Abstract We study a pricing problem with finite inventory and semi-parametric
demand uncertainty. Demand is a price-dependent Poisson process whose mean
is the product of buyers’ arrival rate, which is a constant X\, and buyers’
purchase probability ¢(p), where p is the price. The seller observes arrivals
and sales, and knows neither A nor ¢. Based on a non-parametric maximum-
likelihood estimator of (A, q), we construct an estimator of mean demand and
show that it is asymptotically more efficient than the maximum likelihood
estimator based only on sale data. Based on the same estimator, we develop
a pricing algorithm paralleling Besbes and Zeevi (2009). If ¢ and its inverse
function are Lipschitz continuous, then the worst-case regret is shown to be
O((logn/n)'/*). A second model considered is the one in Besbes and Zeevi
(2009, Section 4.2), where no arrivals are involved; we modify their algorithm
and improve the worst-case regret to O((logn/n)'/*). In each setting, the re-
gret order is the best known, and is obtained by refining the proof methods
of Besbes and Zeevi (2009). Numerical comparisons to the policies in Bes-
bes and Zeevi (2009) and Wang et al. (2014) indicate the effectiveness of our
arrivals-based approach.
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1 Introduction
1.1 Background

Pricing and revenue management are important problems in many industries.
Talluri and van Ryzin (2005) discuss instances of this problem that range
over many industries, including fashion and retail, air travel, hospitality, and
leisure.

Much of the earlier literature makes the critical assumption that the rela-
tionship between the mean demand rate and the price, often referred to as the
demand function or demand curve, is known to the seller. In Gallego and van
Ryzin (1994), the seller knows the demand function at the start of selling and
designs optimal policies based on this knowledge. In practice, decision makers
seldom have full knowledge about the demand model. Much of the recent lit-
erature addresses this issue by learning (estimating) the underlying demand
model by price experimentation and observation of the realized demand. The
established measure of performance is the regret: this is the expected revenue
under-performance relative to an oracle that knows fully the demand function.

The absence of full information about the demand model introduces a ten-
sion between exploration (demand learning) and exploitation (revenue earn-
ing). The longer one spends learning the demand properties, the less time
remains to exploit that knowledge and earn revenue; on the other hand, less
time spent on demand learning results in higher uncertainty that could dimin-
ish the revenue earned during the exploitation phase. Besbes and Zeevi (2009)
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formulate pricing problems under incomplete information, and highlight the
key trade-offs.

Models of demand uncertainty can be broadly divided into parametric and
non-parametric. A parametric model assumes a certain functional form and
consequently carries mis-specification risk, which means the potential for rev-
enue underperformance; this point is demonstrated in Besbes and Zeevi (2009).
A nonparametric approach imposes less structure on the assumed functional
form. It is therefore reasonable to expect that a non-parametric model miti-
gates the mis-specification risk. On the other hand, pricing with a mis-specified
parametric (linear) demand model can perform well (Besbes and Zeevi 2015).

Prominent works that take a non-parametric approach, in a single-product
setting, are Besbes and Zeevi (2009), Wang et al. (2014), and Lei et al. (2014).
We summarize some key ideas in their simpler form, following Besbes and Zeevi
(2009). During a learning phase, the demand function is estimated (learned)
by observing the realized demand (sales) at certain test prices. Based on the
estimated demand function, a “good” fixed-price policy is applied during the
remainder of the selling horizon, the so-called exploitation phase. The revenue
performance is measured in terms of the worst-case regret across a class of
demand functions. Lower and upper bounds are derived on this regret. The
tension between exploration and exploitation is resolved near-optimally in an
asymptotic regime where both demand and inventory level (capacity) grow in
proportion.

The following setting is the main focus of this paper. Potential buyers arrive
according to a Poisson process of rate A, regardless of the price on offer; and
whenever the price is p, an arriving customer purchases with probability ¢(p)
independently of everything else. The pair (), g) are unknown to the seller.

1.2 Overview of the Main Contributions

A high-level summary of our contribution is as follows:

1. Starting from an arrival rate A and a purchase probability (function) ¢(-)
we define a class of demand models such that the demand function is their
product, Ag(-). We introduce a class D by requiring that ¢(-) and its inverse
are Lipschitz continuous.

2. Besbes and Zeevi (2009) work with a class Dpz in which the demand
function and its inverse are Lipschitz continuous, and Wang et al. (2014)
work with a smaller class Dy, in which the demand function is twice dif-
ferentiable. Our class D is smaller than Dgz, but includes models that are
outside Dy .

3. Based on arrival and sale data (i.e., non-purchasing arrivals are also ob-
served), we construct a maximum-likelihood estimator of (A,q), where
q = (¢(p1),-..,4q(ps)) for some price set {p1,...,px}. The product of the
estimated A and q is our estimator of mean demand, and it is shown to
be asymptotically more efficient than the maximum-likelihood estimator
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based only on sale data (sales-only estimator) (Besbes and Zeevi 2009;
Wang et al. 2014; Lei et al. 2014).

4. We develop a pricing policy based on the estimated A and g, and a counter-
part policy based on the sales-only estimator. These policies’ worst-case re-
gret is shown to be O(logn/n)'/*, against D (Theorem 1) and against Dy
(Theorem 2), respectively. The convergence is (slightly) faster than that
obtained in Besbes and Zeevi (2009), and arises through refined bounds and
slightly different asymptotics for the time spent learning and the number
of test prices.

5. We correct the large-deviation bound for the sample mean of independent
Poisson variables that was initiated in Besbes and Zeevi (2009, Online
Companion, Lemma 2) and is commonly used thereafter, including Besbes
and Zeevi (2012, Online Companion, Lemma 1) and Wang et al. (2014,
Lemma 11). We only correct the constant, not the convergence rate.

1.3 Related Literature

The literature on pricing strategies is vast. We refer to Bitran and Caldentey
(2003); Elmaghraby and Keskinocak (2003); Talluri and van Ryzin (2005) for
comprehensive reviews on the subject. For a more recent survey, see den Boer
(2015).

Gallego and van Ryzin (1994) characterizes optimal pricing policies and
develops an upper bound to the optimal revenue via a full-information de-
terministic relaxation, all under the assumption that the demand function is
known. More recent literature addresses pricing problems with unknown de-
mand function. The majority of work adopts a parametric model: the demand
process is known up to a finite number of parameters. In Lin (2006), Aviv and
Pazgal (2005), Araman and Caldentey (2009), and Farias and Van Roy (2010),
there is a single unknown parameter representing the market size. den Boer
and Zwart (2015) assume a two-parameter demand model, and provide bounds
on the regret. In den Boer and Keskin (2017), the demand function is allowed
to have a number of discontinuities, but is still restricted parametrically inside
each continuity interval.

Some studies consider a demand process that is adversarial to the seller
(Lim and Shanthikumar 2007; Ball and Queyranne 2009). Such studies are not
concerned with, and do not allow for, learning the demand model.

For the single-product setting without the inventory constraint, a stream
of literature addresses demand learning and characterizes the regret (Broder
and Rusmevichientong 2012; den Boer and Zwart 2014; Besbes and Zeevi
2015). Besbes and Zeevi (2015) shows that pricing algorithms based on a
mis-specified linear model of the demand function can perform well, under
conditions. Keskin and Zeevi (2014) provide general sufficient conditions for
a pricing policy to achieve asymptotic regret optimality when the demand
function is linear.
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The setting we study involves a Poisson demand process, where the demand
function is unknown to the seller; this is a well-studied situation. Most closely
related to the present paper are the works of Besbes and Zeevi (2009), Wang
et al. (2014) and Lei et al. (2014). In these, a worst-case regret guarantee
is provided against a class of demand functions that is significantly larger
than typical families with one or two parameters (linear, exponential, logit,
etc.). Besbes and Zeevi (2009) impose the weakest requirement on the demand
function, only requiring it to be Lipschitz continuous we—eall-this—elass—Do-
Wang et al. (2014) and Lei et al. (2014) impose stronger conditions, thus
working with a smaller class of demand functions; we-eall-itP3- Relative to
these works, we additionally require the existence of a (constant) arrival rate;
and we require the seller to observe arrivals that do not purchase (in addition
to those that do purchase).

We now review these latter works and relate them to this paper. Under
the full-information deterministic relaxation (Gallego and van Ryzin 1994),
the optimal policy prices at the constant price p” = max(p“,p°), where: (i)
p*, the optimal unconstrained price, maximizes the revenue rate function, that
is, the function pA(p), where p is price and A(-) is the demand function; and
(ii) p°, the constrained price, minimizes the absolute difference between the
mean demand and the inventory at hand. One estimates the demand function,
and thereby the price p”, from the demand observed at certain test prices.
The non-parametric algorithm of Besbes and Zeevi (2009, Section 4.1) involves
relatively simple price testing and achieves a regret O(n~'/4(logn)'/?). These
authors also prove an £2(n~1/2) lower bound on the regret of any admissi-
ble policy. Our worst-case regret upper bound against their class of demand
functions improves theirs, and is the best known for this class (Theorem 2).

Wang et al. (2014) and Lei et al. (2014) work with a smaller class of de-
mand models that requires smoothness (twice-differentiability) of the demand
function. Wang et al. (2014) perform sequential price testing on a set of shrink-
ing price intervals that contain p” with high probability, and achieve regret
O(n=/2(logn)*"). Lei et al. (2014) achieve regret O(n~'/2), which closes the
rate gap against the lower bound. The main contrast between our work and
theirs is that their worst-case regret convergence is faster, but the model class
against which their worst-case guarantee applies does not fully include our
class (neither class contains the other).

Our work is also related to the continuum-armed bandit literature (e.g.,
Auver et al. (2002); Kleinberg and Leighton (2003)). While our approach has
some high-level connections with the bandit approach, the presence of an in-
ventory constraint in our problems clearly distinguishes our work from theirs.

The Remainder of this Paper. Section 2 introduces our model and formu-
lates the problem. Section 3 presents the estimation and pricing methods for
our main model, in which non-purchasing arrivals are observable. Section 4
analyzes the estimation error and the estimation efficiency. Section 5 analyzes
the (worst-case) regret in two settings: the main one, in which non-purchases
are observed (§5.1); and another one, in which non-purchases need not be ob-
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served (§5.2). Section 6 presents a numerical comparison against alternative
methods. Section 8 contains selected proofs.

2 Problem Formulation and Background

Model of Demand and Basic Assumptions. We consider a monopolist that
sells a single product. The selling horizon is denoted T' > 0, and after this
point sales are discontinued, and any unsold products have no value. Product
demand is modeled as follows:

Assumption 1 (a) (Demand Model.) Customers arrive according to a Pois-
son process of rate A\, regardless of the price. Whenever the price is p, an
arriving customer purchases with probability q(p) € [0, 1] independently of
everything else.

(b) (Seller’s Information.) The seller observes the counting processes of ar-
rivals and sales throughout the selling period.

We refer to the pair (A, ¢) as the primitives. The seller knows nothing about
these primitives, except for their membership in some (broad) class that we
specify later.

In upper-bounding the regret, we need:

Assumption 2 For some finite positive constants X\, \, M, M, mg, with
A< Xand M < M:

(a) The arrival rate is bounded away from zero and infinity: A < X < \.

(b) The price sensitivity and its inverse are both Lipschitz functions. Specifi-
cally, for all p,p" € [p,p|, we have M|p —p'| <|q(p) — q(p")| < M|p —p'|.

(c) The revenue rate per customer is positive: max{pq(p) : p € [p,p|} > Mq.

Let D = D(A\, A, M, M, m) be the class of demand models satisfying As-
sumptions 1(i) and 2. Any bounded demand function A is representable as the
pair (A, A(-)/A) (as in Assumption 1(a)), provided only A > sup, A(p).

In relevant literature, no reference to an arrival rate is made. Besbes and
Zeevi (2009) (Assumption 1) define a class Dpz, the essential requirement
being Lipschitz continuity of the demand function and its inverse; Wang et al.
(2014) define a smaller class Dy in which the demand function is twice dif-
ferentiable. Our Assumption 2 has Lipschitz-continuity requirements on the
purchase probability instead. It follows that D is included in Dpgz; moreover,
the inclusion is strict, as we explain shortly.

The key restriction of D arises from the possibility that the primitives
(arrival rate and purchase probability function) are time-shifting. To make this
precise, consider two pairs (), ¢) and (N, ¢') with X' # X and N¢'(p) = A\q(p)
for all p. If these pairs span (cover) the selling horizon, with each applying for
a positive amount of time, then the induced demand function, A(p) = Ag(p),
is time-invariant. This model is not representable in D, and yet would be
representable in Dz and Dy, under suitable smoothness conditions on g, ¢'.
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On the other hand, a pair (), ¢q), such that ¢ is Lipschitz and not twice-
differentiable everywhere, induces a model that is inside D but outside Dy,
(since the demand function Ag inherits from ¢ the non-differentiability). In
summary, class D is strictly smaller than Dz, and obeys no inclusion relation
to DW

The assumption of constant arrival rate may not be sensible if, for example,
customers arrive to an e-commerce site via a price-comparison site; on the other
hand, if customers tend to be loyal to the seller, then it may be reasonable.

Estimation problem. For the sole purpose of analyzing estimation error and
efficiency, we need:

Assumption 3 No stock out occurs during the estimation (learning) phase.

This assumption, which is commonly made (Broder and Rusmevichientong
2012; den Boer and Zwart 2014; Besbes and Zeevi 2015; Keskin and Zeevi
2014), and which is valid when inventory is unlimited, does not appear to be
crucial and can probably be relaxed. This intuition is based on the analysis of
regret, where we show that the probability of a stock-out vanishes fast when
the system size increases and the fraction of time spent learning vanishes at
an appropriate (polynomial) rate (Proposition 5). However, given that the
analysis of estimation efficiency is lengthy even when Assumption 3 holds, we
do not attempt to relax it in this paper.

Our measure of global estimation efficiency accounts for two separate cases,
allowing the set of feasible prices to be finite or an infinite continuum. To
analyze the latter case, we require the following:

Assumption 4 (a) The price lies in a continuum [p,p] with p < P.

(b) The purchase-probability q(-) is continuous almost everywhere on [p,p|; that
18, it has at most countably many discontinuities. a

(c) The set {p: q(p) ¢ {0,1}} has positive Lebesgue measure.

Assumption 4(a) simply says that there is a continuum of feasible prices,
which is bounded. Assumptions 4(b)-(c) are very mild, and only exclude func-
tions ¢(-) unlikely to arise in applications.

Pricing Problem. The set of feasible prices is assumed to be [p, ] U pso, where
0<p<P<oo,and ps > 0is a price that “turns off” demand, i.e., ¢(pss) = 0;
the seller applies this price whenever the inventory is depleted. When we study
the estimation of (A, ¢(-)) in isolation from the pricing problem (see §4), we
will include the case where the set of feasible prices is finite. We assume the
following: ¢(p) is continuous and nonincreasing in the price p; and ¢(-) has
an inverse denoted ¢~'(-). A price of p induces a revenue rate per arrival
r(p) := pq(p) and a revenue rate per unit of time r(p) := Ir(p) = pA(p),
where A(p) := Aq(p) is the demand function resulting from (X, q).

We use 7 to denote a (pricing) policy. Any policy 7 induces a price process,
which we denote p™ := (pT : 0 < ¢t < T). We assume that the sample paths
of p™ are right-continuous with left limits. Let N = (N(¢) : t > 0) denote a
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unit-rate Poisson process. The cumulative number of arrivals up to time ¢ is
then given by N(At). Under a policy =, the cumulative demand up to time ¢

has the representation
t
Df =N (A/ q(pif)dé’),
0

which follows from Assumption 1(a) and the well-known result known as “thin-
ning of a Poisson process”.

A policy 7 is said to be non-anticipating if the induced price process is
only allowed to depend on past prices {pT : u € [0,t)}, past arrival counts
{Ny : u €[0,¢)}, and past demand counts {D] : u € [0,t)}. (More formally,
policy 7 is said to be non-anticipating if the induced price process (pf : 0 <
t <T) is adapted to the filtration F; = o(pl, Ny, DI : 0 < u < t), where o(+)
denotes the sigma field generated by the indicated random elements).

Let x > 0 denote the inventory level (number of product units) at the start
of the selling period. A pricing policy 7 is said to be admissible if the induced
price process (pf : 0 <t < T) is such that p] € [p,p] U po for all ¢ and

T
/ dDy <z with probability 1. (1)
0

With P denoting the set of admissible pricing policies, the seller’s problem can
be stated as: choose m € P to maximize the expected revenue

/0 szdD:] , (2)

where the notation indicates that the expectation is with respect to the true
demand process (A, q).

JT =0 (z, T\, q) :=Ex 4

Full-Information Deterministic Relaxation. The full-information relaxation
(FIR) is the deterministic optimization problem where the stochastic elements
in (1) and (2) are replaced by their means:

T T
JP .= JP(x,T|\ q) := sup / ri(ps)ds = sup/ Ar(ps)ds
0 0

T T
s.t. / A(ps)ds :/ Aq(ps)ds < x
0 0
ps € [p,P] U pes for all s € [0, T7. (3)

Our method is derived from the optimal solution to this problem, which is
(Besbes and Zeevi 2009):

, pP = max{p“, p°}.

(4)
Applying the fixed price p” while inventory is positive performs well as the
system size grows (Gallego and van Ryzin 1994, Theorem 3); our method, in

C

. X
p" := arg max ,{pg(p)}, p°:=argmin , |A\g(p) — 5

T
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line with Besbes and Zeevi (2009), is based on approximating p. In view
of the relation J™(x,T|\,q) < JP(x,T|\ q) (Gallego and van Ryzin 1994,
Theorem 1), we will bound the regret in relation to J rather than J7.

Notation. Throughout the paper, the following notation is used. Definition is
indicated by “:=” and “=:", with colon on the side being defined. The set of
natural numbers is N := {0,1,2,...}. For a set A, 14) denotes the indicator
function; A¢ denotes the complement; and | A| denotes the cardinality. For any
real z, we write |z| for the floor, the largest integer that is no larger than
x; [z] for the ceiling; and =™ for the positive part max{0,z}. With a,, and
b, being nonnegative sequences, a,, = O(b,) means that a, /b, is bounded
from above; a,, = 2(b,,) means that a,, /b, is bounded from below; a, =< b,
means that a, /b, is bounded from both above and below; and a,, ~ b, means
that lim, o0 @y /by, = 1. With X being a random variable, we write “X ~” to
indicate the probability law of X.

3 Estimation and Pricing Methods

Our estimation naturally pursues the arrival rate A, together with purchase
probabilities ¢; = ¢(p;) associated to a finite set of prices P = {p1,...,px}
Our estimation method is as follows:

Method A (7, k). Set the learning interval as [0, 7], and set A = 7/k.
During time (i — 1)A to 1A, i = 1,2,...,k, price at p; and record the arrival
count, A;, and the sale count, S;. If a stock-out occurs before time 7, then
price at ps and stop sales. Put A =37 | A; and put

=4 g2
E

Qi:Zi]]-[A¢>O], i=1,...,K (5)
as a joint estimator of A and the corresponding ¢(p;). It will be seen shortly
that, assuming that no stock-out occurs during the estimation phase, this
estimator is a maximume-likelihood one.

We now introduce a pricing policy (algorithm), aimed for the case when
there exists an arrival rate and the seller observes both arrival and sale data.
This is an adaptation of the non-parametric algorithm of Besbes and Zeevi
(2009, Section 4.1) to this setting.

ALGORITHM AS or 7(7, K).

Step 1. Initialization:

(a) Set the learning interval to be [0, 7], and the number of prices to exper-
iment with to be k. Put A = 7/k.

(b) Divide [p,p] into & equally spaced intervals and let {p;,i =1,...,k} be
the mid-points (or the left endpoints or the right-endpoints) of these
intervals.

Step 2. Learning (testing):
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(a) On the interval [0, 7] apply price p; from ¢;_1 = (i — 1)A to t; = i A for
1 =1,...,k, as long as inventory is positive. If inventory is zero at any
time, apply po, until time 7" and stop.

(b) Let N; and S; be the number of arrivals and sales, respectively, during
[ti—1,t;). Let N =37 | N;. Compute

A= q; = ﬁl[Ni>0] (6)

N Si
T )
Step 3. Optimization: Compute

arg max 1§i§n{pi@}

= arg min y ;<. |Ag — /T

= =2
I

and set p = max{p“,p°}.
Step 4. Pricing: On the interval (7,7 apply price p as long as inventory is
positive. If inventory is zero at any time, apply ps until time 7" and stop.

Recalling the solution to the full-information relaxation (4), we see that the
learning phase estimates the prices p*, p¢ and p”, by p*, p°, and p, respectively.
Tension exists in choosing 7 and &, paralleling Besbes and Zeevi (2009). Briefly,
as T increases, one expects better estimation accuracy but also larger revenue
losses due to suboptimal pricing; it is reasonable to expect these losses are
of order 7. The revenue function is only learned at a limited resolution of s
prices, and an error of order 1/k is incurred in estimating p“. This tension is
made precise and resolved in a large-system analysis in §5.1.

4 Results on Estimation
4.1 Estimator of Arrival Rate and Purchase Probabilities

From Assumptions 1 and 3 there follow two properties:

P1. A,,..., A, are independent Poisson(A7/k) random variables.

P2. Given the vector A := (A;, As, ..., Ay), the conditional law of (51, Sa, ... Sk)
consists of independent marginals of the form .S; ~ Binomial(A4;, ¢;) for all
t=1,...,K.

The following result is elementary.

Proposition 1 (Mazimum Likelihood Estimator of the Arrival Rate and Price
Sensitivity.) Let Assumptions 1 and 3 hold. Let Method A(T, k) produce data
(A1,S1,..., A, Sk), where A; and S; are the count of arrivals and sales, re-
spectively, while the offered price is p;. Then, a maximum-likelihood estimator
of 0 := (A, q1,-..,qx) is given in (5).
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Proof of Proposition 1. In view of P1 and P2, the log-likelihood is

k
£(6;D) oc AT+ Alog(A) + Y _(Silog(qi) + (Ai — 5) log(1 — g:)-
i=1
It is now easy to see that X and g; in (5) are the unique solution to the
first-order optimality conditions, 0 = 9¢/OX = —7 + A/A, and 0 = 0¢/0q; =
Si/qi — (A; — S;)/(1 —q;). (If A; =0 for some %, then g; = 0 is an MLE, but
not uniquely so.) O

4.2 Estimator of Mean Demand

Here we are interested in estimating the demand vector (A\qi, ..., Aqx) for any
finite k. The invariance property of Maximum Likelihood Estimation (Bickel
and Doksum 1977, Section 4.5) immediately gives the following.

Proposition 2 (Mazimum Likelihood Estimator of the Demand Vector.) Let
P ={p1,...,px} be any subset of the set of feasible prices. A mazimum likeli-

hood estimator of (Aq1,...,Aqx) i (3\\&\1, .. ,:\\qAK), where A and q1,...,q. are
given in (5).

We also refer to this estimator as the arrivals-and-sales estimator.

In Section 4.2.1 we study this estimator’s bias and mean square error
(MSE) locally, that is, at a single price. In Section 4.2.2 we study, in an asymp-
totic (large sample) regime, the local and global estimation efficiency relative
to an estimator that uses sale counts only, which is in wide use (Besbes and
Zeevi 2009, 2012; Wang et al. 2014; Lei et al. 2014).

4.2.1 Bias and Mean Square Error

We derive explicit expressions for the bias and mean square error (MSE) of the
arrivals-and-sales estimator. To state the result, let X denote a Poisson(\)
random variable, and put

A
p = ]P)(X/\T/H > 0) =1 —exp(— %)a

h(N) == E[X; x>0,
A
C1 =C 1,k = h (;) + 2p + (K - 1)_1' (7)

Relative bias is defined by the relation B := E[X@] /(Agi)—1. An equivalent
definition uses the relation E[Ag;] := Ag;(1 + B).

Proposition 3 (Mean Square Error and Bias.) Under Assumptions 1 and 3,

we have ) \
B:—K_ exp<—T), (8)
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and R
E[()\(/]\Z — )\L]i)2] =01+ agg, (9)

# () () e
oy == EE2AG|A] — (Ag;)?(1 4+ 2B) = ¢2Ar {1+ B[1 = Ar(1 + s~ D] (1)

Proof of Proposition 3. Proof of (8). We use Properties P1 and P2 (Section
4.1). From P2, we obtain

E\G;|A] = AE[G;|A] = Agil[a,0], (12)
VW()@'\A) = >\2VW((IA¢\A) = )\QAfl(h‘(l - Qi)l[A7¢>O]~ (13)

where

o1 = ]E[Var(XqﬂA)] =q;(1—q)

We have
T T (a) -
E[}\qi} =K {E[AqAA]} = q;T 'E Ai]l[Ai>O] =+ Z Aj]l[Ai>O]
1<j<k:j#i
(k—=1)(1—p)

(b) 1 | AT
K

= T +(5_1))\Tﬂ} = Agi [1—

K K
where step (a) uses (12) and the fact that A = 7 >; Ai; step (b) uses the
independence of the A;; the fact that E[A4;] = A7 /k; and the fact that P(A; >
0) =1 —exp(—A7/k) = p. In the last expression above, the term after unity
in the square bracket is, by definition, the relative bias; that is, B = —(x —

1)/(1=p)/k. R

Proof of (9). Write X = A\G;, p = Ag;, and B = (E[X] — p)/p. The result is
simply the identity E[(X — u)?] = E[X?] — ¢%(1 + 2B), where we further use
the identities E[X?] = E[E[X?|A]] and E[X?|A] = Var(X|A) + E2[X|A].

Proof of (10). The left side of (10) is, in view of (13),

E[Var(Agi|A)] = 6:(1 — a)EN A7 La 0]
Expanding A2 as in
N =772 A2 +24; > A;+ A2, (14)
Jij#i J:j#i

and using Property P1 in taking expectation, we find

B[N A (g 50)) = 772 {AT”_ ! (1 PN i 1) h <M> il AT} :
K K K K K

A simple re-arrangement gives (10).
Proof of (11). Observe that E[E*[AG;|A]] = ¢7E[A\1j4,50) by (12). Ex-
panding 22 as in (14) and using Property P1, we obtain
1 -1 -1
<1+/\7’H >—|—2)\7'H /\T—F)\T(l—k)ﬂ—)]
K A K

R

K —

E[XQ]l[ADO]] =72 {p)\r

A simple re-arrangement gives (11). O
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4.2.2 Asymptotic Efficiency Relative to the Sales-Only Estimator

Here we study the asymptotic efficiency of the arrivals-and-sales estimator
relative to the one that uses sale counts only. To define the latter, apply test
price p; over a period of length A := 7/k, and let S; be the observed sale
count. The sales-only estimator of the demand vector is defined as

—~ 5
)\qi::Z, i=1,...,k. (15)

From the fact that S; is a Poisson(g;A7/k) random variable, it follows that
E[(Ag; — Ag:)?) = Var[Si/ (r/m)]) = gider .

The asymptotic efficiency is analyzed for a sequence of estimation prob-
lems. In problem n, the arrival rate is \,, and the learning time is 7,. De-
pending on whether the set of feasible prices is finite or an infinite continuum,
Method A is applied as follows. If the set of feasible prices is finite, {p1,...,px}
say, then Method A(7,,k,) is applied at all prices in the feasible set (thus,
kn = k for all n). If, instead, the set of feasible prices is an infinite con-
tinuum [p,p| (with p < p), then Method A(7,, k) is applied at the prices
pi=p+ (i—1/2)l,, i =1,..., Ky, where £,, = (p — p)/kn. (These prices are
the midpoints of the partition of [p, 7] into ,, equal intervals.) The MLE in (5)

is denoted (/):Zjl,n, .. ,/):Zjﬂmn), and the sales-only estimator in (15) is denoted

()\qlm, . /\qﬂmn).
We now present our efficiency measures and describe the limit under which
these are analyzed. Global efficiency is defined as

E[Y5 (A — Ani)?)
Mn 1= Knl ,\A7 o1 (16)
E[Zi:l()‘Qi,n - /\nQi) ]

Local efficiency is a simpler measure, where each sum above is replaced by a
term corresponding to a single price. The limit we consider requires:

AnTn

Kn

AnTn
Ty 1= — 00, AyTpexp | —
Kn

) = Rprnexp(—r,) — 0 asn — oo.

(17)
Less formally, the above says the following. First, the mean arrival count at any
price, ry, := A\, T /Kn grows large (thus the mean arrival count during learning,
AnTn, also grows large). In the finite-price-set case, k, = k is a bounded
sequence, so the second condition follows from the first. In the infinite-price-
set case we will need k,, — 0o to “learn” a demand function defined on a
continuum; here the second condition is non-trivial: it requires the growth of
“information” r, to dominate the growth of the price granularity .

Proposition 4 (Asymptotic Efficiency Relative to the Sales-Only Estimator.)
Consider a sequence of problems as in (17). Let Assumption 3 hold for all
n > ng, for some finite ng.
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(a) For any price p;, and with ¢; := q(p;) € (0,1], we have

E[(N\g; ,, — Angi)? 1
lim [(ff’" @1 _ . (18)
=0 Bl(AGipn — Ani)?] 1@

(b) Let the set of feasible prices be {pi1,...,px}, for some finite k. Put q¢; =
q(pi). Suppose q; ¢ {0, 1} for all i. Then

Zf:l qi

I — S A ) (19)
n—eo >im1 ¢i(1 = 4i)
(c) Let Assumption 4 hold and let Kk, — 00 as n — oo. Then
Jip.z 4(@)dp
lim p, = 27 = foo > 1. (20)
e f[g,ﬁ]ﬂ{p:q(p)ﬂ} 4(p)[1 = q(p)ldp

Proof of Proposition 4. Proof of (18). The MSE of the arrivals-and-sales
estimator (the denominator in (18)) was analyzed in Proposition 3. Terms
seen there are now denoted by appending the scale index n as an additional
(rightmost) subscript; for example, B,, denotes the scale-n version of B in (8),
that is, By, = —[(kn — 1)/kn] exp(=AnTn/kn); 01.n denotes the scale-n version
of o1 in (10); and so on for all terms there. All limits below are with respect
to n — oo.
We need the asymptotic of h(n) in (7) as n — oo; the result is
hm M0 g (21)

n—oo 77,71

which is proven in Lemma 3, and which we write as h(n) ~ n~1.

From (9) we have E[(X(Ym — Mn@i)?] = 01,0 + 02, and we now derive the
asymptotics of these terms. Equation (10) states that o1, is ¢;(1 — ¢;) times
(the term in square brackets)

2
n_l )\nn — n_l
An (K ) h( - >+)\”T"1l€ Cin
Rn Rn, Rn

where in step (a) we observed: (i) h(An7n/kn) ~ (AnTn/kn) "t (due to Ay 7 /Kn —
oo and (21)); and (ii) ¢1,, = [h(/\nrn//@n) + 2pp + (kn — 1)_1] ~ 2+ (Kp —
1)~! (this follows from (i), the fact that \,7,/k, — 0o, and the fact that
lim;, o0 pn = hmn—)oo[l*exp(fAnTn/Rn)] = 1) Thus, O1,m ™~ Qi(lf%'))‘n’r;l’irp

Now consider (11). Note that [1 — AT (14+ m;l)} ~ — ATy, (since A\, —
00, and the remainder term is bounded in n). Now, noting that lim,, o A7 Bn =
0 by the second condition in (17), we obtain o2, ~ ¢Z\,7,, '
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If ¢; < 1, then o9, is negligible: o3 ,, /01, — 0, since k,, — co. In contrast,
if ¢; = 1, then o4 ,, is zero. In summary,

~ ~ a: (1 — a: -1 if a;
Bl — ]~ { o RO ST ] oy
In the n-th problem, the sale count S; in (15) is Poisson(g; A, 7 /Kn), and thus
E[(X(\]zn — Mi)?] = @iAnT,, Lkn; combining this with (22), we obtain (18).

Proof of (19). This follows easily from the asymptotics in part (a).

Proof of (20). This is a consequence of the asymptotics in part (a), com-
bined with the fact that the inter-price distance ¢, = (p — p)/kn goes to zero.
In more detail,

Kn

E[Z(X?}\l,n - AnQi)2]

i=1

a) ,_ _ _
(N 0! <)‘n7—n L Z Caa(pi)[1 = a(pi)] + An, ! Z En)

i:q; <1 1:q; =1
®) ,— - _
Nt (AnTn 1/%/ a(P)[1 = a(p))dp + Aot / dp)
[p,P]N{p:q(p)<1} [p,P]N{p:q(p)=1}
(e) ,_ _
~ 0 AT, 1/%/ q(p)[1 — q(p)ldp
[p,PIN{p:q(p)<1}

where step (a) uses (22); in step (b), it follows from ¢, — 0 that the sums
are Riemann sums and converge to the indicated (Lebesgue) integrals; and
step (c) uses that the second term in the sum to the left vanishes relative
to the first term (due to x, — oo and Assumption 4(c)). A similar argument

gives E[Zf"l(xai’n—)\nqi)ﬂ ~ AN T R f[p 5 4(p)dp. From the asymptotics

given above, result (20) follows immediately. O

REMARK 1. The asymptotic efficiencies (the right side of (18), (19), and (20))
are always no smaller than unity, and depend on ¢() but not the arrival rate.
They prove the theoretical superiority of the MLE and quantify the efficiency
gain relative to using only sale data.

ExAMPLE 1. Consider the (linear) case ¢(p) = a—bp for p € [p, p], where a > 0,
b > 0. The requirement q(p) € [0,1] for all p € [p, ] is equivalent to constraints
q(p) = a—bp <1 and ¢(p) = a — bp > 0. To give a simple formula for the
asymptotic (global) efficiency, we take [p,p] = [0, 1] with constraints ¢(0) =
a<landq(l)=a—b>0and find pioo = fieo(a,b) = 1/[1 —c—b?/(12¢)] > 1,
where ¢ = a — b/2 > 0. Indicatively (for any p < p): ¢(p) = 1 and ¢(p) = 0
gives fioo = 3; q(p) = 1/2 and ¢(p) = 0 gives oo = 3/2; and ¢(p) = 1 and
q(p) = 1/2 gives jioe = 9/2. -
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5 Results on Pricing
5.1 Regret Upper Bound in the Presence of an Arrival Rate (the Class D)

Following the ideas in Besbes and Zeevi (2009, Section 4.3), we consider a
regime in which both the size of the initial inventory as well as potential
demand grow proportionally large. In particular, for a market of size n, where n
is a positive integer, the initial inventory and the arrival rate are now assumed
to be given by

Ty =NT, Ay =N, (23)

while the purchase-probability ¢() is fixed for all n. Thus, the index n deter-
mines the order of magnitude of both inventory and rate of demand.

We elaborate the demand estimator (6) for the n-th system, including
the connection with the following events during learning, which we show to
be rare: (i) stock-out (inventory is depleted before selling ends); or (ii) no
arrivals occur during a test period. For any test price p; (i € {1,...,k,}) we
write ¢; = q(p;). Price p; is applied from time (i — 1)4,, to time i4,,, where
A, = Tp/Knp; this is the i-th test period. The mean arrival count during any such
test period is A\nA,, =: Ar,,, where r,, = nA,, = n7,/ky,. Let N(-) be a unit-rate
Poisson process, and put N, = N(Anr,) and N; , = N(\ir,,) — N(A(i —1)ry,).
Moreover, for each ¢ = 1,...,ky, put S;, = Z;V:f I;, where conditionally
on N; ., the sequence Iy, I, . .. consists of independent Bernoulli(g;) variables
that are independent of N; ,,. In particular, we have the probability laws N; ,, ~
Poisson(Ary,), Ny ~ Poisson(AnT,), and (S; n|N; ) ~ Binomial(N; ., ;).

The estimator (6) has the representation An = min(N,,,nz)/(nt,) (esti-
mated arrival rate); and G, = min(S; n, n@) min(N; ., nz) 1y, >0 (esti-
mated purchase probability) for ¢ = 1,...,k,. The condition N,, < nz will
occur with high probability by enforcing 7,, — 0. This condition implies that
no stock-out occurs during the learning phase [0, 7,]; and the latter implies
the following: Xn = N, /(n7,), where N, is observed as the total arrival count
during the test period [0, 7,,]; and @;,», = Si,nNifnlﬂ[Ni,nw]’ where N; , and S; ,
are observed as the arrival count and sale count, respectively, during the i-th
test period. Moreover, the condition N; , > 0 will occur with high probability
by enforcing r,, — oo.

Consider the scale-n system associated to a fixed demand model (A, q) € D.
Let JT = J7(x, T\, q) denote the expected revenue under policy 7 (Algorithm
AS). The optimal value to the scale-n version of the full-information relaxation
(3) is easily seen to be nJ”, where JP is that of the unscaled problem and is
shown following (4) (Besbes and Zeevi 2009).

Our main result is as follows.

Theorem 1 Consider the class D defined following Assumption 2. Let m,, :=
(T, kn) be given by Algorithm AS. If

1 1/4 1/4
Tnx(og”) : an< - > : (24)
n logn
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then there exists a constant Ko and a finite n such that for all n > n,

JIn logn 1/
i 2 >1-K, .
(A,lcgeb nJP — 0 ( n )

(25)

The main result supporting the proof (other than ideas from Besbes and
Zeevi (2009)) is Proposition 5, which is presented and proven before proving
Theorem 1. In this result, errors Xn — A are handled via a large-deviation bound
for i.i.d. (independent and identically distributed) Poisson summands (Lemma
1). Moreover, each error of the form g; ,, — ¢; is handled via a large-deviation
bound for i.i.d. Bernoulli summands, known as Hoeffding’s inequality (Lemma
2); in applying it, we need that the number of summands, which is the arrival
count N, ,, be large enough; we ensure that this condition holds with high
probability by requiring that n be sufficiently large; this contrasts to Besbes
and Zeevi (2009), whose result applies to all n =1,2,.. ..

Proposition 5 will require Condition 1 below. This condition does not re-
strict 7, and K, as Theorem 1 does. This makes the result more broadly
applicable, and the proof more transparent, in our view. However, there is a
small “cost”: the construction of (formulas for) a finite n such that the result
holds for all n > n is less specific than is possible. Formulas for n specific to
Theorem 1 are given in Remark 2 following the proof of the theorem.

Condition 1 Put r,, := n7, /K, and suppose the following hold:

(a) Kp — 00 as n — 0.

(b) For all m > 1, we have QTn”’l < nr, < én¥2 for some positive c.,¢; and
0<9y <y <l

(c) For alln > 1, we have r, > c,n” for some ¢, >0 and 3 > 0.

Proposition 5 (Bounds on worst-case estimation error.) Fiz n > 2. Let

Condition 1 hold. Let 6, = 6,(\) = [4nA logn/(nTn)]l/z; and by, = l,(N\) =

(A= Cn), where ¢, = Gu(N) = [2n)\log(n)/rn]1/2. Fiz any i € {1,...,kn}.

(a) For any finite X\ > 0, there exists a finite ng = ng(A\) such that for all
n > ng(A) and for €, = €,(\) = [nlog n/(2€n)]1/2, we have

P{AnGin =il < Ot Aen} > P{An=A| < b0, [Gin—ail < €n} > 1-Cin
(26)
where Cy = C1(N) := 2Co(\) + 3, where Cy(A\) = max{1, [4n/(\Be)]"/P}.
(b) Put Cy = C1(A). For any a > 0, there exists a finite n = n(«) such that
for all n > n,

~ An 1/ logn 1/2
sup P{Ikn@m =gl > (1+a) <> ( ) } < Cin™" (27)

(Aq)€D 2 T

and

. 1/2 log n 1/2
sup P |Gin —ail > (1+ @) () ( ) <Cin7". (28)
(A\g)eD 22 Tn
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Proof of Proposition 5. All limits below are with respect to n — oo.
Note that £, = M, {1 — [(2n/))log(n)/rn]*/?} with r, > ¢,n®. We use

(here and elsewhere) two properties of log(x)/2? for real > 1 and 8 >

0: (i) log(x)/2® is maximized at x, = e'/?; moreover sup,; log(z)/z? =

log () /= = 1/(Be); and (ii) for z € [e}/?,x0), log(x) /2" decreases to zero.
We construct a finite 11 (\) such that

£, (A) >0 for all n > ny(N). (29)

The condition £,(\) > 0 is equivalent to log(n)/r, < A/(27n); and since r,, >
c,n?, a sufficient condition for the latter is log(n)/n® < ¢ *\/(2n). Since
log(n)/n? is maximized at z* = ¢!/? and decreases to zero for x € [z*,00),
it suffices to set ny(A\) := min{n : n > e'/? log(n)/n® < ¢ '\/(2n)} < oco.
Observe that ni(A) is non-increasing in A.

Next, we construct a finite ny(A) such that

nTn(A +8,) < nx  for all n > na(N). (30)

Since nt, < ¢,n%?, a sufficient condition is ¢ n%2(\ + sup,,>1 0n) < nz. Note
that sup,, 6, < sup, [4nAlogn/(c.n¥)]*/? = [4n)\/(eic,)]'/?. Thus it suffices
to set

na(N) = [{E- 0+ 4 (etbre, )]/2) y /O=02)] (31)

Observe that na(A) is increasing in .

Put ng(A\) := max(ni(\),n2(A)); this number is finite and such that the
conditions in (29) and (30) hold for all n > ng(A).

Proof of part (a). Define the events

Un = {|NTL - /\nTn| < TLTn(Sn},
Ln = {Ni,n > fn}’
Dy = {[Si;n — Nijn@i| < Ninen}.

An essential idea behind the proof is: for n > ng(\), we have

a) b) <
G = U LDy € (R0 < 00 [Gin—tl < 0} © {Pin—Ai] < 6t Aen),
(32)
which we now justify. To justify step (a), first note that on the set U, a stock-
out is excluded and thus Xn = N, /(nm,), since N,, < n7,(A+6,) < nx, where
the latter inequality holds because n > na(A). Further, note that on the set
L,, a no-arrival event (that is, a zero arrival count during the i-th test period)
is excluded since ¢, > 0 by the fact that n > ny(\). The set U,, N L,, excludes
both a stock-out and a no-arrival, and thus on this set we have ¢; ,, = S; n/Nin
with N;,, > 0. Now |:\\n — Al = |Nn/(n1,) — A < 4, where the inequality
holds by definition of U,,. Moreover, |g; , — ¢;| = |Si,ﬂNiT'r} — qi| < €, where
the inequality holds by definition of D,,. This completes the proof of step (a).
Step (b) follows from the triangle inequality |an2n —Agi| = @n(Xn - A+
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MG —qi)| < \Xn — Al + Al@i,n — ¢;|. The other essential idea is a union bound
on the complement of G,,, namely

P(G,°) < P(U,°) + P(L,°) + P(L, N D,°), (33)

together with the fact that each probability on the right is of order n=", which
we now show. By Lemma 1, result (44), we have for all n > 1,

P(U,°) = P{|N,, — An7y| > n70,} < 2Co(A)n~". (34)
Moreover, Lemma 1, result (45), shows that for all n > 1,
P(L,¢) = P{N; . < £} <n". (35)
We claim that for all n > nq(A)

]P)(Ln N Dnc) - ]P){Nz,n > fn, |Sz,n - Nz,an| > Ni,nfn}

(g) 2 exp(—20,€2)

© o, (36)
which we now explain. Since S; ,, is the sum of N; ,, independent Bernoulli(g;)
variables and since N;, is nonnegative-integer-valued, the condition N;, >
¢, > 0 (note that ¢, > 0 holds because n > nj())) implies that N;, >
max(¢,,1). Now an application of Lemma 2 (for N;, independent Bernoulli
summands) justifies step (a). Finally, step (b) is a direct consequence of the
choice of €,,. Inserting the bounds in (34), (35), and (36) into (33), we obtain
P(G,°) < (2Co(A) + 3)n~", and result (26) now follows from (32).

Proof of part (b). Recall that ni()A) is non-increasing and nz(A) is non-
decreasing in A. Put m = max{ni,n2}, where ny := sup,cpni(A) = n1(})
and ny 1= sup,ep n2(A) = na(A). For all n > m, the bound (26) holds for all
(A, q) € D. Thus

P{ AnGim — Al > sup [6,(A) + Aen(N)] b < C1(A)n™" for all (A, q) € D and n > m.
(X,q) €D
Thus, for all n > m,
sup P |Xn@n —Agi| > sup [6,(A) +Aen(N)] p < sup C1(M)n~7T=Cr(A)n™".
(X,q) €D (X, q)eD (X\,9) €D
Result (27) now follows by noting that

sup [0, (A) + Aen(N)]
(M\q)€D

1/2 1/2 1/2 —1/2
a) 1/2 logn n logn 2nlogn
= 2(nA — A~ 1—y/———
(/\S,(BI;D (nA) ( nty, ) + ()\) < 2r, AT,

®) {Anlogn &
2r,

—
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where step (a) simply inserts the expressions for d,, and €, (via ¢,); step (b)
uses that the first term vanishes relative to the second one, since nr,/r, =
k,, — oo; and, on the rightmost term, we noted that (1—+/(2nlogn)/(Ar,)) =12 ~
1. This completes the proof of (27). Result (28) follows by an entirely analo-

1/2

gous argument; here, the supremum across A results in a A\~~~ factor because

in the pre-supremum, \ enters as A~/2. O

Proof of Theorem 1. The proof adapts and refines the argument in the
proof of Besbes and Zeevi (2009, Proposition 1). Our basic tool is Proposition
5; its role is somewhat analogous to that of Besbes and Zeevi (2009, Online
Companion, Lemma 2) in their proof.

As an auxiliary step, we verify that Proposition 5 is in force. The assump-
tion 7, =< (logn/n)'/* means that for all n > 1 we have c, (logn/n)'/* <
Tn < ¢ (log n/n)1/4 for some positive ¢,,¢,. Similarly, the assumption &, =<
(n/logn)'/* means that for alln > 1 we have ¢, (n/logn)'/* < k, < ¢, (n/logn)
for some positive ¢,,c,.. We now verify that Condition 1 (stated immedi-
ately before Proposition 5) is in force. Part (a) is clearly in force. Since
nt, =< n**(logn)/*, part (b) is satisfied: take 11 = 3/4 and any v, > 3/4.
For part (c), we have r, := n7,/k, =< (nlogn)'/?; thus part (c) is in force
with 8 = 1/2. This completes the verification. Let n = n(a) be constructed as
in Proposition 5 part (b), where the underlying n1(\) and ny(\) are tailored
to {7} and {k,} as specified here; details on such n;(A) and ny(\) are given
in Remark 2 following the proof.

Set
logn 1/2
U, = max {Tn,mgl, ( ) } (37)
Tn

The various errors involved in bounding the regret will all be shown to be of
order u,. Note that u, =< (logn/n)'/*.

Onwards, the notation and proof structure are similar to that in Besbes and
Zeevi (2009, Proposition 1). Let X = Yo q(pi)nd,, x$) = Aq(D)n(T —
), and put ;¥ = N(x{P), v, = N(x{P), and ¥, = N(X P + x (D).

Step 1. The revenue achieved by m, is bounded below by the revenue
achieved in the pricing phase; during this phase, the number of units sold
is min{Y\"), (nz — V")) +}. It follows that

1/4

J7 = Epmin{¥,"), (nz — Y,V)*}]. (38)

Step 2. In what follows, we separate two cases: A(p) < z/T and A(p) >
x/T.
Case 1. Suppose that A(p) < x/T. We start with auxiliary facts about
the full-information relaxation (3). It is easy to see that JP = pP A(pP)T,
where A(p) = Ag(p). The trivial case JP = 0 is excluded by a simple argument
paralleling Besbes and Zeevi (2009, Online Companion, Lemma 3); specifically,
by Assumption 1(iii), there exists a price, py say, such that pog(po) = mq > 0.
Let tg = min{T, z/A(p)} = min{T,z/A} > 0. The solution that prices at p
up to time tg and at po afterwards is feasible for problem (3), since A(pg)to <
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A(p)to < x. This solution yields revenue poA(po)to > Amato := mP. It follows
that JP > mP > 0.

We will now show that for all n > n, J7~ is at least nJP minus a loss of
(

order O(uy,). Note that rnin{Yn(P)7 nT — YTEL))+} >y - (Y,, —nz)™. From
(38), we have

I 2 E[pY, "] —PE[(Y, —na)*] = E[r(p)]M(T — 1) — PE[(Y, — nz)*] (39)

by noting p < P in the first step and E[ﬁYTEP)] = E[r(p)]An(T — 7,) in the
second step. In Lemma 6, taking steps broadly similar to those in Besbes and
Zeevi (2009, Lemma 4), and using the results in Proposition 5, we show that,
for all n > n, E[r(p)] > r(p?) — Ru,, — Ra/n"~1 for positive constants R and
Rs.

Further, in Lemma 8, using steps similar to those in Besbes and Zeevi
(2009, Lemma 5) and using the results in Proposition 5, we show that, for all
n > n, E[(Y, — nx)*] < Kgnu, for some constant Kz > 0. We conclude that
for all n > n,

Ry
n—1

Jy > /\r(pD) — Ru,, — n(T — 1) — pPKgnu,

> n/\r(pD)T — Kin(u, + 7),

=nJP — Kin(up, + 1), (40)
where K is a suitable constant. We conclude that
Jr Jr K, K,

Case 2. Suppose that A(p) > z/T. Here, p? = p and JP = npz. Recall
(38), where min{erP), (nx — Yn(L))+} is a lower bound on the quantity sold
during the pricing phase. In Lemma 9 we show that this bound is close to nx
and moreover the price p is close to p”, with probability that is high for all
n > n. Specifically, the key event is A := {w : min{Yrgp)7 (nx — Yn(L))“‘} >
nz — Kynun,, |p — pP| < K.u,}, where Ky and K. are constants defined in
Lemma 9. The (expected) revenue generated by 7, can be bounded as follows,
for all n > n:

JT > Epmin{Y, "), (nz — V) t}]

@
> E[(p” — Keun) min{Y,{"), (nz — Y,{V) *HAIP(A)

®) i c
> (pP — Koup)(nz — Kynu,) <1 - n7731>
> pPnx — Konu,, (42)

where both (a) and (b) follow from the definition of A4 and Lemma 9, and
where C5 and K5 are suitable constants. We conclude that for all n > n,

JT J7 Ky
oo >1—- —u,. 43
JD  nJgb — ﬁmun (43)

n
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Step 3. Combining the results (41) and (43), we set Ko = max{2K; /mP”, Ks/(pz)}
and have for all n > n,

JIn logn 1/4
inf n_>1-K i
(A,lcgeD nJP — 0 ( n )

This completes the proof. The full details of the proof are seen in Lemmata 1,
4,5,6,7,8 and 9. O

REMARK 2. To specify more concretely the notion of a sufficiently large n, we
now assume that 7, = ¢, (logn/n)'/* and &, = c.(n/logn)*/* for some pos-
itive ¢r, cx. Such sequences would typically be used, with &, rounded to the
closest integer; in what follows, we ignore this rounding to simplify the analysis.
Then, we have: (i) n7, = c¢,n**(logn)'/*; (i) 6, = [dnAc;(logn/n)3/4]1/2;
and (iii) 7, = n7n/kn = (¢, /cx)(nlogn)'/? and thus logn/r, = (c./c,)(logn/n)
n1(\) = min{n : n > e, logn/n < [(cx/cr)"tA/(2n)]?} is sufficient for the
requirement (29). Moreover, from (i)-(ii) it follows that ny(A\) := min{n : n >
e, (logn/n) < z/lc. (A + 0,)]"} is sufficient for the requirement (30) (since 8,
is monotone decreasing for n > e). A simpler but weaker formula for ns(X)
replaces 6, by sup,, 6, = (4nic; e 3/4)1/2,

1/2.

5.2 Besbes and Zeevi (2009) Revisited: an Improved Convergence Rate

In this section, we briefly study the setting in Besbes and Zeevi (2009). We
recall that their model postulates a demand function A(p) directly, without
reference to arrivals, and that their model class Dpy is larger than ours (see
below Assumption 2). Theorem 2 below shows that the algorithm in Besbes
and Zeevi (2009, Section 4.1) can be adapted in order to improve the conver-
gence rate. This is a sharpening of Besbes and Zeevi (2009, Proposition 3) and
is achieved via deviation thresholds of a smaller order; specifically, in Besbes
and Zeevi (2009, Proposition 3) these thresholds are (each) a constant times

1 1 (logn)*/?
BZ) . 1/2 -
ulP? .= (logn)'/ max{ﬁn,(n n)1/2}A eyt

where nA,, := n7,/k, =< n'/2. In Theorem 2 these thresholds are (each) a
constant times the wu,, defined in (37), for which u, < (logn/n)'/%. We see

that u, /u$’?) = (logn)~1/4.

Theorem 2 Let Dgy be the class of demand models defined in Besbes and
Zeevi (2009, Section 4.2). Let m, := w(Tn, kn) be given by Algorithm (7, k)
defined in Section 4.1 there. If we set

T X R .
n logn
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then there exists a constant K|, such that for all n > 1,

logn 1/4
. .

Jﬂ'n
inf L >1- K|
A(‘)IQ'DBZ nJP — 0 <

Proof of Theorem 2. The proof is a straightforward adaptation of the proof
of Theorem 1; we give an overview and omit many details. In full analogy to
Theorem 1, probability bounds are obtained for events defined via deviations
proportional to u, as in (37), for which we have u, =< (logn/n)'/*. For ex-
ample, to see how we bound the error |[p© — p€|, let the demand function A(-)
satisfy M/;|p1 — pa| < |A(p1) — A(p2)| < Mlpy — po| for all py, py in the
price domain [p,p]; put M = sup, A(p) and K[ = AM' Tt max{cy, o}, where:
= M/A(ﬁ —p)/2 and ¢y := 2(nM)/2. The proof proceeds as in Lemma 5;
in step (e) the Poisson large-deviation bound (Lemma 1) replaces (28); we ob-
tain, for all n > 1, P{|p° —p°| > K'u,} < Co(M)n=""1. (These deviations are
of a smaller order than those in Besbes and Zeevi (2009, Online Companion,
Lemma 4, Step 1), while the probability bound is the same.) In analogy to the
above, we proceed as follows: the constants multiplying u, to form the devia-
tion events in Lemmata 4, 5, 6, 7, 8, and 9 are increased, when necessary, by
a factor no larger than 21/2; these deviations are no less than a positive con-
stant times (logn/r,)"/? (since (logn/ry)*/? =< (logn/n)'/4); it follows that
the Poisson large-deviation bound (Lemma 1) applies, and it follows that, for
all n > 1, the probabilities of these deviation events are no larger than a con-
stant times n~""!. Onwards, the proof is the same as that of Theorem 1 and
Besbes and Zeevi (2009, Proposition 3). O

We note that Theorem 2 holds for all n > 1, in contrast to Theorem 1,
which requires that n be sufficiently large.

REMARK 3. Theorem 2, in parallel with Theorem 1, prescribes that the pa-
rameters 7, and K, grow at rates slightly different from those in Besbes and
Zeevi (2009, Proposition 3). Specifically, the time spent learning, 7, is larger
by a factor (logn)*/*; and the number of test prices, k,, is smaller by a factor
(logn)~1/%. The regret upper bound is improved by the factor (logn)~'/*, and

this results from a refinement of their proof technique.

6 Numerical Results

We compare five policies, which we index as follows: (1) our policy (Algorithm
AS) (AS); (2) the policy in Besbes and Zeevi (2009, Section 4.1) (BZ); and
two variants of the policy in Wang et al. (2014) (Section 7.1): (3) the starting
interval in their step 3 is the last (best) price interval from their step 2 (WO0);
(4) the starting interval in their step 3 (which learns p¢ when p¢ > p*) is
[p,p] (W1); and (5) the modification of policy BZ, as in Theorem 2 (BZ-
M). The reason for considering policy W1 is that policy WO (which they
recommend over W1) does not always demonstrate the expected convergence
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rate. Whenever a policy prescribes that some price interval is tested (via a
number of test prices), we use the midpoints of the relevant sub-intervals,
merely because midpoints appear to work slightly better then left- or right-
endpoints (for each policy).

The test problems here replicate fully those in Table 1 of Wang et al. (2014)
(so that regret numbers are comparable) and additionally allow the presence of
an arrival rate. Specifically, we fix the initial inventory x = 20; selling horizon
T = 1; and feasible price set [p,p] = [0.1, 10]; and the demand model is drawn
randomly from one of two families of demand functions:

— Linear: the demand function is A(p) = A— ap with support A € [20, 30] and
a € [2,10]. Our class D represents this as (), ¢), where g(p) =1 — (a/N)p.

— Exponential: the demand function is A(p) = A exp(—0p) with support A €
[40,80] and G € [1/3,1]. Our class D represents this as (A, ¢), where ¢(p) =
exp(—fp).

The probability law is uniform for each parameter (to match the law used in
their study, it is « that is uniformly sampled, not a/\).

The theory behind each policy prescribes only an optimal asymptotic
growth rate; for example, for policy AS, the optimal learning time is 7,, < f(n)
where f(n) = (logn/n)'/*; but n is a theoretical construct that does not
exist in the real world; it may be replaced by cn, where ¢ > 0 is a scal-
ing constant (scaling, in short) that is fixed for all n. Put differently, since
f(en) ~ ¢=Y/*f(n) and since a similar equivalence applies to all the relevant
f, it follows that the regret convergence rate is unchanged when n is replaced
by ¢n for any ¢ > 0 that is fixed for all n. For this reason, in the key literature
(Besbes and Zeevi 2009; Wang et al. 2014), sensitivity to ¢ is not of interest,
and ¢ = 1 is usually chosen. However, we find that the optimal ¢ differ drasti-
cally across policies. A fair comparison necessitates using for each policy the ¢
that is nearly-optimal; forcing the same c¢ across policies would tend to favor
one against the others.

We examine the mean-regret sensitivity to scaling, for each policy ¢, when
each parameter (duration of a certain phase, or number of test prices) is set
as f(c¢;Cy), where ¢; > 0 is a free variable; C,, = 20n is the n-th capacity;
and f is the optimal growth rate for each parameter specified in our theorems
and in Besbes and Zeevi (2009); Wang et al. (2014). Figure 1 summarizes the
sensitivity, showing the mean regret as a function of the ratio ¢;/cf, where

¢! is the value of ¢; that roughly minimizes the estimated mean regret for

K3
n = 105, and where: ¢} = ¢ = 100; ¢5 = 5; ¢ = ¢; = 1 for the linear
family; and ¢§ = ¢ = 1/4 for the exponential family; these values are not
strict optimizers; they serve as reference points for measuring the sensitivity,
and moreover they are not far from optimal in terms of regret, as the figure
shows. The main finding is that policies W1 and WO are the more sensitive:
suboptimal scaling in either direction affects them negatively (increases the
regret) more than the others.

Consider the ratio of learning-phase durations of policies AS to BZ, which
is (c1/co)~ Y4 (logn)Y/4. The value (¢f/c5)~'/* ~ 0.47 represents the reduction
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factor resulting from near-optimal scaling (¢; = ¢f) relative to the arbitrary
choice ¢; = co. This finding is consistent with the higher efficiency of the AS
estimator (Proposition 4).
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Fig. 1: Sensitivity of the mean regret to the scaling constant ¢; for each policy 4, for the
linear family (top row) and for the exponential family (bottom row), and for varying system
size n € {102,10%,10%} (from left to right). For each policy 4, the z-axis is the ratio ¢;/c}
and spans the interval [1/10, 10] in logarithmic scale.

The estimated near-optimal performance of each policy (that is, with ¢; =
) appears in Table 1; the standard error of estimates is < 2% for W0, W1
and n = 10% and < 1% otherwise.

Based on Figure 1 and Table 1, we conclude:

— The regret converges in line with theory for each policy, except possibly
for WO.

— With all policies scaled near-optimally (as in Figure 1), and for sizes n
smaller than some threshold, policy AS is superior; and above the thresh-
old, policy W1 is superior. The threshold is between 103 and 10* for both
families. This conclusion remains intact, even when the performance re-
ported in Wang et al. (2014) replaces ours.



26 Athanassios N. Avramidis

Table 1: Comparison of mean regret of the policies with near-optimal scaling.

Family n AS BZ W0 W1 BZ-M

Linear 102 0.1287 0.1423 0.2028 0.2030 0.1381
103 0.0745 0.0828 0.1020 0.1021  0.0828
10*  0.0413 0.0466 0.0355 0.0354 0.0465
105  0.0225 0.0260 0.0115 0.0116  0.0258
106 0.0124 0.0142 0.0045 0.0045 0.0142

Exponential 102  0.1614 0.1549 0.1439 0.1525 0.1639
10®  0.0803 0.0831 0.1499 0.1479 0.0831
104 0.0423 0.0446 0.0478 0.0406  0.0446
105  0.0230 0.0243 0.0257 0.0178  0.0244
108 0.0130 0.0137 0.0123 0.0061 0.0135

— Policies BZ and BZ-M perform nearly identically, despite the latter’s slightly
better theoretical convergence.

In experiments with a purchase probability ¢() that is Lipschitz but not
differentiable, the comparison was not notably different; we therefore omit
such results.

7 Conclusion

This paper studies a problem of pricing a finite and perishable inventory and
a related estimation problem. In the pricing problem, the demand process is
defined through an arrival rate and a purchase probability function, both of
which are unknown to the seller prior to the beginning of sales.

The results on estimation (Section 4) apply more generally than the inventory-
pricing problem, as we now summarize. We start with a Poisson process of un-
known rate A and an unknown thinning-probability function ¢(p), where p is a
control parameter whose domain may be finite or a bounded continuum. The
controlled process is the Poisson process resulting by thinning the events of
the original process with probability g(p) whenever the control is set at p; this
process has rate Ag(p). Both the original process and the controlled process
are observed. Section 4 primarily studies the estimation of the rate function
Aq(p). Proposition 4 characterizes the (mean-square) asymptotic efficiency of
the estimator defined as the product of the empirical rate of the original pro-
cess times the empirical thinning probabilities at certain points p;, relative to
the estimator defined as the empirical rate of the controlled process at these
pi; it proves and quantifies a gain in efficiency.

The regret of the two policies we studied converges at a rate slightly faster
than that in Besbes and Zeevi (2009, Proposition 3). This theoretical improve-
ment is a result of bounding methods that refine theirs, and is unrelated to the
better efficiency of the arrivals-and-sales estimator, which converges to a finite
positive constant (Proposition 4). The improved efficiency is, however, ben-
eficial; the numerical study via near-optimal scaling constants revealed that
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our arrivals-and-sales-based policy (AS) spends less time learning relative to
policy BZ, and its regret is modestly smaller.

A direction for future research would be to revisit existing pricing methods
(Besbes and Zeevi 2009, 2012; Wang et al. 2014; Lei et al. 2014), replacing
their sales-only estimator by the arrivals-and-sales one. Numerical results with
the demand families in §6 suggest that this replacement, when applied to the
algorithm in Wang et al. (2014), improves (reduces) the mean regret (but not
the convergence rate). Another direction for future research would be to extend
our approach to time-varying demand (Harrison et al. 2012; Besbes and Saure
2014; Keskin and Zeevi 2016), in particular with a time-varying arrival rate.

8 Proofs

Lemma 1 Let N(-) be a unit-rate Poisson process. Let n > 0. Suppose that
A € [0,M] and rn, > 0P with B > 0. Let ¢, = 2n*/2M'/?(logn/r,)'/? and
én = €,/V/2. Let Cp = Cp(M) := [4n/(MBe)]"/P. Then for alln > 1,

n " ifen <M

Cpn™" Zf €n > M (44)

Ay =P(N(Ary) — Ary = rpey) < {
Thus P(A,) < Con™" holds for all n > 1, where Cy := Co(M;n,5) =
max{1l,Cp}. Moreover, for alln > 1,

By i=P(N(Arn) — Arp < —rpén) <n " (45)

REMARK 4. Our proof of Lemma 1 uses the idea in Besbes and Zeevi (2009,
Online Companion, Lemma 2) and corrects a notable error in their calculation
of the constant leading the n™" term. Since this result is frequently used in
the literature (Besbes and Zeevi 2009, 2012; Wang et al. 2014), we think it
is important to bring this correction to light. Their constant is incorrect as a
result of an incorrectly calculated Taylor expansion. Following the proof, we
quantify the resulting error in Remark 5.

Proof of Lemma 1. We claim that for any nonnegative sequence {e, },

(a) (b)
P{N(Arp)=Arp > rpen} < exp{—rnfi(A+en; N} < exp{—rnfu(M+e,; M)}
(46)

and

a b

BN ()=t <t © exp{=raf.(A—eai N} € exp{=rf.(M—ei M)},
(47)

where f.(z;\) = zlog(x/X) + A — z, with > 0, is the Fenchel-Legendre

transform of the cumulant generating function (the logarithm of the moment-

generating function) of the Poisson(\) law (Dembo and Zeitouni 1998, Exercise

2.2.23). In both displays above, step (a) is the special case of more general

theory seen in Dembo and Zeitouni (1998, Section 2.2). Specifically, Dembo
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and Zeitouni (1998, Equations (2.2.12) and (2.2.13)) apply to a sum of r,
independent Poisson(\) variables, giving (46) and (47), respectively. Step (b)
follows from the fact that the derivative of the exponent with respect to A,
which is —r,[log(1+2/X) —xz /] with z = €, in (46) and with x = —¢,, in (47),
is non-negative (an order-two Taylor expansion of f(z) = log(1 + z) around
the point zero implies that for any z > —1 there exists y with y < |z| such
that log(1 +z) = 2z — 32/2, so log(1 + ) —x = —y?/2 < 0).

We make an order-two Taylor expansion of f.(x; M) (as a function of
x), noting the first two derivatives of f, are fl(x; M) = df.(z; M)/dz =
log(z/M) and f!(x; M) := d® f.(x; M) /da? = 1/x; and f.(M; M) = fL(M; M)
0. Thus, there exists a & = &, in [0, €,] such that

1 2

1 4 . _
oM + €y M) = — *<M+£,M>ei—72(M+§)en~

43

- (15)
Proof of (44). The upper bound in (46) will be bounded from above by

bounding from below the term [2(M + £)]~'e2 in (48); we have two cases.

Case 1: €, < M. Since € € [0, ¢,], we have ¢ < M and [2(M +&)]7! > 1/(4M);
now (46) implies A,, < exp{—rne2/(4M)}; equating this to n~"7 and taking
logarithms gives —r, €2 /(4M) = —nlog(n), i.e., €, = 2n'/2M/?(logn/r,)"/?,
as assumed. This completes the proof of (44) for the case €, < M.

a b

Case 2: €, > M. We have [2(M + ¢&)]71e2 (Z) [2(M +¢€,)] " te2 (2) M /4, where
step (a) follows from £ < ¢, and step (b) follows from the fact that the left
side is an increasing function of €, in the set [M, 00), and hence its minimum
occurs at €, = M and equals M /4. Thus, (46) gives A, < exp{—r,M/4} <
exp{—nP M /4}. For constant c to satisfy exp{—n®M/4} < cn=" for all n > 1,
it suffices to set log(c) = sup,,»; g(n), where g(n) = nlog(n) — Mn?/4. By
an elementary calculation, the maximum of g occurs at n = (4n/M3)'/# and
equals (n/3){log[4n/(M[3)] —1}; this gives ¢ = [4n/(MBe)]"/?. This completes
the proof of (44) for the case €, > M. The proof of (44) is now complete.

Proof of (45). If €, > M, then the result holds trivially (since A\ — &, <
M — ¢, <0). Now assume €, < M. An expansion of f. to the left of M shows
that there exists a £ = &, in [0, €,] such that

o= _ 1 " £ ~2 1 ~2
Since € € [0, €,], we have 0 < M —¢ < M, and thus [2(M —¢)]71&2 > 2M]~1&2.
Now (47) implies B,, < exp{—r,&2/(2M)}, and (45) follows. (J

REMARK 5. Besbes and Zeevi (2009) (Online Companion, Lemma 2) work
with the same Taylor expansion as ours, and claim (in their unnumbered dis-
play immediately following their (C-4)):

M+ €, 1
_log( ]\—26 )(M—l—en)—i—en:—wwefl for some & € [0,€,]. (50)
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We claim that the correct expansion of f.(M + €,; M) is (48) and not (50).
The expansion (50) leads them to the result that for alln > 1, A, < Cgzn™",
where Cpy = max{1, [4nM/(Be)]"/P} (after we correct a different minor
error in Cpz according to their argument). Comparing Cpz to our constant
Co = max{1,Cp}, where Cp = [41/(MBe)]"/?, we see that the difference is
an inversion of the factor M"/P. As M moves away from unity, Czz gives
increasingly misleading bounds: for n = 2 and § = 1/2, Cpyz is incorrectly
inflated by a factor M® when M > 1 is large enough; and it is incorrectly
deflated by the same factor when M < 1 is small enough. Besbes and Zeevi
(2012) (Online Companion, Lemma 1) appears to suffer from the same error
in the Taylor expansion.

Lemma 2 Let {I,} be a sequence of independent Bernoulli(q) random vari-
ables with ¢ € (0,1), and let S, := Y i I; for all n > 1. Then for any
nonnegative sequence {€,} and for alln > 1,

Ay = P(Sn —ng > ney) < exp (- 2ne?) (51)

and
By, :=P(S, —ng < —ne,) < exp (— 2ne). (52)

Proof of Lemma 2. Following Dembo and Zeitouni (1998, Section 2.2), we
claim that for any nonnegative sequence {e, },

P(S, —ng > ne,) < exp (—nfu(q+ €niq)) (53)

and
P(S, —ng < —ne,) < exp (—nfulqg—€n;q)) (54)

where fi(z;q) := zlog(z/q) + (1 — x)log[(1 — z)/(1 — q)] for = € [0,1], and
fx(x;q) = oo otherwise, is the Fenchel-Legendre transform of the cumulant
generating function of the Bernoulli(g) law (Dembo and Zeitouni 1998, Exer-
cise 2.2.23). Specifically, Dembo and Zeitouni (1998, Equations (2.2.12) and
(2.2.13)) for the case of a sum of n independent Bernoulli(g) variables imply
(53) and (54), respectively.

We make two order-two Taylor expansions of f.(z;q) (as a function of z),
one to the right of ¢ and another to the left of ¢, noting the first two derivatives
of f. on [0,1] are f1(z; ) = df.(v:q)/dz = log(z/q) — logl(1—z)/(1—g)] and
fl(xq) = A2 fiu(w; ) /da® = 1/[z(1 - 2)); and f.(g;q) = fi(g;q) = 0. Thus,
there exists & = &, with £ € [0, €,] such that

1 1 (a)
flgteniq) = s fla £ &g = & > 26,  (55)
2 2(q £ — (¢ £9)]
where cases “+” and “—” result from expansion to the right and left, respec-

tively (the & need not be the same); and step (a) results from maximizing the
denominator: supy<,<; (1 — x) = 1/4. Now (51) follows from (53), and (52)
follows from (54). O
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8.1 Auxiliary Results and their Proofs
8.1.1 Results Supporting Section 4

The following result is used in Proposition 3.

Lemma 3 Let X,, be a Poisson random variable with mean n, and let Z,, =
(Xn/n)il]l[xn>0]. Then lim,,_, E[Z,] = 1.

Proof of Lemma 3. Limits are meant as n — oo, unless otherwise indicated.
We write a,, ~ b, to indicate lim,,_,~ @, /b, = 1. We claim that

Z, =1 asn— o0 (56)

where “=-” denotes convergence in distribution, and “1” denotes the degen-
erate distribution whose mass is concentrated at 1. We also claim that the
sequence Z1, Zs, ... is uniformly integrable, i.e.,
lim SupE[Zn]IHZn|Za]] =0. (57)
a— 00 n
The desired conclusion follows from these two results and by “passing the
integration to the limit”, e.g., Theorem 25.12 of Billingsley (1986).

Result (56) is a consequence of two facts: (a) X,,/n = 1; and (b) Z,, =
f(Xn/n), where the function f(z) := zl[;5¢) is continuous. Condition (a)
above holds because X, /n equals in distribution the average of n independent
mean-one Poisson random variables, which converges to one almost surely and
thus converges to one in distribution. Then, the Continuous Mapping Theorem
(Billingsley 1986, Theorem 29.2) implies that Z,, = f(X,/n) = f(1) =1, and
the proof of (56) is complete.

To verify the condition (57), we will bound from above the left side for
a > 1. We have

[n/a]
(a) - (b) 1
ElZn1)z,50] = ElnX; 'Lix,<n/a)) = 0 Z p(k;n)%v (58)
k=1

where step (a) uses the event equality {|Z,| > a} = {X,, < n/a}, and step
(b) uses that X, is Poisson(n) so that p(k;n) := P(X,, = k) = e‘"%. The
number of summands in the right side of (58) is no more than n/a; and each
summand is at most

ma (k,n) < e "l ch ( a )1/2 Un () (59)
X ’ > 7 e\ —T/— =!Unp
1§kgn/ap [n/a]! V2mn

where ¢, := (a¥/®e~1*1/%) and where the “~" relation results by approxi-
mating [n/a]! by Stirling’s approximation, n! ~ v/27n(n/e)™. Thus

0< lim supE[Z,1(z, 4] < lim supngun(a) =0,

a—00 p

where the last step follows from lim, . co = ¢~ ! < 1. This proves (57) and
completes the proof. [J
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8.1.2 Results Supporting Section 5.1

In this section, the conditions of Theorem 1 are in force; the sequence {u, } is
the one that is motivated in (37), and thus u, =< (logn/n)/4.

To bound errors related to the revenue rate per arrival, r(p) := pq(p), we
first record a Lipschitz property of r(-). For any p;, p2, we have |p1q(p1) —

p2q(p2)| = [p1(a(p1) — q(p2)) + q(p2)(p1 — p2)|- The latter difference is at most

PM|p1 —p2|+q|p1 —p2|, where g := sup,, q(p) = q(p). Thus r(-) is M ,-Lipschitz
with M, =g+ Mp.

Lemma 4 (Revenue Rate at Estimated Unconstrained Price.) Let n > 2.
Let a be any small positive number. Let R, = R,(a) = 4max{cy,co}, where
c1 = M,(p —p)/2 and co = co(a) = pn'/2(20)"Y%(1 + «). Let Cy and
n = n(a) be as in Proposition 5 (b). For alln > n,

P{r(p*) —r(@") = Ryun} < G (60)

nn—1

Proof of Lemma 4. For each n, put ¢(p;) = Gin and 7(p;) = piG,n for
i =1,...,Kyn, and let j be the interval (p;j_1,p;] that contains p*; here we
drop the dependence on n to avoid cluttering the notation. We have

(") = (")
= ") = @)+ () = 7)) + [Flpy) = 70"+ F5) = r(5")]
<NM(5-pra ! +2 max [r(p) = 7(p), (61)

where the inequality bounds each of the four terms in square brackets as
follows: the first term is at most M ,.(p — p)x, ! because r(-) is M .-Lipschitz
and [p" —p;| < (p—p)k,, ' by definition of j; the third term is non-positive by
the definition of p* = arg max 1<j<r, Piq(pi); each of the second and fourth
term is at most maxi<;<s, |7(pi) — 7(pi)|. The proof of (61) is complete. By
the definition of R,, we have for all n > 1, R,u,/4 > ciu, > cik,' and
Ryt /4 > cou, > ca(logn/ry,)/?, hence

R, u,
2

1 1/2
o8 n) . (62)

T'n

—cm;l > co (
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Now, for all n > n,

P{r(p*) —r(0") > Ruun}

(a) ~ Ruun —1
< e 1r(p) — 7| > 5 - vt}

(b) _ . R,u, 1
<P {plgg{gn la(pi) — q(ps)| > —5 Gy }

Sor i) —a001> 5 (52 )}

- ogn 1/2
< Z]P’{Iq(pi) —q(p)| > 022072 (1 + a) (lg) }
i=1

—
INe

Ci
"
&

nn—1

(e)
< K

(63)

where (a) follows from (61); in step (b) we observed that maxi<i<x, |r(pi) —
7(pi)| = maxi<i<e, Pilq(pi) —q(ps)| < Pmaxi<i<s, |q(pi) —q(pi)|; step (c) uses
a union bound; step (d) uses 7~ (Ryun/2 — c1k;') > p Lea(logn/ry)t/? =
nY2(20)"2(1 + a)(logn/r,)'/?, where the inequality is shown in (62); and
step (e) follows from (28); it is for this step that we required n > n. O

Next, we will bound errors related to p©, the optimal constrained price. To
this end, we need Lipschitz constants for the demand function A(p) := Agq(p)
and its “inverse” defined below. By Assumption 2,

|A(p1; A) — A(p2; N)| = Ma(p1) —q(p2)| < AM|p1 —pa| for any p1, p2, A (64)

Viewing A(p; \) as a function of p, where A € D, we call it M 4-Lipschitz,
where M 4 := AM is the supremum across A € D of the Lipschitz constants of
the functions {Aq(p) : A € D}; this simply means that (64) holds. Moreover,
by Assumption 2, we have infy ,, p,ep |[A(p1) — A(p2)| > AM |p1 — p2|; putting
M , := AM, the latter is the same as

[A(p1) = Ap2)|
M,

|p1 - pZ‘ < for any pi, p2, A (65)

Noting that an arrival rate A and a demand rate z determine the price uniquely
as ¢~1(z/A), we can view the set of mappings {z — ¢ 1(2/\) : A € D}, as
being MZl-LipSChitZ; this simply means that (65) holds.

Lemma 5 (Estimated Constrained Price and Associated Revenue Rate per
Arrival.) Let n > 2. Let a be any small positive number. Let K. = K.(a) =
4M 7 max{er, ea(a)}, where ¢1 == M 4(p—p)/2 and c2 == c2(a) = (nA/2)/2(1+
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a). Let M, := G+ Mp. Let Cy and n = n(«) be as in Proposition 5 (b). For
alln > n,

. C
P{‘ﬁc _pc| > Kcun} S nTil’ (66)

-~ c AT C
P{[r(@°) —r(®°)| > M, Keun} < nnil- (67)

Proof of Lemma 5. For each n, put /T(pl) = Xn@n fori=1,...,kp, and
let j be the interval (p;_1,p;] that contains p°; here we drop the dependence
on n to avoid cluttering the notation. We have

A7) = AW°)| < AE) = A@)| + |1A@°) - A@°)], (68)
and observe that the first term on the right is at most maxj<;<y, |/T(pz) -
A(p;)|. For the second term we have

A6 — 465 2 ;) - 465
< 1Apy) — Alp))] + |A(py) — AG°)]

~

© _
< max [A(p;) — A(p)| + Ma(®—p)r;, ", (69)

1<i<kn

o~

where (a) follows from the definition of p® = arg min <, |A(p;) — /T| =
arg min j ;<. Alp:) — A(p©)]; (b) follows from the triangle inequality; and (c)
holds because A(-) is M 4-Lipschitz (seen in (64)) and |p; — p°| < (P — p)k, '
Combining (68) and (69) we have

[A(P") — A@p°)] <2 max |A(p:) — Aps)| + Maw-p) (70)

1<i<tn Kn

For all n > n,,

(@)
PLP® = p[ > Keun} < P{A(PY) — A(p°)| > My Kcun}

(b) ~ M, K.up 1
< p{ e () - )| > 228t eyt
(¢) R i 12 IOgﬂ 1/2
< Po max [A(p) = A(pi)| > (nA/2)/7(1 +a)
SU1SKn T'n

(@) & ~ - logn ) /2
¢ P{| (0 = Al > (/221 + ) (£

i=1 "
©

Koy —
2r

Cy

(71)
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where (a) follows from (65) (Lipschitz property of the class of mappings from
demand rate to price); (b) follows from (70); step (c) is valid because K u,, /2—
cikyt > (nh/2)Y2(1 4 a)(logn/r,)'/? (the construction of K. ensures the
analog of (62) holds, with K. replacing R,,, and ¢y, ¢z defined here); step (d)
uses a union bound; and step (e) follows from (27) in Proposition 5; it is for
this step that we required that n > n. This completes the proof of (66). Since
r(-) is M .-Lipschitz, (67) follows from (66). [J

Lemma 6 (Revenue Rate at the Estimated Price.) Let o« be any small positive
number. Put R = max{?Ru,Mgch,QMrKc}, where K. = K.(«) is defined
in Lemma 5. Let Cy and n = n(a) be as in Proposition 5 (b). For all n > n,

2C4

E[r(p)] > r(p”) — Ru,, — T(pD)nnq'

(72)

Proof of Lemma 6. The proof is given in abbreviated form, and parallels
Besbes and Zeevi (2009, Electronic Companion, Lemma 4, Step 3).

Case 1. Here we assume that p* > p°, hence p” = p*. We argue as Besbes
and Zeevi (2009, Electronic Companion, Lemma 4, Step 3, Case 1). The only
difference in the argument is that u,, in (24) and revenue rate per arrival r(-)
replace their w,, and revenue rate per time r(-), respectively. By their argument

and the conditions R > R, and R > M;lKC, we obtain
y

nn—1

P{r(p”) —7(p) > Ruy} <

Case 2. Here we assume that p* > p°, hence p” = p°. We obtain
P{r(p"”) — r(p) > Run}

(%) P{r(p") — r(p") > Ruyu,/2} +P{r(p°) —r(p°) > M, K. u,/2}
(2) 204

= nnfl

where step (a) is argued exactly as Besbes and Zeevi (2009, Electronic Com-
panion, Lemma 4, Step 3, Case 2), using the fact that R/2 > max{R,, M, K_};
step (b) follows from (60) and (67).

Let G := {w : r(p?) — 7(p) < Ru,}. Putting together the results for cases
1 and 2, we have shown that

P(G°) < jnc_l (73)
Thus
Blr(p)] = r(0”) ~ Er(”) ~ r(DIGIBG) ~ Bl (p°) — (PG P(E)
S rP)  Bun —r(p”) 2 (74)

where step (a) bounds the second conditional term via (73) and the fact that
r(p?) —r(p) <r(pP) < oco. O
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Lemma 7 (Bound on the Sales During Learning.) Let n > 2. Let M := \q
and K1, = M + 2n*/2M'/2. Take Cy = Co(M) as in Lemma 1. For alln > 1,

C
P(Y, ") > Kpnu,) < nnfl. (75)

Proof of Lemma 7. Put r, := n7r,/k,. We have ]P’(YTEL) > Kpnu,) =
]P’(Ef:’”'l N(Agirn) > KLnun) < Zf;l ]P’(N()\qirn) > KLnun/Hn), which im-

plies that
Ny,
Kn
Kn

= Z]P’{N AGitn) = Aqitn > —Mry, + K, ”“”}

n

P(Y,\P) > Kpnu,) < ZP{N(/\qirn) — AGiTn > —AGiTh

i=1

() & 1/2q51/2 (logn 1z

< Z]P’{N AQiTn) — AgiTn > 27 12\t () }
Tn

(c)

2, G0

< e

(d)

< Co '

o |

In the above, step (a) uses that Ag; < M for all 4; in step (b) we use that

—Mr,+Kg, [n = 7Mnj+KL Mn

Kn Kn Kn Kn

1/2
> T (KM, > 2012 M2 (logn) 7

Tn

where the first inequality follows from w, > 7, and the second inequality
follows from wu,, > (logn/r,)'/?, n/k, > 1, and the definition of K ; step (c)
follows directly from Lemma 1; and step (d) uses that &, = o(n). O

Lemma 8 (Bound on the Expected Overshoot Above Capacity when FIR does
not Force a Run-Out.) Put A(p) = Aq(P) and suppose that A(p) < x/T. Let
u, =< (logn/n)* and u, > c,(logn/n)* for all n and for some ¢, > 0.
Take n = n(«) as in Proposition 5. For some positive constant Kg and for all
n>n,

E[(Y,, —nz)"] < Kgnu,. (76)
Proof of Lemma 8. Let K4 = MK, , where K, is defined in Lemma
5. Put Ky, = o + KaT sup, > up, which is finite since u, — 0. Let Ky =

2max{Ky, KT + 2c;1171/2Kr1n/26_1/4}, where K7, is defined in Lemma 7.
Since Y, = Y,SL) + Y,SP), we have, for all n > 1,

P(Y, —nz > Kynuy,) < P(Y,®) > Kynu,/2) +P(Y,'") > nz + Kynu, /2)
(a) CO
<

-+ PV > na + Kynu, /2), (77)
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where step (a) follows from Lemma 7 and the fact that Ky /2 > K, and
where Cj is defined in Lemma 1 (to which Lemma 7 refers).

To bound the last term in (77), we first note that p¢—p = p—max(p*, p¢) <
p¢ —p°. By Lemma 5, for the constant C defined there, we have for all n > n,
P(p¢ —p > Keuy,) < P(p¢ — p¢ > Keuy,) < Cin~ "L From this and the fact
that A() is monotone decreasing and M 4-Lipschitz, we obtain, for all n > n,

&

nn—1’

P{A(D) > A(p°) + Kaup } <P{p° —p > Keuy} < (78)

The above says that with probability at least 1 — C;n =1, the mean of YAP),
that is, A(p)n(T — 7,,), is no more than nv,,, where

on = (A@) + Kaun) (T = 7)) < & + KT, (79)

where the inequality uses that A(p®) < /T, which follows from the assumption
A(P) < z/T (in more detail, since A() is continuous and decreasing, either
A(p) > z/T, in which case A(p) = =/T, or A(p) < x/T, in which case A(p) <
x/T). Now, for all n > n, a

P{Y, ") > nz + Kynu,/2}
< P{N(A@)n(T — 7)) > nx + Kynu, /2, A(p) < A(p®) + Kpun }
+P{A(p) > A(p°) + K sun }

(a)
< P{N((A(p°) + Kaun)n(T = 1)) > na + Kynuy /2} + nfil
= P{N(nv,) — nv, > nz + Kynu,/2 — nv, } + %

@ Co Ch

— qpn=1l 0 opn=17

(80)

where step (a) uses (78); and step (b) follows by applying Lemma 1 with r,, = n
and M = K, (since sup,, v, < © + KAT sup,, u, = K,,); this application is
valid because the deviation threshold satisfies

(b1)
nx + Kynu,/2 — nv, > nx+ Kynu,/2 —n(x + KxTuy,)

(b2) 1 /4 (53)
2 (Ky /2 - KaT)ne, ( "g”> > 20 2K (nlogn)'/?,
n

where (b1) follows from (79); (b2) follows from u, > c,(logn/n)'/*; and
(b3) uses that Ky /2 — KT > 2c;nY/2K?sup, -, (logn/n)t/4 and that
sup,,~; (logn/n) = e~1. This completes the proof of (80). Combining (77) and
(80), we have, for all n > n,

2Cy + Cy

P(Y,, — nz > Kynu,) < .

(81)



Pricing with Unknown Arrival Rate and Price Sensitivity 37

Now, for all n > n,

E[(Yn - nl”)ﬂ = E[(Yn - nx)+]]‘[yn—nz§Kynun]] + ]E[()/n - TLCC)+]]-[Y,L—nx>Kynun]]
< Kynu, + E[Yn]l[Yn>nz+Kynun]]

(a) — 2
< Kynu, + (nz + Kynu, + 1+ m\ﬁ)%
n

S KE‘TLUn,
where K is a suitable finite constant. In the above, step (a) uses the fact that
for a Poisson random variable Z with mean p, E[Z]|Z > a] < a+ 14y (Besbes
and Zeevi 2009, Online Companion, Lemma 5). [

Lemma 9 (Simultaneous Bounds on the Sale Quantity and Price when FIR
Forces a Run-Out). Suppose that A(p) > x/T. Let u, =< (logn/n)'/* and
Uy > cy(logn/n)/* for all n and for some ¢, > 0. Let Ky = max{Kp,, A(p)+
2c;, 'Y 2[A(p)T)Y/2e~ Y4}, where K, is defined in Lemma 7. Define A = {w :
min{Y,EP), (nx — Y7§L))+} > nx — Kynuy, |p — pP| < K.nu,}, where K, is
defined in Lemma 5. Take n = n(«a) as in Proposition 5. Then for all n > n,

_ 2Cy + Cy

nn—1

P(A) > 1 , (82)

where Cy is defined in Lemma 1 and Cy is defined in Proposition 5 (b).

Proof of Lemma 9. Note that A = {Yn(P) > nz — Kynu,, Yn(L) <
Kynuy, |p—pP| < K.nu,}. For all n > n,

(a) _ _
P(A°) < P(Y, D) < nx — Kynu,) +P(Y, P > Kynu,) + P(|p — pP| < Kenuy,)

®) i
< PYD) < nx — Kynuy,) + Co
nn—1

(e) ~ C C
(P) _ 0 .
< P(Y,") < nzx— Kynu,) + v + pyEE

+P([p° - p| < Kenun)

(83)

where (a) follows from a union bound; in step (b), the second term was
bounded by using Lemma 7 and the third term was bounded by using that
pP = p¢ = p and therefore |[p — p”| = | max(p°,p*) — p¢| < |p¢ — p°|; and in
step (¢) we used Lemma 5 to bound the third term. For the remaining term
we have, for all n > 1,

P{Y,"") < nz — Kynu,}

= P{N(A(ﬁ)n(T — Tn)) <nr— f(ynun}

BN (AB(T = 7)) < nAF)T — Ky nun)

= P{N((A@)UT —72)) = nAP)(T — 70) < —n(Kyun — A(D)70)}

(84)
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where step (a) uses the fact that A(p) > A(p) and z < A(p)T; and step (b)
follows by applying Lemma 1 with r, = n and M = A(p)T; this application
is valid because the deviation threshold satisfies

n(Kyu, — AP)m) (bzl) (Ky — A(p))nuy,

®2) 1 1/4 (b3)
> (Ky — A(p))ney, ( Oi ”) > 2 AF)T]H?(nlog n)Y/2,

where (bl) follows from u, > 7,; (b2) follows from u, > c,(logn/n)'/*;
and (b3) uses Ky — A(p) > 2¢;'n*/?[AB)T)"/?sup,,~, (logn/n)*/* and that
sup,,~; (logn/n) = e~1. This completes the proof of (84); inserting the latter
into (83) completes the proof. [J
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