Hardware-Level Bayesian Inference

Alexantrou Serb, Edoardo Manino, Ioannis Messaris,
Long Tran-Thanh and Themistoklis Prodromakis
University of Southampton
Highfield campus, Southampton, United Kingdom
A.Serb@soton.ac.uk

Abstract

Brain-inspired, inherently parallel computation has been proven to excel at tasks
where the intrinsically serial Von Neumann architecture struggles. This has led
to vast efforts aimed towards developing bio-inspired electronics, most notably in
the guise of artificial neural networks (ANNs). However, ANNs are simply one
possible substrate upon which computation can be carried out; their configuration
determining what sort of computational function is being performed. In this work
we show how Bayesian inference, a fundamental computational function, can be
carried out using arrays of memristive devices, demonstrating computation directly
using probability distributions as inputs and outputs. Our approach bypasses the
need to map the Bayesian computation on an ANN (or any other) substrate since
computation is carried out by simply providing the input distributions and letting
Ohm’s law converge the voltages within the system to the correct answer. We show
the fundamental circuit blocks used to enable this style of computation, examine
how memristor non-idealities affect the quality of computation and exemplify a
‘Bayesian learning machine’ performing a simple task with no need for any digital
arithmetic-logic operations.

1 Introduction

Modern electronics has rested on the pillar of the Von Neumann architecture for over 50 years.
However, the ability of the human brain to effortlessly carry out tasks that overtax even powerful
supercomputers (e.g. object recognition) has led to intense research in alternative architectures.
One such approach is deep learning (LeCun et al., 2015), which draws inspiration from biological
neural networks. The promise of massive parallelism (Krizhevsky et al., |2012)) and the elusive
memory/computation collocation that eliminates the Von Neumann bottleneck (McKeel|2004) have
been great driving forces for the field, eventually leading to the development of on-chip neural network
hardware (Indiver: et al., 2011} |Merolla et al.,|2014). Another approach is performing computing
directly in the probabilistic domain using Bayesian inference and computing on distributions rather
than on numbers. Arguably, Bayesian inference is one of the key functions of biological circuits
(Legenstein and Maass|, [2014), therefore developing hardware specifically tailored to this purpose
-even if not in the guise of artificial neural networks- may offer great advantages vs. complex, power-
and area-hungry implementations of the same task (processor-, or FPGA-based solutions (Murray,
2013; Marsono et al., [2008)).

The core concept of Bayesian inference is to utilise our belief of correctness of different hypotheses
within the calculations. To do so, we capture this belief as a distribution over the set of possible
hypotheses, and we update it as more evidences and information are gathered. In particular, we
start with a prior distribution, which captures our existing background knowledge and/or subjective
belief over this set of hypotheses. We then use Bayes’ rule to calculate the posterior distribution
(i.e., update our belief). That is, we calculate the probability of a particular hypothesis to be correct,
based on the newly collected information or evidence. A key challenge of Bayesian inference is

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Bias

Memristive 0-27i(mA)
device (g SEtWV A Word-line L
PTe. — .
: iVi=gVv] A
| V, & Lo V‘o.7v
|
: A5 10 05 o, YW
| 05 10 15
3 //VN 101
kS Output
————————————— currents i
(a (b) (0 +-0.2

Figure 1: Fundamental memristor operation. (a) Memristor device diagram showing top (word-
line) and bottom (bit-line) electrodes sandwiching the device’s active material. Multiplier action is
achieved through Ohm’s law: ¢ = g - V. (b) The crossbar topology. Typically voltages are applied at
the word-lines whilst the bit-lines are virtually earthed and currents through them measured. As a
result a crossbar is capable of carrying out multiply-accumulate operations in parallel (see equation
in inset). (c) Typical, measure current-voltage (IV) characteristic of a memristive device. Due to
non-linearities the conductance of the device shows a dependence on applied voltage (also see Eq.
??). Red lines show an example where conductance is calculated at 0.7 V.

the computational complexity of the belief update, While many techniques have been proposed
to speed up the computation of Bayesian updating (by using, e.g., conjugate priors, variational
Bayes, or approximate Bayesian computation), these are software-based, and thus, they are still
disadvantageous, compared to other hardware-based computational solutions, such as neural-net-on-
the-chip systems. This disadvantage in fact prevents the efficient usage of Bayesian inference in many
real-world applications, where computational cost is a key performance indicator (e.g., larges-scale
networks or embedded systems).

Against this background, this paper aims to lay down the theoretical concept of building hardware-
based Bayesian inference. In particular, we focus on the description of the Bayesian inference at the
hardware level. Note that at this level, any practical implementation of computation on distributions
will necessarily involve a discretisation of the distributions involved and heavy reliance on matrix
multiplication in order to carry out key probabilistic computing operations such as inference and
marginalisation. This renders the quickly maturing technology of memristors (Waser and Aono,[2007)
particularly suitable for the hardware implementation of the proposed Bayesian machine. Memristors
are simple, extremely scalable (Khiat et al., [2016)), low-power (Pickett and Williams| [2012)), two-
terminal devices that can be manufactured using a variety of fabrication techniques (Yang et al.,[2013)
but ultimately all act as non-linear, electrically programmable resistors (Chua} [1971). Their tuneable
resistive states (which can be mapped to probability values) can be used to store variables and carry
out multiplication (i.e., to be programmed) by applying a voltage across them and measuring the
resulting current in accordance to Ohm’s law ¢ = gV, where i is the current flowing through the
memristor, g the conductance of the device and V' the voltage applied across its terminals, as shown
in Fig. [T(a). The memristive multipliers can be arranged in a crossbar configuration (Likharev} [2005)
as shown in Fig. [T[b). In-silico Bayesian computation relies on providing a discrete distribution as an
input to the wordlines of the crossbar (we will call such a collection of signals an ‘input vector’) and
receiving another distribution as an ‘answer’ at the bitlines of the array. Importantly, g can itself be a
function of applied voltage as illustrated in Fig. [T]c).

In what follows, we describe our paradigm in detail. Note that while we are also in the progress
of building a proof-of-concept real hardware system, this paper only focusses on the theoretical
foundations of the concept. As such, this paper demonstrates the paradigm’s basic functions in a
simulated system that estimates the probability of an asthmatic attack given air quality and heart rate
measurements. In particular, we first illustrate the conceptual model of various blocks and the system
as a whole using ideal, linear memristors. Then, known characteristics of metal-oxide memristors,
specifically the non-linear current-voltage (IV) characteristics modelled in (Messaris et al.}[2017)), are
included in the simulations and their effect on performance is assessed in order to demonstrate the
physical implementability of the paradigm. We conclude the paper with a discussion on how to apply
our paradigm to wearable device based health monitoring.



In summary, our paper extends the state of the art in the following ways: We propose a new concept
to implement Bayesian inference at the hardware level, using the recent advances of (tuneable)
memristors. We then demonstrate its applicability to computationally restricted embedded systems
through the example of personal health monitoring using wearable devices. This concept allows us to
perform efficient Bayesian inference directly at the hardware level, and thus, enables us to build low
cost and fast hardware-level Bayesian machine learning modules that can compete with the current
in-silico neural networks and other non-Bayesian counterparts.

2 Fundamental building blocks

Computing on distributions necessitates the development of fundamental circuit modules that operate
directly on input distributions and yield outputs that may or may not be themselves distributions.
These can be split into a set of ‘computational modules’ that enable Bayesian inference in-silico and
a set of ‘supporting modules’ that ensure that the system operates correctly and can be interfaced in a
useful manner.

2.1 Computational modules

Bayes’ rule is given by:

_ p(4)-p(BlA) _ p(A,B) "
p(B) p(B)

where p(A) is the prior probability of hypothesis A, p(B) is the probability of evidence B, p(A|B)

is the posterior probability of A given evidence B, p(B|A) is the likelihood function of B given A is

correct, and p(A, B) is the joint probability of A and B. Notably, p(A) and p(B) are distributions

over a single random variable and can be discretised into a vector, whilst p(A|B),p(B|A), and

p(A, B) are distributions over two variables and need to be discretised into matrices.

p(A|B)

A very common implementation of Bayes’ rule occurs when p(A) and p(B|A) are known and we seek
to infer the distribution of p(B). This can be easily achieved in a fully parallel fashion if p(A) is given
as a voltage input to a crossbar array that stores p(B|A) in the conductance of its memristors (units
of S). The current flowing through each device is then proportional to p(A) - p(B|A) = p(A, B),
which in turn is marginalised by the summing action of the crossbar bitlines as shown in Fig. PJa).
Notably, extracting the values of the joint distribution from the memristive matrix is simply a matter
of feeding the input distribution one word-line at a time, keeping all other wordlines grounded in
order to avoid the marginalisation effect. The same principle of operation can be applied for other
operations too: A vector array (N x 1) consisting of independent memristive devices may be used to
implement element-wise multiplication. Distribution p(A) is fed into the array as voltage and the
multiplier is stored in the condictances of the memristors gy; thus the multiplier computes p(A) - gg.
If all g, values are equal scalar multiplication is obtained. This architecture is shown in Fig. 2b).
Notably, other implementations are possible where the memristors store variables of interest in their
resistance, as opposed to conductance. In these cases the memristive arrays act as dividers rather than
multipliers.

Another typical implementation is the update of the belief distribution through Bayes’ rule. In
particular, Eq. (I can be reformulated as follows:

p(A|B) o p(A) - p(B|A) 2
This can easily calculated by using the distribution multiplier hardware module (Fig. 2(b)). To make
sure that the sum of p(A|B) over all possible A is always 1, we apply the normaliser module (see
Sec. [2.2]for more details). A concrete example of Bayesian belief update will be described in Sec. [3]

All computational blocks transform input voltages into currents, which means that a method for
transforming the output currents to voltages is required. This can be achieved using a bank of
trans-impedance amplifier and inverting buffer cascades as shown in Fig. [Jc). The transimpedance
amplifiers maintain the virtual earthing of the bitlines while converting their currents into voltages.
These in turn are inverted by the inverting buffers. Depending on the specifics of the system
implementation the inversion stage may not be necessary; memristive crossbars can operate by
mapping probabilities to negative voltages as well, in which case the direction of the bit-line output
currents is simply reversed.
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Figure 2: Core modules. (a) Memristive crossbar for performing inference. A discrete distribution
is presented at the word-lines as a voltage, memristor resistive state (RS) is set such that device
conductance is proportional to the conditional probability p(B|A) and all bit-lines are virtually
earthed. As a result, the current through each memristor is proportional to p(B|A) - p(4) = p(A, B),
which is marginalised to p(B) as a result of the current summing action of the crossbar bit-lines. (b)
A distribution multiplier. Input voltages are multiplied element-wise by memristor conductances gy,
(which may be common to all devices in each multiplier for scalar multiplication) and exit as currents.
(c) Transimpledance amplifier (TIA) and inverting buffer cascade. The transimpedance configuration
converts %y, to Vg via: Vipiq = 44y, - Ry whilst the inverting buffer enforces Voyr = —Vinia. Ry
may be a memristor.

2.2 Supporting modules

Probability distributions of random variables must sum up to 1. In a physical analogue system,
however, noise, mismatch and other sources of imprecision may mean that input vectors don’t
necessarily satisfy that condition. For that reason one of the most important supporting modules
is the ‘normaliser’ circuit. The normaliser receives an input vector and applies it on a set of M,
binary-encoded, N-input scalar multipliers as shown in Fig. 2{b) forming a binary encoder of depth
M as shown in Fig. a). If multiplication factors gg, 91, ..., gar—1 are set as g, = 27, then ‘multiple
vectors” p(A),2-p(A),4-p(A), ... (or similarly %A), ”(ZL—A), ...) are generated. Summing the individual
elements of any of those vectors (or indeed across any combination of vectors) is then simply a
matter of summing the currents through all relevant memristors. This can be achieved using a single
operational amplifier per normaliser (U1 in Fig. [3[a)), which also converts the sum of currents into a
voltage. The resulting voltage can then be easily compared against a reference level (V;..r) in order
to determine whether the chosen combination of multiple vectors sums up to more or less than the
equivalent of ‘probability 1°. A simple state machine searching through partial vector combinations
can then determine the optimal combination, i.e. the one that transforms input vector p(A) into a valid
distribution to the best approximation. This is essentially a successive approximation register (SAR)
technique as used in standard SAR analogue-to-digital converters (Sauerbrey et al.,|2003). Finally,
the correct combination of input p(A) multiples is summed up into an output current Vector i gy
by a bank of N amplifiers, which can thereafter be provided as an input to any of the computational
blocks described above.

Another important supporting block is the ‘maximum finder’, which receives an input vector and
outputs a digital flag indicating the highest probability density sample in the input vector. This is
achieved by a simple, multiple input comparator as illustrated in Fig. [3(d). The transistor with the
highest gate voltage will provide most of the tail current because a higher gate voltage translates
directly into a higher gate-source voltage. The resistive elements (themselves potentially memristors)
resistive state settings can then combine with a digital threshold in such way as to only trigger a
digital flag indicating the location of the maximum only when > % of the tail current is provided
by a single transistor, indicating that a clear maximum exists in the distribution. Alternatively if the
tail current threshold is set to just below % the system will output a single digital flag if there is a
clear maximum and two digital flags if two points compete for the maximum very closely, but will
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Figure 3: Supporting modules. (a) Normaliser circuit. The input distribution is sent to multiplier
blocks in parallel and then the combination of multiplers that transforms the input to a valid probability
distribution is selected using a successive approximation register techinque. Circuit lines cut by
oblique bars denote buses (many wires in parallel). (b) Maximum finder circuit. The input distribution
is applied at the gates of transistors Q1-N, which then compete for supplying the current I;,;;. The
current supplied by each transistor then causes the voltage at the corresponding OUT node to drop
to VDD — i, - R. A simple voltage comparator can then determine whether ¢, > % at every

current branch, i.e. if OUTx < VDD — % Note: tail current sinks into negative power supply
VSS and not ground. (c,d) Circuit diagrams for multipler and max. finder respectively. Max. finder
diagram illustrates 1-hot operation.

not output anything if 3 or more points are joint maxima. Notably, because only the location of the
maximum is sought by the maximum finder, the input vector need not be a valid distribution.

3 Bayesian inference example

In this section we show how the techniques introduced before can be used to tackle real-world
problems. Inspired by the work on wearable devices for continuous health monitoring (Dief+
fenderfer et al., 2016), we design a small graphical model for the prediction of potential health
issues (see Figure [#(a)). This model uses the data coming from sensors to monitor the air qual-
ity as A € {bad, medium, good}, and the heart beat to assess the current activity of the patient
B € {resting, exercising}. Once combined, the two are used to predict whether a crisis is probable
or not, and thus it is necessary to warn the patient. More formally, we can predict C' € {safe, crisis}
with a classic Naive Bayes classifier:

C" =max{p(C|4,B)}  where  p(C|4, B) o< p(A|C)p(B|C)p(C) 3)

where C* is also known as the maximum-a-posteriori estimate.

This system can be implemented efficiently using the modules introduced before (see Figure 4(D)).
First, we have a crossbar that stores p(A, C) = p(A|C)p(C), receiving air quality level A as input
and outputting the crisis level prediction C' before factoring heart rate B in. Then, we feed the output
in parallel to two array of memristors that store p(B = resting|C) and p(B = exercising|C)
respectively. Depending on the actual value of the heart beat B, we choose only one of the two
outputs and we feed it into the normaliser to compute p(C|A, B). Finally, we employ the max-
finder module to produce the estimate C*. Interposed between all of the four modules we have a
current-to-voltage converter (not shown in the figure).

Notice how this approach can scale well to more complicated graphical models, as it simply consists
of a cascade of small modules.

4 Discussion

The proposed system architecture was designed to allow in-silico implementation of Bayesian
processing in a massively parallel and energy efficient way. We have argued that during normal
operation inference can be carried out by making direct use of the multiply-accumulate capabilities
of the crossbar configuration. Notably, this requires no resistive switching from the devices; rather
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Figure 4: Bayesian machine example, [(a)] graphical model, [(b)]implementation. See text for interpre-
tation of variables.

the computation is carried out in the analogue domain in the form of settling the crossbar/TIA system
under the corresponding RC constant. The extent to which spending the energy required to settle that
RC constant is competitive against standard digital number-crunching approach will ultimately be
determined at the circuit layout level and will largely depend on the minimum achievable size for the
memristive crossbar array and the specifications of the TIAs involved in maintaining virtual earthing.
This situation changes, however, as soon as some sort of learning is implemented. In this case, the
conditional probability matrix might need to be updated as new information arrives, thus requiring the
devices in the corresponding crossbar to be periodically programmed. The overall energy, speed and
circuit complexity cost associated with these updates will depend on the intrinsic energy efficiency of
memristor switching (see (Pickett and Williams|, |2012))) and the stability/predictability of the devices
(i.e., how many attempts do we generally need to make before the memristors reach the desired state
(Serb et al., 2015))). Note that a similar problem can be found in Flash memories (Suh et al.,|1995).
The cost of programming devices will affect the computation of reciprocal probabilities p(A4) ™! too
in a similar fashion. The normaliser, on the other hand, can be expected to consume similar power
to a crossbar used for passive inference (for binary encoder depth similar to the number of discrete
distribution samples - M ~ N) as similar numbers of devices and TIAs are involved in both cases.

Practical implementation of the proposed analogue building blocks will imply the presence of noise,
mismatch, and other imperfection factors. Whilst the normaliser circuit is designed to cope with
the gradual degradation of probability distributions as they propagate through the machine, a linear
mapping between probability and voltage levels or memristor resistive states may lead to limited
probability dynamic range, i.e. relatively very small probability values may be mapped to voltages
below the noise levels in the system. Notably, if all probabilities in a distribution are very low,
but similar, normalisers/multipliers can be used to scale as appropriately; only the coexistence of
very large probability values with very low ones in the same distribution may become problematic.
To overcome this issue, we are investigating the option of mapping resistive state/voltage to log
probability instead or using non-uniform multipliers to pre-distort probability distributions.

Another point worth to mention is that the presence of TIA blocks naturally leads to a dual supply rail
implementation. In the simplest approach probabilities are represented by positive voltages covering
much of (but not the entire) positive voltage range [GN D, V D D] whilst the TIAs use the negative
part of the range [V'S.S, GN D] in order to transform currents into voltages. In the positive range, the
input voltage range of the maximum finder circuit from Fig. [3|d) means that probabilities can be
safely mapped only in the region falling within [GND,V DD — % — Vs, maz)> where Vs maq
is the maximum gate-source voltage of transistors Qx for drain current equal to I;4;;. This may
be improved by replacing the R elements with current mirrors in more optimised implementations.
However, the detailed investigation of this solution remains as future work.

Finally, another key module that would prove of great use to Bayesian computing would be a hardware
random number generator capable of generating numbers from a discrete distribution p(A) provided
as voltages at its inputs. This is currently under development.
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