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ABSTRACT: It is well-known that moisture movement and heat transfer often happen simultaneously in un-
saturated soils, therefore forming a coupled flow pattern. This process is relevant for ground source heat
pump systems, nuclear waste disposal or other areas of energy geotechnology. However, studies on the analy-
sis of water flow in response to thermal variations are still required, especially in terms of quantitative analy-
sis in three-phase unsaturated soil systems. This paper presents a study conducted using advanced micro-
focus X-ray Computed Tomography (micro-XCT) techniques, which enables both the visualisation of mois-
ture progression and quantification of water change within the soil system. Heat was applied to the soil spec-
imen, inducing heat transfer accompanied with the water flow under the thermal gradient. A series of short
scans were operated at different temporal stages during the heating process, enabling the acquisition of repre-
sentative image data for quantitative analysis. The results in terms of moisture distribution during the heating
process have been obtained and interpreted. The study shows that the micro-XCT is able to assess the im-
posed coupled thermal-moisture flow processes in soils, which will help understand fundamental soil pro-

cesses and provide quantitative data for the relevant model validation.

1 INTRODUCTION

Coupled thermal-moisture flow is relevant to ge-
otechnical applications, such as ground heat thermal
storage and nuclear waste disposal, which often oc-
cur in unsaturated soils.

Work on the coupled processes controlling ther-
mal-moisture flow in soils has been conducted in the
past. Philip and De Vries (1957) carried out funda-
mental modelling work on thermally-driven mois-
ture flow in porous media under nonisothermal sit-
uations, considering both liquid and vapour flows.
The developed equations for moisture and heat flow
have been referred or adopted in numerous subse-
quent work to evaluate water and heat transfer in
soils, such as Sophocleous (1979), Radhakrishna et
al. (1984), Shepherd and Wiltshire (1995) and
Reshetin and Orlov (1998). In recent years, Smits et
al. (2011) and McCartney and Baser (2017) carried
out improved simulations on coupled thermally
driven moisture flow, for example, they considered
the important role of vapour diffusion on heat and
saturation distributions. However, validation of
these numerical studies requires reliable experi-
mental data with high temporal and spatial resolu-
tion which is difficult to obtain.

Liu et al (2017) explored the possibility of using
micro-XCT to study these phenomena, conducting a
trial evaporation experiment on a soil specimen

placed within a micro-XCT scanner. This paper
builds on this work and aims to demonstrate applica-
tion of the technique in the presence of a heat
source. A partially saturated sand specimen is sub-
jected to a thermal gradient while located within a
micro-XCT scanner. The study uses the Gaussian
decomposition method from Liu et al. (2017), to as-
sess the transient moisture distribution from CT
scans taken at different heating times. The work
provides important data for understanding the fun-
damental process of coupled thermal-moisture flow
scenarios in soils, including for model validation

purpose.

2 PRINCIPLES OF X-RAY COMPUTED
TOMOGRAPHY

A XCT technique includes three components: image
acquisition, image reconstruction and image pro-
cessing.

For image acquisition, electrons are generated by
a metal filament (cathode), then transported to the
X-ray target (anode). Afterwards, X-rays are pro-
duced by the interaction of electrons in the X-ray
target, before continuing to image the object. The
object is imaged from various orientations as it ro-
tates during the scan (Kak and Slaney, 2001). 2D
projection image data are acquired by the X-ray de-



tector located behind the object after the entire scan-
ning process is completed.

The raw 2D projection data are then reconstruct-
ed as 3D volume data in the form of a series of 2D
image slices, using an image reconstruction ap-
proach. The XCT acquisition and reconstruction
processes are shown schematically in Figure 1.
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Figure 1. Schematic illustration of XCT acquisition and re-
construction process (Landis and Keane, 2010)
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3 MATERIALS AND METHODS

3.1 Specimen preparation

A partially saturated sand specimen with internal di-
ameter of approximately 5 mm and height of 10 mm
was contained within a polyethylene tube container.
The material was uniformly-graded Leighton Buz-
zard sand, with a grain size in the range 90 um — 150
um and a grain specific gravity of 2.65. The speci-
men was initially prepared by wet pluviation
(Raghunandan et al, 2012), followed by drying
from the obtained saturated condition in a tempera-
ture controlled room, to a certain degree of satura-
tion which is 53 £ 1 % in this study. Then it was
sealed using double layers of parafilm as a closed
system. No further efforts on homogeneity, such as
rotation or tapping, were attempted.

3.2 Experimental setup for CT scans

The micro-XCT scanner used for the experiments
was a Nikon HMX ST 225 (HMX), featuring a
standard 225kVp reflection molybdenum target
(University of Southampton, 2017). A Peltier
Coolstage (see details in Deben (2017)) was used to
generate a consistent heating temperature at the base
of the specimen. A series of CT scans was conduct-
ed as moisture moved under the generated thermal
gradient.

The experimental setup for the CT experiments
under heating is shown in Figure 2. From the bottom
to top, the Peltier stage was equipped on the manipu-
lator of the CT scanner, on which the sand specimen
was placed. A hygrothermograph was also included
near the specimen on the same manipulator plat-
form, to measure temperature (T) and relative hu-
midity (RH) during the scanning process. This

showed that the environmental conditions inside the
scanner cabin were relatively stable, with a tempera-
ture (T) of around 24 + 1 °C and the relative humidi-
ty (RH) 50 = 1 %.

Rapid scan time was used throughout. If scan
time is too long then there would be blurring of the
resultant images due to the moisture movement.
However, reducing scan time too much will lead to
adverse effects on image quality. Also, the stability
of the specimen or specimen holder could be affect-
ed under rapid scan conditions, potentially inducing
the movement of the specimen. Therefore, the im-
posed thermal gradient is moderate, being about A
10 °C through the specimen height. Scan settings
were chosen (see Table 1) to achieve a duration of
10 minutes, with a series of sequence scans conduct-
ed under the imposed heating. An initial scan with-
out imposing any temperature gradient was also
conducted to determine the specimen initial condi-
tion.

Specimen

Hygrothermograph

Figure 2. Experimental setup

To ensure a high image resolution and remove the
potential for cone beam artefacts (Zbijewski and
Beekman, 2006) in the critical region of the speci-
men near the heater, scans were focused on the bot-
tom half of the specimen. This allows the experi-
ment to be focused on the drying portion of the
specimen.

Table 1. Scan settings on HMX
Scan settings

Energy 70 kV
Intensity 100 pA
Exposure time 500 ms
Frames/projection 1
Projection count 1201
Resolution 3.9 um




4 DATA SELECTION AND PROCESSING

2D projection data were corrected to eliminate the
heel effect following the method illustrated in Liu et
al. (in review), before it was reconstructed into 3D
volume data. A sequence of six scans (Nos. 1 to 6)
were carried out at ten minute intervals immediately
following application of heating. These, and the ini-
tial conditions scan are analysed in detail in the sec-
tions below.

4.1 Region of interest (ROI)

Segmentation of the data to quantify the phase vol-
umes and the subsequent analysis were conducted on
a ROI rather than the whole specimen. This was
done to counter the limitations of imaging acquisi-
tion and image reconstruction (e.g. cone beam arte-
fact and beam hardening). A circular (in plan) ROI
was chosen from the middle area of the specimen.
The same ROI was used for all scans. These data
were processed and used to explore moisture distri-
bution under the imposed heating. To evaluate the
vertical distribution of the moisture, expressed as the
degree of saturation, each scan data (with 800 slices)
was equally divided into four subsections, each of
which consists of 200 slices.

4.2 Segmentation

Gaussian decomposition was used for segmentation
of the image data. The method was implemented us-
ing the raw 32-bit float data following the principle
shown in Liu et al. (2017). Initially, Gaussian de-
composition was applied to the global grey value
(GV) histogram from the ROI of the initial scan to
determine the mean grey values of the three phase,
i.e. air, water and solid (see Table 2). Then, these
values are used as fixed parameters in the subse-
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quent Gaussian decomposition analysis on the time
series data.

From the initial scan, the degree of saturated was
determined to be about 52.3 % for the ROI in the
bottom half of the specimen, close to the gravimetric
measurement for the entire specimen. Fitting plots
for this initial Gaussian decomposition are given in
Figure 3.

Table 2. Input parameters from Gaussian decomposing
Mean grey value

S} -16
K2 10
3 73

5 RESULTS AND DISCUSSIONS

Both grey value (GV) data and moisture distribution
in terms of the degree of saturation have been de-
termined for the time series scans.

5.1 Grey value (GV) distribution

The uniformity of the specimen and the progression
of the soil moisture is shown from the GV distribu-
tions, as GV is closely correlated with specimen
density. These are shown in Figure 4 for the initial
data and the six time series results since heating was
imposed. The distributions indicate that the partially
saturated sand specimen was approximately uniform
through the bottom half of the specimen height. The
relative GVs between each temporal scan shows
progressive reduction consistent with drying of the
soil specimen.
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Figure 3. Gaussian analysis for the initial scan data; black = raw data; blue = solid; yellow = moisture; red = air; brown = sum of

Gaussians.
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Figure 4. Grey value distribution

5.2 Saturation results

Using the mean GV for each phase obtained from
the initial scan, proportions of each phase were de-
termined by Gaussian decomposition for every sub-
section time series scan. Phase fractions were then
used for the determination of the saturation. Figure 5
shows the vertical distribution of moisture through
the specimen at different times, illustrating the pro-
gressive drying.
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Figure 5. Saturation progression

The change of saturation against the initial condi-
tion was also calculated for each subsection in every
scan data. Figure 6 shows that the drying of moisture
in the bottom regions of the specimen is much more
significant than in the above regions. This indicates
upward drying of the moisture due to the imposed
heating, agreeing qualitatively with what was ex-
pected.
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Figure 6. Change of saturation against the initial condition

From another perspective, at the same height of
the specimen, saturation consistently decreases with
the temporal scan data (Figure 7). The drying rate in
the lower regions is greater than that in the upper re-
gions. For example, at 0.4 mm from the base of the
specimen the rate of change is approximately 12 %
per hour, while at 2.8 mm from the base of the spec-
imen the rate of change is approximately 5 % per
hour.

In summary, moisture migration under heating in
a partially saturated sand specimen, was observed
and quantified using Gaussian decomposition. This
also verifies the feasibility of conducting the heating
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Figure 7. Temporal change of saturation at the same specimen
height; in terms of x-axis, 0 is the initial condition scan, and 1-6
are the six time series scans (No.1- No.6) under heating.



experiment in soils using micro-XCT techniques.

6 CONCLUSIONS

The study of thermally-driven water flow in soils is
important in geotechnics, however, it is often chal-
lenging to obtain detailed, high quality experimental
data. Micro-XCT offers a promising approach, alt-
hough it is challenging to apply to rapid moisture
migration because of the essential compromise be-
tween a short scan time and high quality image data.

In this paper, a heating experiment based on mi-
cro-XCT techniques was designed and successfully
applied to study thermally driven water flow in soils.
Gaussian decomposition was applied to assess the
changing phase proportions of the soil.
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