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Abstract
We study a pricing problem with finite inventory and semi-parametric demand uncer-
tainty. Demand is a price-dependent Poisson process whose mean is the product of
buyers’ arrival rate, which is a constant λ, and buyers’ purchase probability q(p),
where p is the price. The seller observes arrivals and sales, and knows neither λ nor
q. Based on a non-parametric maximum-likelihood estimator of (λ, q), we construct
an estimator of mean demand and show that as the system size and number of prices
grow, it is asymptotically more efficient than the maximum likelihood estimator based
only on sale data. Based on this estimator, we develop a pricing algorithm paralleling
(Besbes and Zeevi in Oper Res 57:1407–1420, 2009) and study its performance in an
asymptotic regime similar to theirs: the initial inventory and the arrival rate grow pro-
portionally to a scale parametern. Ifq and its inverse function areLipschitz continuous,
then the worst-case regret is shown to be O((log n/n)1/4). A secondmodel considered
is the one in Besbes and Zeevi (2009, Section 4.2), where no arrivals are involved;
we modify their algorithm and improve the worst-case regret to O((log n/n)1/4). In
each setting, the regret order is the best known, and is obtained by refining their proof
methods. We also prove an �(n−1/2) lower bound on the regret. Numerical compar-
isons to state-of-the-art alternatives indicate the effectiveness of our arrivals-based
approach.
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1 Introduction

1.1 Background

Pricing and revenue management are important problems in many industries. Talluri
and vanRyzin (2005) discuss instances of this problem that range overmany industries,
including fashion and retail, air travel, hospitality, and leisure. Early literature assumes
the relationship between themean demand and the price is known to the seller (Gallego
and van Ryzin 1994). In practice, decision makers seldom have such knowledge.
Pricing and demand learning is a stream of literature concerned with pricing under
incomplete knowledge of the demand process, which is estimated. A standard model
is that whenever the price is set at p, the demand is a Poisson process of rate �(p),
which is called the demand function (Besbes and Zeevi 2009, 2012;Wang et al. 2014).

Estimation methods are broadly divided into parametric and non-parametric. The
former assume a certain functional form and carry mis-specification risk, while the
lattermakeweaker assumptions and tend to alleviate this risk (Besbes andZeevi 2009).
For the single-product problem with finite inventory, prominent works are Besbes and
Zeevi (2009) and Wang et al. (2014). In Besbes and Zeevi (2009), a learning phase
during which certain test prices are applied allows estimating the demand function via
the realized demand (sales). This estimate leads to a “good” fixed-price policy that is
applied during the remainder of the selling horizon, the so-called exploitation phase.
Performance is measured by the worst-case regret across a class of demand functions,
where regret is the expected revenue loss relative to that achievable by acting optimally
under full knowledge of the demand function.

The following setting is the main focus of this paper. Potential buyers arrive accord-
ing to a Poisson process of rate λ, regardless of the price on offer; and whenever the
price is p, an arriving customer purchases with probability q(p) independently of
everything else. The pair (λ, q) are unknown to the seller.

1.2 Overview of themain contributions

A high-level summary of our contribution is as follows:

1. Starting from an arrival rate λ and a purchase probability (function) q(·)we define
a class of demand models such that whenever the price is p, the demand is a
Poisson process of rate λq(p), which matches the concept of demand function in
the standard model. The essential deviation from the standard model is that we
postulate the existence of the scaling factor λ that is unknown in addition to q(·).

2. Assuming that both arrivals and sales are observed, we construct a maximum-
likelihood estimator (MLE) of (λ, q), where q = (q(p1), . . . , q(pκ )) for arbitrary
(distinct) prices p1, . . . , pκ . The product of estimated λ and q is our estima-
tor of mean demand, and it is shown to be asymptotically more efficient than
the maximum-likelihood estimator based only on sale data (sales-only estimator)
(Besbes and Zeevi 2009; Wang et al. 2014; Lei et al. 2014). This development
focuses primarily on mean-square estimation efficiency.
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3. We work with a model class L whose essential requirement is that q(·) and its
inverse are Lipschitz continuous. Besbes and Zeevi (2009, Section 4.2) work with
a class LBZ where the demand function and its inverse are Lipschitz continuous.
Wang et al. (2014) and Lei et al. (2014) work with a smaller class, LW , where
the demand function is twice differentiable. Class L is smaller than LBZ , but
it includes models outside LW . Allowing an inventory constraint, we develop a
policy based on the estimated λ and q, and a counterpart based on the sales-only
estimator. These policies’ worst-case regret is shown to be O(log n/n)1/4, against
L (Theorem 1) and against LBZ (Theorem 2), respectively. The convergence rate
improves slightly that in Besbes and Zeevi (2009), and is the best known in each
case.

4. We provide a lower bound on regret (Theorem 3). It is closely related to existing
ones under the standard model (i.e., without an arrival rate); specifically, Wang
et al. (2014, Theorem 2), and to a lesser extent Besbes and Zeevi (2012, Theorem
2) (discrete finite price set) and Broder and Rusmevichientong (2012, Theorem
3.1) (discrete-time pricing). Our bound does not immediately follow from any of
them because their set of admissible policies does not contain ours, due to our
allowing the price to depend on the arrival history (in addition to the sale history).

The remainder of this paper Section 1.3 reviews related literature. Section 2 intro-
duces our model and formulates the problem. Section 3 presents the estimation and
pricing methods. Section 4 analyzes the estimation problem. Section 5 analyzes the
(worst-case) regret. Section 5.3 contains the lower bound on regret. Section 6 compares
numerically against alternative methods. Section 8 contains selected proofs.

1.3 Related literature

The literature on pricing strategies is vast. We refer to Bitran and Caldentey (2003)
and Talluri and van Ryzin (2005) for comprehensive reviews, and to den Boer (2015)
for a more recent survey. Gallego and van Ryzin (1994) characterizes optimal pricing
policies and develops an upper bound to the optimal revenue via a full-information
deterministic relaxation, all under the assumption that the demand function is known.
More recent literature addresses pricing problems with unknown demand function. In
many works, the demand process is known up to a finite number of parameters. In Lin
(2006), Araman andCaldentey (2009), and Farias andVanRoy (2010), there is a single
unknown parameter representing the market size. den Boer and Keskin (2019) allow
a discontinuous demand function, but they restrict it parametrically in each continuity
interval.

Well-studied is the case of a single product and no inventory constraint (Broder and
Rusmevichientong 2012; den Boer and Zwart 2014; Besbes and Zeevi 2015). Besbes
and Zeevi (2015) show that pricing algorithms based on a mis-specified linear model
of the demand function can perform well, under conditions. Keskin and Zeevi (2014)
provide general sufficient conditions for a pricing policy to achieve asymptotic regret
optimality when the demand function is linear. The coordination of price and inventory
decisions is a related area; Chen et al. (2019) employ non-parametric demand learning
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methods that bear resemblance to ours, but notable restrictions are that unsatisfied
demand is backlogged and the replenishment lead time is negligible.

Closely related to our work are Besbes and Zeevi (2009),Wang et al. (2014) and Lei
et al. (2014). Besbes and Zeevi (2009, Section 4.2) define a model class LBZ where
the demand function and its inverse are Lipschitz continuous, and achieve worst-case
regret O(n−1/4(log n)1/2) against this class; they also prove an�(n−1/2) lower bound
on the regret of any admissible policy. Wang et al. (2014) and Lei et al. (2014) work
with a smaller classes in which the demand function is smooth (twice-differentiable
everywhere).Wang et al. (2014) iterate over shrinking price intervals, all of which con-
tain the optimal static price under the deterministic relaxation (Gallego and van Ryzin
1994); the time spent learning and the number of test prices are controlled carefully
as functions of the iteration count; the worst-case regret is O(n−1/2(log n)4.5). Lei
et al. (2014) develop iterative algorithms that also control carefully key parameters;
their worst-case regret is O(n−1/2). These methods first estimate the order relation
between the unconstrained maximizer of the revenue-rate function and the clearance
price (Gallego and van Ryzin 1994); this guides the onward choice of parameters.
By excluding a non-differentiable demand function, these methods are not directly
comparable to ours.

This paper has some connections to the continuum-armed bandit literature [e.g.,
Auer et al. (2002), Kleinberg (2004), Cope (2009)], but a clear distinguishing feature
here is the presence of an inventory constraint. A recent work that addresses the
inventory constraint is Babaioff et al. (2015).

2 Problem formulation and background

Model of Demand and Basic Assumptions Amonopolist sells a single product. The
selling horizon (period) is T > 0; after this point sales are discontinued, and any
unsold products have no value. Product demand is as follows:

Assumption 1 (a) Customers arrive according to a Poisson process of rate λ. When-
ever the price is p, an arriving customer purchases with probability q(p) ∈ [0, 1]
independently of everything else.

(b) The seller observes arrivals and sales throughout the selling period.

The primitives (λ, q) are unknown to the seller. The set of feasible prices is [p, p]∪
p∞, where 0 < p < p < ∞, and p∞ > 0 is a price that “turns off” demand,
i.e., q(p∞) = 0. The purchase probability function q(p) is assumed to be non-
increasing and have an inverse. The revenue rate function per arrival, r(p) := pq(p),
is assumed to be concave. Clearly, the demand process generated through any pair
(λ, q) is Poisson, with rate function �(p) = λq(p) whenever the price is p. Gallego
and van Ryzin (1994), Besbes and Zeevi (2009), Wang et al. (2014) impose similar
assumptions directly on the Poisson rate function (which is then called a regular
demand function); we impose them on q instead. In analyzing the regret, we need:

Assumption 2 For some finite positive constants λ, λ, M , M , ma :

(a) The arrival rate is bounded away from zero and infinity: λ ≤ λ ≤ λ.
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(b) The purchase probability and its inverse are both Lipschitz functions. Specifically,
for all p, p′ ∈ [p, p], we have M |p − p′| ≤ |q(p) − q(p′)| ≤ M|p − p′|.

(c) The revenue rate can be made positive: max{pq(p) : p ∈ [p, p]} ≥ ma .

LetL = L(λ, λ, M, M,m) be the class of demandmodels satisfyingAssumptions 1(a)
and 2. Any bounded demand function � is representable in L as a pair (�,�(·)/�)
for any � ≥ supp �(p); moreover, smoothness properties of q and �q are identical.

Besbes and Zeevi (2009) (Assumption 1) define a model class LBZ requiring Lip-
schitz continuity of the demand function and its inverse; Wang et al. (2014) define a
smaller class LW requiring, additionally, twice-differentiability.

ClassL is strictly smaller thanLBZ , and obeys no inclusion relation toLW . Indeed,
if (λ, q) and (λ′, q ′) satisfy λ′ �= λ and λ′q ′(p) = λq(p) for all p, and if these pairs
cover the selling horizon non-trivially (each applying a positive time period), then
they induce the time-invariant demand function λq(p); this model is not representable
in L, and yet is representable in LBZ and LW under suitable conditions on q, q ′.
On the other hand, a pair (λ, q) such that q is Lipschitz but not twice-differentiable
everywhere induces a model with demand function λq that is inside L and outside
LW , since λq inherits the non-differentiability of q.

Estimation problem In studying estimation efficiency, we need:

Assumption 3 No stock out occurs during the estimation (learning) phase.

This assumption, which is commonly made (Broder and Rusmevichientong 2012;
den Boer and Zwart 2014; Besbes and Zeevi 2015; Keskin and Zeevi 2014), can
probably be relaxed, or by-passed by showing that a stock-out is a rare event. On this
point, in Lemma 1 we show that the probability of a stock-out vanishes fast when the
system size increases and the fraction of time spent learning vanishes sufficiently fast.
Since the efficiency analysis is lengthy even under Assumption 3, we do not attempt
to relax this assumption.

The efficiency of the MLE-based demand estimator relative to the sales-only coun-
terpart (based on the same learning time and number of test prices) is studied on a
sequence of estimation problems indexed by n, with arrival rate λn , learning time
unity, and number of test prices κn . We assume:

rn := λn

κn
→ ∞, κnrne

−rn → 0 as n → ∞. (1)

That is, rn , the mean per-price-arrival-count, or less formally the “information per
price” grows large. The second condition is aimed at keeping the bias (present in the
MLE only) negligible relative to variance. In studying the efficiency in estimating the
function q(·) (not merely q(p) for fixed p) we need:

Assumption 4 The purchase-probability q(·) is continuous almost everywhere on
[p, p]; that is, the set of its discontinuities has measure zero.

Pricing problem Let x > 0 denote the level of inventory at the start of the selling
period. Let (pt : 0 ≤ t ≤ T ) denote the price process (assumed to take values in
[p, p] ∪ p∞ and to have right-continuous paths with left limits). Let N = (N (t) :
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t ≥ 0) be a unit-rate Poisson process. Then, the cumulative demand up to time t
has the representation Dt = N

(
λ
∫ t
0 q(ps)ds

)
by Assumption 1(a). A process (pt )

is said to be non-anticipating if its value at any time t is only allowed to depend
on past prices {pu : u ∈ [0, t)}, past arrival counts {Au : u ∈ [0, t)}, and past
demand counts {Du : u ∈ [0, t)}. In other words, the process (pt ) is adapted to
the filtration Ft = σ(pπ

u , Au, Du : 0 ≤ u < t). A pricing policy π is a method of
constructing a non-anticipating price process,whichwe then denote (pπ

t : 0 ≤ t ≤ T ).
In particular, Dπ

t := N
(
λ
∫ t
0 q(pπ

s )ds
)
is the cumulative demand up to time t under

the policy π . A policy π is said to be admissible if the induced price process pπ

is non-anticipating and
∫ T
0 dDπ

s ≤ x with probability 1. Let P denote the set of
admissible policies. The seller’s problem is: choose π ∈ P to maximize the mean
revenue Jπ = Jπ (x, T |λ, q) := Eλ,q

∫ T
0 pπ

s dD
π
s , where Eλ,q denotes expectation

with respect to (λ, q).
Full-information deterministic relaxationHere the stochastic elements above are

replaced by their means, giving rise to the problem

J D = J D(x, T |λ, q) := sup
∫ T

0
λr(ps)ds

s.t.
∫ T

0
λq(ps)ds ≤ x, ps ∈ [p, p] ∪ p∞ for all s. (2)

In line with the literature, our motivation is that the optimal solution to (2) per-
forms well for the original (stochastic) problem (Gallego and van Ryzin 1994,
Theorem 3). The solution prices at pD := max{pu, pc} (while inventory is posi-
tive), where pu := arg max p{pq(p)} is the unconstrained maximizer; and pc :=
arg min p |λq(p) − x/T | is the clearance price. We define the regret of π as
1− Jπ/J D; this is conservative, since supπ∈P Jπ (x, T |λ, q) ≤ J D(x, T |λ, q) (Gal-
lego and van Ryzin 1994, [Theorem 1]).

Large-system performance analysis In the pricing problem, given a primitive
(λ, q) ∈ L, we consider a sequence of problems indexed by n = 1, 2, . . . so that in
the n-th problem, the initial inventory is xn = nx ; the arrival rate is λn = nλ; the
purchase-probability function q and the horizon T are fixed (same for all n). Our main
objective is to study the regret as n → ∞.

Model discussion Our assumption of existence of a price-independent arrival rate
is quite restrictive; in e-commerce, for example, many customers are channeled to
a store through a price-comparison service, and thus one would expect the arrival
rate to increase as the price is lowered. On the other hand, it may be reasonable for
some physical (brick and mortar) stores when customers exhibit loyalty, that is, the
preference to shop at a particular store (e.g., a local grocery or convenience store). In
this case, customers might arrive at a fairly constant rate regardless of price, and, once
in store, their purchase decision could be price-dependent. For example, a convenience
store selling a fixed inventory of beer (having a “use by” or “best by” date rendering
the product worthless beyond that date), could postulate a price-independent arrival
rate.
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Our formulation deviates from Besbes and Zeevi (2009), Besbes and Zeevi (2012),
Broder and Rusmevichientong (2012), Wang et al. (2014) in that the seller has addi-
tional information, namely the arrival counts. Consequently, correspondingly different
is our notion of non-anticipation, and by consequence the notion of admissibility.
Specifically, their definition of admissibility requires that the price process (pt ) is
adapted to the filtration σ(pπ

u , Du : 0 ≤ u < t), which contains less information than
our Ft . The pricing policy we propose naturally involves the past arrival counts and
therefore does not belong to the set of admissible policies they consider.

Notation Statements “x := y” and “y =: x” define x through y. When A is a
set, 1[A] is the indicator function; Ac is the complement; and |A| is the cardinality.
When x is real, 
x� is its floor, �x
 is its ceiling, and x+ is max{0, x}. When an and
bn are nonnegative sequences, an = O(bn) means that an/bn is bounded from above;
an = �(bn) means that an/bn is bounded from below; an � bn means that an/bn
is bounded from both above and below; an ∼ bn means that limn→∞ an/bn = 1;
and an = o(bn) means that lim supn→∞ an/bn = 0. When X is a random variable,
“X ∼ ·” indicates the probability law of X , and “X ⇒ ·” denotes convergence in
distribution.

3 Estimation and pricingmethods

The estimation method in the presence of an arrival rate is as follows:
Method A (τ, κ) Let p1, . . . , pκ be any κ distinct prices in [p, p], i.e., pi �= p j

whenever i �= j . Set the learning interval as [0, τ ], and set 	 = τ/κ . For i =
1, 2, . . . , κ , during the time interval [(i − 1)	, i	], price at pi , and let Ai and Si be
the count of arrivals and sales, respectively. If a stock-out occurs before time τ , then
price at p∞ and stop sales. Put

λ̂ =
∑κ

i=1 Ai

τ
, q̂(pi ) = Si

Ai
1[Ai>0], i = 1, . . . , κ, (3)

as a joint estimator of λ and the q(pi ).
The pricing policy in the presence of an arrival rate is as follows.

Algorithm AS or π(τ, κ).

Step 1 Initialization:

(a) Let the learning time be τ and the number of test prices be κ . Put 	 = τ/κ .
(b) Divide [p, p] into κ equally spaced intervals. Let {pi , i = 1, . . . , κ} be the mid-

points (or left-endpoints or right-endpoints) of these intervals.

Step 2 Learning:

(a) For i = 1, . . . , κ , and provided inventory is positive, apply price pi during the
time interval [ti−1, ti ], where ti := i	. If inventory is zero at any time, apply p∞
until time T and stop.
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(b) Let Ai and Si be the number of arrivals and sales, respectively, during [ti−1, ti ).
Compute

λ̂ =
∑κ

i=1 Ai

τ
, q̂(pi ) := Si

Ai
1[Ai>0] (4)

Step 3 Compute p̂u = arg max 1≤i≤κ {pi q̂(pi )}; p̂c = arg min 1≤i≤κ |̂λq̂(pi ) − x/T |;
and set p̂ = max{ p̂u, p̂c}.
Step 4 Pricing: On the interval (τ, T ] apply price p̂ as long as inventory is positive. If
inventory is zero at any time, apply p∞ until time T and stop.

4 Results on estimation

4.1 Estimator of arrival rate and purchase probabilities

From Assumptions 1 and 3 there follow two properties:

P1. A1, . . . , Aκ are independent Poisson(λτ/κ) random variables.
P2. Given A := (A1, A2, . . . , Aκ ), the conditional law of (S1, S2, . . . Sκ) consists of

the independent marginals Si ∼ Binomial(Ai , q(pi )) for all i .

The following result is elementary and thus given without proof.

Proposition 1 Let Assumptions 1 and 3 hold. Let Ai and Si be the count of arrivals and
sales, respectively, when price pi applies during Method A(τ, κ). Then, a maximum-
likelihood estimator of

(
λ, q(p1), . . . , q(pκ )

)
is given in (3).

4.2 Estimator of mean demand

Herewe estimate the demand vector (λq(p1), . . . , λq(pκ )) for finite κ . The invariance
property of Maximum Likelihood Estimation (Bickel and Doksum 1977, Section 4.5)
gives the following.

Proposition 2 For any p1, . . . , pκ , the vector
(
λ̂q̂(p1), . . . , λ̂q̂(pκ)

)
, with λ̂ and

q̂(p1), . . . , q̂(pκ) as in (3), is a maximum likelihood estimator of
(
λq(p1), . . . ,

λq(pκ)
)
.

We also refer to this estimator as the arrivals-and-sales estimator.

4.2.1 Bias andmean square error

For any price p, put f (p) := q(p)[1 − q(p)] and define the relative bias B :=
E[̂λq̂(p)]/(λq(p)) − 1 (shown below to not depend on p).

Proposition 3 Let Assumptions 1 and 3 hold. Denote the i-th price applied during
Method A(τ, κ) as p = pi ; denote Ai the associated arrival count, and let A =
(A1, . . . , Aκ ). Define σ1(p) := E[Var (̂λq̂(p)|A)] and σ2(p) := E[E2 [̂λq̂(p)|A]] −
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λ2q2(p)(1+ 2B). Let r := λτ/κ; and, with Xr ∼ Poisson(r), let ρ := P(Xr > 0) =
1 − e−r and h(r) := E[X−1

r 1[Xr>0]]. Then

B = −κ − 1

κ
e−r , E[(̂λq̂(p) − λq(p))2] = σ1(p) + σ2(p), (5)

σ1(p) = f (p)τ−2
{[
r2(κ − 1)2 + r(κ − 1)

]
h(r) + 2ρr(κ − 1) + r

}
,

(6)

E[E2 [̂λq̂(p)|A]] = q2(p)τ−2
{[
r2(κ − 1)2 + r(κ − 1)

]
ρ + 2r2(κ − 1) + r2 + r

}
.

(7)

Remark 1 For any estimator θ we have MSE(θ) = E[Var(θ |A)] + Var(E[θ |A]) +
Bias2(θ), where Bias and MSE denote bias and mean square error, respectively. Thus
σ2(p) = Var(E[̂λq̂(p)|A]) + [λq(p)B]2 ≥ 0; this term aggregates variance (of the
conditional expectation) and bias squared.

Proof of Proposition 3 Proof of (5). Based on Properties P1 and P2 (Sect. 4.1), we
have:

E[̂λq̂(pi )|A] = λ̂E[̂q(pi )|A] = λ̂q(pi )1[Ai>0], (8)

Var (̂λq̂(pi )|A) = λ̂2Var(q̂(pi )|A)

= λ̂2A−1
i q(pi )(1 − q(pi ))1[Ai>0], (9)

E[̂λq̂(pi )] = E
[
E[̂λq̂(pi )|A]] (a)= q(pi )τ

−1
E

⎡

⎣Ai1[Ai>0] +
∑

1≤ j≤κ: j �=i

A j1[Ai>0]

⎤

⎦

(b)= q(pi )τ
−1 [r + (κ − 1)rρ]

= λq(pi )

[
1 − (κ − 1)(1 − ρ)

κ

]

where (8) and (9) follow immediately from Property P2; step (a) uses (8) and that λ̂ =
τ−1∑

i Ai ; step (b) uses: the independence of the Ai ;P(Ai > 0) = ρ; andE[Ai ] = r .
This proves the left part of (5). For the right part of (5), put X = λ̂q̂(pi ), μ = λq(pi ),
and B = (E[X ]−μ)/μ; now use the identities E[(X −μ)2] = E[X2]−μ2(1+ 2B);
E[X2] = E[E[X2|A]]; and E[X2|A] = Var(X |A) + E

2[X |A].
Proof of (6). In view of (9), we have σ1(p) = q(pi )(1− q(pi ))E[̂λ2A−1

i 1[Ai>0]].
It suffices to verify that E[̂λ2A−1

i 1[Ai>0]] equals τ−2 times the expression in curly
braces in (6); this follows immediately by writing λ̂2 = τ−2[(∑ j : j �=i A j )

2 +
2Ai

∑
j : j �=i A j + A2

i ] and using Property P1 to resolve the expectation.

Proof of (7). Observe thatE[E2 [̂λq̂(p)|A]] = q2(p)E[̂λ21[Ai>0]] by (8). It suffices
to verify that E[̂λ21[Ai>0]] equals τ−2 times the expression in curly braces in (7); this
follows immediately by expanding λ̂2 as above and using Property P1 to resolve the
expectation. ��
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4.2.2 Asymptotic efficiency relative to the sales-only estimator

Consider the scale-n instance and any price p. Let λ̂nq̂n(p) denote the MLE of mean
demand, λnq(p), and let λ̂qn(p) denote the sales-only estimator, each based on apply-
ing any κn prices over 1/κn time units each. In particular,

λ̂qn(p) := S(p)

1/κn
,

where S(p) is the sale count during a period of length 1/κn during which price p is
applied; thus, S(p) is Poisson(rnq(p)).

To analyze theMLE, letAn = (A1,n, . . . , Aκn ,n) denote the arrival counts observed
underMethodA (1, κn), and define scale-n analogs of B, σ1(p) and σ2(p) (Proposition
3) as follows: Bn := E[̂λnq̂n(p)]/[λnq(p)] − 1; σ1,n(p) := E[Var (̂λnq̂n(p)|An)];
and σ2,n(p) := E[E2 [̂λnq̂n(p)|An]] − λ2nq

2(p)(1 + 2Bn).
The scale n will affect the mean square error through the multiplicative factor

sn := rnκ2
n = λnκn = λ2nr

−1
n . Moreover, the set I := {p : p ∈ [p, p], f (p) > 0}

will be needed.

Proposition 4 Let (1) hold and let Assumption 3 hold for all n ≥ ñ and some finite ñ.

(a) We have

lim
n→∞ sup

p∈I

∣∣∣
∣
σ1,n(p)

rnκ2
n

− f (p)

∣∣∣
∣ = 0, lim

n→∞ sup
p∈I

∣∣∣
∣
σ2,n(p)

rnκn
− q2(p)

∣∣∣
∣ = 0 (10)

(b) (Pointwise efficiency) If limn→∞ κn = ∞, then

lim
n→∞ sup

p∈I

∣∣∣∣
E[(̂λnq̂n(p) − λnq(p))2]

rnκ2
n

− f (p)

∣∣∣∣ = 0, (11)

and for any price p such that q(p) > 0,

lim
n→∞

E[(λ̂qn(p) − λnq(p))2]
E[(̂λnq̂n(p) − λnq(p))2] =

{ [1 − q(p)]−1 if q(p) < 1
∞ if q(p) = 1

(c) (Global efficiency) For each n ≥ 1, let the two estimators be employed at the
prices pi,n = p+ (i −1/2)�n, i = 1, . . . , κn, where �n := (p− p)/κn and where
limn→∞ κn = ∞. If Assumption 4 holds, then

lim
n→∞

E[∑κn
i=1(λ̂qn(pi,n) − λnq(pi,n))2]

E[∑κn
i=1(̂λnq̂n(pi,n) − λnq(pi,n))2] =

∫
I q(p)dp
∫
I f (p)dp

=: μ∞ ≥ 1. (12)
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Proof of Proposition 4 All limits are meant as n → ∞.
Proof of (a) Let p ∈ I, i.e., f (p) > 0 (hence q2(p) > 0). All terms in Proposition

3 and its proof are denoted by appending the scale n as a rightmost subscript. Observe:

σ1,n(p)

f (p)
(a)=
[
r2n (κn − 1)2 + rn(κn − 1)

]
h(rn) + 2ρnrn(κn − 1) + rn

(b)=
[
r2n (κn − 1)2 + rn(κn − 1)

]
r−1
n (1 + o(1)) + 2(1 + o(1))rn(κn − 1) + rn

(c)= rnκ
2
n (1 + o(1)). (13)

Step (a) is (6) re-arranged so that the right side does not depend on p. Step (b) uses: (i)
h(rn) = r−1

n (1+o(1)), usingLemma4and rn → ∞; and (ii)ρn = 1−e−rn = 1+o(1).
Step (c) notes that (κn − 1)/(rnκ2

n ) → 0, due to rn → ∞; this proves the first part of
(a). Now observe:

σ2,n(p)

q2(p)
(a)=
[
r2n (κn − 1)2 + rn(κn − 1)

]
ρn + 2r2n (κn − 1) + r2n + rn − λ2n(1 + 2Bn)

(b)=
[
r2nκ2

n + rnκn
]
(1 + o(1)) − λ2n(1 + 2Bn)

(c)= rnκn (1 + o(1) − 2rnκn Bn)

(d)= rnκn(1 + o(1)). (14)

Step (a) is (7) re-arranged so that the right side does not depend on p. Step (b) uses
that ρn = 1 + o(1) and collects terms (into r2nκ2

n ). Step (c) notes a cancellation (due
to rnκn = λn). Step (d) uses that Bn = −e−rn (κn − 1)/κn and thus rnκn Bn = o(1),
by the second condition in (1). This proves the second part of (a).

Proof of (b).Result (11) follows immediately frompart (a) and the assumption κn →
∞ (i.e., rnκn vanishes relative to rnκ2

n ). The sales-only estimator has E[(λ̂qn(p) −
λnq(p))2] = Var(S(p))κ2

n = q(p)rnκ2
n , and the second part of (b) follows from (11),

since f (p)/q(p) = 1 − q(p).
Proof of (c). Recall that sn = rnκ2

n = λnκn . Put fn(p) := s−1
n E[(̂λnq̂n(p) −

λnq(p))2], In := ∑κn
i=1 f (pi,n)�n , and observe:

∣
∣∑κn

i=1 fn(pi,n)�n − ∫I f (p)dp
∣
∣ ≤∣∣∑κn

i=1 fn(pi,n)�n − In
∣∣+ ∣∣In − ∫I f (p)dp

∣∣ . Each (absolute difference) term on the
right is arbitrarily small for all n sufficiently large. For the first term, this uses the
uniform convergence of fn(·) to f (·) shown in (11) (note∑κn

i=1 �n = p− p < ∞); for
the second term, this uses that f is Riemann integrable on [p, p] [recall that Riemann
integrability is equivalent to almost-everywhere continuity (Rudin 1976, Theorem
11.33 (b))] and that the partition defined by the pi,n is arbitrarily fine for n large
enough; that is, putting p0,n := p and pκn+1,n := p, we have max1≤i≤κn+1(pi,n −
pi−1,n) = �n → 0. This shows that limn→∞

∑κn
i=1 fn(pi,n)�n = ∫I f (p)dp,, i.e., the

denominator in (12) equals sn�−1
n

∫
I f (p)dp(1+o(1)). An analogous argument shows

that the enumerator equals sn�−1
n

∫
I q(p)dp(1 + o(1)), and the proof is complete. ��

Remark 2 The condition q(p) > 0 in (b) excludes only the trivial case q(p) = 0;
here, the mean square error is zero for both estimators.
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Remark 3 To explain the efficiency gain intuitively, we first decompose the MSE of
the sales-only estimator as was done for the MLE and then compare. As earlier, An =
(A1,n, . . . , Aκn ,n) is the vector of price-specific arrival counts observed under Method
A (1, κn), which are independent Poisson(rn). Without loss of generality, let A1,n and
S1,n be the arrival and sale count associated to (any) target price p. For the sales-

only σ2, observe: E[λ̂qn(p)|An] = E[S1,n/(1/κn)|An] (a)= E[S1,n/(1/κn)|A1,n] =
κn A1,nq(p), with step (a) due to the independence in Property P2. Thus (note the bias
is zero): σ S

2,n(p) := Var(E[λ̂qn(p)|An]) = Var(κn A1,nq(p)) = rnκ2
nq

2(p) which
is asymptotically κn times larger than the MLE analog, in view of (14). To see this
more intuitively, note that Assumption 1 implies that all the arrival data An contain
information about the arrival rate; the sales-only estimator’s conditional expectation
givenAn , that is κn A1,nq(p), uses just one of them (A1,n occurs over 1/κn time units,
hence the scaling up by κn); in contrast, the MLE analog, that is λ̂n1[A1,n>0]q(p),
uses all of them, and due to this its variance is asymptotically κn times smaller (the
MLE’s bias is asymptotically negligible; see (14)). For the sales-only σ1, observe:

Var(λ̂qn(p)|An)
(a)= Var(λ̂qn(p)|A1,n) = f (p)A1,nκ

2
n , with step (a) again due to

the independence in Property P2; thus σ S
1,n(p) := E[Var(λ̂qn(p)|An)] = f (p)rnκ2

n ,

and σ1,n(p)/σ S
1,n(p) ∼ 1, in view of (13); the MLE provides no benefit here as a

consequence of the conditional independence of sale counts (at distinct prices) given
An (Property P2).

Example 1 Let q(p) = a − bp, p ∈ [0, 1], where a > 0, b ≥ 0, and one requires
q(0) = a ≤ 1 and q(1) = a − b ≥ 0. By (12), μ∞ = μ∞(a, b) = 1/[1 − c −
b2/(12c)] > 1, where c = a − b/2 > 0. For example, q(p) = 1 and q(p) = 0 gives
μ∞ = 3, while q(p) = 1 and q(p) = 1/2 gives μ∞ = 9/2.

5 Results on pricing

5.1 Regret upper bound in the presence of an arrival rate (the classL)

For the n-th problem, we put Jπ
n := Jπ (nx, T |nλ, q) for the expected revenue under

policy π (Algorithm AS); and we put J D
n := J D(nx, T |nλ, q), which is easily seen

to be nJ D(x, T |λ, q). Our main result follows.

Theorem 1 Define πn := π(τn, κn) by Algorithm AS. If τn � (log(n)/n)1/4 and
κn � (n/ log(n))1/4, then for some constant K0 and some finite n,

inf
(λ,q)∈L

Jπn
n

n J D
≥ 1 − K0

(
log n

n

)1/4

f or all n ≥ n. (15)

For each n and i = 1, . . . , κn , let p = pi,n denote the i-th price applied in the
learning step of Algorithm π(τn, κn). Let An ∼ Poisson(λnτn); Ai,n ∼ Poisson(λrn),
where rn := nτn/κn ; and Si,n|Ai,n ∼ Binomial(Ai,n, q(p)) independently of Ai,n .
The estimates of λn and q(p) have the representation λ̂n = 1[An<nx

]An/(nτn) +
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1[An≥nx
]Z and q̂n(p) = I Si,n A

−1
i,n+(1− I )Z respectively, where I = 1[An<nx,Ai,n>0

]

and Z is a suitable random variable in each case.
A key intermediate result is Lemma 1 below; it bounds the probability of certain

estimation errors and is based on the following.

Condition 1 Let limn→∞ κn = ∞. Moreover assume: (a) For some cτ , cτ > 0 and
0 < ψ1 ≤ ψ2 < 1, cτn

ψ1 ≤ nτn ≤ cτnψ2 for all n ≥ 1; and (b) For some cr > 0 and
β > 0, rn := nτn/κn ≥ crn

β for all n ≥ 1.

Lemma 1 Fix η ≥ 2, define rn := nτn/κn, and let Condition 1 hold. Let δn =
δn(λ) = [

4ηλ log n/(nτn)
]1/2

; and ln = ln(λ) = rn(λ − ζn), where ζn = ζn(λ) =
[
2ηλ log(n)/rn

]1/2
. Put C = [p, p]. Then

(a) For any finite λ > 0, there exists a finite n0 = n0(λ) such that for all n ≥ n0(λ)

and for εn = εn(λ) = [η log n/(2ln)
]1/2

, we have

inf
p∈C

P{|̂λnq̂n(p) − λq(p)| ≤ δn + λεn} ≥ 1 − C1n
−η (16)

where C1 = C1(λ) := 2C0(λ) + 3, where C0(λ) = max{1, [4η/(λβe)]η/β}.
(b) Put C1 = C1(λ). For any α > 0, there exists a finite n = n(α) such that for all

n ≥ n,

sup
(λ,q)∈L

sup
p∈C

P

⎧
⎨

⎩
|̂λnq̂n(p) − λq(p)| > (1 + α)

(
λη log n

2rn

)1/2
⎫
⎬

⎭
≤ C1n

−η,

(17)

sup
(λ,q)∈L

sup
p∈C

P

{

|̂qn(p) − q(p)| > (1 + α)

(
η log n

2λrn

)1/2
}

≤ C1n
−η.

(18)

Proof of Lemma 1 First, we construct n1(λ) and n2(λ) such that

ln(λ) > 0 for all n ≥ n1(λ) and nτn(λ + δn) < nx for all n ≥ n2(λ). (19)

Since rn ≥ crn
β , the condition log(n)/nβ < c−1

r λ/(2η) implies ln > 0. Since
log(n)/nβ is maximized at x∗ = e1/β and decreases to zero for x ∈ [x∗,∞), we
may set n1(λ) := min{n : n ≥ e1/β, log(n)/nβ < c−1

r λ/(2η)} < ∞. By simple
calculation, n2(λ) := �{cτ (λ + [4ηλ/(eψ1cτ )]1/2)/x}1/(1−ψ2)
 < ∞ suffices.

Proof of (a). Let p denote the i-th price applied during learning, i.e., p = pi,n for
some i ∈ {1, . . . , κn}. Define the events

Un =
{∣∣∣∣∣

An

nτn
− λ

∣∣∣∣∣
≤ δn

}

, Ln = {Ai,n ≥ ln}, Dn =
{∣∣∣∣

Si,n
Ai,n

− q(p)

∣∣∣∣ ≤ εn

}
. (20)
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Put Gn := Un ∩ Ln ∩ Dn . Then

Gn
(a)⊆ {|̂λn−λ| ≤ δn, |̂qn(p)−q(p)| ≤ εn}

(b)⊆ {|̂λnq̂n(p)−λq(p)| ≤ δn+λεn} (21)

for n ≥ n0(λ), where n0(λ) := max{n1(λ), n2(λ)} < ∞. Step (a) above uses that
An ≤ nτn(λ + δn) < nx and ln > 0, which exclude a stock-out and a no-arrivals
event, respectively; hence on the set Gn we have |̂λn −λ| = |An/(nτn)−λ| ≤ δn and
|̂qn(p) − q(p)| = |Si,n A−1

i,n − q(p)| ≤ εn . Step (b) above uses the triangle inequality
|̂λnq̂n(p) − λq(p)| ≤ |̂λn − λ| + λ|̂qn(p) − q(p)|. Now:

P(Gn
c) ≤ P(Un

c) + P(Ln
c) + P(Ln ∩ Dn

c), (22)

P(Un
c) ≤ 2C0(λ)n−η and P(Ln

c) ≤ n−η for n ≥ 1, (23)

P(Ln ∩ Dn
c) = P

{
Ai,n ≥ ln,

∣∣∣∣
Si,n
Ai,n

− q(p)

∣∣∣∣ > εn

}
(a)≤ 2e−2lnε2n

= 2n−η for n ≥ n1(λ) (24)

where (23) uses Lemma 2 (Poisson large-deviation bound); and step (a) in (24) uses
Lemma 3 (Hoeffding’s inequality; the number of summands is Ai,n ≥ max(ln, 1)
since Ai,n ≥ ln > 0 is integer-valued). From (22), (23), and (24), we obtain P(Gn

c) ≤
(2C0(λ) + 3)n−η, and note that the same n0(λ) in (21) suffices for any p ∈ C. Thus,
part (a) is proven.

Proof of (b). Letting θn := sup(λ,q)∈L [δn(λ) + λεn(λ)], (16) gives

sup
(λ,q)∈L

sup
p∈C

P
{|̂λnq̂n(p) − λq(p)| > θn

} ≤ sup
(λ,q)∈L

C1(λ)n−η = C1(λ)n−η

for all n ≥ m, where m := max{supλ∈L n1(λ), supλ∈L n2(λ)} = max{n1(λ), n2(λ)}.
Now

θn√
log n

= sup
(λ,q)∈L

⎡

⎣2

√
ηλ

nτn
+
√

ηλ

2rn

(

1 −
√
2η log n

λrn

)−1/2⎤

⎦ (a)∼
√

λη

2rn

where step (a) uses that the first term vanishes relative to the second one (since
nτn/rn = kn → ∞); and that (1 − √(2η log n)/(λrn))−1/2 ∼ 1. This proves (17).
Result (18) follows by an analogous argument. ��
Proof of Theorem 1 By construction, there exist positive cτ , cτ , cκ , cκ such that
cτ (log n/n)1/4 ≤ τn ≤ cτ (log n/n)1/4 and cκ(n/ log n)1/4 ≤ κn ≤ cκ(n/ log n)1/4

for all n ≥ 1. Condition 1 is in force: in part (a) use ψ1 = 3/4 and ψ2 > 3/4; in part
(b) use β = 1/2. Thus, Lemma 1 is in force. Let n = n(α) be as in Lemma 1(b). The
proof now parallels that of Besbes and Zeevi (2009, Proposition 1), but the regret will
be bounded by

un := max

{

τn, κ
−1
n ,

(
log n

rn

)1/2
}

, (25)
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whose order O((log n/n)1/4) is smaller than theirs. Lemma 1 replaces Besbes and
Zeevi (2009, Online Companion, Lemma 2). Put X (L)

n = λnτnκ
−1
n
∑κn

i=1 q(pi ) and

X (P)
n = λq( p̂)n(T−τn); putY

(L)
n = N (X (L)

n ),Y (P)
n = N (X (P)

n ), andYn = N (X (L)
n +

X (P)
n ) (Y (L)

n , Y (P)
n , and Yn are the would-be sales during learning, pricing, and overall,

respectively, if inventory were infinite).
Step 1 The revenue achieved by πn is bounded below by the revenue achieved in the

pricing phase; during this phase, the number of units sold is min{Y (P)
n , (nx −Y (L)

n )+}.
It follows that

Jπn
n ≥ E[ p̂min{Y (P)

n , (nx − Y (L)
n )+}]. (26)

Step 2 We separate two cases: �(p) ≤ x/T and �(p) > x/T .
Case 1 �(p) ≤ x/T . We will show that Jπn

n is at least nJ D minus an O(un) term.
Since min{Y (P)

n , (nx − Y (L)
n )+} ≥ Y (P)

n − (Yn − nx)+, (26) gives

Jπn
n ≥ E[ p̂Y (P)

n ]− pE[(Yn −nx)+] = E[r( p̂)]λn(T −τn)− pE[(Yn −nx)+], (27)

using p̂ ≤ p in the first step and E[ p̂Y (P)
n ] = E[r( p̂)]λn(T − τn) in the second step.

Lemma 7 shows that E[r( p̂)] ≥ r(pD) − Run − R2/nη−1 for positive constants R,
R2 and for n ≥ n. Moreover, Lemma 9 shows that E[(Yn −nx)+] ≤ KEnun for some
constant KE > 0 and all n ≥ n. Thus

Jπn
n ≥

[
λr(pD) − Run − R2

nη−1

]
n(T − τn) − pKEnun

≥ nλr(pD)T − K1n(un + τn) = nJ D − K1n(un + τn) for all n ≥ n (28)

for a constant K1. By Assumption 2(c), J D ≥ mD for some mD > 0, and thus

Jπn
n

J D
n

= Jπn
n

n J D
≥ 1 − K1

J D
(un + τn) ≥ 1 − K1

mD
(un + τn). (29)

Case 2 �(p) > x/T . Here, pD = p and J D
n = n px . Lemma 10 shows that

min{Y (P)
n , (nx − Y (L)

n )+} (a lower bound on the quantity sold during the pricing
phase) is close to nx and also p̂ is close to pD , with high probability. Specifically,
put E := {ω : min{Y (P)

n , (nx − Y (L)
n )+} ≥ nx − K̃Y nun, | p̂ − pD| ≤ Kcun} where

K̃Y and Kc are constants defined in Lemma 10. The mean revenue generated by πn is
bounded as follows:

Jπn
n ≥ E[ p̂min{Y (P)

n , (nx − Y (L)
n )+}]

(a)≥ E[(pD − Kcun)min{Y (P)
n , (nx − Y (L)

n )+}|E]P(E)

(b)≥ (pD − Kcun)(nx − K̃Y nun)

(
1 − C2

nη−1

)

≥ pDnx − K2nun for all n ≥ n,
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where both (a) and (b) follow from the definition of E and Lemma 10, and where C2
and K2 are suitable constants. We conclude that

Jπ
n

J D
n

= Jπ
n

n J D
≥ 1 − K2

px
un for all n ≥ n. (30)

Step 3 The result (15) now follows from (29) and (30). ��
Remark 4 We now provide nearly-explicit formulae for n1(λ) and n2(λ) in (19). In
view of Theorem 1, it is optimal to set τn = cτ (log n/n)1/4 and κn ∼ cκ(n/ log n)1/4

for some positive cτ , cκ ; for simplicity, we now ignore the integrality of κn and
equate it to cκ(n/ log n)1/4. Substituting into δn and rn , it is easy to see that
n1(λ) := min{n : n ≥ e, log n/n < [(cκ/cτ )

−1λ/(2η)]2} suffices. Moreover, since
δn is decreasing for n ≥ e, it is easy to see that n2(λ) := min{n : n ≥ e, (log n/n) <

x/[cτ (λ + δn)]4} suffices; a simpler but weaker formula for n2(λ) replaces δn by
supn δn = (4ηλc−1

τ e−3/4)1/2.

5.2 Besbes and Zeevi (2009) revisited: an improved convergence rate

We consider the setting in Besbes and Zeevi (2009). The demand function �(p) is
postulated directly, without reference to arrivals.

Theorem 2 Let LBZ be the demand class defined in Besbes and Zeevi (2009, Section
4.2), and let π ′

n be given by Algorithm π(τ, κ) in Section 4.1 there, with τ = τn and
κ = κn. If τn � (log(n)/n)1/4 and κn � (n/ log(n))1/4, then there exists a constant
K ′
0 such that for all n ≥ 1,

inf
�(·)∈LBZ

J
π ′
n

n

n J D
≥ 1 − K ′

0

(
log n

n

)1/4

.

Proof of Theorem 2 In analogy to Theorem 1, probability bounds are obtained for
events defined via deviations proportional to a un defined as in (25) and such that
un � (log n/n)1/4. For example, to bound the error | p̂c − pc|, let the demand function
�(·) satisfy M ′

�|p1 − p2| ≤ |�(p1) − �(p2)| ≤ M
′
�|p1 − p2| for all p1, p2 in

the price domain [p, p]; put M = supp �(p) and K ′
c = 4M ′−1

� max{c1, c2}, where:
c1 := M

′
�(p − p)/2 and c2 := 2(ηM)1/2, for some η ≥ 2. The proof proceeds as in

Lemma 6; in step (e) the Poisson large-deviation bound (Lemma 2) replaces (18); we
obtain, for all n ≥ 1, P{| p̂c − pc| > K ′

cun} ≤ C0(M)n−η+1. We proceed as follows:
the constants multiplying un to form the deviation events in Lemmata 5, 6, 7, 8, 9, and
10 are increased, when necessary, by a factor no larger than 2

√
2; these deviations are

no less than a positive constant times (log n/rn)1/2 (by (log n/rn)1/2 � (log n/n)1/4);
then, by Lemma 2, these deviation events have probability at most a constant times
n−η+1 for all n. The proof then closely parallels that of Theorem 1. ��

In comparison to Besbes and Zeevi (2009, Proposition 1), τn is larger by a factor
(log n)1/4; κn is smaller by a factor (log n)−1/4; and the order of the regret upper bound
is smaller, by the factor (log n)−1/4.
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5.3 Lower bound on regret

Example 2 Let p = 1/2, p = 3/2, x = 2 and T = 1. For any λ0 ∈ [λ, λ], define M
as the family of demand models as in Assumption 1 with arrival rate λ0 and purchase
probability q(p) = q(p; z) = 1/2 + p(1 − z), where z is a parameter taking values
in Z = [z, z] = [1/3, 2/3].

For any z, r(p; z) := pq(p; z) is the revenue rate per arrival, and pD(z) is the
optimal price under z. For any z and any admissible policy π (π ∈ P), the regret for
the scale-n problem is abbreviated as Rπ

n (z) := 1 − Jπ
n (z)/(nJ D(z)), where Jπ

n (z)
and nJ D(z) are the scale-n expected revenue under π , and that of the deterministic
relaxation, respectively, under z.

Theorem 3 (Lower-bound example)

(a) The family M is contained in L, i.e., M ⊆ L.
(b) Let the n-th problem instance have arrival rate λn = nλ0 for all n ≥ 1. For any

admissible pricing policy π and all n ≥ 1,

sup
z∈Z

Rπ
n (z) ≥ K3√

n

where K3 is a positive constant that may depend on λ0.

Proof of Theorem 3 The proof of (a) is a simple verification that we omit, so we now
focus on proving (b). Consider an arbitrary admissible policy π and let ψt denote the
associated price at time t . By its admissibility, the stochastic process {ψt } is adapted
to Ft . Let z1, z2 be any elements of Z and let t ∈ [0, T ]. For i = 1, 2, let Pπ(t)

zi
denote the probability measure induced by π up to time t (i.e., describing the process
{(As, Ds) : 0 ≤ s ≤ t}) when z = zi and E

π(t)
zi denote the corresponding expectation.

Putting

Qi,t := q(ψt ; zi ), ξt := Q1,t/Q2,t , It := 1 − ξt + ξt log ξt

(these are stochastic processes adapted to Ft ), the Kullback-Leibler (KL) divergence
between the two measures Pπ(t)

z1 and P
π(t)
z2 is

K(Pπ(t)
z1 ,Pπ(t)

z2 ) = E
π(t)
z1

[

log
dPπ(t)

z1

dPπ(t)
z2

]

= E
π(t)
z1

[
−
∫ t

0
nλ0(Q1,s − Q2,s)ds +

∫ t

0
log ξsdDs

]

= nλ0E
π(t)
z1

[∫ t

0
Q2,s (1 − ξs + ξs log ξs) ds

]
(31)

where dPπ(t)
z1 /dPπ(t)

z2 is the Radon–Nikodym derivative of Pπ(t)
z1 with respect to Pπ(t)

z2 ,

and the last step uses that Eπ(t)
z1

∫ t
0 log ξsdDs = E

π(t)
z1

∫ t
0 (log ξs)nλ0Q1,sds; see Bré-

maud (1981) for background. When t = T , we write Pπ
z instead of Pπ(t)

z .
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Claim 1. For z1 = 1/2, any z2 ∈ Z , and any policy π ∈ P we have

K(Pπ
z1 ,P

π
z2) ≤ 9nλ0(z1 − z2)

2Rπ
n (z1). (32)

Proof of Claim 1. Observe that ξs = 1 + ε, where ε = εs = (z1 − z2)(1 − ψs)Q
−1
2,s .

Note that Is = 1 − (1 + ε) + (1 + ε) log(1 + ε) ≤ −ε + (1 + ε)ε = ε2, where
the inequality uses q := inf z inf p q(p; z) = 1/6; |ε| ≤ |z1 − z2| · |1 − ψs | · q−1 ≤
(1/6) · (1/2) · 6 = 1/2; and log(1 + ε) ≤ ε. Now we bound the integrand in (31):
Q2,s Is ≤ Q2,sε

2 = Q−1
2,s(z1 − z2)2(1 − ψs)

2 ≤ q−1(z1 − z2)2(1 − ψs)
2; thus

K(Pπ
z1 ,P

π
z2) ≤ nλ0q

−1(z1 − z2)
2
E

π
z1

[∫ T

0
(1 − ψs)

2ds

]
. (33)

Moreover, when z equals z1 = 1/2, the optimal price is pD := pD(z1) = 1, and

Rπ
n (z1)

(a)≥ E
π
z1

∫ T
0 nλ0[r(pD; z1) − r(ψs; z1)]ds
Eπ
z1

∫ T
0 nλ0r(pD; z1)ds

(b)≥ 2

3
E

π
z1

[∫ T

0
(1 − ψs)

2ds

]
;

step (a) follows from the fact that the inventory constraint is being relaxed; step
(b) uses that r(pD; z) − r(p; z) ≥ (1/2)K (pD − p)2 for any p and z, where
K := inf z inf p |r ′′(p; z)| = 2/3; this follows from Taylor’s theorem with order-two
Lagrange remainder (since r ′(pD; z) = 0 and r ′′(p; z) = −2z for all p and z, with
primesdenotingderivativeswith respect to p); step (b) alsonotes that r(pD; z1) = 1/2.
This and (33) prove Claim 1, which is analogous to Wang et al. (2014, Lemma 9). The
proof onwards is fully analogous to that ofWang et al. (2014, Lemma 10 and Theorem
2) and omitted. ��
Remark 5 The KL divergence in (31) involves a change of intensity for a Poisson
process. Below we motivate this formula; note that Besbes and Zeevi (2012), Wang
et al. (2014) start with a KL formula claimed from Brémaud (1981), but no specific
reference is given. The fixed arrival rate λ0 implies that the Radon-Nikodym derivative
(likelihood ratio) with respect to the arrival element in the sample space, {As : 0 ≤
s ≤ t}, contributes nothing (the log-likelihood ratio is zero). The change of intensity
is thus captured through the paths of the demand process only, {Ds : 0 ≤ s ≤ t}, with
q(·; z1) and q(·; z2) appearing exactly as in these works, while the intensity of the
base measure Pπ(t)

z1 brings in λ0 as multiplier.

Remark 6 In Claim 1, the constant 9 improves the constant of Wang et al. (2014,
Lemma 9), which is 24.

Theorem 3 is parallel to Wang et al. (2014, Theorem 2) and Broder and Rus-
mevichientong (2012, Theorem 3.1); it replaces their demand function by our purchase
probability function; their insights carry over here. Specifically, the functions q inM
take the same value at the price p = 1: q(1; z) = 1/2 for all z ∈ Z . Such a price is
called an uninformative price (Broder and Rusmevichientong 2012). Whenever one
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prices at this uninformative price, there is no gain in information about q. In order
to learn the function q (i.e., the parameter z) and determine the optimal price, pD ,
one must (for at least some time) set a price other than the uninformative one; on the
other hand, when pD and the uninformative price coincide (i.e., z equals z1 = 1/2),
pricing anywhere other than at pD incurs revenue losses. This tension is reflected
in the lower bound, which reflects lower bounds on error probabilities in hypothesis
testing (Tsybakov 2009) that are fully analogous to those in Besbes and Zeevi (2012),
Broder and Rusmevichientong (2012), Wang et al. (2014).

6 Numerical results

We compare policies that we index as follows: (1) our policy (Algorithm AS) (AS);
(2) the policy in Besbes and Zeevi (2009, Section 4.1) (BZ); two variants of the policy
inWang et al. (2014, Section 7.1) with respect to the price interval that initializes their
step 3: (3) the interval from step 2 (W0); (4) the interval [p, p] (W1); and (5) policy
BZ modified as in Theorem 2 (BZ-M).

In constructing test prices, the midpoints of relevant intervals are used; these work
slightly better then left- or right-endpoints.

We revisit Wang et al. (2014, Table 1) so that regret numbers are comparable.
Thus, we fix the initial inventory x = 20; selling horizon T = 1; and feasible price
set [p, p] = [0.1, 10]. A pair (λ, q) (in L) and a corresponding demand function
�(p) = λq(p) are drawn randomly from one of two families:

– Linear: �(p) = λ − α p and q(p) = 1 − (α/λ)p, with λ ∈ [20, 30], α ∈ [2, 10].
– Exponential: �(p) = λe−β p and q(p) = e−β p, with λ ∈ [40, 80], β ∈ [1/3, 1].

The probability law is uniform for each parameter; to match their law in the linear
case, uniform sampling applies to λ and α, not to α/λ.

Existing theory describes an optimal growth function for each policy parameter
(phase duration, number of test prices, etc.); for example, for AS, τn � f (n) where
f (n) = (log n/n)1/4. Let c > 0 be any scaling (constant), fixed for all n. Note
f (cn) ∼ c−1/4 f (n) as n → ∞; for each parameter, a similar asymptotic applies, so
that its growth order (and that of the regret) is unchanged when n is replaced by cn.
We find that (mean-regret) sensitivity to c is substantial. Therefore, each parameter
is set as f (ci xn), where ci > 0 is a variable; xn = 20n is the n-th initial inventory;
and f is the optimal growth function for that parameter; see our theorems and Besbes
and Zeevi (2009), Wang et al. (2014). Figure 1 shows the (estimated mean) regret as
ci varies relative to a reference value c∗

i found as the near-minimizer of the regret for
n = 106 (for that case). We use: c∗

1 = c∗
5 = 100; c∗

2 = 5; c∗
3 = c∗

4 = 1 (for linear
family); and c∗

3 = c∗
4 = 1/4 (for exponential family). We see that suboptimal scaling

affects policies W0 and W1 more than the others. The result (c∗
1/c

∗
2)

−1/4 ≈ 47%
indicates a learning-time ratio (policies AS to BZ) reduction relative to c1 = c2, and
is consistent with policy AS having higher estimation efficiency. Table 1 shows the
near-optimal regret (ci = c∗

i ); standard errors are < 2% for policies W0 and W1 for
n = 106; and < 1% otherwise.
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Fig. 1 Sensitivity of the mean regret to the scaling constant ci for each policy i (linear and exponential
family in top and bottom row, respectively) for n ∈ {102, 104, 106} (from left to right). The x-axis is the
ratio ci /c

∗
i ; it spans [1/10, 10] in logarithmic scale

Table 1 Comparison of mean regret of the policies with near-optimal scaling (ci = c∗i )

Family n AS BZ W0 W1 BZ-M

Linear 102 0.1287 0.1423 0.2028 0.2030 0.1381

103 0.0745 0.0828 0.1020 0.1021 0.0828

104 0.0413 0.0466 0.0355 0.0354 0.0465

105 0.0225 0.0260 0.0115 0.0116 0.0258

106 0.0124 0.0142 0.0045 0.0045 0.0142

Exponential 102 0.1614 0.1549 0.1439 0.1525 0.1639

103 0.0803 0.0831 0.1499 0.1479 0.0831

104 0.0423 0.0446 0.0478 0.0406 0.0446

105 0.0230 0.0243 0.0257 0.0178 0.0244

106 0.0130 0.0137 0.0123 0.0061 0.0135
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Our main findings follow. Policies W0 and W1 are superior for large systems, but
they risk being inferior if the scaling is far from the optimal one (Fig. 1); we think the
latter can happen in practice. With all policies scaled near-optimally, there is a system-
size threshold n in [103, 104] such that policyAS is (modestly) superior below it; as the
size increases above this threshold, policy W1 dominates by a margin that increases.
This point persists when we focus on policy W0 and take its performance fromWang
et al. (2014) (they use near-optimal scaling). Policies BZ and BZ-M perform nearly
identically, despite the latter’s theoretically faster convergence.

7 Conclusion

Our estimation results apply independently of a pricing problem: start with a Poisson
process N of rate λ on some finite interval and a probability q(p), where p is a
control. Setting the control at p thins the process N (each event of N is accepted with
probability q(p)), inducing a thinned process N ′. We showed that the empirical rate
of N multiplied by the empirical thinning probabilities is a more efficient estimator of
the rate of N ′, that is λq(p), than the empirical rate of N ′. In the pricing problem, our
regret upper bound improves that in Besbes and Zeevi (2009) by the factor (log n)−1/4

and is the result of refined bounding. Numerically, our method performs better than
Wang et al. (2014) for systems that are not very large, and dominates Besbes and
Zeevi (2009) regardless of system size; its superior estimation efficiency is behind
this. In future work, the arrivals-and-sales estimator could replace the sales-only one
commonly used in the literature; indeed, experiencewith the demand families in Sect. 6
suggests that this reduces the mean regret of the algorithm of Wang et al. (2014) (but
not the convergence rate).

8 Proofs

Lemma 2 Let N (·) be a unit-rate Poisson process. Suppose that λ ∈ [0, M] and
rn ≥ nβ with β > 0. Let η > 0, εn = 2η1/2M1/2(log n/rn)1/2, and CP =
CP (M) := [4η/(Mβe)]η/β . Define the events An := {N (λrn) − λrn ≥ rnεn} and
Bn := {N (λrn) − λrn < −rn ε̃n}, where ε̃n := εn/

√
2. Then for all n ≥ 1,

P(An) ≤
{
n−η if εn < M
CPn−η if εn ≥ M

(34)

so P(An) ≤ C0n−η for all n ≥ 1, where C0 := max{1,CP }. Moreover,

P(Bn) ≤ n−η for all n ≥ 1. (35)

Remark 7 Lemma 2 parallels Besbes and Zeevi (2009, Online Companion, Lemma 2)
but corrects their constant leading the n−η term.
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Proof of Lemma 2 For any nonnegative sequence {εn},

P

{
N (λrn)

rn
− λ ≥ εn

}
(a)≤ e−rn f∗(λ+εn;λ)

(b)≤ e−rn f∗(M+εn;M), (36)

P

{
N (λrn)

rn
− λ < −εn

}
(a)≤ e−rn f∗(λ−εn;λ)

(b)≤ e−rn f∗(M−εn;M), (37)

where f∗(x; λ) := x log(x/λ)+λ−x , with x ≥ 0, is the Fenchel-Legendre transform
of the logarithmic moment-generating function of the Poisson(λ) law. Step (a) is
Cramér’s Theorem (Dembo and Zeitouni 1998, Theorem 2.2.3); step (b) notes the
exponent’s derivative in λ, i.e., −rn[log(1 + x/λ) − x/λ], with x = εn in (36) and
with x = −εn in (37), is non-negative. Now a second-order Taylor expansion of
f∗(x; M) in x is used; note f ′∗(x; M) := d f∗(x; M)/dx = log(x/M); f ′′∗ (x; M) :=
d2 f∗(x; M)/dx2 = 1/x ; and f∗(M; M) = f ′∗(M; M) = 0. Thus, for some ξ = ξn in
[0, εn], f∗(M + εn; M) = [2(M + ξ)]−1ε2n .

Proof of (34). Case 1: εn < M . Since ξ ∈ [0, εn], we have ξ < M and [2(M +
ξ)]−1 > 1/(4M); now (36) impliesP(An) ≤ e−rnε2n/(4M); equating this ton−η and tak-
ing logarithms gives −rnε2n/(4M) = −η log(n), i.e., εn = 2η1/2M1/2(log n/rn)1/2,
as assumed. This proves (34) for εn < M .

Case 2: εn ≥ M . We have [2(M + ξ)]−1ε2n ≥ [2(M + εn)]−1ε2n ≥ M/4, where the
first step uses that ξ ≤ εn and the second step uses that the left side is minimized at
εn = M . Thus, (36) gives P(An) ≤ e−rnM/4 ≤ e−nβM/4. A simple calculation shows
that e−nβM/4 ≤ cn−η for c = [4η/(Mβe)]η/β and all n ≥ 1. This proves (34) for
εn ≥ M .

Proof of (35). For ε̃n ≥ M , the result holds trivially. For ε̃n < M , a Taylor
expansion gives f∗(M − ε̃n; M) = [2(M − ξ)]−1ε̃2n for some ξ = ξn in [0, ε̃n];
note 0 < M − ξ ≤ M and thus [2(M − ξ)]−1ε̃2n ≥ [2M]−1ε̃2n . Now (37) implies

P(Bn) ≤ e−rn ε̃2n/(2M), and the result follows. ��
The following result is known as Hoeffding’s inequality.

Lemma 3 Let {In}be independent Bernoulli(q)with q ∈ (0, 1), and let Sn :=∑n
i=1 Ii .

Then for any nonnegative sequence {εn} and all n ≥ 1, max
{
P
(
Sn − nq ≥

nεn
)
,P
(
Sn − nq ≤ −nεn

)} ≤ e−2nε2n .

8.1 Auxiliary results and their proofs

8.1.1 Results supporting section 4

Lemma 4 Let Xn be a Poisson random variable with mean n, and let Zn =
(Xn/n)−11[Xn>0]. Then limn→∞ E[Zn] = 1.

Proof We claim: (a) Zn ⇒ 1 as n → ∞; and (b) limα→∞ supn E[Zn1[|Zn |≥α]] = 0;
then, the result follows from Theorem 25.12 of Billingsley (1986). Condition (a)
follows from: (i) Xn/n ⇒ 1; (ii) Zn = f (Xn/n), where f (x) := x1[x>0] is con-
tinuous at x = 1; and (iii) the Continuous Mapping Theorem (Billingsley 1986,

123



A pricing problem with unknown arrival rate and price…

Theorem 29.2). To verify condition (b), note:E[Zn1[|Zn |≥α]] = E[nX−1
n 1[Xn≤n/α]] =

n
∑
n/α�

k=1 p(k; n)/k, where the first step uses that {|Zn| ≥ α} = {Xn ≤ n/α}; and
the second step puts p(k; n) := P(Xn = k) = e−nnk/k!. The sum has at most n/α

summands, and each of them is at most max1≤k≤n/α p(k, n) ≤ e−nnn/α/
n/α�! ∼
cnα(α/(2πn))1/2 =: un(α)where cα := (α1/αe−1+1/α

)
and the “∼” step usesStirling’s

formula. Thus limα→∞ supn E[Zn1[Zn≥α]] is at most limα→∞ supn n
n
α
un(α) = 0,

which follows from limα→∞ cα = e−1 < 1. ��

8.1.2 Results supporting section 5.1

In this section, the notation and conditions used in Theorem 1 are in force; in particular,
η satisfies η ≥ 2; rn = nτn/κn ; and un , defined in (25), satisfies

cu

(
log n

n

)1/4

≤ un ≤ cu

(
log n

n

)1/4

for all n ≥ 1, (38)

for some cu > 0 and cu > 0. By Assumption 2 and �(p) := λq(p),

M�|p1 − p2| ≤ |�(p1) − �(p2)| = λ|q(p1) − q(p2)| ≤ M�|p1 − p2| (39)

for any p1, p2, λ, whereM� := λM andM� := λM .Moreover, the same assumption
gives |p1q(p1) − p2q(p2)| ≤ pM|p1 − p2| + q|p1 − p2| for any p1, p2, where
q := supp q(p) = q(p). Thus r(·) is Mr -Lipschitz with Mr := q + M p.

Lemma 5 (Unconstrained maximizer) Let η ≥ 2, α > 0, and define Ru :=
4max{c1, c2}, where c1 := Mr (p − p)/2, c2 := pη1/2(2λ)−1/2(1 + α). Then

P{r(pu) − r( p̂u) ≥ Ruun} ≤ C1/nη−1 for all n ≥ n, with C1 and n as in Lemma
1(b).

Proof of Lemma 5 Recall that pi is a short form for pi,n . Put q̂(pi ) = q̂n(pi ) and
r̂(pi ) = pi q̂n(pi ), and let j be the interval (p j−1, p j ] that contains pu (we drop the
dependence on n to lighten the notation). Now

r(pu) − r( p̂u) = [r(pu) − r(p j )] + [r(p j ) − r̂(p j )]
+ [̂r(p j ) − r̂( p̂u)] + [̂r( p̂u) − r( p̂u)]

≤ Mr (p − p)κ−1
n + 2 max

1≤i≤κn
|r(pi ) − r̂(pi )|, (40)

since |r(pu) − r(p j )| ≤ Mr (p − p)κ−1
n (since r(·) is Mr -Lipschitz and |pu − p j | ≤

(p− p)κ−1
n ); r̂(p j ) − r̂( p̂u) ≤ 0 (since p̂u = arg max 1≤ j≤κn

pi q̂(pi )); and the other
two terms’ absolute value is at most max1≤i≤κn |r(pi ) − r̂(pi )|. Now

Ruun
2

− c1κ
−1
n ≥ c2

(
log n

rn

)1/2

for all n ≥ 1 (41)
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by construction of Ru . Now

P{r(pu) − r( p̂u) > Ruun}
(a)≤ P

{
p max
1≤i≤κn

|q(pi ) − q̂(pi )| >
Ruun
2

− c1κ
−1
n

}

(b)≤
κn∑

i=1

P

{
|q(pi ) − q̂(pi )| >

1

p

(
Ruun
2

− c1κ
−1
n

)}

(c)≤
κn∑

i=1

P

{

|q(pi ) − q̂(pi )| > η1/2(1 + α)

(
log n

2λrn

)1/2
}

(d)≤ C1

nη−1 for all n ≥ n, (42)

where step (a) uses (40); step (b) uses a union bound; step (c) uses (41); and step (d)
uses Lemma 1(b) and that κn = o(n). ��
Lemma 6 (Clearance price) Let η ≥ 2, α > 0, Kc := 4M−1

� max{c1, c2(α)}, where
c1 := M�(p − p)/2 and c2 := c2(α) = (ηλ/2)1/2(1 + α), and Mr := q + M p. Let
C1 and n = n(α) be as in Lemma 1(b). For all n ≥ n,

P{| p̂c − pc| > Kcun} ≤ C1

nη−1 , P{|r( p̂c) − r(pc)| > Mr Kcun} ≤ C1

nη−1 . (43)

Proof of Lemma 6 Put �̂(pi ) := λ̂nq̂n(pi ) and let j be the interval (p j−1, p j ] that
contains pc (we drop the dependence on n to lighten the notation). Now

|�( p̂c) − �(pc)| (a)≤ max
1≤i≤κn

|�̂(pi ) − �(pi )| + |�̂( p̂c) − �(pc)|, and (44)

|�̂( p̂c) − �(pc)| (b)≤ |�̂(p j ) − �(pc)| (c)≤ max
1≤i≤κn

|�̂(pi ) − �(pi )| + M�(p − p)κ−1
n ,

where (a) uses the triangle inequality; (b) uses that p̂c = arg min 1≤i≤κn
|�̂(pi ) −

x/T | = arg min 1≤i≤κn
|�̂(pi ) − �(pc)|; and (c) uses the triangle inequality; that

�(·) is M�-Lipschitz (see (39)); and that |p j − pc| ≤ (p − p)κ−1
n . Now

P{| p̂c − pc| > Kcun}
(a)≤ P{|�( p̂c) − �(pc)| > M�Kcun}
(b)≤ P

{
max

1≤i≤κn
|�̂(pi ) − �(pi )| >

M�Kcun
2

− c1κ
−1
n

}

(c)≤ P

⎧
⎨

⎩
max

1≤i≤κn
|�̂(pi ) − �(pi )| > (1 + α)

(
ηλ log n

2rn

)1/2
⎫
⎬

⎭

(d)≤
κn∑

i=1

P

⎧
⎨

⎩
|�̂(pi ) − �(pi )| > (1 + α)

(
ηλ log n

2rn

)1/2
⎫
⎬

⎭
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(e)≤ C1

nη−1 for all n ≥ n, (45)

where step (a) uses (39); step (b) uses that |�( p̂c)−�(pc)| ≤ 2max1≤i≤κn |�̂(pi )−
�(pi )|+M�(p−p)/κn,which follows from (44); step (c) uses that Kcun/2−c1κ−1

n ≥
(ηλ/2)1/2(1 + α)(log n/rn)1/2 (by construction of Kc); step (d) uses a union bound;
and step (e) uses Lemma 1(b) and that κn = o(n). The left part of (43) is proven, and
the right part follows since r(·) is Mr -Lipschitz. ��
Lemma 7 (Revenue rate) Let α > 0. Put R = max{2Ru, M

−1
r Kc, 2Mr Kc}, with Ru

as in Lemma 5 and Kc as in Lemma 6. Let C1 and n = n(α) be as in Lemma 1(b).
Then E[r( p̂)] ≥ r(pD) − Run − 2r(pD)C1/nη−1 for all n ≥ n.

Proof of Lemma 7 The proof is fully parallel to Besbes and Zeevi (2009, Electronic
Companion, Lemma 4, Step 3), except that: Lemmata 5 and 6 replace their analogous
results; our un in (25) and revenue-rate per arrival, r(p) = pq(p), replace their un
and revenue rate per time, r(·), respectively. ��
Lemma 8 (Sales during learning) For M := λq, KL = M + 2η1/2M1/2, and C0 as
in Lemma 2, we have P(Y (L)

n > KLnun) ≤ C0/nη−1 for all n ≥ 1 and η ≥ 2.

Proof of Lemma 8 We have P(Y (L)
n > KLnun) = P

(∑κn
i=1 N (λq(pi )rn) >

KLnun
) ≤∑κn

i=1 P
(
N (λq(pi )rn) > KLnun/κn

)
, and thus

P

(
Y (P)
n > KLnun

) (a)≤
κn∑

i=1

P

{
N (λq(pi )rn) − λq(pi )rn > −Mrn + KL

nun
κn

}

(b)≤
κn∑

i=1

P

{

N (λq(pi )rn) − λq(pi )rn > 2

(
ηM log n

rn

)1/2
}

(c)≤ C0

nη−1 ,

where step (a) uses that λq(pi ) ≤ M ; step (b) uses that −Mrn + KLnun/κn =
−Mnτn/κn + KLnun/κn ≥ n/κn(KL − M)un ≥ 2η1/2M1/2(log n/rn)1/2, which
uses that un ≥ max{τn, (log n/rn)1/2}; n/κn ≥ 1; and the definition of KL ; and step
(c) uses Lemma 2 and that κn = o(n). ��
Lemma 9 (Mean overshoot) Let �(p) ≤ x/T . Take n = n(α) as in Lemma 1. Then
E[(Yn − nx)+] ≤ KEnun for some positive KE and all n ≥ n.

Proof of Lemma 9 Let K� = M�Kc, where Kc is defined in Lemma 6. Put Km =
x + K�T supn≥1 un < ∞. Let KY = 2max{KL , K�T + 2c−1

u η1/2K 1/2
m e−1/4}, with

KL as in Lemma 8, cu as in (38), and η ≥ 2. Since Yn = Y (L)
n + Y (P)

n , we have

P(Yn − nx > KYnun) ≤ P(Y (L)
n > KYnun/2) + P(Y (P)

n > nx + KYnun/2)
(a)≤ C0

nη−1 + P(Y (P)
n > nx + KYnun/2) for n ≥ 1, (46)
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where step (a) uses Lemma 8 and KY /2 ≥ KL ; and C0 comes from Lemma 2. To
bound the last term in (46), we note that pc − p̂ = pc −max( p̂u, p̂c) ≤ pc − p̂c. By
Lemma 6, P(pc − p̂ > Kcun) ≤ P(pc − p̂c > Kcun) ≤ C1n−η+1 for all n ≥ n. This
and the fact that �() is decreasing and M�-Lipschitz imply

P
{
�( p̂) > �(pc) + K�un

} ≤ P{pc − p̂ > Kcun} ≤ C1

nη−1 for all n ≥ n. (47)

Outside the event above, �( p̂)n(T − τn) (the mean Y (P)
n ) is at most nvn , where

vn := [�(pc) + K�un](T − τn) ≤ x + K�Tun, (48)

where the inequality uses �(pc) ≤ x/T , which follows from �(p) ≤ x/T . Now

P{Y (P)
n > nx + KYnun/2}

≤ P
{
N
(
�( p̂)n(T − τn)

)
> nx + KYnun/2, �( p̂) ≤ �(pc) + K�un

}

+P
{
�( p̂) > �(pc) + K�un

}

(a)≤ P
{
N
(
(�(pc) + K�un)n(T − τn)

)
> nx + KYnun/2

}+ C1

nη−1

= P
{
N
(
nvn
)− nvn > nx + KYnun/2 − nvn

}+ C1

nη−1

(b)≤ C0 + C1

nη−1 (49)

for all n ≥ n, where step (a) uses (47); and step (b) applies Lemma 2 with
rn = n and M = Km ≥ supn vn ; the lemma applies because nx + KYnun/2 −
nvn

(b1)≥ nx + KYnun/2 − n(x + K�Tun)
(b2)≥ 2(ηKmn log n)1/2, where step

(b1) uses (48); and step (b2) uses that un ≥ cu(log n/n)1/4 and KY /2 − K�T ≥
2c−1

u η1/2K 1/2
m supn≥1(log n/n)1/4, by construction of KY . Now

E[(Yn − nx)+] = E[(Yn − nx)+1[Yn−nx≤KY nun ]] + E[(Yn − nx)+1[Yn−nx>KY nun ]]
≤ KYnun + E[Yn1[Yn>nx+KY nun ]]
(a)≤ KYnun + (nx + KYnun + 1 + nλq)

2C0 + C1

nη−1 ≤ KEnun,

for all n ≥ n and some constant KE , where step (a) uses that for a Poisson random
variable Z with mean μ, E[Z |Z > a] ≤ a + 1 + μ (Besbes and Zeevi 2009, Online
Companion, Lemma 5); and it also uses P(Yn − nx > KYnun) ≤ (2C0 + C1)/nη−1,

which follows from (46) and (49). ��
Lemma 10 Let �(p) > x/T . Let K̃Y = max{KL ,�(p) + 2c−1

u [η�(p)T ]1/2e−1/4},
with KL as in Lemma 8, cu as in (38), and η ≥ 2. Put A := {ω : min{Y (P)

n , (nx −
Y (L)
n )+} ≥ nx − K̃Y nun, | p̂ − pD| ≤ Kcnun}, with Kc as in Lemma 6. Then P(A) ≥

1− (2C0 +C1)/nη−1 for all n ≥ n, with C0 as in Lemma 2 and C1, n as in Lemma 1.
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Table 2 List of symbols in alphabetic order, English and Greek

Symbol Description

Ai , Ai,n Arrival count while testing at price pi , pi,n , respectively

An =∑κn
i=1 Ai,n ; aggregate arrival count during learning, n-th

instance

A, An (A1, . . . , Aκ ) and (A1,n , . . . , Aκn ,n), resp.

B, Bn Relative bias of λ̂q̂(p) and λ̂nq̂n(p), resp. (does not depend on p)

f (p) = q(p)[1 − q(p)]
h(r) E[X−1

r 1[Xr>0]], where Xr ∼ Poisson(r)

I The set of prices p such that 0 < q(p) < 1, i.e., f (p) > 0

J D Opt. revenue in (2)

J D(z) Opt. revenue in the version of (2) with parameter z (Sect. 5.3)

Jπ
n Mean revenue under policy π , n-th instance

Jπ
n (z) Mean revenue under policy π and parameter z, n-th instance

K(Pπ
z1 ,P

π
z2 ) Kullback–Leibler divergence between measures Pπ

z1 and Pπ
z2

�n = (p − p)/κn ; price granularity, n-th instance (Proposition 4)

L, LBZ The class in Assumption 2 and in Besbes and Zeevi (2009), resp.

M , M Satisfy M |p1 − p2| ≤ |q(p1) − q(p2)| ≤ M |p1 − p2| for all p1,
p2

M�, M�, Mr λM , λM , and q + M p, resp., where q = supp q(p) = q(p)

M The class used for the regret lower bound (Sect. 5.3)

ma , mD Satisfy maxp r(p) ≥ ma > 0 and J D ≥ mD > 0, resp.

N (·) A unit-rate Poisson process

P
π
z Prob. measure induced by policy π under param. z (Sect. 5.3)

P The set of admissible pricing policies

[p, p] Closed interval of feasible prices

p∞ Shut-off price: q(p∞) = 0

pu , pc , pD Prices via (2): unconstrained, constrained, and optimal price, resp.

p̂u , p̂c , p̂ Estimates of pu , pc , and pD , resp.

pi , pi,n i-th test price: original and n-th instance, resp.

q(p) Probability of purchase, conditional on arrival, when price is p

q̂(p), q̂n(p) Maximum-likelihood estimator of q(p): original and n-th instance,
resp.

q(p; z) The version of q(p) under parameter z

r = λτ/κ; mean arrival count at any test price (Sect. 4.2.1)

rn = λnτn/κn ; mean arrival count at any test price, n-th instance (in
Sect. 4.2.2, rn = λn/κn , since τn = 1)

r(p) = pq(p); revenue rate (per arrival) under price p

r(p; z) r(p; z) = pq(p; z); revenue rate under price p and param. z
(Sect. 5.3)
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Table 2 continued

Symbol Description

Rπ
n (z) Regret of policy π under parameter z, n-th instance (Sect. 5.3)

sn = rnκ2n ; multiplicative effect of n on mean square error (Sect. 4.2.2)

T Length of selling horizon

un = max{τn , κ−1
n , (log n/rn)1/2}; deviations in proving Theorems 1,

2

x Initial inventory

Y (L)
n , Y (P)

n , Yn Sales, under πn and x = ∞, while learning, pricing, and overall,
resp.

Z Domain of parameter z (Sect. 5.3)

κ , κn Number of test prices: original and n-th instance, resp.

�(p) = λq(p), the (Poisson) demand function associated to (λ, q(·))
λ, λn Rate of (Poisson) arrivals: original and n-th instance, resp.

λ, λ Lower- and upper-bound on the arrival rate under L, resp.
λ0 A fixed arrival rate, used to specify the class M (Sect. 5.3)

λ̂, λ̂n Maximum-likelihood estimator of λ and λn , resp.

λ̂q(p), λ̂qn(p) Sales-only estimator of λq(p) and λnq(p), resp.

πn The policy given by Algorithm AS, n-th instance

π ′
n The policy in Besbes and Zeevi (2009) and Theorem 2, n-th

instance

σ1(p), σ1,n(p) E[Var (̂λq̂(p)|A)] and E[Var (̂λnq̂n(p)|An)], resp.
σ2(p) = E[E2 [̂λq̂(p)|A]] − λ2q2(p)(1 + 2B)

= Var(E[̂λq̂(p)|A]) + [λq(p)B]2
σ2,n(p) = E[E2 [̂λnq̂(p)|An ]] − λ2nq

2(p)(1+ 2Bn); n-th instance of σ2(p)

τ , τn Duration of learning phase: original and n-th instance (Sect. 5),
resp.

Proof of Lemma 10

P(Ac)
(a)≤ P(Y (P)

n < nx − K̃Y nun) + P(Y (L)
n > K̃Y nun) + P(| p̂ − pD| ≤ Kcnun)

(b)≤ P(Y (P)
n < nx − K̃Y nun) + C0

nη−1 + P(| p̂c − pc| ≤ Kcnun)

(c)≤ P(Y (P)
n < nx − K̃Y nun) + C0

nη−1 + C1

nη−1 for all n ≥ n, (50)

where (a) uses a union bound; step (b) uses Lemma 8 and that | p̂ − pD| ≤ | p̂c − pc|;
and step (c) uses Lemma 6. Now, putting γn := n�(p)(T − τn),

P{Y (P)
n < nx − K̃Y nun} = P

{
N
(
�( p̂)n(T − τn)

)
< nx − K̃Y nun

}

(a)≤ P
{
N
(
γn
)

< n�(p)T − K̃Y nun
}
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(b)≤ C0

nη−1 for all n ≥ 1, (51)

where step (a) uses that �( p̂) ≥ �(p) and x ≤ �(p)T ; and step (b) applies Lemma
2 with rn = n and M = �(p)T ; the lemma applies because n(K̃Y un − �(p)τn) ≥
(K̃Y − �(p))cun

3/4 log1/4 n ≥ 2[η�(p)Tn log n]1/2, where the last step uses K̃Y −
�(p) ≥ 2c−1

u [η�(p)T ]1/2 supn≥1(log n/n)1/4, by construction of K̃Y . This proves
(51); this and (50) give the result. ��

9 List of notation

Table 2 lists the symbols that are essential to all formal statements (definitions,
assumptions, conditions, claims, lemmata, propositions, theorems). Each symbol is
accompanied by a description in English, or an expression, or definition, via other
symbols in the table.
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