READ ME File For 'Adaptive Coherent/Non-Coherent Single/Multiple-Antenna Aided Channel Coded Ground-to-Air Aeronautical Communication' DOI: 10.5258/SOTON/D0687 IEEE Transactions on Communications (Accepted on 16 Oct 2018) Authors: C. Xu, J. Zhang, T. Bai, P. Botsinis, R.G. Maunder, R. Zhang and L. Hanzo The authors are with the School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK (e-mail: {cx1g08, jz09v, tb3g13, pb8g10, rm, rz, lh}@soton.ac.uk). Acknowledgement: This work was supported in part by the EPSRC projects EP/Noo4558/1 and EP/PO34284/1, the European Research Council's Advanced Fellow Grant under the QuantCom project and the Royal Society's Wolfson Research Merit Award and the GRCF. Abstract: In this treatise, first of all, we conceive a generic Multiple-Symbol Differential Sphere Detection (MSDSD) solution for both single- and multiple-antenna based noncoherent schemes in both uncoded and coded scenarios, where the high-mobility aeronautical Ricean fading features are taken into account. The bespoke design is the first MSDSD solution in open literature that is applicable to the generic Differential Space-Time Modulation (DSTM) for transmission over Ricean fading. In the light of this development, the recently developed Differential Spatial Modulation (DSM) and its diversity counterpart of Differential Space-Time Block Coding using Index Shift Keying (DSTBC-ISK) are specifically recommended for aeronautical applications owing to their low-complexity single-RF and finite-cardinality features. Moreover, we further devise a noncoherent Decision-Feedback Differential Detection (DFDD) and a Channel State Information (CSI) estimation aided coherent detection, which also take into account the same Ricean features. Finally, the advantages of the proposed techniques in different scenarios lead us to propose for the aeronautical systems to adaptively (1) switch between coherent and non-coherent schemes, (2) switch between single- and multiple-antenna based schemes as well as (3) switch between high-diversity and high-throughput DSTM schemes. Fig.~1: Coherent_Noncoherent.eps Fig.~2: Schematic_DPSK_MSDD.eps Fig.~3: EXAMPLE_Hard_DPSK_Ricean_MSDSD.eps Fig.~4: Schematic_DPSK_DFDD.eps Fig.~5: PSAM_Schematics.eps Fig.~6: Constellation_Diagram_DAOSTBC_M_2_T_2_L1_8_L2_8_Data.eps Constellation_Diagram_DAOSTBC_M_2_T_2_L1_8_L2_8_Transmit.eps Fig.~7: Complexity_DQPSK_Ricean_K_0_offset_03_doppler_03_MSDSD_6_FP.eps Complexity_DGC_Cyclic_M_2_L_16_Ricean_K_0_offset_03_dopp_03_MSDSD_6_FP.eps Hard_DAOSTBC_M_2_L1_4_L2_4_Ricean_K_0_offset_03_dopp_03_MSDSD_6_FP.eps Hard_DSM_M_2_L1_2_L2_4_Ricean_K_0_offset_03_dopp_03_MSDSD_6_FP.eps Fig.~8: Hard_DQPSK_Ricean_K_10_offset_005_doppler_005_MSDSD_6_AoA.eps Hard_DAOSTBC_M_2_T_2_L1_4_L2_4_Ricean_K_10_offset_005_doppler_005_MSDSD_6_AoA.eps Hard_DQPSK_Ricean_K_10_offset_0143_doppler_0143_MSDSD_6_AoA.eps Hard_DAOSTBC_M_2_T_2_L1_4_L2_4_Ricean_K_10_offset_0143_doppler_0143_MSDSD_6_AoA.eps Fig.~9: Hard_DQPSK_Ricean_K_0_offset_001_doppler_001_MSDSD_11.eps Hard_DQPSK_Ricean_K_0_offset_03_doppler_03_MSDSD_11.eps Complexity_DQPSK_Ricean_MSDD.eps Complexity_DQPSK_Ricean_MSDSD.eps Fig.~10: EXIT_DQPSK_Ricean_K_0_fd_001_MSDSD_4_NOL_3.eps EXIT_DQPSK_Ricean_K_0_fd_03_MSDSD_4_NOL_3.eps Fig.~11: LLR_DQPSK_Ricean_K_0_fd_001_MSDSD_4_NOL_3.eps LLR_DQPSK_Ricean_K_0_fd_03_MSDSD_4_NOL_3.eps LLR_DQPSK_Ricean_K_0_fd_03_MSDSD_4_NOL_3_IA_1.eps Fig.~12: BER_IRCC_TC_RSC_DPSK_PSAM_fd_001.eps BER_IRCC_TC_RSC_DPSK_PSAM_fd_03.eps Fig.~13: EXIT_BER_TC_DQPSK_Ricean_K_0_fd_03_MSDSD_4_NOL_3.eps Fig.~14: Compare_Maximum_Achievable_Rate_fd.eps Compare_Maximum_Achievable_Rate_K_fd_001.eps Compare_Maximum_Achievable_Rate_K_fd_03.eps Fig.~15: Hard_DSTM_M_2_N_1_DQPSK_Ricean_K_0_fd_003_MSDSD_6.eps Fig.~16: EXIT_RSC_Rc_050_DSTM_M_2_N_1_MSDSD_4_NOL_3.eps EXIT_RSC_Rc_080_DSTM_M_2_N_1_MSDSD_4_NOL_3.eps Fig.~17: BER_RSC_Rc_50_URC_DSTM_M_2_N_1_DQPSK_Ricean_K_0_fd_03_Subset_MSDSD_4_NOL_3.eps BER_RSC_Rc_80_URC_DSTM_M_2_N_1_DQPSK_Ricean_K_0_fd_03_Subset_MSDSD_4_NOL_3.eps Fig.~18: Compare_DSTM_Maximum_Achievable_Rate_Rc.eps Compare_DSTM_Maximum_Achievable_Rate_Rm.eps Compare_DSTM_Maximum_Achievable_Rate_M.eps Compare_DSTM_Maximum_Achievable_Rate_N.eps Fig.~19: DCMC_Capacity_QPSK_DQPSK_Ricean_K_0_fd_001.eps DCMC_Capacity_QPSK_DQPSK_Ricean_K_0_fd_03.eps DCMC_Capacity_DQPSK_DSM_DSTBC_Ricean_K_0_fd_03.eps DCMC_Capacity_D8PSK_DSM_DSTBC_Ricean_K_0_fd_03.eps Fig.~20: Compare_Maximum_Achievable_Rate_fd_Gain.eps Compare_DSTM_Maximum_Achievable_Rate_Rc_Gain.eps Compare_DSTM_Maximum_Achievable_Rate_Rm_Gain.eps