Normalised
resolved flame front speed (left) and normalised average stochastic field thickness (right) versus Ka for
A/8 =1, 2.5, 5. Legends apply to both sub-figures, ® is defined in Eq. 11

The stochastic field thicknesses shown in Fig. 4 indicate that, for the well resolved sim-
ulations, the average thickness of the stochastic field reaction fronts is on the order of the
laminar flame thickness at low Karlovitz numbers and increases with Karlovitz number and
filter length scale due to the increasing contribution of sub-filter scale diffusivity. A similar
trend can be seen for the coarse simulations, however the presence of numerical thickening
is evident from the large increase of the normalised reaction front thickness as the Karlovitz
number tends to zero. The effect of the conventional approach of setting Ay = A is to
numerically thicken the reaction fronts so that on average they extend across at least twice
the grid spacing, as shown by the A /§; = 1 results.

An alternative illustration of the effect of numerical grid spacing on the mean stochastic
field thickness is shown in Fig. 5 where the mean stochastic field thickness is normalised by
the filter width used in the corresponding simulation. Given that an absolute minimum of
five grid points are needed within a reaction front (6.« /Ay > 5) in order to give acceptable
numerical resolution, it is evident that the setting Ay = A does not satisfy this criterion
anywhere in the wide range of combustion conditions considered.

The numerical thickening of reaction fronts is an error that changes the physical predic-
tions of a three-dimensional LES in two main ways. First, the broadening of scalar gradients

Fig. 5 One-dimensional LES 45
Stochastic Fields results for 40
freely-propagating turbulent ’
flame. Normalised resolved 3.5
flame front speed (left) and 3.0
average stochastic field thickness <
normalised by filter width (right) =25
versus Ka for A/§; =1, 2.5, 5. & 20
Refer to Fig. 4 for legend ~ 15
1.0
0.5
0.0
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is expected to affect the local propagation speed of the reaction fronts in the Stochastic
Fields. Second, the numerically-thickened reaction fronts are less-susceptible to wrinkling
by the resolved turbulence leading to an under-prediction in the overall flame surface area.

The effect of the numerical thickening on the under-prediction of flame surface area
and consumption rate cannot be evaluated directly from the one-dimensional simulations.
Instead, we estimate the effect using established models for sub-filter scale flame wrinkling
in the context of artificially-thickened flame modelling [16, 29]. The efficiency function
developed by Charlette et al. [16] provides an estimate for the contribution to flame sur-
face area from turbulent motions below a particular length scale. Evaluating the efficiency
function for the reaction front thicknesses of the coarse and well-resolved simulations
respectively, and taking their ratio,

Efficiency function at coarse resolution

Efficiency function at fine resolution ’ an
gives an estimate for the amount of LES flame wrinkling that is lost due to numerical
thickening of the reaction fronts.

The impact of the loss of flame surface area on burning rate due to numerical thickening
is illustrated in Fig. 4 by multiplying the propagation speed data for Ay = A by ®. For
clarity within Fig. 4, the adjusted flame speeds are only shown for the A/§; = 1 and 5
cases. The magnitude of the adjustment to the coarse flame propagation data increases with
increasing filter width due to the increase in numerical thickening associated with larger
filter widths for a given Karlovitz number. It can be seen that even for a filter width of
A /5r = 5, which is common in current laboratory scale flame simulations, around a 30%
loss of turbulent flame area can be attributed to the numerical thickening due to use of the
coarse grid. The projected 30% reduction in resolved flame surface area due to the use of
coarse grid to some extent off-sets the erroneous five-fold increase in front propagation
speed caused by the use of the coarse grid, but the combined effect is a significant net over-
prediction of the resolved flame front speed, across the wide range of conditions investigated
in this one-dimensional study. The impacts of these numerical errors have not been evaluated
previously in relation to three-dimensional Stochastic Fields LES.

4.3 Turbulent Bunsen flame LES

The F3 turbulent Bunsen flame of Chen et al. [15] is simulated by Stochastic Fields LES
with coarse (Ay = A = 1.0 mm), fine (A, = A = 0.5 mm) and improved (A, =
0.5 mm, A = 1.0 mm) resolutions. The resolution of A,/8; = 1 is much finer than can
be achieved in simulations of industrial high-pressure combustion systems, however the
previous analysis of one-dimensional simulations indicates that even these grid spacings are
inadequate to fully-resolve the Stochastic Fields solution.

Figure 6 presents the instantaneous filtered temperature fields for an individual stochas-
tic field in each of the three simulations. The coarse simulation exhibits less fine-scale
structures than the other simulations. The temperature field in the improved resolution and
fine simulations on the other hand show arguably similar levels of wrinkling. Given that
the LES filter widths between the coarse and improved resolution are the same, the dif-
ferences in wrinkling indicate that the reduction of visible flame wrinkling predominantly
is due to numerical diffusion and thickening of the instantaneous field reaction front. The
effect of numerical thickening is demonstrated by evaluating an indicative stochastic fields
reaction front thickness given by the inverse average progress variable gradient magni-
tude on the Stochastic Fields conditioned on the progress variable giving maximum heat
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Fig. 6 Instantaneous temperature field of an individual field from the turbulent Bunsen flame LES with
Ay = A = 1.0 mm (left), Ay = 0.5 mm & A = 1.0 mm (mid), and Ay = A = 0.5 mm (right)

release, (Ve iyl | e, i) = 0.68) L. The reaction front thicknesses of the Stochastic Fields
for the coarse, improved resolution, and fine simulations are 2.68 mm, and 1.8 mm, and
1.71 mm respectively; demonstrating that the stochastic field thickness is still dependent on
the numerical resolution, even with Ay = A /2.

The radial distributions of normalised axial velocity are presented in Fig. 7 and are in
reasonable agreement with the experimental measurements for all three simulations. The jet
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Fig.7 Radial distributions of the time-averaged methane mass fraction (Yc g, ) and normalised axial velocity
at various axial locations
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width predicted by the simulations is consistently greater than in the experiment, and this
may be due to thermal expansion caused by the jet fluid at each axial location being more
reacted in the simulation predictions than in the experimental measurements, as indicated
by the methane mass fraction profiles also shown in Fig. 7. The similarity of the velocity
field between the simulations and the experiment indicates that the average flow field is
not strongly affected by the use of the different grids examined, and that the different LES
provide similarly accurate flow fields in which to examine the effects of the Stochastic Field
resolution.

The radial variation of the time-averaged filtered methane mass fraction and nor-
malised axial velocity are shown in Fig. 7. The flame length is under-predicted in all of
the simulations, with the coarse solution giving a longer flame length than the fine and
improved resolution cases. The under-prediction of flame length corresponds to an over-
prediction of propagation speeds of the LES-resolved flame fronts. The over-prediction of
the propagation speed may be attributed to: (i) an increase in propagation speed due to
under-resolution of the stochastic field reaction fronts, as anticipated by the preceding anal-
ysis of the one-dimensional flame simulations; (ii) the approximations used in modelling
of the micromixing, spatial flux and reaction rate terms in the Stochastic Fields equations;
and (iii) uncertainties in the inlet boundary conditions adopted for velocities and scalar
variables.

In addition to the well-known phenomenon of numerical diffusion caused by under-
resolution leading to enhanced propagation speeds, as outlined in previous sections, the
increased numerical diffusion artificially thickens the flame and reduces its ability to be
wrinkled by resolved scale turbulence. The longer flame height of the coarse simulation
corresponds to a slower turbulent flame speed. The overall reduction in flame speed seen in
the coarse case suggests that, for the particular case of the present Bunsen flame LES set
up, the reduction in flame speed due to loss of flame surface area outweighs the flame speed
enhancement associated with numerical diffusion within the flame front.

5 Conclusions

The Stochastic Fields formulation is an attractive way to apply the transported probability
density function approach to turbulent reacting flows, however the spatial resolution require-
ments become very demanding when applied to turbulent premixed combustion. Analysis
of resolution requirements in one-dimensional Stochastic Fields simulations of premixed
turbulent combustion shows that the thickness of the reaction fronts arising in the Stochas-
tic Fields solution is on the order of the laminar flame thickness as the Karlovitz number
tends to zero. In Large Eddy Simulation where the filter length scale can be much greater
than the laminar flame thickness, the common practise of setting the LES filter scale equal
to the grid spacing leads to very significant numerical thickening of the reaction fronts. The
numerical diffusion caused by under-resolution affects the predicted turbulent flame speed
in two ways: First, numerical diffusion increases the local propagation speed of the reaction
fronts in the Stochastic Fields. Second, the numerically-thickened caused by the numerical
diffusion makes the reaction fronts less susceptible to wrinkling by the resolved turbulence,
leading to an under-prediction in the overall flame surface area. In combination, these two
effects can have a leading-order effect on the predicted turbulent flame speed. This error is
expected to be very significant in the simulation of high-pressure industrial combustion sys-
tems in which the grid spacing and filter length scales are typically an order of magnitude
greater than the laminar flame thickness.
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Three-dimensional Large Eddy Simulations of a laboratory turbulent Bunsen flame con-
firm that the Stochastic Fields solution is not numerically accurate when the grid spacing
is equal to the filter length scale, whereas the flow field solution is relatively insensitive to
further refinement of the spatial resolution. Even in relatively well-resolved LES (with fil-
ter scale equal to twice the laminar flame thickness), the impact of numerical inaccuracy on
the overall burning rate is substantial. The present results provide a guide to the resolution
required in order to obtain numerically-accurate Stochastic Fields solutions. The general
requirement is that the grid spacing should be finer than the filter scale and the same order of
magnitude as the laminar flame thickness, but this is impractical for many industrial appli-
cations involving high pressure combustion. In order to reduce the computational resolution
requirements while retaining the key advantages of the Stochastic Fields method, a Thick-
ened Stochastic Fields approach is developed in an accompanying paper [30]. Techniques
such as level-set methods, or a form of adaptive grid refinement that ensures resolution of
the individual stochastic fields could be considered in order to reduce the computational
expense of solving the Stochastic Fields equations.
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