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Abstract 

In this article we propose a new method for estimating the randomization (design-based) mean 

squared error (DMSE) of model-dependent small area predictors. Analogously to classical survey 

sampling theory, the DMSE considers the finite population values as fixed numbers and accounts 

for the MSE of small area predictors over all possible sample selections. The proposed method 

models the true DMSE as computed for synthetic populations and samples drawn from them, as a 

function of known statistics, and then applies the model to the original sample. Several simulation 

studies for the linear area level model of Fay and Herriot (1979) and the unit-level mixed logistic 

model of MacGibbon and Tomberlin (1989) illustrate the performance of the proposed method and 

compare it to the performance of other DMSE estimators proposed in the literature. 
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1. Introduction 

The term small area estimation (SAE) encompasses a set of statistical procedures for estimating 

area parameters such as totals, proportions or even distribution functions, for areas or domains for 

which only small samples, and in some cases no samples are available. A direct estimator for a 

target parameter, based only on observations from that area can be very inaccurate as a result of 

the small sample size. Consequently, over the last 4 decades indirect model-based predictors, 

which borrow information across areas or over time, have been developed. The models typically 

contain random effects, which are aimed to account for the unexplained variability of the true area 

parameters or individual observations not accounted for by known covariates. 

As with any other problem in statistics, the production of an estimator is only part of the inference, 

and one needs to provide also a measure of its reliability. A common measure is an estimate of the 

mean squared error (MSE), which in the case of SAE is required for every area separately. Model-

based prediction MSEs (PMSE) of small area predictors account for all sources of variation, 

including the distribution of the hypothetical random effects included in the model. This implies that 

the target area parameters are considered as random, which is different from classical survey 

sampling applications under which the finite population values and hence the target parameters are 

viewed as fixed values. Users of sample survey (official statistics) estimates are familiar with 

measures of error, which only account for the variability originating from the randomness of the 

sample selection (known as the randomization distribution). In other words, these users are 

accustomed to estimates of the design-based (randomization) MSE (denoted hereafter as DMSE), 

over all possible sample selections, with the population values of the survey variables (and hence 

the values of the target parameters), held fixed. Estimation and publication of the DMSE (or its 

square root) is a common routine in national statistical offices all over the world. 

In this article we propose a new procedure for estimation of the DMSE in SAE, with special attention 

to the area-level model (Fay and Herriot, 1979), and the unit-level mixed logistic model (MacGibbon 

and Tomberlin, 1989). The procedure consists of modelling the true DMSE computed for synthetic 

populations and samples generated from the underlying model as a function of known statistics, and 

then applying the model to the original sample. It relies in part on the procedure for bias correction 

proposed in Pfeffermann and Correa (2012), with appropriate modifications. We illustrate the 

performance of the proposed method and compare it to other DMSE estimators proposed in the 

literature using simulated data. 
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2. Literature review  

2.1 Model-based estimation of prediction MSE 

Denote the true target parameter in area i  by i  (hypothetical parameter like expectation or 

percentile, or its finite population counterpart like the realized area average). Denote by ˆ
i  its 

(model-based) predictor. The model-based PMSE is defined as,                                       

                                                                      
2ˆ ˆ( ) [( ) ]i M i iPMSE E    ,                                                     (2.1)                             

where the subscript M signifies that the expectation accounts for all sources of variation, including 

the distribution of the random effects included in the model. 

Estimators of the PMSE for the area-level estimators of Fay and Herriot (1979) and the unit level 

estimators of Battese et al. (1988), were developed by Prasad and Rao (PR, 1990), for the case 

where the variance of the random effects is estimated by the Method of Moments. Datta and Lahiri 

(2000) extend the procedure of PR to more general mixed linear models and for the case where the 

unknown variance components are estimated by maximum likelihood estimators (MLE). Other 

extensions have been proposed by Datta et al. (2005) and Das et al. (2004). All the above MSE 

estimators have bias of desired order (1 / )o m , where m  is the number of sampled areas. 

Resampling methods for estimation of model-based PMSE with the same order of bias have been 

proposed by Jiang et al. (2002) and Lohr and Rao (2009), based on the jackknife method, and by 

Hall and Maiti (2006) based on parametric bootstrap. (Hall and Maiti (2006) only prove second-order 

unbiasedness for the basic bias corrected estimator but not for the tuned estimators that are strictly 

positive. See Section 3 for more details.) 

Pfeffermann and Correa (2012) developed a method for bias correction, which models the error of a 

given predictor as a function of the corresponding estimators obtained from bootstrap samples and 

the original estimator and bootstrap estimators of the parameters governing the model fitted to the 

sample data. The method is applied for estimating the PMSE of the empirical best predictors under 

the mixed logistic model. Our proposed procedure for DMSE estimation is based in part on this 

method. The advantage of resampling methods over parametric estimators is that they are 

applicable for more general mixed models, although they are not fully nonparametric because they 

require computing the model-dependent estimators for each new sample.  
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A third approach for assessing the prediction error under the model is to follow the Bayesian 

paradigm, in which case the predictor is commonly defined by the posterior mean and its PMSE is 

estimated by the posterior variance. For more details of these and other methods of estimation of 

model-based PMSE, see Pfeffermann (2013) and the book of Rao and Molina (2015). 

2.2 Estimation of Design-based MSE of model-based predictors 

The methods mentioned in Section 2.1 are model dependent, attempting to estimate the PMSE by 

accounting for all sources of error. As mentioned in the introduction, an alternative approach, which 

is more appealing to users of small area estimators, is to estimate the MSE with respect to 

randomization distribution over all possible sample selections, but with the true population values 

held fixed. The problem with this approach in the context of SAE is that estimation of the design-

based MSE (DMSE) with acceptable level of accuracy is very complicated because of the small 

sample sizes in some or all the areas. Consequently, it was recommended in the past to average 

the MSE estimators over many small areas to get a stable estimator. See Rao and Molina (2015, 

section 3.2.5) for several averaging procedures applicable when estimating the DMSE of synthetic 

estimators. However, as already stated, a small area predictor and an estimator of its DMSE is 

required for every area separately, and not just as an average over many areas. Only few attempts 

to tackle this problem have been reported in the literature. 

Following the previous notation, the DMSE is defined as, 

                                       
2ˆ ˆDMSE( ) [( ) | ]i D i iE F    ,                                             (2.2) 

where 1 ... mF F F    is the collection of all the vector values of the survey variables under 

consideration in the finite population, which in the present context is classified into the m  areas of 

interest, ( )i ig F   is a function of iF  corresponding to area i  like the true area mean or proportion 

of the target variable of interest, and ˆ
i  is an estimator of i . When ˆ

i  is computed based only on 

the sample of values from the area, it is referred to in the SAE literature as a direct estimator. Model 

dependent estimators use also data from other areas and are referred to as indirect estimators. The 

expectation operator DE  is with respect to the randomization distribution over all possible sample 

selections from F . In what follows we review the approaches proposed in the literature for DMSE 

estimation. 
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2.2.1. Area level models 

Rivest and Belmonte (2000) consider area level models under which the available data consist of a 

set of direct estimators, 1( )my = y ,...,y  . The authors assume that ),(~|  mNy , the m-variate 

normal distribution with mean vector   and known covariance matrix  . In order to improve the 

accuracy of the direct estimators, the authors consider shrinkage-based estimators of the form,   

                                                     
1

ˆ ( ,..., ), 1,...,i i i my g y y i m    .                                               (2.3)                                           

Let  )(),....,()( 1 ygygyg m

t  . For known hyper-parameter values featuring in 
tyg )( , the authors 

propose estimating the DMSE unbiasedly as, 

                                       
tt ygygygygSEMD )()()()()ˆ(ˆ  ,                                  (2.4) 

where ( )g y  is the m m  matrix with the ( , )thi j  element given by ( ) ( ) /ij i jg y g y y   . The 

derivation of (2.4) relies on the normality of the direct estimators given the true area means. 

Consider, for example, the Fay Herriot (FH, 1979) model,  

                                
2; ; (0 ), ~ (0, )

i

2

i i i i i i i u i Dy e x u u ~ N ,σ e N       ,                                  (2.5) 

where iy  denotes the direct estimator for area i , ie  is the sampling error and iu  the corresponding 

random effect. For known parameter values, the F-H estimator is,  

                                             ˆ (1 ) ;FH

i i i i iy x        

2

2 2

i

u
i

u D




 



.                                           (2.6)                 

Clearly, the F-H estimator is a special case of the estimators considered by Rivest and Belmonte 

(2000) and the DMSE estimator takes in this case the form, 

                                       
2 2 2 2 2ˆˆ ( ) (1 ) [( ) ( )].

i i

FH

i i D i i i D uDMSE y x                                           (2.7) 

Notice that unlike (2.4), the derivation of (2.7) does not require normality of |i iy  . The estimator 

(2.7) is an unbiased estimator of the DMSE with respect to the randomization distribution, but it is 

very variable and can take negative values. This would particularly be the case if the sampling 

variance, 
2

iD , is large, the basic problem of SAE.     
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Rao et al. (2018) propose estimating the DMSE of the empirical FH estimator as a weighted 

average of a design-unbiased DMSE estimator and an estimator of the (unconditional) model-

dependent PMSE of correct order (See Section 1). For the F-H model, the weighting coefficients are 

î  and ˆ(1 )i , where 
2 2 2 1ˆ ˆ ˆ( )

ii u u D      . The resulting, (composite) DMSE estimator is thus, 

   
1
ˆ ˆ ˆˆ ˆ ˆˆ ˆ( ) ( ) (1 ) ( )FH FH FH

i i i i iDMSE θ = DMSE θ + - PMSE θ  ,                 (2.8) 

where ˆˆ ( )FH

iDMSE θ  is the design unbiased estimator for the case where the model parameters are 

estimated by restricted maximum likelihood (REML); see Datta et el. (2011) for derivation of the 

unbiased estimator. The rationale of using an estimator of the model PMSE to estimate the DMSE is 

that under the model and for known hyper-parameter values, 2ˆ[ ( | )]
i i

FH

i i D iE DMSE    

ˆ( )FH

iPMSE  , so one estimates the DMSE by an estimator of its model expectation. For small 

estimates 
î  (small area sample size), Rao et el. (2018) propose replacing in (2.8) 

î  by 
î  and 

ˆ(1 )i  by ˆ(1 )i . The resulting DMSE estimator is then, 

                                        
2
ˆ ˆ ˆˆ ˆ ˆˆ ˆ( ) ( ) (1 ) ( )FH FH FH

i i i i iDMSE θ = DMSE θ + - PMSE θ  .                            ( 2.9) 

The estimator (2.9) gives more weight to ˆˆ ( )FH

iDMSE θ  than (2.8), thus reducing the overall design 

bias, but at the expense of possibly increasing the design MSE.  

The estimators in (2.8) and (2.9) can take negative values because ˆˆ ( )FH

iDMSE θ  can be negative. 

Thus, a third modification considered by the authors is to replace the estimators by the model-

dependent PMSE estimator when they take negative values. 
 

Brakel et al. (2016) propose a design-based variance (DVAR) estimator of the empirical FH 

predictor for the case where the auxiliary variables ix  are also estimated from another survey. The 

empirical predictor they consider is, 

                                                         ˆˆ,
ˆ ˆˆ ˆ ˆ(1 ) ;FH

i x i i i i GLS
y x     

2

2 2

ˆ
ˆ

ˆ
i

u
i

u D




 



,                                        (2.10) 

where the estimates 
2ˆ
u  and hence ˆ

ˆ
GLS

  are obtained under the model. (The sampling error 

variances, 
2

iD , are estimated externally and assumed known, a common practice when using the 

FH model). The authors develop a first order Taylor approximation for the design variance of ˆ
ˆˆ

i GLS
x  , 
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where 
1 1

ˆ 1 1

ˆ ˆˆ ˆˆ ˆ ˆ( )
m m

i i i i i iGLS i i
x x x y T t   

 
    is the empirical GLS estimator, and consequently, the 

following estimator for )ˆ( ˆ,

FH

xiDVAR  , 

         
 2 2 2

ˆ, , , ,1 1

i ,

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ( ) var( ) (1 ) cov( ) var( )

ˆˆ ˆ ˆ                     2 (1 ) var( ),

m mFH T

i x i i i i j j i j i j ij j

i i i i

DVAR y B x B C y

C y

  

 

 
   

 

 
                (2.11)                         

where 
1 1

ˆ ˆ, ,
ˆ ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( )T T

i j i j j i j j j j iGLS GLS
B x T x y x x T         , 1(0)ij   if ( )i j i j  , and 

1

,
ˆ ˆ ˆˆ ˆ

i j i j jC x T x  .  

The estimator (2.11) conditions on the estimator 2ˆ
u  of the random effects as obtained from the 

original sample and hence conditions on the estimates î , but it accounts for the sampling errors of 

the direct estimator and of the estimates ˆ
jx . Notice, however, that the estimator does not account 

for the design-bias of the small area predictor and hence it is not considered in the simulation study 

in Section 4.  

2.2.2. Unit level models 

Unit level models are applicable for the case where individual observations, , , 1,...,ij ij iy x j n , are 

available for every sampled area 1,...,i m . Molina and Strzalkowska-Kominiak (2017) consider 

the case of a binary response, {0,1}ijy   and assume the generalized linear mixed model (GLMM),  

                             
2| ~ Bernoulli( ); logit( ) , (0, )ij ij ij ij ij i i uy p p p x u u N   .                          (2.12) 

The target parameters are the true area proportions, 

1

1 iN

i ijj
i

P y
N 

 
1

( ), 1,...,
i i

ij ijj s j s
i

y y i m
N  

    , where is  and is  define respectively the 

sample and out of sample units in area i  and iN  is the area size. Several model-based predictors 

of the form, 

                                                  
1ˆ ˆ( ), 1,...,

i i
i ij ijj S j S

i

P y y i m
N  

                                         (2.13) 

are considered, with the predictors ˆ
ijy  obtained under alternative model approximations. However, 

for DMSE estimation, the paper restricts to the case where the model fitted is the basic unit level 

model of Battese et al. (1988), 
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                                              2 2; (0, ), (0, )ij ij i ij i u ijy x u u N N        ,                            (2.14) 

such that in (2.13), ˆˆ ˆ ;ij i i iy x u j s   , as computed under the model. The authors show by use of 

Taylor approximation that the relative error due to the use of the LMM (2.14) instead of the GLMM 

(2.12) is below 10%, if the true probabilities are in the interval [0.3, 0.7].  

They consider three estimators for the DMSE of the predictor ˆ
iP  obtained under the model (2.14). 

The first estimator is a nonparametric bootstrap (NPB) estimator, obtained by first replicating each 

sample observation ( , )ij ijx y  
ijw  times, where 

|(1/ )ij j iw   is the rounded calibrated sampling 

weight, yielding the pseudo population 
* * ˆ{( , ), 1,..., , 1,..., }ij ij iy x i m j N  , where ˆ ( )

i
i ijj s

N w


   is 

the closest integer of ˆ
i

i ijj s
N w


 , and the bootstrap proportions, 

ˆ
* *

1

1
,   1,...,

ˆ
iN

i ijj
i

P y i = m
N 

  . In 

the next step, B  samples are drawn from each area of replicated measurements and the LMM 

(2.14) is fitted, yielding the estimates 
*,

,
ˆ NPB

i bP . The nonparametric bootstrap DMSE estimator is 

calculated under this method as, 

                                         
2

*, *

,1

1ˆ ˆ ˆ( ) 1
B NPBi

NPB i i b ib
i

n
DMSE P P P

N B 

 
   
 

 .                                   (2.15) 

The second estimator is a composite estimator of the NPB estimator, and the PMSE estimator 

(under the model 2.13),  

                                           ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) (1 ) ( )COM i i NPB i i iDMSE P DMSE P PMSE P    ,                              (2.16) 

where 
2 2 2 1ˆ ˆ ˆ( )

ii u u D       is calculated from the original sample and ˆ ˆ( )iPMSE P  is the PMSE 

estimator under the model. See the explanation after Eq. (2.8) for the rationale of the estimator 

(2.16).   

The third estimator considered by Molina and Strzalkowska-Kominiak (2017) is a “parametric design 

bootstrap estimator”, obtained by generating a (single) population {( , ), 1,..., , 1,..., }pb

ij ij iy x i m j N   

under the model (2.14) with estimated parameters 
2ˆ ˆ, u   obtained from the original sample, drawing 

bootstrap samples as under the first method and computing the model-based predictors ,
ˆ PB

i bP  for 

each bootstrap sample and the regression estimators ˆˆ ( )reg

i i i iP y X x     for each area, where 
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1 1

1 1
( , ) ( , )

i in n

i i ij ijj j
i i

y x y x
n n 

    are the sample means and 
1

1 iN

i ijj
i

X x
N 

  is the true area 

mean in area i . The DMSE estimator is defined as,  

                                   2 2

, ,1 1

1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) (1 ) ( )
B BPB reg PB

PD i i i b i i i b ib b
DMSE P P P P P

B B
 

 
      ,                (2.17)     

where ˆ
iP  is the model based predictor calculated from the original sample. The rationale of this 

estimator is that for areas with large sample sizes (large î ), the regression estimator ˆ reg

iP  is more 

reliable as an estimator of the true unknown proportion, particularly when the working model (2.14) 

is not correct, but the model-based predictor ˆ
iP  is more stable for areas with small sample sizes 

(small î ).  

Molina and Strzalkowska-Kominiak (2017) conclude, based on a simulation experiment, that the 

composite estimator (2.16) and the parametric design bootstrap estimator (2.17) have an acceptable 

quality for estimation of the DMSE of the EBLUP estimator  ˆ
iP  under the model (2.14). 

Rao et al. (2018) likewise consider the basic unit-level model (2.14), with the target area parameter 

being 
1

1 iN

i ijj
i

Y y
N 

  . For known parameters (
2 2, ,u    ), the best model-based predictor of the 

area mean iY  is in this case, 

                                         
ˆ [ |{( , ), 1,..., } ( )B

i i ij ij i i i i iY E Y y x j n X a y x       ,                        (2.18) 

where (1 ) ; ( / )i i i i i i ia f f f n N     and
2

2 2 /

u
i

u in




 



. By (2.18),  

ˆ ( ) (1 )B

i i i i i i iY Y a u U a U     , where ,i iu U  are the area sample and population means of the 

values ( )ij ij iju y x    and hence under simple random sampling without replacement (SRSWR) 

within each area,  

                                                                  
2 2 2ˆDMSE( ) ( ) (1 )B

i i d i i iY a V u a U   ,                                    (2.19)                                                               

where 
2 2 2

1

1 1
( ) (1 ) ; ( )

1

iN

d i i ui ui ij ij
i i

V u f S S u U
n N 

   

 . 
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A design-unbiased estimator of the DMSE is obtained by estimating unbiasedly 2

uiS  by 

2 1 2

1
( 1) ( )

in

ui i ij ij
s n u u


    and 2

iU  by 2 1 2 1 2

1

ˆ ( 1)
in

i i ij i i uij
U n u N N s 


   , yielding, 

                                               
2 1 2 2 2ˆ ˆˆ ( ) (1 ) (1 )B

i i i i ui i iDMSE Y a n f s a U    .                                  (2.20) 

The estimator (2.20) refers to the best predictor ˆ B

iY , which assumes known parameter values. In 

practice, the unknown parameters are replaced by sample estimates, yielding the empirical best 

(EB) estimator, ˆ EB

iY . A naïve estimator of ˆ( )EB

iDMSE Y  is obtained by replacing the unknown 

parameters in the right hand side of (2.20) by their sample estimates, but this estimator ignores the 

error resulting from the estimation of the model parameters. Hence, the authors propose the use of 

the composite estimator, 

                               
2 2ˆ ˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆ( ) ( | , ) (1 ) ( )EB EB EB

i i i u i iDMSE Y DMSE Y PMSE Y       ,                     (2.21) 

where 2 2ˆ ˆˆ ˆ ˆ( | , )EB

i uDMSE Y     is the naïve DMSE estimator and ˆˆ ( )EB

iPMSE Y  is the model-based 

PMSE estimator, similarly to (2.8), (2.16) and (2.17).  

 

3. A New procedure for estimation of the randomization MSE  

3.1 Some elementary estimators 

To simplify the details of our proposed procedure, we consider in this section the FH (area-level) 

model (2.5). In the simulation study of Section 4, we apply the procedure to this model. In another 

simulation study in Section 5, we apply the procedure to the unit-level mixed logistic model of 

MacGibbon and Tomberlin (1989). To the best of our knowledge, DMSE estimation under the latter 

model has not been investigated in the literature so far. The proposed procedure follows the method 

of Pfeffermann and Correa (2012) and consists of modeling the DMSE and then applying the model 

to the original sample data.  

For known model parameters 
2 2( , , )u Di   , the FH estimator is presented in (2.6). Simple 

calculations show that the DMSE is in this case, 

                                  2 2 2 2 2ˆ( , , ) ( ) (1 ) ( )
i ii i D i i D i i iDMSE x              .                                 (3.1) 
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A design-unbiased estimator of 
2( , , )

ii i D     is thus, 2 2 2 2ˆ ( , , ) (2 1) (1 ) ( )
i i

UB

i i D i D i i iy x            . 

Hence, for large number of areas, an approximately design unbiased estimator of 
2( , , )

ii i D     is,  

                                                
2 2 2

ˆ
ˆ ˆˆ ˆ(2 1) (1 ) ( )

i

UB

i i D i i i GLS
y x         ,                                       (3.2) 

where ˆ
ˆ
GLS

  is the GLS estimator but with 
2

u  replaced by 
2ˆ
u . (The estimators ˆ

ˆˆ( , )i GLS
   are 

consistent for ( , )i   as the number of areas increases. As noted before, the sampling variance 2

Di  

is taken as known.) However, the estimator (3.2) is very unstable if the sampling variance 2

iD  is 

large, as is commonly the case with small sample size.  

A naïve DMSE estimator of ˆ( )iDMSE   is obtained by replacing the unknown model parameters 

2( , )u   in (3.1) by sample estimates, and i  by its empirical FH estimate yielding, 

                                    

2 2 2 2 2

2 2 2 2 2

ˆ ˆ ˆ ˆˆ ˆˆ( , , ) (1 ) ( )

ˆˆ ˆ ˆ(1 ) ( ) .
i

Na FH

i u i i Di i i i

i D i i i i

DMSE x

y x

        

    

    

   
                             (3.3) 

Remark 1. The estimator (3.3) is biased even for large samples since 2ˆ ˆ( )FH

i ix 

2 2ˆ ˆ[ ( )]i i i iy x u     does not converge to 
2 2( )i i ix u   . As with the estimator ˆUB

i  in (3.2), this 

estimator does not account for the estimation of 
2

u  and  .  

Remark 2. A naïve estimator of the form (3.3) is not applicable for models or estimators for which 

the DMSE with known model parameters does not have an analytical expression. This is the case 

with the unit level logistic model considered later.  

3.2 Proposed procedure 

In this section we describe our proposed procedure for DMSE estimation for the case of the area-

level model which, as mentioned before, consists of modelling the DMSE and then fitting the model 

to the original (actual) sample. In Section 5 we describe and illustrate the application of the 

procedure for the case of the mixed logistic model. The procedure accounts for the variability 

resulting from the estimation of the model parameters. It consists of the following 7 or 10 simple 

steps: 
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Step 1. Estimate ( 2 ˆˆ ,u  ) from the original sample. Generate a large number of R values 2

,
ˆˆ ,u r r   

from a neighborhood around 2 ˆˆ ,u 
 

that is expected to include the true values underlying the 

hypothetical model generating the population values.   

Step 2. Generate pseudo area means ˆ
ri i r rix u   ; 2ˆ~ (0, )ri uru N  , 1,..., ; 1,...,r R i m  , using the 

same covariates as in the actual population. 

Step 3. For each pseudo population of area means, generate J parametric bootstrap samples, 

ˆ
rij ri rij i r ri rijy e x u e      ; 

2~ (0, )
irij De N  ; 1,..., , 1,..., , 1,...,j J r R i m    (J large). 

Step 4. For each bootstrap sample, re-estimate 2ˆ ˆ,rj urj   and compute the FH predictor, 

ˆ ˆˆ ˆ(1 )rij rij rij rij i rjy x      ; 2 2 2 1ˆ ˆ ˆ( )
irij urj urj D      . 

Step 5. Approximate the true DMSE of the FH predictor, ˆ ˆˆ ˆ(1 )ri ri ri ri i ry x      ; 

2 2 2 1ˆ ˆ ˆ( )
iri ur ur D       as,  

                                              1 2

1

1ˆ ˆ ˆ( ) ( ) ( )
JBS

ri ri ri ri rij rij
DMSE DMSE

J
   


   .                                (3.4)    

Remark 3. For R=1, Steps 1-5 correspond to the 1st stage of the double bootstrap estimator of Hall 

and Maiti (2006), but restricted to the randomization distribution. Consequently, what we refer to as 

the true DMSE may be viewed as a plausible estimate of ˆ( )i iDMSE  , the target of estimation. See 

Section 4.2. 

Remark 4. The FH model (2.5) does not specify how the individual measurements defining the finite 

population values in F  (Eq. 2.2) are generated. Instead, it defines how the finite population means 

and the direct estimators are obtained. By definition, the finite population means are held fixed when 

computing the DMSE. The derivation of (3.4) follows exactly the same steps. For each replication r  

we obtain a single set of area means{ }ri  from the same model, which are held fixed when 

approximating the DMSE by generating many direct sample estimates from their hypothesized 

distribution, and using them for computing the corresponding FH estimates. Conditioning on F is 

equivalent in this case to conditioning on the finite population means computed from F. See the 

paragraph following Eq. (2.2).   
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The following 3 steps are optional and found unnecessary in our simulation experiments: 

Step 6. For each pseudo sample (Steps 3 and 4), generate a large number B of bootstrap samples,  

2; (0, )b b b

rij rij rij rij Diy e e N   , where 2ˆ ˆ; (0, )rij i rj rij rij urjx u u N    .   

Step 7. Estimate ( )ˆ b

rj , 2( )ˆ b

urj  for each bootstrap sample b and compute the FH predictor,                    

( ) ( ) ( ) ( )ˆ ˆˆ ˆ(1 )b b b b b

rij rij rij rij i rjy x      ; ( ) 2( ) 2( ) 2 1ˆ ˆ ˆ( )
i

b b b

rij urj urj D      .  

Step 8. Compute the (double bootstrap) DMSE estimator, 

                                         2 ˆ( )BS

ri riDMSE  ( ) 2

1 1

1 1 ˆ( )
J B b

rij rijj bJ B
 

 
   .                                             (3.5)               

Remark 5. The estimator (3.5) corresponds to the 2st stage of the double bootstrap estimator of Hall 

and Maiti (2006), but restricted to the randomization distribution. 
 

Let R=1. Denote, 1 1 ˆ( )BS BS

i i iD = DMSE   and 2 2 ˆ( )BS BS

i i iD DMSE  , where 1 ˆ( )BS

i iDMSE   and 2 ˆ( )BS

i iDMSE   

are defined by (3.4) and (3.5) for the case R=1, in which case 2 2ˆ ˆˆ ˆ( , ) ( , )ur r u    , the estimates 

obtained from the original sample. A plausible estimator of ˆ( )iDMSE  , resulting from the double-

bootstrap bias correction of Hall and Maiti (2006) but restricted to the randomization distribution is,  

 

                                         
1 1 2 1 2

BS

1 1 2 2 1 2

( ), ifˆˆ ( )
exp[( ) / ], if .

BS BS BS BS BS

i i i i i

i BS BS BS BS BS BS

i i i i i i

D D D D D
DMSE

D D D D D D


   
 

 

                     (3.6) 

 
We consider the estimator (3.6) in the simulation study. 

Step 9. Search for a function 
,

ˆˆ( ) ( )
ll q ri riq DMSE    of known predictors, which best estimates 

ˆ( )ri riDMSE  (Eq. 3.4) among plausible functions ( )lq  . In the simulation study of Section 4, which 

considers the case of the area level model we consider as possible predictors,  

2 2 2 2 2 2 2

ri i
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( | ), ( ), , , , , , (1- ) , ,( ) ,( )

i

BS

ri ri ri ri ri i r ur D ri r ri ri i r ri i rDMSE PMSE x x y x                , and interactions 

between them. Obviously, other predictors can be considered, depending on the underlying model. 

See Section 5 for the predictors considered for the case of the mixed logistic model (2.12). 

Our proposed search procedure is based on cross-validation techniques (see below). First select 

the “best predictors” for each candidate function by use of stepwise regression, using the 

observations allocated to the training group, and then choose the best function based on the 

observations in the validation group. Notice that the total number of observations is T m R  . 
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Step 10. Apply the chosen function to the original sample to obtain an estimator of the DMSE of the 

empirical FH estimator, ˆ ˆˆ ˆ(1 )FH

i i i i iy x      , which is based on the original sample.  

We mentioned in Step 9 that we propose using a cross validation technique for searching the “best” 

function. In our simulation study we used the following procedure.  

Split randomly the T vectors of estimated and predictors’ values,   

2 2 2 2 2 2 2

ri i
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ( ( ); ( ), ( ), , , , , , (1- ) , ,( ) ,( )

i

BS

ri ri ri ri ri ri ri i r ur D ri r ri ri i r ri i ra = DMSE DMSE PMSE x x y x                 

into a training group, TrG , of size rT  and a validation group, VaG , of size r rV T T  . Eligible functions 

( )lq  , 1,...,l L  are estimated in TrG , and then compared in VaG . Choose the function ˆ
qmDMSE  

minimizing the squared differences, 
,

2

,

1 ˆ ˆˆ ˆ[ ( ) ( )]
l lri Va

q ri q ri ri ri ria G
r

DMSE DMSE DMSE
V

 


  ; 

                          
,

2

,

1 ˆ ˆˆ ˆ ˆ( ) { [ ( ) ( )] }
l lri Val l

qm q ri q ri ri ri ria Gq q
r

DMSE min DMSE min DMSE DMSE
V

 


   .              (3.7)         

Obviously, other loss functions can be considered. 

 

4. Simulation study for the area-level model 

In this section we report the results of two simulation experiments, aimed to illustrate the 

performance of the proposed procedure in the case of the area level model (2.5), and compare it to 

other procedures proposed in the literature, reviewed in Section 2. In Section 5 we report the results 

of another simulation experiment for the case of the generalized linear mixed logistic model (2.12).  

4.1 Simulation set-up  

First experiment: Following Datta et al. (2005), we generated a single set of covariates [0,10]ix U  

for 250 areas, and used them to divide the areas into 5 groups of 50 areas in each group, based on 

the ascending values of x . Next we generated area means, i , as  20+5i i ix u   ; ~ (0,100)iu N , 

and sample values i i iy e  ;  
2~ (0, )i Die N  , 1,...,250i  . The sampling variances, 

2

Di , are the 

same for each group but differ between the groups;
2 2 2

1 2 330, 40, 50,D D D     2 2

4 560, 70D D   .  

Second experiment: Following Rao et al. (2018), we generated another single set of covariates 

~ ( 1, 1)ix N   for 30 areas, and then classified the areas at random into 5 groups of 6 areas in each 
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group, similarly to the first experiment. For this experiment we generated area means as 

1+i i ix +u  ; ~ (0,1)iu N , and sample values i i iy e  ;  
2~ (0, )i Die N  , 1,.....,30i  . The 

sampling variances are again the same for each group but differ between the groups; 

2 2 2 2 2

1 2 3 4 50.2,  0.4,  0.5,  0.6,  2D D D D D         . 

4.2 DMSE estimators considered in simulation experiments 

1- The “unbiased” estimator ˆDMSE_UB (the approximately unbiased estimator ˆUB

i , Eq. 3.2). 

2- The naive estimator ˆDMSE_Na  (the naive estimator Na

i , Eq. 3.3). 

3- The estimators ˆDMSE_1 (the estimator 
1
ˆ( )FH

iDMSE θ , Eq. 2.8) and ˆDMSE_2  (the estimator

2
ˆ( )FH

iDMSE θ , Eq. 2.9),  as proposed by Rao et al. (2018), with the model parameters estimated by 

REML. However, in order to facilitate the computations, we replaced the exact design unbiased 

estimator ˆˆ ( )FH

iDMSE θ  in (2.9) by the approximately unbiased estimator ˆUB

i  (Eq. 3.2). The estimator 

ˆˆ ( )FH

iPMSE θ has been computed as in Datta and Lahiri (2000).  

4- The estimators 1 ˆ( )BS

ri riDMSE  , 2BS

iDMSE  and BSˆDMSE , (Eqs. 3.4-3.6) with R=1).  

5- The proposed estimator ˆ
qmDMSE (Eq. 3.7). (See below for the functions considered).  

4.3 Functions considered for application of the proposed DMSE estimator 

For application of our proposed procedure, we generated R=100 pseudo populations (Step 1), 

J=200 bootstrap samples for each pseudo population (Step 3), and B=200 second-stage bootstrap 

samples (Step 6). 

Denote for convenience, ˆ( )ri ri iDMSE D  , ˆ ˆ,r  2 2 2 1ˆ ˆˆ ˆ( )
iri ur ur D i       , ˆ ˆ

ri i   (See Step 5). 

We considered 5 possible definitions (transformations) of the dependent variable iD : 

1 1
( ), , , , 

100

i
i i i

i i

D
D , log D arcsin D

D D

 
 
 

. 

Application of the proposed cross-validation procedure (Step 9) for the first experiment resulted in 

the following “best function”: 

                           
22

4

2

3

2

2

22

10 )ˆˆ()ˆ1(ˆˆ)log(  iiiDiDiiDiii xD  .                       (4.1) 

The "best function" for the second experiment turned out to be: 
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                           2

3

22

2

2

10 )ˆˆ()ˆ()ˆ1(ˆ)log(  iiiiiDiii xxyD  .               (4.2) 

Remark 6. For each function we computed the DMSE estimators as ˆ ( | thepredictors)iDMSE E D .   

4.4. Performance assessment  

In order to assess the performance of the DMSE estimators listed in Section 4.2 and compare them, 

we computed for each area i  and each estimator the absolute relative error (ARE) defined as:  

                                                          
i

ii

i
DMSE

DMSESEMD
ARE




ˆ

                                   .                 (4.3) 

4.5. Results 

Figure 1 exhibits the “true” (empirical) DMSE and PMSE of the FH estimator in the first experiment. 

The two MSE measures have been computed as follows: 

Empirical DMSE:  K=10,000 simulated samples { , 1,...,250; 1,...,k

iy i k K  } were generated as 

k k

i i iy e  , with 1i i ix u    ; ~ (0,1)iu N , 1,...,250i   generated only once and held fixed, and 

the sampling errors 
k

ie  generated from ),0( 2

DiN  . For each simulated sample we computed the FH 

estimator 
( )ˆFH k

i , and then the empirical DMSE, 

                                                              
( ) 2

1

1 ˆ( )
K FH k

i i ik
DMSE

K
 


                                            (4.4) 

Empirical PMSE: We generated T=10,000 samples { , 1,...,250, 1,...,t

iy i t T  } as 1t t

i i i iy x u e     

t

i ie  , where ~ (0,1)iu N  and 
2~ (0, )i Die N  . (New random effects and sampling errors for each 

simulated sample.)  For each simulated sample 
(t) (t){( , , ), 1,...,250}i i iy x i   we computed 

(t)ˆFH

i  and 

then the empirical PMSE:   

(t) 2

1

1 ˆ( )
T FH

i i it
PMSE

T
 


  .                                             (4.5) 
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Figure 1. Empirical DMSE and PMSE (first experiment). 

Areas ordered by the ascending values of x 

 

 
 

As noted before and clearly seen in the graph, the DMSEs fluctuate around the PMSEs, with a few 

isolated large values, resulting from corresponding large 
2

iu , which are integrated out when 

computing the PMSEs. (As implied by Eq. 3.1, the DMSE increases as the square of the random 

effect and/or the sampling variance increase.) 

Figure 2 shows averages of the AREs (Eq. 4.3) within the 5 groups of equal sampling variances, for 

five of the estimators listed in Section 4.2: NaDMSE _ , UBDMSE _  , 1_DMSE , 2_DMSE  and the 

newly proposed estimator qmDMSE _ . (We omit the “hats” from the notation for convenience.) The 

AREs of the three bootstrap estimators listed in Section 4.2 are not shown, because they are much 

higher than the AREs of the estimators shown, even higher than the ARE of the unbiased estimator.   

Figure 2. Average of ARE statistics within the 5 groups (first experiment).  

Groups ordered by the ascending values of the sampling error variances. 
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The averages 2(u )iAv  within the five groups are 68.4, 120.7, 89.4, 92.6, and 118.8, respectively. 
2( 100)U  . 

 

The first notable, although expected outcome revealed from Figure 2 is that the AREs of all the 

DMSE estimators generally increase, as the sampling variance increases. Among the five 

estimators, the Naïve estimator performs best in all the groups and the unbiased estimator performs 

the worst. The two estimators of Rao et al. (2018) perform similarly in the first three groups with the 

small sampling variances, but the first estimator with the weighting coefficients î  and ˆ(1 )i

performs better in Groups 4 and 5. As explained in Section 2.2.1, this outcome is explained by the 

fact that for large sampling variances, the first estimator assigns more weight to the model estimator 

ˆˆ ( )FH

iPMSE  , which is much more stable in this case than the approximately design-unbiased 

estimator of the DMSE. The proposed estimator performs quite similarly to the two estimators of 

Rao et al. (2018) in groups 1,2 and 5, but outperforms them in Groups 3 and 4. It performs similarly 

to the naive estimator except in the last group with the large sampling error variances. The fact that 

the naïve estimator performs best in this experiment is not surprising. With 250 areas, the unknown 

model parameters 
2( , )u  are estimated almost perfectly, and so the empirical FH estimator is very 

close to the estimator that uses the true model parameters, implying that the naive estimator is close 

in this case to the true DMSE of the empirical estimator. 

 

The next two figures summarize the results obtained for the second experiment described in Section 

4.1. The empirical (“true”) DMSE and PMSE have been calculated similarly to the first experiment.  

Figure 3. Empirical DMSE and PMSE (second experiment).  

Areas ordered by the ascending values of x 
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The empirical DMSEs again fluctuate around the empirical PMSE with a few “outlying” values, which 

are explained by a large value 2

12 5.04u   in Area 12 and very small values 2

27 0.086u  , 2

28  0.029u  , 

2

30  0.022u   in Areas 27, 28 and 30. respectively. )1( 2 U . The averages 2(u )iAv  within the five 

groups are in this case 0.802, 1.417, 0.670, 0.371 and 0.573 respectively. 

Figure 4. Average of ARE statistics within the 5 groups (second experiment).  

Groups ordered by the ascending values of the sampling error variances.  

 

 

For this experiment the naive DMSE estimator no longer outperforms the other estimators because 

with only 30 areas, the empirical FH estimators differ in a noticeable way from the estimators based 

on the true model parameters and hence the naive estimator no longer accounts properly for the 

use of estimated parameters. See the discussion following Figure 2. Overall, the proposed estimator 

performs best in this experiment across the groups.  As with the first experiment, the first estimator 

of Rao et al. (2018) outperforms the second estimator in the last two groups with the large sampling 

variance. Here again, none of the bootstrap estimators performs satisfactorily.  

5. Simulation study for the generalized linear mixed logistic model 

In this section we report the results of our third simulation experiment, aimed to illustrate the 

performance of the proposed procedure for the case of the unit-level generalized linear mixed model 

defined by (2.12).  

5.1 Simulation set-up and estimation of target proportions 

Following Pfeffermann et al. (2012), we generated a population of m=30  areas with 1,000iN   

units in each area. For each unit j  in area i , we generated covariate values 
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1 2~ (0.5), ~ (20,40)ij ijx Ber x U , and binary responses )(~ ijij pBery  with 

0 1 1 2 2

0 1 2

0 1 1 2 2

exp( )
; 1, 0.5, 0.1

1 exp( )

ij ij i

ij

ij ij i

x x u
p

x x u

  
  

  

  
    

   
 and )1,0(~ 2 ui Nu  . We divided the 

areas into 5 groups with 6 areas in each group. Next we drew simple random samples without 

replacement from each area, such that the sample sizes are the same for the areas in the same 

group but differ between the groups; the sample sizes in the five groups are 10, 50, 100, 200, 400. 

The target area parameters are in this case the true proportions 
1

1 iN

i ijj
i

P y
N 

  . The estimators 

are computed as 
1ˆ ˆ( )

i i
i ij ikj s k s

i

P y p
N  

   , where is  and is  define correspondingly the sample 

and non-sample units in the area and ˆ
ikp  defines the empirical best predictor of 

ijp  given the 

observed data, with the unknown  -coefficients replaced by their sample estimates. See 

Pfeffermann and Correa (2012) for more details. For the present application we used the SAS 

procedure nlmixed for producing the estimates ̂  and iû  (for each area), and then estimated,                    

                                          
0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆ ˆexp( )
ˆ

ˆ ˆ ˆ ˆ1 exp( )

ij ij i

ik

ij ij i

x x u
p

x x u

  

  

  


   
 for isk  .                                   (5.1) 

As mentioned earlier, we are not aware of any attempt to estimate the DMSE for this, much more 

complicated model. (Molina and Strzalkowska-Kominiak (2018) approximate the mixed logistic 

model by the mixed linear model.) We considered therefore the following DMSE estimators.  

1- The bootstrap estimators 
1 ˆ( )BS

i iDMSE P , 
2 ˆ( )BS

i iDMSE P , ˆ( )BS

i iDMSE P , (Eqs. 3.4-3.6 with R=1, see  

    also below). 
 

2- The proposed estimator ˆ
qmDMSE . (See below for the functions considered).  

For application of the proposed method to unit-level models, the computation of new estimators 

based on new samples requires at each step to first generate a corresponding new synthetic 

population and then sample from that population many times. Following, we outline the main steps 

of our proposed procedure for the present model: 
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Step 1. Same as before.  

Step 2. Compute  
ˆe x p ( )

ˆ1 e x p ( )

i j r r i

rij

ij r ri

x u
p

x u





 


 
; 

2ˆ~ (0, )ri uru N  , 1,..., , 1,..., , 1,..., ir R i m j N   , using 

the same covariates as in the actual population. 

Step 3. Generate R populations from )(~ rijrij PBery  and calculate,  


iN

j rij

i

ri y
N

P
1

1
. 

Step 4. For each synthetic population r , sample T simple random samples without replacement 

(SRSWOR) and re-estimate (
2ˆ ˆ ˆ, ,rt urt ritu  ) and 

1ˆ ˆ( )
rit rit

rit rij rikt

j s k si

P y p
N  

   , where 

ˆ ˆexp( )
ˆ

ˆ ˆ1 exp( )

ik rt rit
rikt

ik rt rit

x u
p

x u





 


 
. The sample sizes are the same as for the original (actual) sample.  

Step 5. Approximate the DMSE of riP̂   as 
1 2

1

1ˆ ˆ ˆ( ) ( ) ( )
TBS

ri ri ri ri rit rit
DMSE P DMSE P P P

T 
   .  

Step 6. For each pseudo sample (Step 4), compute 2
ˆexp( )

ˆ; ~ (0, )
ˆ1 exp( )

ij rt rit

rijt rit urt

ij rt rit

x u
p u N

x u






 


 
, 

using the same covariates as in the actual population. Generate T populations ( )rijt rijty ~ Ber p  

and calculate  


iN

j rijt

i

rit y
N

P
1

1
. 

Step 7. Draw B samples from each synthetic population by use of SRSWOR and re-estimate            

(
( ) 2( ) ( )ˆ ˆ ˆ, ,b b b

rt urt ritu  ) and 

( ) ( )
( )

( ) ( )

ˆ ˆexp( )
ˆ

ˆ ˆ1 exp( )

b b
b ik rt rit

rikt b b

ik rt rit

x u
p

x u





 


 
. Compute 

( ) ( ) ( )1ˆ ˆ( )
rit rit

b b b

rit rijt rikt

j s k si

P y p
N  

   .  

 Step 8. Compute the (double bootstrap) DMSE estimator,  

                                       
2 ( ) 2

1 1

1 1ˆ ˆ( ) ( )
T BBS b

ri ri rit rit b
DMSE P P P

T B 
   .                                            (5.2)                                                  

Steps 9 and 10. Same as before.                         

We generated R=100 pseudo populations (Step 3), T=200 bootstrap samples for each pseudo 

population (Step 4), and B=200 second-stage bootstrap samples (Step 6).  
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5.2. Functions considered for application of proposed DMSE estimation 

Denote, as before, ˆ ˆˆ ˆ ˆ( ) , ,ri ri i r ri iDMSE P D P P     (Step 5). We considered the same 

transformations of the dependent variable iD  as for the area level model, i.e., 

1 1
( ), , , , 

100

i
i i i

i i

D
D , log D arcsin D

D D

 
 
 

. As possible predictors we considered, 

2 2 2 2
ˆ ˆ(1 )ˆ ˆˆ ˆ ˆ ˆ ˆ( ), ( ), , ,( ) , , ,BS BS ri ri

ri ri ri ri i r ri ri i r ri ur

ri

P P
DMSE P PMSE P x y y x P

n
  


   and interactions between them, 

where riy  is the simple sample proportion 
1

ri

ri rij

j sri

P y
n 

   and ri in n  denotes the ith area sample 

size. We estimated 
2ˆ ˆ( )BS

ri riPMSE P  similarly to the computation of 
2ˆ ˆ( )BS

ri riDMSE P , except that each 

bootstrap sample is now sampled from a different synthetic population with random effects, which 

vary from one population to the other.  

Application of the proposed cross-validation procedure (Step 9) in this experiment resulted in the 

following “best function”, which was applied to the original (actual) sample in Step 10: 

2

0 1 2 3 4

ˆ ˆ(1 ) ˆ ˆ( )i i
i i i i i

i

P P
D x y y x

n
      


      .                                    (5.3) 

Note that the predictor ˆ ˆ(1 ) /i i iP P n   is an estimator of the variance of the sample proportion iP  in 

Area i , so the fact that it is included in the best function is not surprising.  

For this model, the relative error of the DMSE estimators can be very small and hence we show for 

each area the absolute error ˆAE | |i i iDMSE DMSE   rather than the relative error. 

Figure 5 shows the empirical DMSE and PMSE of the empirical best predictor under this model. 

Also shown for comparison are the empirical DMSE and PMSE of the sample proportions 

1

i
i ijj s

i

P y
n 

   (the direct estimator). See Section 4.5 for computation of the empirical DMSE and 

PMSE, with straightforward modifications for the present model. Notice that iP  is design-unbiased 

for iP , and hence also design-model-unbiased (over all possible population values and sample 

selections).  
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Figure 5. Empirical DMSE and PMSE of empirical best predictor and of sample proportion. 

Mixed logistic model. Areas ordered by the ascending values of the sample sizes. 

 

 
 

Figure 5 reveals a similar picture to Figures 1 and 3. As can be seen, the DMSE and PMSE of the 

empirical best predictor and of the sample proportion reduce, as the area sample sizes increase. 

Notice also that the DMSE and PMSE of the empirical best predictor and of the sample proportion 

behave similarly, but the empirical best predictor outperforms the sample proportion, both in terms 

of the DMSE and the PMSE, particularly in the areas with the small sample sizes.  

Figure 6. Average of AE statistics within the 5 groups.  

 

 

Averages of 
2(u )iAv  within the groups: 0.773, 1.238, 0.572, 1.271 and 1.787 respectively 

2( 1)u  . 

Two notable outcomes emerging from Figure 6 are: 

1- The proposed DMSE estimator performs better than the bootstrap estimators, particularly in 

the areas with the smaller absolute values of the random effects, 
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2- The estimator 2 ˆ( )BS

i iDMSE P  outperforms 1 ˆ( )BS

i iDMSE P , with both estimators being 

dominated by ˆ ˆ( )BS

i iDMSE P , which agrees with the conclusions of Hall and Martin (1988). 

 

6. Concluding Remarks 

In this article we propose a new method for estimating the DMSE of model-dependent predictors in 

small area estimation. The notable feature of this method is that it does not require the use of any 

approximately unbiased DMSE estimator, and it is applicable in principle to any model or estimator. 

It is more computational intensive than some of the other procedures considered in this article, but 

this should not introduce any difficulties in a real application. The method is shown to perform well, 

in contrast to common belief that it is practically impossible to estimate the DMSE of model 

dependent estimators, unless in areas with sufficiently large sample sizes. 

 
There are two open questions underlying the use of the proposed procedure. The first regarding its 

theoretical properties and in particular, the order of bias as the number of areas with observations 

increases, and the second regarding its robustness to possible deviations from the working model 

used for its application. It would seem that second order bias can be established following similar 

lines to the proof in Pfeffermann and Correa (2012), as the proposed method is similar in nature to 

the method developed in the later article for estimating PMSEs. As for the second question, we have 

not yet studied the robustness of the procedure, but as we already commented in Section 2.1, 

basically all the model-dependent, as well as the resampling methods for MSE estimation proposed 

in the literature assume the “correctness” of the model assumed to generate the population and 

sample measurements. The same is also true for the other DMSE estimators reviewed in the 

present article, except for the first bootstrap estimator of Molina and Strzalkowska-Kominiak (2017), 

so that our proposed procedure is no exception in this regard. Still, the robustness of the procedure 

should be studied, at least via simulation experiments.  

 

Finally, it is quite obvious that the proposed procedure can be improved by enlarging the group of 

plausible functions and by applying more advanced techniques for selecting the best function in the 

group. In the present article we focused more on the basic principles of the method, rather than on 

refinements of its application. 
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