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SUMMARY. 

This thesis is concerned with an analytical approximation to 

the steady-state solution of Reynold's equation, which makes 

possible the separation of axial and circumferential character-

istics existing in the lubricating film of a tilting-pad gas-journal 

bearing. 

An introduction to gas-bearings is followed by a consideration 

of the particular aspects of the single pad bearing. It is shown 

how the basic equations of fluid flow may be reduced to Reynold's 

equation for a compressible lubricant. 

At this stage, an analytical approximation to the solution of 

the equation is developed, leading to expressions for load capacity 

and pivot position. The validity of the solution is tested against 

numerical results. 

The test-rig constructed for the experiments, is described in 

detail, and the experimental results of pressure distribution, 

viscous losses, and pivot stiffness are tabulated and discussed. 

Finally, design curves are presented for a 120° pad, in a 

dimensionless form, which is independent of bearing length; the 

use of these design curves, for complete bearing assemblies, being 

illustrated by a set of worked examples. 
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Nomenclature. 

A - — . 1 _ H 
c m 

B - constant of integration for the infinite bearing 

C - constant 

F - PH 

- the value of F for the infinite bearing, 

F - PH 

H - h/c 

H - hm/c dimensionless minimum clearance 
m 

H - defined in section 7.1 

I - integral 

Ly - integral due to end flow correction 

K - constant of separation 

- defined by equation (27) 

L - bearing length 

N - shaft speed (r.p.m.) 

- shaft speed (r.p.s.) 

P - dimensionless gauge pressure 

?! - ^ 1 - 1 

Pg, P for an infinite bearing 

P - p/p dimensionless absolute pressure 
a 

^1 - Pl/Pa 

R - journal radius 
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U - relative surface velocity 

W - applied load 

- component of applied load 

- compoaent of applied load 

W - dimensionless load, equation (40) 

X - dimensionless arc coordinate of pad 

Xp - dimensionless pivot position 

Y - dimensionless axial coordinate 

Z - defined by equation (17) 

c - machined in radial clearance 

c^ - mean geometric clearance 

f - ph 

g - defined in appendix (1) 

h - film thickness 

h - minimum film thickness 

k - coefficient defined in equation (45) 

n - finite mesh position 

p - absolute pressure 

p^ - mean film pressure 

pg - ambient pressure 

u - ) 
) velocities at a point ia the fluid film, defined in 

V - ) 

) figure (2) 
w - ) 
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X 

coordinates defined in figure (2) y 

z 

B - angle of tilt of the pad about the 0 datum 

(f) - position of pad leading edge 

6ycoR̂  
Ac - - -

y - coefficient of viscosity 

p - density 

ip ~ position of pad trailing edge 

0 - defined by equation (17) 

9 - angular coordinate 

9^ - angular position of the pivot 

1^ - limits of integration 
- J 
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1.0. Introduction. 

The gas bearing which was once the toy of a few creative 

researchers, is now taking its place in modern engineering as a 

practical proposition. 

The earliest reported observation of gas as a lubricant, 

seems to be that made by Hirn^^^ in 1854, who remarked that a 

shaft running in a "dry" bearing appeared to be supported on a 

(2) 

fluid filmJ which he rightly suggested to be air. Kingsbury 

in 1897 carried out a number of ingenious experiments with a plain 

journal bearing supporting its own rotor mass. For his studies 

he evolved a somewhat crude, but very effective system of film 

thickness measurement. 

The years that followed saw a number of isolated attempts to 

exploit this new found phenomenon, one notable example being its 
f 3) 

application to spinning machines by Dr. Ferranti in 1904, but 

this project was abandoned due to other mechanical limitations on 

the machines. It was not until the widespread development of 

nuclear power that these bearings became a commercial reality. 

It had been found that if oil was used to lubricate the cool-

ing circulators of a reactor, it had to be changed at frequent 

intervals due to polymerisation. This not only represented a 

regular maintenance problem, but also one in the disposal of radio-

active waste. The major attraction of gas bearings in this partic-

ular application, is their ability to use the cooling gas as a 
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lubricant, linked with the advantages of unlimited life, and their 

unchanged characteristics over a wide temperature range. 

The advantages of long bearing life, made them particularly 

attractive to the designers of gyroscopes. Previously the wear 

on ball or roller bearings led to the frequent replacement of those 

instruments, and to some extent hindered the progfese of inertia! 

navigation. Under steady running conditions the life of gas 

bearings is unlimited, but under practical gyro conditions, it is 

necessary to stop and start from time to time, resulting in the 

development of materials with good dry rubbing properties and an 

ability to maintain a gas film. 

Recently they have found uses in many fields of engineering. 

Their low noise level and high speeds made them ideally suited for 

use in dental drills, and their operational cleanliness offers an 

attractive proposition in food processing. The machine tool in-

dustry too has found numerous uses for them, such as grinding and 

drilling spindles, small hand tools, rotating work tables and ex-

perimental machine slides to mention but a few. 

The various forms of bearing will now be outlined. 

1.1. Hydrostatic Bearings. 

These bearings rely on the creation of a gas film by some 

external compressing means, the pressurised gas being fed to the 

film through small holes in the bearing surface. The viscous or 
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creep flow of the gas from the point of entry to exhaust, main™ 

tains a pressure gradient in the film, which in turn enables an 

applied load to be supported. As the clearance decreases the 

resistance to flow increases, giving a higher load capacity. 

The obvious advantage of this type of bearing is that a load 

may be supported without relative surface movement. In theory 

the size of load is only limited by the supply pressure available. 

When the efficiency of this bearing, operating at low surface 

velocities, is compared with simple boundary lubrication, the 

pumping effort required is generally more than offset by the 

frictional saving. 

1.2. Hybrid Bearings. 

When hydrostatic bearings are operating at low clearances and 

high speeds a substantial hydrodynamic effect can be experienced, 

which contributes to the load capacity. This bearing is known 

as a hybrid bearing and is becoming very common in gas-bearing 

practice. 

1.3» Hydrodynamic Bearings. 

The hydrodynamic bearing relies on the relative movement of 

the two bearing surfaces to "drag" gas into the film, and to main-

tain the film pressure. This is usually achieved by creating a 

convergent passage in the film, such as that occurring in journal 

bearings. In the case of a hydrodynamic thrust bearing the two 
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surfaces may be parallel, and one method of producing the film is 

to machine spiral grooves in the surface, in such a way that they 

terminate before reaching the bearing centre. The action of these 

grooves is to pump the gas radially inwards from the edge. 

The bearing is a self-contained unit, and requires no external 

gas supply. Under starting conditions however, the surfaces rub 

together, and it is essential to use either low friction materials, 

or moke available some form of external jacking. It is therefore 

preferable to install them where stopping and starting is at a 

minimum. 

Their greatest manufacturing handicap is the high degree of 

precision required to achieve a small operating clearance. This 

is further aggravated by the need for large bearing surfaces if 

sizeable loads are to be supported. It is often mistakenly im-

plied that gas bearings have better frictiona] properties than 

their liquid counterparts, which is not strictly so. Although 

gas viscosities are lower than those of liquids, it must be 

remembered that to support the same load, the bearing must either 

be larger, have a smaller clearance, or operate at a higher speed. 

Usually, where a frictional saving does occur, it is either be-

cause the bearing must operate over a wide range of speeds and at 

different ambient pressures, gas having the advantage of steady 

characteristics, or in the case of lightly loaded bearings, where 
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the liquid theory calls for designs impractically small, the gas 

bearing theory requires a bearing of a size which can be easily 

manufactured thus obviating over design. 

In hybrid, and particularly in hydrodynamic joumal bearings, 

a phenomenon experienced is whirl instability. Although this 

condition can be serious, it is now possible to predict whirl onset 

speeds for a number of bearing geometries, in order that bearings 

may be designed to operate in a stable region. 

1.4. Squeeze Film Bearings. 

The squeeze film bearing relies on the high frequency 

"squeezing" motion of the two bearing surfaces to maintain the gas 

pressure. One way of creating this mechanism is by feeding a 

high frequency signal to a bearing manufactured from a piezo-

electric crystal. The bearing is probably most suitably applied 

as a small low friction bearing in scientific instruments. 

1.5. Tilting Pad Bearings. 

The idea of a tilting pad bearing, using oil as a lubricant, 

was conceived independently by both Michell and Kingsbury at the 

turn of the century. Michell who had demonstrated the load carry-

ing advantages of this bearing over the simple viscosity thrust 

collars, was convinced that similar advantages could be gained in 

applying the same principle to journal bearings. This is certainly 

not the case with gas bearings, as the absence of a negative 



pressure zone in the bearing, and the ambient pressures existing 

between pads, can lead to lower capacities than those attained in 

plain journal bearings. The bearings did however find a use 

where problems of bearing misalignment occurred, such as in marine 

propeller shafts, but with the increase in shaft speeds, whirl 

instabilities became a major problem, and these bearings took on 

a new rSle as anti-whirl bearings. 

It was this anti-whirl property which attracted the designers 

of gas circulators to apply them in the field of gas lubrication. 

They had found that when the circulator rotors were supported in 

plain journal bearings they experienced whirl. As a result, pad 

bearings were designed on the simplified theory of Snell^^^, and 

a programme of research and development initiated. Moreover 

hydrodynamic gas bearings have a tendency towards large length to 

diameter ratios, which present serious alignment problems, giving 

an added advantage in the use of pad bearings. 

The tilting pad bearing consists of a number of curved seg-

ments, which maintain the shaft in its running position figure (1). 

The lubricating film is usually generated by hydrodynamic action 

between the pads and the shaft, although some attempts have been 

made at external pressurisation. 

As already stated, the pad bearing possesses good anti-whirl 

properties which the author has previously suggested^^^ may be due 
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to the movement of the pads. Marsh^^^ has shown that whirl is 

a function of bearing geometry, and it is likely that when con-

ditions are such that a pad bearing begins to whirl, the bearing 

geometry is changed by the movement of the pads, due to the small 

rotating pressure field. The pads moving in such a manner as to 

stabilise the running conditions. Although the pad may return 

to its original position and the whirl recommence, the whirl is 

never allowed to reach measurable proportions. 

The work carried out by Snell, was based on the assumption 

that the fluid was incompressible; this yields a good approx-

imation to a gas film, when the specific loading on the pad is 

low, but is in error for heavy loading and high speeds. 

Research by the Franklin Institute, was based on the direct 

numerical solution of Reynold's equation, and is presented in the 

form of design curves. Unfortunately, the parameters chosen are 

not truly dimensionless, and a set of curves is required for each 

length to diameter ratio, for a particular compressibility number, 

and for every span of pad. Although these curves are very useful 

for the limited range they cover, they would be expensive to ex-

tend in terms of computation time, and in certain regions, numerical 

instabilities occur. 
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2,0. The Objectives of This Study. 

At the outset, an attempt was made to find an analytical 

solution to Reynold'8 equation, so that suitable nondimensional 

parameters could be selected, to effectively include as many 

variables as possible. The theoretical and experimental invest-

igations, were then studied in terms of these parameters, with a 

view to producing comprehensive design curves with a minimum of 

computation time. 
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3.0. Basic Eauationa of ^lui^ plyw. 

In classical fluid dynamics, the fluid is considered to be 

inviscid, which simplifies considerably the mathematical treat-

ment of the equations of state. Practically however, the regions 

of greatest interest are those involving large velocity gradients 

and occurring near solid boundaries. It is these regions which 

are of direct importance to the understanding of fluid film 

lubrication. 

For a gas, the conditions at any point in it, may be defined 

by six basic equations, together with certain supplementary ones, 

such as that relating the coefficient of viscosity to temperature. 

These equations are: the continuity equation, the three Navier-

Stokes momentum equations, the energy equation, and finally in the 

case of a perfect gas, the gas law. Although a mathematically 

correct solution could be obtained for conditions existing any-

where in the film, it would be a very laborious process, which 

in general, is not justified. The usual approach is to simplify 

the basic equations, by neglecting terms, which in relation to 

the rest of the equation are small. 

To apply the necessary basic equations we must assume that 

the lubricating film behaves as a Newtonian fluid. Burgdorfer^^^ 

shows that this is a reasonable assumption provided that the 

separation between the two bounding surfaces is greater than one 
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hundred times the molecular mean free path of the gag. In general, 

for lubricating films, this condition is satisfied, but special con-

sideration must be given to certain gases at low pressures, such as 

helium. For example air at standard conditions, has a mean free 

path of about 2.7 % lo"^ ins., and helium at 3 Lb/in^ (absolute) and 

32°F, about 36 x 10 ^ ins. 

A further simplifying assumption is that the viscosity of the 

gas remains substantially constant. This may be justified since 

viscosity varies only slightly with the temperature and a number of 

6xperiaentars have shown the film conditions to be of an isothermal 

nature, ref. (8). 

Applying these assumptions the three time independent Navier-
(1) 

Stokes equations^become:-

PCu-SZ + + w.?Hj - X 

2 3 
3 1 5 

By ' " 

• 3u . 3v . 3w" 9 
9x 

9u 

3y 
9v 

9z 
rSu SwA 

Bv , 9v avT 

2 a 

3ly 
' 9u 3v . 9wi 

+ 2 
S 
ly 

9v 

9z 
9v 9w 

9x 
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2 9 
3 9z 

+ 2 
3z 

9w 

3x 
9(7 9u 

+ 9z 9y 
f9w . 9v 

Pl-^ + 9y 9ẑ , 

The chree quantities X Y and Z are known as body forces, and 

in the case of a hydrodynamic lubricating film consist of gravity 

on the film, and any centrifugal components due to film curvature. 

Clearly the former can be neglected, and a simple calculation will 

show that centrifugal forces acting on the film are very small com-

pared with the load capacity generated, resulting in these terms 

being neglected. 

The fourth equation required in the lubrication analysis is 

that for continuity 

& (pu) + (pv) + (pw) 

Figure (2) shows the coordinate 

system for a slider moving with 

velocity U over a plane sur-

face, the lubricating film thick-

ness being h. If h is very small fig (2) 

compared with typical distances in the x and y directions of x and 

y , and the fluid flow is laminar, then the velocity w is shown by 
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Curle^'^ to be of the order of u or v and hence may be 

neglected by comparison with the other velocity components. 

Furthermore, he has shown that the derivative of any function 

$ say with respect to y will be of the order o f w h e r e a s the 

derivatives of the same function with respect to y and x, will be 

of the order of--— and-^—. These derivatives are much smaller 
^o *o 

than the y derivative and may be neglected. 

The terms on the left hand side of equations (1) are due to 

gas inertia and have been shown by Brand^^^^ to be very small 

within the present operating regime of gas bearings. 

Applying the above criteria, equations (1) reduce to;-

8v 
(3) 

= i_ 
9z 

3P - 3 
3y 3z 

e -

The third of the above equations indicates that across the 

film, the pressure is substantially constant. 

The other two equations may now be integrated with respect to 

z, the boundary conditions from fig (2) being:-

u = U at « - h 

u = 0 at z = 0 

V = 0 at z - 0 and z - h 
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giving:-

" " ? 7 + t ^ W 

(4) 

and V = 2p^3y %(%"%) (b) 

Substituting (4) into (2) and integrating with respect to z between 

the limits of 0 and h, yields:-

& + if = 6wu -^(ph) (5) 

Since the fluid flow is assumed to be laminar, the mass flow normal 

to the surfaces, is small compared with that in the other two 

directions, and the third term in the continuity equation is there-

fore neglected. 

rg\ 
Powell found experimentally that the conditions in the film 

were approximately isothermal, i.e. p is directly proportional to 

the pressure p. Hence (5) becomes 

& = 6;U ̂ _(ph) (6) 

The above equation is known as Reynold's equation for a 

compressible fluid film, and is the basic equation of dynamic 

gas film lubrication. 
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3.1. Solutions to Reynold's Equation. 

A major obstacle in the solution of (6) is its nonlinearity. 

Although exact analytical solutions may be found for a few simple 

geometries, it is in the main, necessary to make certain approxr 

imationg, or to seek a numerical solution. 

The two most common analytical approximations for finite plain 

journal bearings, are due to J. S. Ausman. In the f i r s t t h e 

pressure is expressed as a power series of eccentricity, yielding 

an infinite group of linear differential equations which are more 

readily solved. A good approximation for small eccentricities may 

be attained by considering only the first of these linear equations, 

and is known as the first order pertubation solution. In practical 

operation however, bearing eccentricities tend to be large, and 

this technique is now more often employed in the studies of stability 

criteria, such as those made by Marsh^ ^. Ausman then made a 

further approach to the solution by introducing the product of the 

pressure and the radial clearance as a variable group^^^^. This 

substitution allows certain approximations to be made in linearising 

the resulting differential equation. The philosophy behind this 

method is similar to that for the first order pertubation solution, 

except that the group 'ph' is used in the series in place of 'p', 

and is explained fully in reference and its adaptation by the 

author for use on tilting pad journal bearings will be given in the 
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following chapters. 

Numerical solutions require the construction of a two dimensional 

mesh system over the bearing surface. A finite difference equation 

being set up for the pressure at each grid point in terms of the 

pressure at neighbouring points. The result is a set of simultan-

eous equations involving 'p' which may be solved between the given 

boundary conditions. 

A particular case of Reynold's equation is Chat for an infinitely 

long bearing, where the end flow is zero. 

Equation (6) then reduces to 

•fc "61iu|j(ph) (7) 

(7) may be integrated with respect to 'x' yielding a first order 

differential equation:-

^ = 6;U(ph+B) (g) 

A solution to (8) was given by Katto and Soda^^^^, but is only 

applicable to the continuous film of a plain journal bearing, and 

as a consequence is not suitable for tilting pad analyses. 

Equation (8) can also be solved numerically, by using the 

finite difference technique, but with a unidimensional mesh system, 

or by using the Runge-Rutta method outlined in this thesis. 
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3»2« Ths Linearised 'ph* Solution. 

Making the substitution f - ph, (6) becomes 

hf M l + 

9y2 
- f2 a^h 

9y2 

8h af ^ ah af 

]3'%; + 'ay 
raf'f 

ax/ f — ] layj (9) 

Ausman shows that as U -*- « and U 0 the right hand side of 

(9) tends to zero. He therefore assumes the right hand side to be 

everyxvhere zero. This has been shown experimentally to give a 

good approximation for plain journal bearings. This, however, 

must be used with discretion. Contained in this study is a compari-

son between this method of approach, and a direct numerical one, to 

establish its validity for pad bearings. 

Thus (9) becomes 

hf 
9%^ 

9^f 

ay^ ox 

2 

Bx 

a^h , a^h 

2 a»2 
(10) 

or 

a^f . aZf 6wu af 

ax^ 

a^h ^ a^h 

ax^ ay^ 

The above equation is still nonlinear, but could be linearised 

by approximating the coefficient p to some constant p^, and the 
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group ph* to a constant p^c 

Ausman assumed that p^ = p , which for a plain journal bear-

ing is of similar magnitude to the mean pressure around the bear-

ing, and gives favourable agreement with experimental findings. 

For a pad bearing however the mean film pressure is above ambient. 

The value taken for p^ will be discussed later in this report, 

(Section 7.2). 

Again Ausman assumed that = c, which for a plain journal 

bearing would be the mean radial clearance, but for a pad, 

must be some constant clearance within the film, (Section 7.1). 

Applying these approximations 
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4^0, PrGBertiea af the liltine-pad Bearing. 

Before making a mathematical analysis of a tilting pad bear-

ing, it is necessary to have some understanding of the basic 

requirements. 

Probably the most important condition to be satisfied, is that 

the centre of the fluid film pressure must act through the pivot 

position. In arriving at the position, it must be borne in mind 

that the centre of pressure for a curved surface, is not the same 

as the one for a development of that surface, since we are inter-

ested in the chord length rather than the circumferential length. 

A source of error in finding the pivot position is the use of 

approximations to the pressure profile. Although these profiles 

may have the same integration values as the true distribution, to be 

a useful representation of the pressure, their centre of pressure 

must also correspond. 

Finite difference solutions require very small mesh sizes when 

used on pad bearings, otherwise large second derivatives of the 

pressure profile produce inaccurate results. Ideally one would 

like a small mesh in the circumferential direction, where these 

derivatives are likely to be high, and a larger one in the axial 

direction where they are low, but this can result in a numerical 

instability reference (15). 
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The pad bearing differs from the plain journal, in that the 

boundary conditiona for the journal bearing, are ambient at either 

end, and have a pressure distribution which must be periodic in 2%. 

The pad bearing although having a repetition of the pressure every 

2n, cannot be said to be periodic in 2n, because of the discontin-

uities existing between the pads. The boundary conditions are 

therefore taken to be ambient around the edges of the pad. For 

an analytical solution* this adds a complication since nonperiodic 

terms in the pressure distribution cannot be neglected, which would 

have resulted in simplified integration for load capacity. 

4.1. Tilting-pad Bearing Solution. 

In the case of a pad bearing with the pad parallel to the shaft 

in the axial direction '2—^ » 0 

In the circumferential direction from fig (3) 

h " c - RGsinG 

or nondimensional clearance H is:-

H - - - 1 - — sine (12) 

c c 

Substituting into equation (11% nondimensionalising and changing 

the coordinate system to that of fig (4) we have:-

4 
g.9 2 ayz 

- - P^AsinG .(13) 

where A = — and A -
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The coordinate system has been selected in order Chat values 

may be stated in terms of the nondimensional minimum clearance H . 
m 

A good approximation Co H is found from fig (4) where 

9% - 1 - A (14) 

F in equation (13) is a function of the nond imensional absolute 

pressure. Therefore the boundary conditions for (13) will be 

F = H along the edges of the pad. If however nondimensional gauge 

pressure P is used, in place of absolute pressure P, the boundary 

conditions become F = 0, where F = PH, which simplifies the evalua-

tion of the constants in Che solution. A further advantage is 

that P may be integrated directly to obtain the load capacity, with-

out considering the ambient conditions existing on Che reverse side 

of the pad. 

Now F * PH 

but if we replace "p by "P + P or 1 + P since P * 1 then ? -
a a 

(1 + P)H " F + H, (13) becomes:— 

a^F . 9F 

882 3Y 
_ + Arr " A(P sin8-Acos8) (15) 
2 o" J-

A particular solution of this equation is that for an infinitely 

gZp 
long pad, where — — - 0 and the equation becomes 

BY* 

— " A(P^#in8-Acos8) (16) 
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If the solution to (16) is F " we may seek a general solution 

to (15) of the form 

F - F + ez (17) 

where 6 is a function of 6 only, and Z a function of Y only. 

The general solution to (16) is 

^ {C^e +C2+A(1+P^)cos6+(A^-P^)sin6} (18) 
(1+A2) 

The boundary conditions for equation (15) are ambient i.e. P - 0 at 

the leading and trailing edges, 

or when 8 = ^ F = 0 

8 » * = 0 

Hence:-

1 (.*•-/•) 

(eA*-e'*) 

(A^-P^)3in6+A(l+P^)cos( 
-rip 

(19) 

or 

gA(4+40 

(eA*_eA*) 

e^^{(A2-p^)sin^+A(l+P^)cos^} 

-e^^{ (A2-p^)sin(})+A(l+P^)cos(j)} 

A(l+P^)cos8+(A2-P )sin8 

(20) 

A8 

Equation (18) gives the value of F for the infinite bearing, and the 

pressure profile may be found from 
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K - ^ (21) 

In the case where is assumed to be ambient ref (16), then 

simply becomes zero in Che above equations. 

Substituting (17) into (15) and eliminating by subtracting (16) 

we have:-

8"Z + 0Z" - AG'Z - 0 (22) 

Rearranging 

Z" 8" .8' ^2 / \ 
-g- = g- - Ag- = -K/ (say) 

Where K is the constant of separation; since Z mnri 6 are independ-

ent of one another K can only be a constant. 

Considering Z:-

Z" - K^Z « 0 

A solution is:-

Z - cosh KY .(23) 

Since 0Z is in effect a correction to the case of an infinite bear-

ing, we require the maximum correction to the pressure profile at 

the bearing edge, fig (5); furthermore, Z must be an even function, 

these conditions are satisfied by solution (23) 

Conaidering 8:-

8" - A8' + K^8 - 0 (24) 
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which has the indicia! equation 

D* - AD + - 0 

D = At/AZ-4K2 (25) 

Again the boundary conditions are ambient at the leading and 

trailing edges, which are only satisfied if (16) has complex roots. 

Giving the solution:-

8 - C^e sinK (8-*) (26) 

where (27) 

Once again when 8 = ^ 8 = 0 

and 8 « 8 * 0 

thus K. (^-^) " nw (28) 

Considering only the first harmonic 

6 - C^e^ sinn^^:!^ 

Thus F = + CLe^ sinn/^'^jcosh KY 
™ 5 (yM^) 

From equations (27) and (28) 

K 

26. 
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Originally, the author assumed, (reference 16), that since 

is a product of and C^, then could be an arbitrary function 

of 8; this however contradicts the assumptions used for obtaining 

equation (17), It is shown in appendix (1), that if is a con-

stant, then equation (29) is a solution to equation (15). If, ]how-

ever, the assumption is made th^t is a function of 8, then it is 

possible to separate the axial and circumferential flow conditions. 

A study of this approximation is made in appendix (2). Applying 

this assumption gives the frllowing:-

a t Y - : t ^ F » 0 

Equation (30) becomes:-

F, (31) 
cos 

or P . (1 - (32) 
c o s h ^ ' 

Hencc the pressure distribution for a finite bearing is given as the 

product of the pressure for an infinite bearing, and a correction 

factor in terms of the longitudinal coordinate. 

The shape of the correction factor in the axial direction, i.e. 

a. cosh form, satisfies equation (29) and K is defined mathemat— 

ically by aquation (30). Since the axial pressure distribution mast 

be ambient at the pad edges, then the errors may be considered in 
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terms of the pressure profile at the pad centre, which will be comr 

pared with the findings of reference (17) in section (8,0). 

4.2. Load Capacity and Pivot Location. 

If the pressure forces on the pad are resolved into two compon-

ents, one parallel to the 6 datum and the other perpendicular to it, 

then after summation, a resultant can be obtained making an angle 8^ 

with the datum. The pivot position due to pressure forces, i.e. 

neglecting pad weight, friction, etc., is thus given by the angle 

'r 

Resolving parallel to the datum:-

"l - *=Pa 

L 
;5R 

J L 

2R 

•ijj 

Pcp*8d8dY 

i j 
P_co88d8 

L 

r W 
(1-

cosh KY", _ 
a:J 

L 
2R 

cosh 
2E 

(33) 

Resolving perpendicular to the datum:-

W_ " R2p 
a 

ip 

P^sinedG 

* 

2R 
( 1 - cosh KY 

2R 

cosh 
KL 
2R 

) dY (34) 

The integration with respect to Y is;-
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I ^ . | - | t a n h S (35) 

ly is a factor which takes into account the length of the bearing. 

(12) 

Similar end flow factors were determined by Ausman for journal 

bearings* but are far more complex in form than ly. 

The pivot position is given by:-

W I P.sinedG 

tanO. = ̂  ' " ,.,.(36) 
1 W fijj 

P^cos8d8 

* 

It is interesting to note that with this approximation, the pivot 

position is independent of bearing length, and can be calculated on 

the basis of an infinite bearing for simplicity. 

Equations (34) and (35) now become:-

"l " V ' P a j* {C^e'^®+C^A(UPj)oose<.(A2-Pj)sin6}.££|^ 

(I + I + I + (A2-P ) I ) 
. R2p A 2 2 1 — 3 - ly 

(1 + A2) ? 

" R*pa 1% ly 

(I + I + A(l+P ) I + I ) 
and W, - RZ* A .--2 S 1 2 Z_ I-

2 a (1 + A2) ? 

*'Pa lb ly (38) 
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The total load W is given by, 

W - (W^2 + WgZ)* (39) 

or the noodimensional load W by, 

T? - - (1,2 + I 2)2 (40) 

PgRZly 

It is possible to consider three limiting conditions to 

equation (35):-

(i) A then ^/R. 

This means that the load capacity of the pad is directly proportional 

to the bearing length, a conditio* #hich i« osly #&cigfi#d if 

there is no pressure gradient in the axial direction, figure (5). 

W then becomes a dimensionless load per unit length of the pad. 

(ii) ^/R -+ then °° 

Again there is no pressure gradient in the axial direction; and 

W is in effect the nondimensional load per unit length, but since 

^/R is infinite, W is also infinite. 

(iii) ^/R + 0 then -+ 0 

As may be expected a pad of zero length produces zero load capacity. 

It should be noted however, that W may still have a positive value 

other than zero. 

As already indicated in section (4.0) the solution for a plain 

journal bearing contains only periodic terms, whereas the solution 
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to a pad bearing may also have aonperiodic cnea. In this solution 

the nonperiodic terms are contained in and 1^. Although an ex-

act integration is not available for and Ig, it is possible to 

make a series expansion of these groups. The approximation made 

here* is a binomial expansion of the denominator, which was selected 

in preference to a power series, since it remains reasonably accurate 

when @ becomes very large. The number of terms has been taken such 

that the integration may be valid down to values of H = .2. 

Hence 

I, = C, 
A 

AA 1 
e { (AcosG+sinG) 

A^+l 

A2+4 
(Aain28-2co828) 

A^9 
(Acos 3 6+3s in3 G) 

A y Aj. 
^ (Asin46-4cos48) + — • — — (Acos5e+5sin59)} 

A/+16 A2+25 

^ 2 " i + 

. A * . 3A'+ 
Ag - % - + -%r-

" # -

^2 - A-
logCl-AsinG) 
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.A(l+P^) _ 1 Car^A 
2(1-A^) ̂  tan , ] + Acos8-8 

A? 
AsinG+logCl-AsinG) 

I3 » Cj "/''A . A - (Asin6_c.se) 
A A2+1 

An 

A^+4 

A, 

(Aco828*2Bin28) 
A^+g 

(Asin38-3cos38) 

10 "1.1 

A2+16 

A 

(Acos48+48in48) + — (Asin58—5co858) 
A2+25 

A, 
12 . "13 

(Acos68+68in66) 

A^+49 
(Asin78-7cos78)} 

. _ A . 3A3 ^ 5A5 
6 "" "2* T* 

A, . 1 H. 3A! , 5a:1 , 3 5 ^ 
7 4 8 04 

A g . I + 1 ! H. i||i 
N - - r 

. _ A^ ^ 3A5 
^10 - 3 - + "iS-

. A^ . 7AG 
11 16 64 

A._ * A? 
32 

6 A 

A 
13 

(l-A^) 
tan 

tanz-A 
•1 ( — 2 ) 

64 
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(AZ-P^) 

A2 (1-A2) 

tan^A 
T tan [ i) + Acoa6-8 

(1-A2): 

The mechods for obtaining some of the above integrated group* are 

not altogether obvious. For this reason the detailed integration 

is given in appendix (3). 
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5.0. Validity of the linearised 'oh' Analysis. 

This analysis may be examined in two stages. Initially it 

must be established that Reynold's equation gives a true representa-

tion of conditions existing in the gas film, and secondly the approx-

imations made in its solution should be justified. 

It is more convenient to study the solution of the equation 

first, and then to compare theoretical and experimental values in 

order to assess its utility. 

It is important, when carrying out such an assessment, that 

the theoretical and physical properties are compared at the earliest 

possible stage in the analysis, which for lubricating films requires 

the comparison of predicted, and actual pressure profiles. To com-

pare load capacities, would lead to the possibility of discrepancies 

being disguised by the process of integration. 

Accurate solutions may be obtained by numerical means, the 

accuracy depending on the time and computational facilities available. 

These solutions may then be employed as 'mathematical standards' for 

purposes of comparison. 

Although it is possible to obtain solutions numerically for 

finite bearings, it is less demanding on computation time to deal 

with the infinite cases. The approximations however, must then be 

studied to determine the part played by end flow in their modifica-

tion. 
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Equation (9) is symmetrical in x and y, except for the term in 

U. If the approximations made in obtaining equation (10) from 

equation (9) are legitimate, then all the terms on the right hand 

side of (9) must be small compared with those on the left. When 

the legitimacy is only tested for an infinite bearing, it might be 

argued that the term in U is 'weighting' the left hand side, and the 

other terms in x are of the same order as those on the right, this 

would mean that although the approximation was valid for the x 

direction it may be invalid for y, since y has no 'weighting' term. 

This condition cannot occur, for in order to maintain the 

equality of the equation, either one or more of the terms on the 

right, or the remaining terms on the left must be of the same order 

as the term in U. Therefore to show that the approximation is good 

for an infinite bearing, would be to show that all the terms on the 

right are small, and that the game order of validity exists for a 

finite bearing. 

For this reason the numerical solutions discussed in the follow-

ing chapters will be limited to those for infinite pads, with the 

exception of existing solutions obtained by The Franklin Institute 

reference (17). 

5.1. The Numerical Solution of Reynold's Equation. 

From section (3.1), equation (8), we have Reynold's equation for 

an infinite bearing:-
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dp _ 6pU(ph+B) 
dx 

nondimensionalising:-

ph3 
##*#####(8) 

^ Ac(PH+B^) 
(41) 

where Ac -

.= Ac(P(l-Asine)+B.) 
or -rr - , . . (42) 

46 P(l.Asia8)3 

The above equation contains P, the absolute nondimensional pressure. 

In most calculations concerning pad bearings, P will take on values 

between 1 and 2. When these values are stored in the computer, 

they are handled in floating point form. If gauge pressure i# 

again substituted for absolute pressure, the values between 1 and 2 

have one less digit to be stored, and between 1 and 1*1, two less 

digits, etc. The result is a reduction in rounding errors when 

small mesh sizes are employed. (42) then becomes 

AcKP+l)(l-Aain8)+B.) 
(43) 

(P+l)(l-A,in8)3 

Equation (43) requires two boundary conditions for its com-

plete solution. These are given by the ambient conditions at 

either end of the pad, i.e. 

when 8 - $ and ^ P = 0 
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One boundary condition provides a starting value for the numerical 

integration, while the other determines the value of B . 

5.2. Evaluation of 

Unfortunately, can only be found by satisfying the boundary 

conditions after integrating (43), which for a step by step process 

involves trial values for B^. 

Returning to equation (41), and considering the point at which 

the pressure is a maximum, i.e. 

= 0, then:-

PH " -B 

Since P and H must always be positive, B^ must take on negative 

values. By similar reasoning, it can be shown that when integrating 

in the positive direction, a reduction in B causes a positive re-

duction in the value of P at the trailing edge of the pad. 

A flow diagram of this iteration is shown in figure (6). 

A condition which must be borne in mind, is that in practice 

P cannot take a value of less than -1, which corresponds to absolute 

vacuum. It was found that if this limit was exceeded during the 

integration process, the remainder of the process became unstable, 

it was therefore necessary when this did occur to increase B^ immed-

iately, and to recommence the integration. 
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6.0. Numerical Scudv. 

6.1. Finite Difference Solution. 

If equation (43) is written in a backward difference form, 

with an interval and a pivotal point (8 , P ), it becomeg:-

Pn+i- Pn _ Ac((P,+l)(l-Aain8^^)+Bi) 

^8 (P^+1)(1-A8in8^)3 

A_Ac((P +I)(l-Asin8 )+B.) 
2" +1 = 2 2 1_ + p (44) 

(Pg+l)(l-Asin8^)3 

The above expression may be handled in one of two ways. A 

set of simultaneous equations can be set up in P and and 

solved by matrix methods, or a step by step method may be employed. 

The step by step method was favoured in this instance, since the 

computation was performed on a multiprogramming machine, where it 

is better to sacrifice time in preference to storage space. 

The finite difference solution assumes that the curve between 

two adjacent mesh points is in fact straight. The accuracy of 

the solution is therefore improved by a reduction in mesh size, 

which is assisted by the use of dimensionless gauge pressure as 

already outlined. The importance of a small mesh size becomes 

marked when the compressibility number is high, not only because 

of accuracy, but also to maintain a convergence for 
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6.2, The Rung^-Kutta Method. 

Unlike the finite difference solution, the Runge-Kutta method 

assumes an approximation to the curve between mesh points, and as 

a result can attain the same accuracy with far fewer points. There 

is however a stability limitation on the minimum number of points 

chosen. 

The Runge-Kutta method can take many forms, but in this thesis 

is restricted to what is known as the classical form, reference (18), 

We then have:-

A_Ac 
P = p + -2-- (k_ + 2k, + 2k_ + k_) (45) 
n+1 n 6 0 1 2 j 

where 

^0 

P (1-Asin8 )+B. 
n n ] 

P (1-Asin8 )3 
n n 

k 
(pQ+&kQ)(l-A8in(G^+&Ag))+B^ 

1 (Pg+ikQ)(l-Asin(8^+4AQ))3 

k 
(P^+&k^)(l-Asin(G^+lAg))+B^ 

a . ,1 

(P_+|ki)(l-Asin(8^+&Ag))3 
n 

and kg 
(PQ+k2)(l-Asin(8^+Ag))+B^ 

(pQ+k2)(l-Asin(GQ+Ag))3 

The calculations for each iteration using the Runge-Kutta 

method, take about four times as long as those using the finite 
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difference solution. Thus it is necessary for the Runge-Kutta 

method to attain a greater accuracy when using a quarter of the 

mesh points to make it worthwhile. 

6.3. Numerical Evaluation of the Analysis for the Infinite Pad. 

The analytical solution of the film pressure profile is given 

by equations 18, 19, 20 and 21. These equations contain the para-

meter 

A . I e S I 

The value of c^ was taken by Ausman (12), for a plain journal 

bearing, to be the radial clearance between the journal and the 

bearing. For that particular case, it was in fact, also the mean 

film thickness. In this study, the value of c^ has been taken as 

the mean geometric clearance under the pad, which is 

C . + ACcos^-eosiO) (46) 
1 (#-*) 

The validity of c^ will be considered in a later chapter. 

The relationship between A and Ac is then given by:-

h • (ff 

This relationship has been used in determining the analytical 

pressure profile for various values of A. 
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The actual calculation of the analytical pressure profiles, 

has been approached in two ways. The simpler involves assuming 

the value of p^ to be ambient, i.e. P = 0, and results in the 

direct evaluation of equation (18). In the alternative method, 

is taken to be a mean value of P along the film, and is arrived 

at by taking a starting value of P^ = 0 and iterating until the 

variations in P^ are negligible. This is a very rapidly conver-

gent process. 

The two methods are compared in section (8,0). 

6.4. Numerical Stability. 

It has often been noted, that when solutions are being sought 

for Reynold's equation at high values of Ac, numerical instabilities 

may occur. Solutions for an infinite pad bearing are no exception. 

The instability stems from the relationship between and the 

pressure profile. As the compressibility number increases beyond a 

certain range, very small variations in cause large variations in 

the computed pressure distribution. This is best illustrated by 

the example shown in figure (7) and the following table: 
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Ac = 15 ^ * -30^ ^ — $ = 120^ A = .5 mesh * 50, 

• 

P at 8 = # 

0 63.5625 

1 56.2504 

1.125 53.9647 

1.1875 50.7278 

1.195312 49.2447 

1.199218 47.3882 

1.205078 43.4153 

1.205322 39.7655 

1.205353 37.9099 

1.2053683 35.5664 

1.2053759 30.9391 

1.2053769 28.0581 

1.2053774 15.0112 

The starting value for B in the iteration is zero. When the 

integration is commenced from the leading edge, a pressure of 63 

atmospheres results at the trailing one. As the value of is 

reduced to some amount a little less than -1.2, the calculated 

trailing edge pressure begins to fall towards ambient, and would 

indeed fall to ambient if the computer were infinitely accurate. 

Unfortunately the variations in successive values of B become so 
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small, chat they are lost in the computers rounding error. This 

condition is further aggravated when a two dimensional mesh system 

is employed, and has in the past limited solutions to those for 

small compressibility numbers. 

It was found in practice that for a value of A = .5, and 

# - -30, the stability limit on a 120° bearing using a finite 

difference solution was A = 10, and using the Runge—Kutta solution 

A " 6. For this reason, a counter was incorporated in the pro-

gramme to limit the number of iterations should instability occur. 

Although the Runge-Rutta method produced fast ;nnfl accurate 

solutions at low compressibility numbers, it was abandoned in 

favour of the finite difference method, because of its unstable 

behaviour when A was high. 

6.5. Construction of Design Curves. 

The analytical approximation for end flow correction shows 

that to design a single pad, two forms of design curve are re-

quired if the parameters are to be truly dimensionIess. 

One form is shown in figures (8) to (12), and represents the 

dimensionless load capacity per unit length of an infinitely long 

bearing, plotted against the dimensionless pivot position. The 

other set of curves, allows correction due to end flow to be made, 

and takes account of bearing length. 

It should be noted that in the first set, parameters are 
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plotted for lines of constant Ac, whereas in the second set, they 

are given for values of constant A. Equations (46) and (47) are 

therefore used for conversion. 

The nondimensional load W, may be calculated using equations 

(36) to (40) or computed using Simpson's rule from the components 

of the elemental pressure forces obtained by the finite difference 

solution. The former method may take two forms, either, that 

where is set equal to zero, or that where is taken to be the 

mean pressure. It will be seen later that the latter produces the 

more accurate solution. 

In the second form of curve, 1^ is plotted directly from 

equations (30) and (35). 

Curves of W against Xp are plotted here for particular values 

of A (i.e. A 1-Hm), this is contrary to reference (19) where 

similar, but not truly dimensionless curves, are plotted for par-

ticular values of Ac. It seemed preferable in this case to pre-

sent Ac in an infinitely variable form, since it is dependent on 

both machined-in clearance and speed, whereas A is only related to 

the nondimensional minimum clearance, which for design purposes can 

be increased in steps of 0.1. 

Figure (13) shows a comparison between design curves of W 

against Xp obtained by the analytical method, (solid line), and the 

finite difference method, (broken line). The points marked on 
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the numerical curves represent their intersection with lines of 

constant 

At high Ac, good agreement is obtained between the two solutions, 

this is an important point, since it is in this region that numerical 

solution* become unstable, or are slow to converge, and for this 

reason, the analytical solution is most useful. At first sight, 

the difference between the curves at low compressibility numbers 

appears to be great, but in fact when it is considered that is 

plotted on an expanded scale, it can be seen that the maximum devia-

tion on the Ac " .6 curve is Xp = .613 - .568, i.e. less than 5% of 

the pad length. 

In practice, the design curves are not likely to be used at the 

maxima for W for fear of slight variations in running conditions 

causing a rapid fall-off in load capacity, but would be used for 

pivot positions nearer the leading edge. For this reason, it is 

important to plot load capacity accurately, rather than the pivot 

position at capacity fall-off. 

As is shown later, the comparison of theoretical pressure 

profiles indicates that the analytical solution for W, tends to 

slightly over-estimate the load capacity of the pad; it has been 

decided that where a deviation between the two solutions does occur, 

the numerical solution will be used, resulting in curves being 

constructed from the numerical solution at low Ac, and the analytical 

solution at high Ac. 
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7.0. in Linearialne. 

7.1. Study of the Group p c.^. 

This group was substituted in place of ph^ to obtain the linear 

equation (11). Its value affects the relationship between A and Ac 

as given by equation (47). 

The substitution assumed by Ausman, for plain journal bearings, 

of ph^ = p was to good effect, for in Journal bearings, "c" is 

also the mean radial clearance, and p^ approximates to the mean 

pressure in the bearing. 

For a pad bearing, it is a simple task to calculate the mean 

geometric clearance between the pad and the shaft, but the mean 

pressure calculation is more complex. 

The method adopted in this report was to take ph^ = p c^^, where 

c^ is the mean nondimensional radial clearance. 

If the linearisation is sound, equation (10) is valid for all 

points over the pad surface, and for any given position a definite 

value for ph^ exists. If it is assumed that the mean value of ph^ 

over the film gives the best conversion from A to Ac, then a com-

parison can be made between it, and the quantity p c.^. 

Let P^H . (PH?) mean 

then H . (ph2) 

^1/— . . 

The ratio E will then give the factor by which c^ is in dis-

agreement when converting from Ac to A. This ratio is plotted from 
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the finite difference solution to the infinite bearing in figure 

(14), for a pad with a span of 120° and with A = .5, As can be 

seen, when Ac 0 the ratio -+ 1, and hence gives complete agree-

ment, but when Ac » the values become asymptotic to values be-

tween ,79 and .88. 

When the conversion is used to determine the end flow correct-

ion factor ly, it is seen from the inset graph on fig (15) that 

errors in the determination of A, create only small variations in 

the value of 1^, and this is most marked for 2 $ A $ 7. 

For example when A « 2, = 1.9, and when A - 3, I " 2.07, 

a difference of less than 10% under the worst condition. 

The other conversion of Ac to A, is in plotting the analytically 

derived design curves and pressure profiles. Since the analytical 

design curves are only plotted for the higher compressibility numbers, 

they fall in a region where large variations in A and Ac have only a 

amall effect on the change in W. This is further borne out by the 

good agreement of these curves with the numerical curves in fig (13). 

The effect of errors in A for plotting the pressure profiles can be 

observed in two ways, one is the scaling effect, and the other the 

movement of the pressure peak along the pad. 

7.2. The Quantity 

From equations (18) to (20) it is seen that acts as a scaling 

factor on the trigonometric terms, and as a result, has some effect 
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on the shape of the pressure distribution as well as its magnitude. 

Its effect on magnitude will be apparent in the following chapter. 
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8.0. Camparison of Theoretical Pressure Profiles. 

In fig (16) the analytical solution for an infinite bearing, 

with taken as the mean pressure around the centre line of the 

bearing, is plotted against the finite difference solution com-

puted with a mesh size of 100. 

The analytical solution tends to predict a pressure distribu~ 

tion greater than that of the numerical one, and a displacement of 

the distribution towards the leading edge. The effect of this 

displacement is for the analytical pivot position to be forward of 

the numerical position. 

At high and low compressibility numbers, the pressure amplitudes 

are in closer agreement; this is in keeping with the limiting con-

ditions given in section (3.2). For high compressibility numbers, 

both the amplitude and the shape of the curves apree well. 

Figure (17) shows the analytical solution with P - 0, plotted 

against the same numerical curves as in the previous figure. It 

should be noted that the amplitude of the distribution is brought 

more in line with the numerical curve, when P^ is taken as the mean, 

although the direct evaluation of equations (36) to (40) make the 

solution with P^ = 0 a simpler proposition. The improvement in 

taking P^ as the mean, is most marked for Ac « 1.5. 

Direct numerical solutions for a finite pad with a span of 94.5 

were plotted at the Franklin Institute, reference (17). 
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Pressure digCributions taken from this reference, are shown 

in figures (18) and (19). Figure (18) shows the circumferential 

plot along the pad centre, the Franklin solution being compared 

with the infinite finite difference solution, which has been corrected 

for end flow by equation (32). The curves display good agreement on 

the amplitudes of the pressure peaks. The Franklin curves however, 

have their peaks displaced towards the trailing edge. One of the 

disadvantages in obtaining a numerical solution to the finite pad, 

is that owing to the limitation on computer time and space, the megh 

size must be fairly large, and this displacement of the pressure peak 

could result from this condition. When the numerical solution is 

obtained for an infinite bearing, it is possible to take a smaller mesh 

size without any great demand on computation time. For sxample if 

the finite bearing is computed with a mesh size of 20 in either 

direction, 400 mesh points have to be evaluated, whereas a mesh size 

of 100 for an infinite bearing produces a fifth of the mesh size in 

the circumferential direction, and only requires 100 points to be 

evaluated, with a major increase in accuracy. A further disadvantage 

with the two dimensional mesh system is that of obtaining a stable 

convergence in both directions. Figure (19) shows the comparison 

between the axial pressure plots. Most of the deviation between 

these curves r t:ems from the differences in the circumferential p lots. 

If the circumferential profiles agreed exactly, then the axial 
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pressure distributions would be in agreement on the pad centre line, 

and if this were the case, it can be seen that there would be good 

agreement for Ac ^ 1.5 and Ac = 4, and fair agreement for Ac = 10. 

It should be remembered that as Ac + the pressure gradient in the 

axial direction becomes zero, as in the case of an infinite bearing, 

fig (15). It would appear that the curve of Ac = 10 taken from 

reference (17), does not follow this limiting trend, and since it is 

at a value of Ac, where accurate numerical solutions to a finite 

bearing are difficult to obtain, it is not a very reliable standard 

by which to compare a new solution. 

In conclusion, it can be said that by comparing the analytical 

solution with numerical solutions, a test is being made on the 

analysis as a mathematical evaluation of Reynold's equation. The 

findings are that the analysis with as the mean pressure is an 

improvement on that of = 0, the analysis becomes very accurate 

at high compressibility numbers, the pressure amplitudes agree well 

at low compressibility numbers, and from figure (19), the axial 

pressure distribution is in good agreement with numerical findings. 
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9.0. The Test Apparacus. 

9.1. The Experimental RiR. 

A specially constructed rig was used for the experiments 

described in the following chapters. A sectioned diagram of 

this rig is given in figure (20). 

It is designed such that it can be operated with any number 

of pads in position. This allows single pad tests to be made* 

and minimises both the extent of instrumentation required, and 

the number of pads it is necessary to manufacture. It is also 

desirable to have a loading system whereby zero load can be attained, 

and in which the load is unaffected by gravity forces acting on the 

pad. 

For these reasons, the shaft is maintained vertically by two 

pressurised air slave bearings, its upper portion protruding with 

minimum clearance through a hole in the top plate. The protruding 

length provides the working section. At its lower end, the shaft 

is supported by a pressurised thrust bearing containing a mercury 

well, by means of which, a needle extending from the shaft centre, 

provides an earth contact. 

The slave bearings are in turn rigidly fixed to a machined 

channel section encastrg in a concrete block. The block provides 

a cheap and rigid base structure for the rig, and is isolated from 

the floor by "Metalaatic" antivibration mountir%s. As can be seen 
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from the diagram, the block is formed in a 'U' shaoe, providing 

a soundproof housing for the turbine, and acts as a safety wall 

in the event of a shaft failure. 

The services to the turbine cavity pass from the rear of the 

structure, through a four inch diameter tube cast into the block. 

The tube also becomes an exhaust for the turbine air, and is packed 

with corrugated paper for silencing. A control panel containing 

air regulators and pressure gauges, provides a front to the turbine 

cavity, and convenient regulation of the various compressed air 

services. 

Shaft motion in either of the two slave bearings, may be mon-

itored from the two capacitance transducers, positioned in quadra-

ture at each of the bearings. The running speed is recorded from 

a "Southern Instruments' electromagnetic pick-up, triggered by two 

small holes drilled in opposite sides of the shaft to maintain 

dynamic balance. 

9.2, Loading System, 

An air lubricated cross-slide, was located on the top plate, 

to which a circular pad carrying three pivot supports, was attached. 

This facilitated the mounting of three pads on a common structure, 

whilst allowing easy access for instrumentation, and being suitable 

fer any extension of the present work to mnlti—pad systems. The 

cross-slide provided pivot movement normal to the shaft axis. 
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It was designed such that loads could be applied by compressed 

air trapped in the cavity at the forward end of the cross—slide, 

the air pressure being indicated on a gauge. The slide was cali-

brated against a dead weight load, when it was in its mid-position, 

this being determined by a dial gauge. 

Unfortunately, the slides were constantly becoming clogged with 

dirt, and after a while, distortion of the cross slide made it 

difficult to obtain repeatability of the load calibration due to 

surface contact occurring. 

Since these experiments involve the use of a single pad, it 

was decided to have a simple dead weight loading system, rather than 

spend time correcting the slide-way. 

The loading was finally achieved by locking the croas-slide in 

position, and replacing one of the pivot supports by a simple bell-

crank lever, with a pivot for the pad at one end, and a weight 

carrier at the other, (fig (21). This gave a three to one load 

magnification. 

It is likely that with improvement, the cross-slide loading 

system would provide a valuable means of loading a multi-pad bear-

ing, as the load can be orientated by means of the circular pad 

support, fig (21). 

9.3. The Test Shaft. 

Originally, the two inch diameter shaft was made by modifying 

an old rotor used in tests by the U.K.A.E.A. This had the 
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advantage of having a hard chrome surface, which reduced the risk 

of damage in the event of a bearing seizure. As proper grinding 

facilities were not available in the University workshop, the shaft 

had to be ground by an industrial concern, and when returned, al-

though round, it was found to have a bent axis. 

Owing to the difficulties and delays of having a shaft manu-

factured in this way, an attempt was made to machine a shaft from 

mild steel, using laboratory workshop facilities. The use of a 

mild steel shaft, was made possible by the pressure jacking of the 

pad during starting, but greater care had to be taken during experi-

ments to avoid surface contact. 

The mild steel shaft was first machined to a dimension a few 

thousandths of an inch in excess of the finished size. The centre 

portion of the shaft, which had to be knurled, fig (23) was turned 

to a diameter of 1.9 ins., and the knurl applied. At this stage, 

internal stresses in the bar could exist, and consequently the shaft 

had to have cyclic heating in a small furnace. The shaft was then 

turned between centres, until it was .001 ins., greater than the 

finished size, thus producing a true axis« In fact, the distortion 

due to stress relieving was hardly measurable. The final finishing 

was by honing between centres, and the roundness attained measured 

by a pneumatic ring gauge, was in the order of .0001". A polish 

was obtained by the light application of a piece of polishing paper. 
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whilst the shaft was rotating in the rig. Finally the centre at 

the lower end of the shaft was drilled and tapped to take a brass 

earthing needle for immersion in the mercury well. 

As a check on the axis of rotation, a .001" capacitance dis-

placement probe was mounted in place of the pivot and showed a peak 

to peak deviation of .00004" when the shaft was rotated slowly. 

The polar imoment of inertia of the shaft was calculated assum-

ing a standard density for the mild steel; to verify this value, its 

weight was also calculated and compared by weighing, leading to an 

agreement of better than .1%, and giving a value of I * 1.703 x lO"^ 

slugs fc^. 

9.4. The Rotor Drive. 

A number of possible drive systems were considered for the pur-

pose, finally reducing to three probable arrangements. 

A steam impulse turbine had the advantages of providing a power-

ful but compact unit, with very high jet velocities. It presented 

however, problems of exhausting the steam, and maintaining a thermally 

stable rig. An electric induction motor was conaidered, but it was 

feared that it may have been difficult to balance the rotor at high 

speeds. On the other hand, balancing a hysteresis motor would have 

been much simpler, but here there was the danger of heat being 

generated in the shaft. 

An air turbine drive was finally selected, consisting of five 
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"Laval" nozzles directed onto the knurled surface of the shaft. 

The knurled shaft form of drive, had previously proved very effect-

ive in reducing turbine noise, with little loss in driving power. 

In order to manufacture a "Laval" nozzle, it is necessary to 

create a smooth convergent-divergent bore, otherwise a shock wave 

may exist near the throat, resulting in an energy loss within the 

nozzle itself. Under normal machining conditions it is difficult 

to manufacture small bores to this requirement, and consequently 

the author decided to adopt the following technique. 

A short length of quarter inch diameter smooth bore, hard 

copper tube, was held between two rollers, and formed along one of 

its diameters to cause a reduction in flow area. The pipe was 

then trimmed in such a way, that the divergence continued up to the 

exit, and the exit shaped to follow the contour of the knurled shaft, 

fig (26). 

9,5. The Tilting Pads. 

The pads were made by modifying existing full journal bearings. 

These bearings came from the remains of rigs used by the U.K.A.E.A. 

in conjunction with the chrome nlated shaft mentioned previously. 

The exact nature of the material is not known, but it is some form 

of fairly hard copper alloy. As the mild steel shaft could not be 

allowed to make moving contact with the pad, the rubbing properties 

of the pad were unimportant. 
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Two pads were cut from each bearing, and were machined in 

such a way as to form a pair of flanges on their rear side to act 

as stiffeners; this made possible a thinner and lighter pad, with-

out a great loss in rigidity. The pivot positions were formed by 

120° conical recesses in which the pivot, having a 90° cooe, could 

be located. Pressure tappings consisted of .013" diameter holes in 

the pad surface, leading to short lengths of hypodermic tubing 

cemented into the back face, fig (27). 

The required radius for the pad was achieved by lapping. The 

lap used, was of the helical expanding type, consisting of a tapered 

mandrel passing through the centre of a cast iron lap, into which 

was cut a helical slit. The mandrel and lap were first mounted in 

a lathe, and the pad was slowly traversed by hand along the lap, 

whilst the machine was in motion. Once the condition had been 

reached, where all the pad surface was in contact with the lap, the 

lap was removed from the lathe, and supported between a pair of 

"dead" centres, to obtain a final finish by hand lapping. During 

the lapping operations, the lap had to be constantly "dressed" to 

avoid it "necking" at its centre, where most of the wear took place. 

The lapping medium wAs diamond paste, of which two grades were used, 

one for roughing, and the other for the hand finishing. A particular 

danger when lapping pads as opposed to full bearings, is the build 

up of compound at the leading and trailing edges; if allowed to 
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accumulate, these surfaces will be cut back below the raminder of 

the pad. 

As no roundness measuring equipment, suitable for checking 

the pads, existed in the laboratory, the pads had to be compared 

with a standard cylinder. For this purpose, some accurately manu-

factured rotors, used on another rig, were employed. These rotors 

were inspected and sized, using a pneumatic ring gauge. 

The method of checking, consisted of smearing the surface of 

the cylinder with a thin layer of engineers blue, and rubbing the 

pad against it. This technique was found to be most satisfactory, 

because when blue appeared all over the pad surface, it was found 

that after cleaning these surfaces, the pad and cylinder could be 

easily wrung together, suggesting that the limitation on accuracy 

was set by the pneumatic gauging, which was better than .0001 ins. 

9.6. Pressure Jacking. 

For starting purposes, jacking gas was applied to the pad 

through the pressure tapping holes, this allowed starting to take 

place without causing surface contact. A diagram of the layout of 

this system is shown in fig (28). Once the journal had reached a 

load bearing speed, the jacking gas was clamped off. 

9.7. Measuring Techniques. 

The pressure distribution was recorded on a mercury manometer, 

connected to a 'Dralim" channel selection valve. Since only six 
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channels could be selected with a single valve, a total of three 

valves was used, and by interconnecting, made available sixteen 

possible tapping points. In order to put the ninimni of constraint 

on the pad, the pressure tappings were joined to the selectors by 

small bore plastic tube, as used for electrical insulation. 

Displacaaent was measured by capacitance transducers of the 

"Wayne Kerr" type, ref (20). This form of capacitance transducer, 

has the advantage of producing a voltage signal, which is linear 

with displaceaent. The capacitance probes theoselves, were spec-

ially aade for the experiments, since the standard manufactured 

probe is bulky and heavy. The probes consisted of a central 

electrode, around which a guard ring of nininum thickness was con-

structed, the fabrication was then shielded by "Tufnol", to insu-

late it froa the pad. A photograph of the probe is shown in fig 

(25). Very small diameter co-axial cable was soldered to the 

electrode and guard ring* so that little force was applied to the 

pad. Unfortunately, the aaall dianeter cable had a very high 

capacitance, and only a short length could be used, before a joint 

with a larger cable had to be nade. Experience had shown that if 

the probe and cable capacitance exceeded 130 p.f., a nonlinear 

signal was produced by the neter. These capacitance probes were 

fitted at the four corners of the pad, but in a part of the pad 

outside the bearing surface. The displacement calibration was 
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nade against a barrel nicroaecer, which was only rotated in one 

direction to obviate "back-lash". The calibrations are given 

below, and a typical calibration curve is plotted in fig (29). 

Maxinum nominal displacement = .002", 

number of unit divisions on meter - 10. 

Probe Meter divisions/inch displacement 

1 5.45 X io3 

2 5.13 X 10% 

3 5.34 X 103 

4 5.56 X 103 

Speed was recorded by a digital counter triggered from a 

"Southern Instruments" tachometer. The original signal being 

taken from a magnetic pick—up near the two holes on the shaft sur-

face. This made possible a very accurate estimation of the speed, 

and during run-down tests, could be set to count the period over a 

given number of cycles, and thus offer a very rapid and accurate 

method of speed recording, as well as measuring the time interval. 
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The capacitance probes when calibrated with the barrel micro-

meter, were checked at different positions on the micrometer thread, 

to average out any local thread imperfections. It was found, how-

ever, that the readings taken at different positions, were repeat-

able. The estimated accuracy as a result, could be put at about 1% 

of the full scale deflection. Since the probes gave a nominal full 

scale deflection of ,002", it follows that the most pessimistic error 

in obtaining and Dg (appendix 4), occurs when c " ,625 * 10 ins,, 

and assumes that all the error is in the region of the scale used for 

the experiments; this gives an error in the order of 3%. 

From appendix 4: 

• • ' w S ' 

It can be seen that if the quantities and or 

and DgBg were of the same order, their difference could be composed 

mainly of the error. In these tests however, the quantities 

and DgBg were positive and D^B and D^B^ negative; thus maintain-

ing the order of error to less than 3%. 

Again from appendix (4): 

A -
(Bgsin^+B^cos^) 

It was found that the experimental values of # were always 
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negative, which leads to the first term in the denominator being 

negative, and the second positive. Hence the error in A could be 

large if both terms were of the same order, and in any case, the 3% 

error would be increased. Fortunately, for this series of tests, 

one term was always twice the magnitude of the other, limiting the 

error in A to less than 6%. 

A possible source of error in using displacement probes, is 

the zero datum setting. Because of the wringing together of the 

pad and the standard cylinder, no problems were encountered, since 

the variation in datum reading was very much better than one meter 

division for all positions on the cylinder. ( F.s o) 

These displacement measuring techniques, appear to be consistent 

with obtaining a high degree of experimental accuracy. 
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11.0. Actual Preasure Distributions. 

In keeping with the policy of studying the film pressure dis-

tribution, to test the validity of the two solutiona obtained to 

Reynold's equation, a study of the actual pressure profiles in the 

bearing film wgre made. The aim was to obtain pressure plots at 

conditions as widely separated as the rig permitted, in order to 

test the theory over the greatest possible range. 

11.1. Experimental Procedure. 

The pressures were recorded at small tapping holes in the pad 

surface, which have already been described, and were displayed on 

the mercury manometer. Layouts of the tapping holes for the two 

conditions tested, are given in fig (30). 

For starting, jacking gas was supplied through the pressure 

tapping holes, and when the rig had reached its load bearing speed, 

the jacking gas supply was sealed off, and the rig operated hydro-

dynamically. It was found with the smaller clearance pad, that 

the trailing edge jacking was too great owing to the concentration 

of pressure tapping holes in this region; it became apparent when 

the pad began to pitch during the runrup, and was easily cured by 

pinching the trailing edge tapping tubes with a small pipe clamp. 

During the recording of the distribution* an attempt was made 

to hold the rig at a constant speed, but at the higher speed, due 

to the lack of sensitivity in the nozzle regulator, whilst passing 
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a large volume of air, the speed tended to follow the compressor 

pressure cycle. This necessitated the recording of the pressure 

at the instant the cycle passed through the test speed. 

The response of the manometer was relatively slow, owing to 

the small bore of the plastic tube, and the size of the tapping 

holes. To expedite the recording of the pressures, instead of 

tappings being selected in geometric order, they were selected by 

their pressure magnitude, the pressure change between each selected 

point was thus kept to a minimum, resulting in a shorter settling 

time for the manometer. 

The rig was first operated using a pad with a machined-in 

_3 

radial clearance of .975 % 10 ins, giving a compressibility num-

ber of 1.232. In order to attain a high compressibility number, 

it was necessary to both reduce the machined-in clearance, and 

increase the operating speed to a point near the controllable limit 

of the rig; this produced a compressibility number of 5.3. 

11.2. Experimental Results. 

For the above operating conditions, three different loads were 

applied to the pivot, and the resulting dimensionless pressures 

were recorded at the tapping points. These pressures are given 

in tables (1) and (2) and plotted in figures (31) to (33). 

65. 



TABLE (1) 

if; — (j) = 120° c - .975 X 10 ^ ina. R = 1 in. 

L = 3 ins = .584 N = 11,100 r.p.m. 

Ac - 1.232 PRESSURE DISTRIBUTION (P) 

LOADS (LBS) 

TAPPING X Y 12.12 15.12 18.12 

1 .750 1.25 .104 .131 .154 

2 .960 .75 .171 .213 .248 

3 .208 .75 .113 .139 .161 

4 .960 .20 .193 .240 .277 

5 .834 .20 .314 .384 . 460 

6 .667 .20 .360 .456 ,559 

7 .375 .20 .213 .260 .308 

8 .917 .20 .208 .250 .288 

9 .750 .20 .362 .453 .544 

10 .584 .20 .330 .420 .507 

11 .166 .20 .083 .100 .115 

12 .709 .75 .288 .357 .421 

13 .917 1.25 .069 .071 .074 

14 .250 1.25 1.191 .054 .063 

FILM THICKNESS 
-3 

TNS X in 

LEADING 
EDGE 

1.072 1.124 1.191 

TRAILING 
EDGE 

.424 .475 .532 

A .567 .535 .521 

* -25° -31.8° -41.6° 

A 2.305 1.970 1.65 
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TABLE (2) 

^ ^ = 120° c = .625 X 
-3 

10 ins. R = 1 in. 

L = 3 ins 
• Xp = .584 I 3 = 18,900 r.p.m. 

Ac =5.3 PRESSURE DISTRIBUTION (P) 

LOADS (LBS) 

TAPPING X Y 15.12 21.12 27.12 

1 .750 1.25 .137 .192 .240 

2 .960 .75 .103 .151 .199 

3 .250 .75 .144 .202 .247 

4 .960 .20 .151 .216 .260 

5 .835 .20 .363 .514 .637 

6 «666 .20 .407 .580 .747 

7 .375 .20 .254 .356 .459 

8 .920 .20 .254 .350 . 445 

9 .709 .20 .418 .582 .755 

10 .542 .20 .356 .513 .679 

11 .167 .20 .116 .151 .185 

12 .750 .75 .332 .446 .583 

13 .960 1.25 .013 .021 .021 

14 .250 1.25 .055 .079 .100 

F i m THICKNESS 
LEADING 
EDGE 

1.06 .99 .931 

INS > 10"3 TRAILING 
EDGE 

.610 .518 .458 

A .635 .565 .523 

-49.5 —81 — 70.6 

A 2.96 3.10 3.40 
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The theoretical pressure distributions plotted in figures (31) 

to (33) were computed from the data given at the foot of each table; 

these values being calculated from the expressions in appendix (4). 

11.3. Discussion of Results. 

The curves shown in fig (31) for Ac - 1.232 give a good correla-

tion between experiment and theory. It should be noted that the 

analytical solution tends to over-estimate the pressure distribution, 

but gives a good positioning of the pressure peak, whereas the numer-

ical solution presents a more correct order of magnitude to the pro-

file* but tends to displace it towards the trailing edge. 

Fig (32) represents the axial pressure distribution over one 

half of the pad, and is plotted on the generator X = .7. The ana-

lytical curves are plotted directly from the pressure distribution 

obtained by means of the analytical solution, but the "numerical 

curves" are plotted by obtaining the numerical pressure profile for 

an infinite pad, and using equation (32) to plot the axial profile, 

which in fact is making use of the analytical solution. 

It can be seen that the "numerical" distributions agree more 

closely with the experimental points, but this is only so, because 

at the position where the axial distribution was taken, there is a 

closer experimental agreement with the "numerical" curves than with 

the analytical. What is important, is the form of the axial dis-

tribution. If a theoretical curve can be constructed to pass 
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through all the experimental points, then equation (32) is a valid 

approximation, and only requires an accurate value for P . 

Referring back to fig (32), it seems reasonable having regard 

for the closeness of the numerical curves to the experimental points, 

that by selecting a suitable value for equation (32) could be 

shown to be almost exact, the greatest error being at the extremities 

of the pad, where an inflection appears to occur. 

Reconsidering the question of design curves, (Section (6.5)), 

it would appear better, to construct design curves in this region of 

lower compressibility number, using the numerical method. 

The curves of circumferential pressure distribution for Ac - 5.3, 

(fig (33)), show some deviation between experiment and theory. The 

first point to be considered is that the two theoretical distribu-

tions agree well, and therefore the error does not lie in the solu-

tion of Reynold s equation. This leaves two main possibilities; 

one, that the error is to be found in the experimental readings, anH 

the other, that Reynold's equation does not truly represent the con-

ditions existing in the film. 

To check out the possibility of experimental errors, the author 

took further results at both high and low compressibility numbers, 

and remeasured the pad and shaft dimensions, yielding results con-

sistent with those included in this thesis. 

The question of Reynold's equation not truly representing the 
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conditions in the film, could account for a substantial proportion 

of the deviation. 

The experimental distribution being displaced forward of that 

predicted by theory, suggests that greater friction exists in the 

film, than was accounted for in the theory. This would mean that 

the intake pressure gradient, created by the gas being "dragged" 

into the film beneath the pad, would be greater, and as a result, 

the pressure peak would occur nearer the leading edge. On the 

other hand the viscous flow of gas between the peak pressure position, 

and the trailing edge, would result in the lower pressure gradient. 

The actual viscous loss being greater than the predicted loss, 

will be verified in the section on bearing friction. 

The assumption made in obtaining Reynold's equation for the 

fluid film under the pad, was that the boundaries were smooth. In 

practice however, all machined surfaces have a finite roughness. 

On the author's rig, the problem of surface finish was further 

aggravated by the use of the mild steel rotor, had facilities been 

available for the manufacture of a hard steel or chrome rotor, a 

better finish could have been attained. 

From the film shape parameters measured during the experiments, 

the load capacities and pivot positions were computed from the 

design curves. These values are compared with the actual values 

in the following table. 
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TABLE (3) 

(j> A W 

CO)f-
PUTED 
W 

ACTUAL 

W 

COM-
PUTED 

ACTUAL 

Xp 

ERROR 
IN 

Xp 

-99.5° .635 .4947 14.85 15.12 .67129 .584 9% 

-81° .565 .6955 21.10 21.12 .67385 .584 9% 

-70.6° .523 .8472 26.51 27.12 .67345 .584 9% 

Although the experimental and theoretical profiles are dis-

placed relative to each other, it can be seen that the actual and 

computed loads correspond well. It is shown however, that the 

computed pivot position is nearer the trailing edge. If the pos-

itlon of operation on the design curve is not near the point of 

load fall-off, then as the pivot is moved nearer the trailing edge, 

the load capacity is increased. It is evident that this is the 

condition which could result when a single pad arrangement is being 

designed for high compressibility number operation. The computed 

pivot position would be "aft" of the actual position to support the 

load, this would make possible a higher capacity at the clearance, 

and would suggest that the theory tended to under-estimate the applied 

load. 

Care must therefore be taken, when using design curves at a 

high compressibility number, to avoid working too near the load fall-

off condition, and in the case examined, not within 10% of it. 
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In general, it appears that good agreement is obtained between 

experiment and theory at lower compressibility numbers, but at high 

values of Ac, although there is good agreement on load capacity, 

gome error does occur in calculating the pivot position. 
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12.0. Bearine Losses. 

The estimation of bearing losses in any system, is an impor-

tant factor in system design. Although it may be impossible to 

calculate exactly these losses, it is essential to have some idea 

of their relative magnitude. 

12.1. Viscous Loss. 

Prom a theoretical point of view, the viscous loss for a 

single pad may be treated in one of three ways. 

A simple approach, like that of Petroff's for a plain journal 

bearing, may be used, taking a pad with a concentric clearance equal 

to the actual mean clearance. With this method, it is first nec-

essary to calculate the mean clearance, and from there it is only 

a small step to consider the actual form of the film, and to assume 

a linear velocity profile between the two surfaces, which leads to 

a solution more in keeping with the physical conditions. The 

third way involves considering the velocity profile as derived 

from the Navier-Stokes' equations, equation (4a). Although this 

is a more desirable form of velocity distribution it is necessary 

to use numerical integration to determine the torque. 

In this study, a linear velocity distribution between the two 

surfaces has been assumed. 

The clearance at any position in the film is:-

h " c[l-Asin8] 
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The viscous shear stress Chen becomesi 

3u 
9z cpi-AsinE 

From which the torque on the shaft will bc:-

2n%R3NL dG 

[1-Asin8] 

2 -1 (tan^-A)T^ 
, tan — —-r-

(l-A*): (l-A*): 

and the corresponding horsepower loss:-

HP 
550c 

2 -1 (cang-A) 
T tan 

(l-A*) (1-A2)Z 
(48) 

Where ' ' is the shaft speed in cycles per second. 

12.2. Experimental Investigation of Viscous lasses. 

The rig design is particularly suited to determining the loss 

by viscous retardation of the shaft. 

It was first necessary to carry out a run-down test, with the 

pad operating hydrodynamically against the shaft, and to measure 

the retardation at various speeds. The run-down had then to be 

repeated without the viscous drag of the pad, but with the same 

conditions as before prevailing in the slave bearings, the drag 

from the pad being the difference between these two cases. 

When the loaded pad is operating against the working section, 

some degree of deflection is to be expected at the slave bearings. 
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If the pad is completely removed from the working section, the 

slave bearings will operate in an unloaded condition, producing a 

change in their fractional characteristics. For this reason it 

was decided to leave the loaded pad in position, and to apply 

jacking gas via the pressure tapping holes, to lift it as far clear 

of the shaft as possible. 

This situation was complicated by more jacking gas escaping 

from one end of the pad than the other^ producing a turning moment 

on the shaft. The problem was overcome by repositioning the pivot 

so that the gas escaped equally in either direction. The condition 

being achieved when the shaft remained in a state of static equilibrium, 

It was not possible to use the displacement probes mounted in 

the pad for clearance measurements under jacked conditions, owing 

to the limitation on their range, (.002"). For this reason, the 

pivot displacement was measured by an externally mounted probe. 

The pivot clearance under jacked conditions was .0032", and to give 

some idea of the frictional less at such a clearance, calculations 

were made on the assumption of a .0025 in., concentric clearance, 

which yielded a horsepower loss of .00115 at 236 c/s. Clearly if 

this value is compared with the actual losses measured and calculated 

in tables (4) and (5), the jacked pad can be considered as contribu— 

ting nothing to the retardation. 
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Retardation was measured by means of a digital counter, 

triggered from the tachometer circuit. 

To obtain accurate speed values at short and even intervals 

of time, the counter was set to measure the periodic time over 

10 cycles every 6,05 seconds, enabling a five digit accuracy to 

be recorded, and to be inverted on a desk calculator to obtain 

speed and retardation. 

It was found that a plot of retardation against speed, for 

both the pad retarding, and the pad jacked, produced an almost 

linear relationship. For this reason, a linear interpolation 

was employed to find the retardation at specific speeds under both 

conditions, enabling the difference due to the fractional drag 

of the pad, to be determined accurately. 

The run—down test with the pad operating hydrodynamically was 

repeated, and held at certain speeds while clearance measurements 

were taken, to ascertain the film shape parameters, from which the 

losses were calculated using equation (48). 

The final results are tabulated in tables (4) and (5) and 

plotted in figure (34). 
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TABLE (4) 

Results from run-down tests 

Speed Retardation Power Loss 
c/s c/s^ HP 

225 13.40 .367 

200 12.55 .306 

175 11.50 .245 

150 10.59 .193 

125 9.50 .144 

100 8.35 .102 

77.5 7.36 .069 

Moment of inertia of shaft * 1.703 x slugs ft^ 

TABLE (5) 

Calculated values of power loss 

Speed * A Power Loss 
c/s HP 

236 -36.5 .493 .234 

196 -32.7 .519 .171 

172 -29.2 .543 .139 

151 -27.5 .560 .111 

132 -23.8 .592 .091 

106 -20.1 .639 .064 

92.5 -18.2 .655 .052 

61.5 -12.4 .779 .032 

The above values were calculated from the actual leading and 
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trailing edge clearances during hydrodynamic operation, 

12.3. Discussion of Reaults. 

Figure (34) shows the horsepower loss due to viscous shear 

between the shaft and the pad. 

The upper curve is that plotted from the run-down tests, and 

the lower one is calculated from the film shape and running con-

ditions. It can be seen, that the calculated values under estimate 

the losses by almost 50%, and clearly equation (48) can only be used 

as an approximate guide to design. Nevertheless, it does give 

some indication of the orders of magnitude to be expected, and some 

allowance can be made for them in the power supplied. 

In reference (17), run-down tests were performed on a 4 inch 

diameter rotor, freely supported in two sets of tilting pads, and 

fractional losses, calculated on the basis of a nonlinear velocity 

distribution, were compared ifith the experimental results. The 

calculations yielded losses which were a quarter of those found 

experimentally, the authors attributing the difference to windage. 

On the form of rig they used, it was impossible to measure the actual 

bearing friction experimentally, and to say that the difference is 

due to windage, can only be speculation. It is likely in fact, that 

their calculations also under estimated the losses, and the differ-

ence was only in part due to windage. 

It would appear that if the bearing power consumption given by 
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equation (48) is doubled, some resemblance to the friction may be 

attained. 

12.4. Pressure Loss. 

In. integrating the pressure around the pad, a single force was 

found, which acted along a line through the centre of curvature of 

the pad, and gave the centre of pressure or pivot position. A sim-

ilar resultant force will act on the shaft along a line through the 

shaft centre. 

If the pad is tilted about its pivot position, the two centres 

will not coincide, and the condition shown in fig (36) will arise. 

0 
! I 

L 
4 

Fig (36) 

The resultant forces on the pad and shaft respectively, are given 

by and Rg. can be resolved into two components, one acting 
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along the line of and the other normal to R^. The normal 

component, (B), must in someway be transmitted through the film as 

part of the loss, and in effect represents the summation of the 

pressure forces acting on the projected area 'a'. The value of 

this component can be found from the product of the load on the pad, 

and the angle of tilt about the pivot. 

The values of horsepower loss due to B acting along the film, 

were calculated from the film shape parameters at various speeds, 

and at constant load. They are tabulated in table (6). 

TABLE (6) 

Speed 
c/g 

Angle of tilt about pivot 
radians 

Power 
HP 

loss 

236 3 .48 X 10-4 1.165 X 10~3 

196 3 .43 f! .953 

172 3 .35 fS .817 i: 

151 3 .24 Tf .693 ?f 

132 3 .22 n 
.603 H 

106 3 .12 .469 ff 

92.5 3 .02 n 
.396 ! ! 

61.5 2 88 n 
.251 n 

These losses are shown in fig (35) and may be compared with 

those obtained from the run-down tests in fig (34). The losses 

due to run-down, are of the order of 500 times as great as those 
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from pressure. It therefore seems reasonable in the practical 

bearing, to neglect the effects of the tangential pressure-force. 

12,5. Radial Position of the Pivot. 

If the frictional forces acting on elemental areas around the 

pad surface are resolved into a total moment about the pivot, then 

the pad will tend to pitch. 

Fig (37a) 

Figure (37a) shows the effect of the radial pivot position 

being a long way outside the pad surface, and figure (37b), the 

effect of it being near or inside the surface. 

Fig (37b) 

In figure (37a) the resultant moment tends to make the pad pitch 

leading edge down, and figure (37b), leading edge up. 
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Clearly, at a given running speed and film shape, there exists 

a. ladial pivot position about which the turning iRoment due to 

friction is zero. It is this position which has been assumed in 

calculating the design curves, as frictional moments were neglected 

in Chcir derivation. In practice however, the frictional moments 

are small compared with the moments due to pivot loading, providing 

the pivot is not at an unreasonable distance outside the pad surface. 

In reference (21), it is claimed that one of the assumptions 

made, is that the pivot lies on the pad surface. This in fact 

cannot be so, as friction was neglected in the authors' calculations. 

A better assumption would be that the pivot was positioned radially, 

such that frictional turning moments about it were zero. 

Although under normal conditions, the frictional moments acting 

on the pad are small, it is better to position the pivot as near the 

surface as possible, so that when a lightly loaded pad tends to 

pitch, the effect of friction is to pull the leading edge clear of 

the shaft, and thus avoid 'lock-up'.* 

Lock^up' is the condition arising when the leading edge of the 
pad 18 sucked on to the shaft resulting in seizure. 
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13.0. Pivot Sciffneaa. 

Pivot stiffness may be defined as the rate of change of film 

clearance under the pivot with change in pivot load. 

This is an important factor in tilting-pad bearing design, 

since it is in fact, the overall relative stiffness between the shaft 

and housing, along the line of the pivot. The stiffnesses of the 

individual pivots may be resolved to determine the radial stiffness 

of the shaft relative to the bearing housing, in any given direction. 

13.1. Obtaining Values of Stiffness from Design Curves. 

Stiffness, at a given compressibility number, is best obtained 

by cross-plotting from curves similar to those shown in figure (38). 

The alternative method would be to store the curves shown in figures 

(8) to (12) in a computer. This could only be done by obtaining 

intermediate points to those computed, by interpolation, and then for 

a given pivot position* selecting the nearest corresponding values 

of W, A, and from which the clearance and stiffness could be cal-

culated. Although the amount of storage space required, would not 

be outside the range of a large computer, it would mean that sets of 

curves of stiffness for individual pivot positions, and different 

compressibility numbers should be presented. The author feels that 

for the purposes of simplicity, it is better to reduce the number of 

design curves to a minimum, and to use the basic design curves for 

cross—plotting the load—clearance, and stiffness curves. 
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Figure (38) may be constructed in two ways. It can be plotted 

by the direct evaluation of equations (36) to (40) as outlined for 

the design curves, or it can be cross-plotted from figures (8) to 

(12). The former method was favoured in this thesis, but in practice 

it may be more convenient to cross-plot from the design curves. 

To obtain the load-clearance curves, and hence the stiffness, 

lines of constant pivot position are drawn on figure (38), (in this 

case Xp " .5 and .584), and corresponding values of W, *, and A, are 

taken from the curves. From the dimensionless pivot position; 

G_—# 
(49) 

6^ can be determined, and from equation (12), the dimensional 

clearance. 

The various values of W may be obtained from W by using equation 

(40) and figure (15). It should be noted, that A plotted in figure 

(15) can be obtained from Ac by means of equation (47). 

13.2. Experimental Investigation. 

The investigation required the monitoring of pivot movement 

during the variation in applied load. 

Since the test shaft was mounted vertically in two slave bear-

ings, the danger arose of including the deflection of these bearing 

films in the absolute deflection of the pivot. Although the 

capacitance probes fitted at each slave bearing to detect instabilities. 

84. 



could have been used to measure these deflections, it was a simpler 

task to position a displacement probe on the reverse side of the 

shaft to the pivot. The method also took account of any bending 

of the shaft which may occur. 

The pivot deflection was measured by a probe recording the de~ 

flection of the loading arm at a position directly along the pivot 

line. As the actual pivot consisted of a screwed shank surmounted 

by a conically machined cap of "Araldite", to give electrical in-

sulation for the touch meter, it was necessary to determine the 

contribution made by the elasticity of this structure to the deflect-

ion of the loading ana. This part of the investigation consisted 

of allowing the pad to remain at rest in contact with the shaft, 

whilst applying loads to the loading arm, and measuring the arm 

movement with the probe positioned along the pivot line. 

It was found that the elastic deflection of the pivot was of 

the same order as that of the film, and that under each load, the 

"Araldite" exhibited a time lag in settling to its fully deflected 

position. The time lag was also observed during the actual read-

ings, and care was taken in allowing it to settle fully. The read-

ings were found to be repeatable within the limits of the instrumenta— 

tion. 

Before the tests could be started, a datum for film thickness 

measurements had to be found. This datum was one of zero film 
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clearance at the pivot, which is obtained when the loaded pad is 

in contact with the shaft. In practice however, this condition 

is not so easily achieved, and it was found that the contact 

friction allowed the pad to remain twisted about the pivot axis. 

To overcome the problem, the pad was turned slightly by hand, and 

the point at which the displacement meter needle reached the end 

of its swing, and began to return, was taken as the point of zero 

pivot film thickness. 

The actual load-deflection curves were obtained by running the 

shaft and pad combination under hydrodynamic conditions, whilst 

loading the pad, and taking readings of the pivot deflection. The 

deflection results so obtained, permitted the calculation of the 

real pivot movement. 

The limitation in load capacity was reached when slight touch-

ing was detected; it is likely that this limit could have been 

exceeded by improving the surface finish. 

The results obtained are given in the following table and 

plotted in figure (39). 
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TABLE (7) 

If/ - * = 120° c = .975 X 10 "3 ins 

N " 13,200 RPM Ac = 1.5 

R - 1 in L - 3 ins 

PIVOT LOAD PIVOT FILM THICKNESS (INS x loT^) 

W (Lbs) Fp - .584 Xp - .5 

6.12 1.04 .73 

9.12 .84 .59 

12.12 .70 .48 

15.12 .60 .45 

18.12 .52 .39 

21.12 .46 .32 

24.12 .42 .29 

27.12 .37 .29 

13.3. Discussion of Results. 

The experimental and theoretical results shown in figure (39) 

exhibit some discrepancy. It should be borne in mind at this 

stage, that the absolute values of deflection obtained from the 

experiments, are somewhat suspect, due to the difficulty in obtain-

ing the zero clearance value, although there is little doubt in the 

accuracy of measuring deflection changes. Another quantity known 

accurately, is the applied load, and it therefore follows, that 



comparisons between theory and experiment, should be made in terms 

of these two parameters. 

Under the heavier load conditions and where the pivot film 

clearances become small, the gradients of the experimental and 

theoretical curves agree well, the gradient in fact being the stiff-

ness of the individual pad assembly, neglecting material elasticity. 

For light loads, the experimental curves tend to indicate a 

more rapid increase in clearance, than do the theoretical curves. 

Excluding experimental errors, which it is felt could only partially 

contribute to this difference, the variation may stem from the 

following possibility. 

Reynold's equation is based on laminar flow between the two 

bounding surfaces. When the clearance between the surfaces in— 

creases, so does the value of Reynold's number based on the film 

thickness. Reynold's number of course is a measure of the trans-

ition between laminar and turbulent flow. In a full journal 

bearing, the film thickness is limited by the machined in clear— 

ance of the bearing, but for a pad, it is only limited by pitch 

stability, and may become large in comparison. It was found by 

Abramowitz ref (22), that for a water lubricated tilting-pad thrust 

bearing, transition could ceminence at a Reynold's number as low as 

600. If the same Reynold's number applied for a tilting-pad air-

bearing, a clearance of .9 % lo ^ ina would be sufficient to cause 
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transition at the teat speed of 13,200 r.p.m. Since the pivot 

thickness at the lighter loads shown in figure (39), are approach-

ing this value, it is likely that the leading edge thicknems has 

exceeded it, and greater lift is being generated than is predicted 

by the laminar theory. 

The theory would also tend to predict a limit to the clearance 

under lightly loaded conditions, which would be brought about by 

the reduced convergence of the wedge, and could be likened unto a 

full journal bearing with the journal running at the centre of the 

bearing. This is apparent from fig (39), since the theoretical 

curves, if continued, would intersect the clearance axis. If the 

experimental conditions do create turbulence, the experimental 

curves may cross the clearance axis at some higher value. 

Another factor emerging from the curves, is the increase in 

stiffness at high loads, occurring when the pivot position is moved 

nearer to the centre of the pad. In this particular case, for a 

load of 20 Lbs, the theoretical curves give stiffnesses of 5.5 % lo^ 

Lbs/in for Xp = .584 and 11 % 10^ Lbs/in for Xp - .5. 

Stiffness is important in dynamically loaded systems, and it 

would appear that for heavily loaded bearings, a central pivot 

position would be preferred. It must be pointed out however, that 

a centrally pivoted pad is more prone to pitch instability when 

lightly loaded, (a condition discussed in the next chapter), and 
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care ntust be taken to see that a dynamic load does not exceed this 

lower limit. 

Generally, for design purposes, it is more convenient to work 

in terms of minimum film thickness than pivot thickness, as the 

former is governed by accuracy of machining. 

In conclusion, it can be said that the design curves predict 

an accurate pivot stiffness providing the bearing is operating at 

one of the smaller clearances, i.e. something less than half the 

machined in clearance. It is also shown that a centrally pivoted 

bearing is stiffer, at these clearances, although the clearance 

may be smaller at a given load, and care must be taken to see that 

the lower load limit is not exceeded for reasons of stability. 
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14. Pitch Stability. 

The stability of individual pada in pitch, is an important 

factor in bearing design. If the pads begin to pitch, there is 

a danger that the leading edge may come into contact with the 

shaft, and 'lock-up' result. 

Under normal operating conditions, the gas film is either 

convergent, or convergent-divergent as shown in fig (40a). If 

however, the fluid film is allowed to become divergent-convergent, 

as shown in fig (40b), the narrow clearances at the leading and 

trailing edges will cause a reduction in pressure at the leading 

edge, and possibly an increase in pressure at the trailing edge, 

with the result that the pad will tend to pitch leading edge down. 

The boundary between these two conditions, is when the film 

is parallel, in which case " 1. 

If always occurs at 8 = + and if under normal operating 

conditions the film is convergent-divergent, which is the basis of 

the design curves, then when becomes greater than one, the 

divergent-convergent film results. Although in simple theory, 

provided that < 1 the pad would be stable; in practice, any 

slight disturbing force could cause to exceed one, then 

the instability could occur. It is therefore better to design 

with as far below unity as possible. 

It should be noted that when H = 1 the load capacity is zero. 
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from, which it follows Chat the pad must remain loaded for stable 

operation, A simple way of achieving this condition, is to pre-

load the bearing, either by spring loading one of the pivots, or 

by fixing the pivot circle such that when the maximum journal load 

is applied, all the pads remain loaded. 

It was considered unwise to attempt to study this aspect of 

tilting-pad performance on the rig described in this thesis, since 

the effects the pressure tapping tubes and cavities have on the 

damping of the pad is unpredictable. In fact a full investigation 

of pad stability, is a project in itself. 
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15.0. Use of Design Curves. 

By virtue of their geometry, tilting-pad bearings are in 

general more complex to design than the plain journal bearing. 

The geometry of a plain journal bearing is simply defined by the 

journal, and bearing diameters, and by the eccentricity ratio. 

A multi—pad bearing on the other hand, requires the relative 

geometry between the shaft and each pad to be given. Although 

the minimum clearance under each pad may be likened to the eccen-

tricity of the plain journal* each pad also makes an angle with 

the shaft. 

In any study of pad bearings, the properties of a single 

pad must be examined, as in this thesis, and the complete bearing 

studied in terms of the equilibrium conditions existing between 

individual pads. 

This section sets out to give some of the factors governing 

the design of the multipad system, and includes a set of five 

worked examples illustrating the application of the single pad 

design curves to the complete bearing. To avoid unnecessary 

repetition, it has been assumed that the reader will study the 

examples in numerical order. Only pads of 120° span are con-

sidered, as design curves for other pad configurations are not 

included in this thesis. 
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15.1. Load Capacity when Ac ^ 

Unlike a liquid bearing, a particular gas-bearing can only 

support a maximum finite load, even though the speed of rotation, 

or Ac, may tend to infinity. Figure (45) shows a plot of W 

against Xp for Ac », with varying H^. This graph may be used 

to make a preliminary study of the bearing should the load capacity 

of a particular configuration be in doubt. The graph yields the 

maximum load that it is possible to carry with a single pad. It 

is used in the same way as the other W-Xp design curves, but has 

the advantage of displaying H on the one graph. It should be 

noted that when Ac -+ ̂ ^I^ ^/R. 

15.2. Selection of H . 
-

The effect of H on pitch stability has already been dis-

cussed in the previous chapter. The other factors affecting H , 

are load capacity and machining accuracy. 

It is evident from the design curves, that if the other 

parameters are held constant as H decreases, the dimensionless 

load W becomes greater. It is therefore desirable, in order to 

support a substantial load, to maintain H at a minimum. But 
m 

the minimum value of is also dictated by the accuracy of manu-

facture. If the bearing is to function hydrodynamically, the two 

surfaces must remain out of contact. This consideration is 

illustrated in example (1). 
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15.3. Optimum Conditions. 

In deciding the optimum design conditions, the operating 

conditions must be considered. For example; if the bearing is 

under some form of dynamic loading, high pivot stiffness may be 

desirable, in which case, the pad would be pivoted near its centre, 

(section 13). The stiffness of a particular geometry can always 

be determined, by plotting out the load—displacement curves, using 

the method in example (5). 

On the other hand, it may be necessary to obtain the greatest 

minimum clearance for a given load, in which case, the bearing 

would be designed with the pads operating near to the peaks on the 

W-Xp curves, which are plotted for constant H . It should be 

pointed out at this stage, that a small shift from the peak con-

ditions could cause a rapid fall-off in W, it is therefore better 

to choose a design with the pivot a little nearer the pad centre, 

so that some latitude can be given to the bearing manufacture. 

15.4. Distortion. 

It must be remembered that the design curves are presented 

for particular bearing geometries, and that any pad distortion due 

to either loading, or thermal conditions, must be accounted for. 
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15^. 

Example 1. 

A shaft is supported on two bearings, each bearing consisting 

of two 120° pads, with pivots positioned at 60° either side of the 

vertical centre-line, and at .55 of the distance from the pad lead-

ing edge. The diameter of the shaft is 6 ins, and the length of 

each pad is 10 ins. 

The nominal machined-in radial clearance, between the pads and 

""3 

the shaft, is 1.5 x 10 ins, and the accuracy of machining for both 

the shaft and the pad, is * .2 % loT^ ins. 

T̂ hat is the load capacity of the assembly when rotating at 

3,000 r.p.m.f 

The total variation in accuracy, which could reduce the film 

thickness, is .4 x 10 ^ ins, or as a proportion of the machined-in 

clearance .4/1.5 " .267. 
This means that if the value of was .267, the two surfaces 

may touch. In order to avoid touching, let the design be H - .4 
m 

Considering a single pad: 

Ac -iHiSi 

3.728^ _ r2nx3,000^ _ ,3 r 12 
6 . X X X (. 

10' GO ' '12' 1.5x10-3 '•14.7x144' 

Ac - 1.33 
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Prom fig (10) i.e. the design curves for H » ,4. when 
m * 

Xp = ,55 and Ac = 1.33, then W = ,66 and ^ = 9°. 

But the pivot load W, from equation (40) is; 

W - PgRZlyW 

Equations (46) and (47) give: 

A " Ac(-
(cOSi|)-COS(0i 

where = 120 , or ^ = 129* 

and A - 1 - H . 
m* 

therefore, 

i 
^"33([i+Yg%co8ia4b_co890TTj 

2.09 

A - 4.55 

Now from figure (15), with L/R - 10/3 - 3.33, and A - 4.55, 

ly " 2.62, bet: 

W . PgRZlyW . 14.7x32*2.62%.66 

" 229 Lbs 

This is the load applied along the axis of each pivot. 

The total load supported by the four pads is: 

4 X 229 cos 60° 

Total load - 458 Lbs 
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Example (2). 

A rotor is supported in the same maimer as in example (1), 

the dimensions of the pad and shaft, the accuracy of machining, 

and the speed of rotation, being the same. The bearing must how-

ever support a load, inclusive of shaft weight, of 550 lbs. What 

must the machined-in clearance be? 

The load carried by each pad is: 

550 
275 Lbs 

4 cos 60° 

Since the load per pad, is greater than in the previous example, 

then either Ac must increase, or H decrease. Because of the 
m 

machining accuracy, the latter is not possible, and since Ac is 

inversely proportional to c, then c must become less than 1.5 % io~^ 

ins. It must be remembered that is a proportion of c, and to 

maintain the actual minimum clearance, when c is reduced. H must 
' m 

be increased. 

Let us therefore assume that H becomes .5. 
m 

For this type of problem, it is necessary to plot a small sec-

tion of graph in the region of interest, and for this particular 

problem; a graph of W against Ac. 

It is convenient to calculate the values in a tabular form for 

the graph. These values are calculated in exactly the same way as 

example (1). 

98. 



Taking values of Ac = 2, 3, 5 and 6:-

REMARKS Ac 2 3 5 6 

From fig (11), W .56 .63 .692 .708 

;; ;; 9° 12° 16° 18° 

= 120° 129° 132° 136° 138° 

From eq's 46 & 47 A 5.36 8.20 14.0 16.99 

" fig 15 ly 2.72 2.90 3.08 3.15 

" eq'n 40 W(lbs) 202 242 282 295 

Ihese values are plotted in fig (41). From this graph it can be 

seen that for W = 275 Lbs, Ac = 4.5, 

6pwR2 
but Ac 

or 4.5 - 6 X [3'728j ^ ^ 2nx3,000 

from which c 

) ' W ) ' ^ (4)' « (uTTTu?) 

New - .5 and thus h = .405 % lo ins. This minimum 

clearance only just allows for the machining accuracy, and in 

practice, it would be better to increase this minimum clearance, by 

trying a greater value of or by changing some of the parameters, 

such as increasing the speed, or moving the pivot to the .6 position. 
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Example (3). 

A triple-pad bearing, supports a shaft load of 800 Lbs* and 

the top shoe has a pre-load of 400 Lbs, If the diameter is 8 ins, 

the length of the pads 12 ins., the machined-in radial clearance 

—3 

2 X 10 ins., and the operating speed 5,000 r.p.m., what is the 

minimum clearance under each pad, assuming that the pivot position 

is .6 of the way from the leading edge on all pads, and the pivot 

for the top pad lies on the vertical centre-line? 

Ac . 

= 2.17 

For this example, it is necessary to determine H or A, 

(A = 1-^), for various loads applied to a particular pad. It 

should be noted that all the pads are operating under similar con-

ditions, and it is therefore possible to construct a single graph 

of W against H , and to apply it to any of the pads in the system. 

Again the following values are calculated in a tabular form. 
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KEMARKS H 
m 

.2 .3 .4 .5 .6 

{with X_ = .6} 
{ ^ } 
(From curves } 

W 2.16 1.43 1.01 .73 .52 {with X_ = .6} 
{ ^ } 
(From curves } 9° 5° 0° -8° —19° 

= 120° 129° 125° 120° 112° 101° 

From eq'ns (46 & 47) A 15.0 11.1 6.73 4.81 3.56 

" fig (15) 2.75 2.65 2.5 2.32 2.16 

" eqn. (40) W 1,398 891 594 398 264 

A gfaph of W against is given in figure (42). 

For the top pad, a load of 400 lbs yields H = .495. 
m 

The load supported by each of the lower pad pivots, is:-

1.200 
W 

2 cos 60 
1,200 Lbs 

giving " .230. 

Since the minimum clearance h of the pad circle, occurs at 
m ' 

8 " 90°, then provided -30° < # < 90°, the minimum clearance will 

occur beneath the pad, as in this example. For * < -30°, the 

actual minimum cl**ramc* of the pad will be at the trailing edge, 

and this must be calculated from 

h = cCl-AsinG), where 0 

For this example the minimum clearance for the top pad is:-

.495 X 2 X 10~3 . .990 X loT^ jns.. 

and for the lower pads;-

.230 X 2 X lo"3 . .460 x lo"3 jga. 
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Example (4) 

It Is necessary for a shaft to rotate in either direction. 

It is supported in two pairs of 120° pads, the pivots being 60^ 

either side of the vertical centre-line. The journal diameter 

is 2 ins., and the length of pads 4 ins., with a radial machined-in 

-4 

clearance of 5 % 10 ins. If the weight of the shaft is 50 Lbs, 

what would be the vertical change in displacement of the shaft, if 

the speed of rotation was reduced from 12,000 r.p.m. to 4,000 r.p.m? 

In order that the shaft may rotate in either direction, the 

pads must be pivoted at their centres, i.e. - .5. 

Now Ac = and R = 1 in. 
p.-:' 

with c = 5 X 10 4 ins. 

Then for a rotation of 12,000 r.p.m., 

Ac = 5.2 

and for 4,000 r.p.m., 

Ac = 1.73 

To find the deflection, the film shape parameters A, and * must be 

known for each running condition. Since H - 1-A. a graph of H 
m ^ a * 01 

against load, and against will allow these parameters to be 

determined for the particular running conditions. 

As in previous examples, the following tabular layout has been 

adopted. 
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REMARKS H 
m 

. 3 .4 .5 .6 

W 1.09 ,73 .52 ,36 

4) 29° 27° 25° 23° 

-'P 149° 147° 145° 143° 

Extrapolating 
from Fig 15 

3.85 3.8 3.75 3.65 

W(Lbs) 61.8 40.7 28.6 19.3 

These values are plotted in figure (43a). 

In a similar manner, the curves given in figure (43b) were 

calculated for N * 4,000 r.p.m. 

Now the load per pad pivot, is: 

50 
W = 25 Lbs., 

4 cos 60 

from figure (43), the following values result:-

N - 12,000 r.p.m. 

N = 4,000 r.p.m. 

H 
m 

.535, * - 24.5°, 

H - .45 18°, 

but h " c(l-Asin8) where A = 1 — t h e pivot clearance, is the 

value of h when ( 

and 
4 

.5, 

giving a pivot film thickness of 2.68 % lo"* for N - 12,000 r.p.m.. 

-4 . 
and 2.32 % 10 ins, for N = 4,000 r.p.m. 
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The pivot deflection becomes:-

(2.68-2.32) X io"4 = 3.4 x loT^ ins. 

The vertical deflection of the shaft 

= 3.4 X 10 ^ cos 60° = 1.7 X 10 ^ ins. 

If a bearing is operating under fluctuating speed conditions, 

a graph of rotor displacement against speed may be plotted by cal-

culating various points in the above manner. It should be remarked, 

that when the two load supporting pivots are displaced symmetrically 

on either side of the vertical load line, the load line becomes the 

locus of the shaft centre. 
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Example (5). 

If the shaft in example (4), now weighs 20 Lbs, and continues 

to run at 12,000 r.p.m., but if a top shoe is fitted to each bear-

ing, with the pivot rigidly connected to the other two pivots via 

the bearing housing, such that the total pre-load under these con-

ditions is 60 Lbs, what will be the deflection of the shaft, if a 

load of 20 Lbs is applied to it. 

The shaft load, pre-load, and the applied load for each bear-

ing, will be a half of those stated above. 

The running conditions for a single pad are similar to those 

given in the last example, with the result that Ac is also 5.2, 

and figure (43a) may be applied to a single pad in this example. 

From figure (43a) the following values of W, and # have been 

obtained, which enables the calculation of the pivot film thickness 

to be made. The absolute displacement of the shaft is based on 

the zero datum being the shaft resting statically on the pads, and 

is equal to cos 60° times the pivot film clearance. As in the 

previous examples, it can be shown that the load applied to each 

lower pivot is equal to the total load on the bearing, since the 

pivots are 60° from the load line. 

The following table will enable two graphs of displacement 

against load to be plotted:-

105. 



REMARKS W 60 50 40 30 20 

From fig (43a) 
^m 

.305 .340 .405 .490 .575 

«i II 28.9° 28.1° 26.9° 25.2° 23.6° ' 

X_ m —Z__ 88.9° 88.1° 86.9° 85.2° 83.6° 

h = c(l-Asin8^) h, 

ins 10-4 

1.525 1.70 2.02 2.46 2.89 

Absolute shaft 
displacement 

h_cos60° 

ina 10-4 

.762 .85 1.01 1.23 1.44 

Where is the actual clearance at the pivot position. 

Now the pivot film clearance for the top pad will be h^ and 

the absolute displacement of the shaft is h^ cos 60° of ih^. 

In figures (44a) and (44b) the pivot film thickness for the 

top pad, and the absolute displacement of the shaft are plotted 

against load. 

When the bearing is operating under the 'no load' condition, 

the load on the top pad, is the pre-load of 30 Lbs per bearing, and 

on the lower pair of pads, it is the preload plus the shaft weight = 

30 + 10 = 40 Lbs. 

From figures (44a) and (44b) under these conditions. 

Top pivot film thickness - 2.46 % 10 ^ ins., 

Absolute shaft displacement = 1.0 % 10 ^ ins. 
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If we plot the change in preload on the top pad with shaft 

deflection, for any given deflection, by adding the shaft weight, 

shaft load, and the preload, it is possible to plot the loading on 

the lower bearing against the shaft deflection. In a like manner, 

the load capacity of the lower bearings, can be plotted against 

deflection. Since the deflection must be common to the top pad 

and the lower pads, if these curves are plotted on the same axes, 

their intersection denotes the condition of equilibrium, and the 

corresponding deflection can be noted. 

Deflection (inaxlO 0 .5 1 1.5 2 

Top pivot (insxlO *) 
clearance 

2.46 2.51 2.56 2.61 2.66 

Top pivot load (Lbs) 30 29 28 27 26 

Abs. shaft (ins^lO ^) 
displacement 

1.0 .95 .9 .85 .8 

Load capacity (Lbs) 40 43 46 50 55 

Loading (Lbs) 50 49 48 47 46 

-5 . 
From figure (44c) the intersection occurs at 1.2 % lo ins. 

-5 . 

Hence the deflection = 1.2 % lo ins. 

A complete load-displacement plot can be made in this way, 

in order to determine the overall stiffness of such a bearing. 

In practice, the minimum clearance often occurs near the pivot 

position, and in these cases, a good approximation can be made for 
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the pivot film clearance and the pivot film stiffness by con-

sidering only the minimum clearance. 
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16.0 Conclusions. 

The approximations made in obtaining equation (31), appear to 

be justified experimentally, and are also confirmed by the com-

parison made with the numerical curves obtained from reference (17), 

Indeed, had this approximation not been made, it would not have 

been possible to obtain an analytical solution* which satisfies the 

boundary conditions at the sides of the pad, and most certainly, 

would not have provided a solution where the circumferential and 

axial conditions were separable. 

Tests have been made on the approximation over a limited range 

of Ac, but it is shown that as Ac -+ <=, the finite bearing correct-

ion tends to zero, resulting in the same load capacity per unit 

length as an infinite bearing; in which case the approximation 

tends to an exact solution. 

It has also been demonstrated, that the analytical solution 

for the infinite bearing, with as the mean film pressure, can 

be considered valid for high compressibility numbers; this is the 

region in which it is most useful, as it is here where numerical 

solutions encounter stability problems. 

The result of this work, is sets of design curves, which may 

be used to design 120° pad bearings over the complete range of 

length to diameter ratio, at the same time, predicting their per-

formance quite accurately. The errors due to the approximations 
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are likely to be far less than those encountered in manufacture. 

This offers a major step-forward in the steady state design of the 

tilting-pad gas-bearing, as previously, only the numerical curves 

presented in reference (19) were available to the designer. These 

curves only covered a very limited range of pad configurations, and 

for each length to diameter ratio, the set of curves required, took 

several hours to compute, reference (23), whereas a set of curves 

at a constant H , presented in this thesis, took only a few minutes 

to compute. 

It has also been shown experimentally, that these design curves 

may be used to accurately predict the overall stiffness of the 

single pad system. 

The use of gauge pressure instead of absolute pressure, has 

simplified the evaluation of the boundary conditions, and has also 

reduced the round-off errors at low compressibility numbers. This 

problem was also reported in reference (23), and the author has 

already made a written contribution to that paper making the above 

suggestion. It would appear, that this technique could be employed 

to advantage on many forms of bearing, any sub-ambient pressures 

being denoted as negative. 

Finally, an experimental investigation of the viscous losses 

in the bearing, has shown that the theoretical prediction may only 
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be used as a guide, and not as an "exact" design quantity. As far 

as the author is aware, this is the first time the viscous losses 

in a tilting-pad gas-journal-bearing have been studied in this detail. 

16.1. Suggestions for Further Work. 

The most obvious extension of this study, is the production of 

design curves for spans other than 120° it must be borne in mind, 

that the accuracy of approximation should first be tested for these 

new configurations. An improved presentation of the design curves 

could be made, by plotting the characteristics for a particular 

pivot position; this would allow H to be infinitely variable, and 

would assist in the derivation of the load-displacement and stiffness 

curves. 

As it stands, the theory is quite general within the limits of 

the approximation, and lends itself to other forms of partial arc 

journal bearing, such as the axial grooved bearing. It may however 

be more convenient in such a case, to present the design curves in 

terms of other parameters, for example eccentricity. 

One possible application, is to speed-up the computation of the 

pressure profile for a spiral groove journal bearing. It is possible 

that the land between the grooves could be considered as a partial 

journal bearing, with the ambient conditions at the leading and 

trailing edges replaced by the conditions existing in the groove. 
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A change of coordinacea may be required to account for the angle of 

the spiral. 

A most promising field of application is in the study of the 

dynamic characteristics of the tilting-pad bearing. At present 

the study is of a numerical nature, and is most demanding on com-

putational time. The steady-state approach outlined in this thesis, 

could probably be utilised in the form of changing steady state 

conditions producing a rapidly obtained approximation, which could 

be used as a starting value for the final numerical solution. 

It is the intention of the author to follow-up some of the 

above suggestions. 
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Appendix (1) 

Cr as a Constanc. 
—O'"' ' ' ' 

To show that when is a constant: 

_ (6-4) 
F = F + Cg-e sintT/T"!^' cosh KY 

* 5 (^-0) 

satisfies equation (15). 

let F = F^ + Cgg cosh KY 

SF 9% 

3'F + Cr cosh KY 
38% 88% ^ aez 

C_g K* cosh KY 
a^F 

BY* 5 

Substituting into equation (15):-

a^F ,2 
+ Cc cosh KY + Cc g K* cosh KY 

5 3 982 3 3Q2 

- A 
9F̂  

W 
- AC_-^& cosh KY = A(PiSin8-Acos8) 

5 98 1 

subtracting the equation for the infinite bearing, equation (16), 

and dividing by cosh KY:-

^ + gK^ - A-^ = 0 (a) 
98% 38 
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f—16 
k » IzJ . (8-*) 
but g - e 

then substituting into (a) and dividing throughout by the exponential 

and sin terms yields:-

i i _ + 4i - k2 - 0 

(t-4)^ ^ 

but ^ H-

therefore equation (29) satisfies equation (15) provided is a 

constant. 
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Appendix (2) 

The Effect of C being a. Variable, 

let C = C(8) 

therefore:-

F = F + Cg cosh KY 

a : + c i s 

3^F ' " lis. g cosh KY + 2 cosh KY 
982 ggZ agZ 

82 
+ C cosh KY 

38% 

and a^F _ ^2 cosh KY 
2 3Y 

Substituting into equation (15) 

+ .Sfc g cosh KY + 2 ̂  cosh KY 
38% 98% * 38 58 

aZ 
+ C cosh KY + K^Cg cosh KY -

982 36 

- g cosh KY - AC cosh KY 

38 0 8 

" A(P^Bin8-Acoa8) + 8(8) (b) 

where 5(8) is some deviation from the zero due to assuming "C" to be 
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a variable. 

Subtracting equation (16) and dividing by cosh KY 

2- _ 5.x s2r sr 3^ gg _ 6(8) 

2 " 00' 2 - 38 "98 "98 ^ " cosh KY 
38 

From appendix (1), the first group on the left hand side of 

the above equation results from the correct solution, and is zero, 

therefore:-

< " 

now Cg from the analysis was assumed to be 

-F* 
Cg = . - — " C(8), in this appendix. 

g cosh-gg 

DF. 
say. 

8 

Substituting into equation (c) 

g 

. AD , 3g 6(8)_ 
a cosh KY 

hence:-

3%? 3F 
r___: _ A--:] + .̂  ? 
lgQ2 38 ^ 8 98% 8 " 38 D cosh KY 
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and Chen from equation (16) becomes:-

A(P^aine-Aoose) - ̂  - A ^ ) - g - — g gy 
fS^g ,9g\ --6(0) 

but fA 
. (6-« 

8 - = 'Tpjr 

therefore substituting and simplifying:-

A(PiSin&-AsinG) + F* + l?] ) " D co!h^KY 

or 

-cosh-*^ 6(8) 

ACP^sine-Acose) + F_ K* - c c h KY 

It can be seen from a study of the theoretical pressure profiles 

that a good approximation results if " 0 

cosh 

/. AAcose-P.KZ - 6(8) ̂ aZG-KY 

KL 

i - % i L - " i-Ijiie cosh KY 

If the assumption that may be an arbitrary function of 0, is 

valid as a good approximation, then the right hand side must be small, 

or in the limit tend to zero. If the right hand side was zero, the 

assumption would be exact, and then the two terms on the left hand 

side, would be everywhere equal to each other. 

117. 



If — is plotted on the same axes as then for a 

K^Cl-AsinO) 

good approximation, the difference between these two curves must be 

small. 

In figure (18) a comparison has been made with the direct numer-

ical method employed in reference (17) and the analytical end flow 

correction. One of these curves will therefore be used to study the 

magnitude of the right hand side of equation (d). Since the curve 

of Ac= 1.5 is the one most affected by the end flow, this curve will 

be used as ag example. 

is plotted in figure (46) together with the corresponding 

curve: . It would appear that the maximum values of the 
1—AsiaO 

right hand side of equation (d), (i.e. the maximum differences be-

tween the two curves), are of the same order as the difference in 

assuming P^ equal to ambient, and P^ equal to the mean film pressure 

in section (8.0). Since P^ appears on the right hand side of the 

original differential equation, (b), it would affect the pressure 

profile in a similar way to which the right hand side of (d) affects 

the profile end flow correction. Furthermore, the right hand side 

of equation (d), takes positive and negative values, which will 

result in a small average value over the length of the film. 

It would seem in this particular case, that equation (31) is a 

good approximation to the solution of the original differential 
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equation in F, this is further borne out by section (8.0). If at 

higher compressibility numbers, the end flow correction error does 

increase, this is less important, since as previously mentioned, the 

end flow correction itself becomes small. 

Individual cases may be examined in this way to give some idea 

of the accuracy of the solution. 
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APPENDIX (3) 

Evaluation of Integrals, 

The groups I^, I^, Ig, I^, Ig, Ig, and I^, were evaluated in 

the following way: 

C^AGcosGde 

$ l-AsinG 

Expanding the denominator as a binomial series 

C^eA8cos8(l+Asin6+A28in28+A3sin3&+A^8in^8)d8 

* e^^{(l + + ^)eo88+(A + ̂ l)sin28 

- ]cos38 - sin48 + co858}d8 

A8 
e (A^c088+A28in28-A2C0838-A^sin48+AgC0s58)d8 

Yielding the value given for I^ in section (4.2) 

^ CyCoaGdS 

2 1-Asin8 

log(l-Asin8) 
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I] = A(l+P^) 
^ cos^GdB 
, l-Asi&G 

A{l+Pi) 
{ 

* a 2 _ 

4) 

A^-1 d8 
(1-Asin8) 

If) 
AsinGdQ + d8} 

The first integral, may be evaluated using the tangent of the half 

angle substitution:-

(1+Pl) 
_Acos8+e 

(l-AZ): (l-A2)2 

* 

^4 = 
sinGcoaOdQ 
1-AainG 

This may be evaluated by making a substitution of the form: 

u = l-AsinG 

giviag:-

1 

A* 

(l-AsinG)-log(l-Asin8) 

and since the limits of integration are given, this reduces to:-

Aain8+log(l-Asin8) 
$ 

^ C^e^^sinOdG 

* l-AsinG 
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As with expanding the denominator as a binomial series 

C^e^^CsinG+Asin^G+A^sin^G+A^sin^B+A^sinSl 

+A58inG8+AGsin78)d8 

^ r »A8rrA ^ 3A^ ^ SA^^ r 3A^ ^ SA^ ^ 34A^i . . 

rA . A^ . 15A5 
+ .^^jsinSe 

< 1 - + + #:jsin5 
A^ . 7At 

A At 
22 Gos6&"'g4 sin78}d8 

A8 
C^e (Ag+AySin8-AgC0828-Ao8in38+A^QCOs48 

+A^^sin58-A^2c0s68-A^gsin78)d6 

Again this gives the value of stated in section (4.2) 

^6 = ^2 
sinGd8 
1-Aain8 

S ( 
d8 

L(l-Asin6) 
de 

Using the half angle substitution as in Ig then becomes; 
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tan 
^ Can 

(l-AZ) 

- A 

r - ) 

a(a2-Pj) r* ,ia2e d6 

(l+A*) 
l-AsinG) 

A(A2-P^) 

(l+A*) 

de 

<|) A^(l-Asin8) 
A 

f\p 
sinGdG de 

(A2-Pi) 

A(l+A2) 

.. Can - A 
Can ^ 1' ' ] + AcosG-

(l-AZ]: 
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APPENDIX (4) 

In calculating the film shape parameters A and it is 

necessary to have some relationship between these quantities 

and values recorded from the capacitance displacement probes 

fitted to the pad. 

If h^ and h^ are the mean values of displacement recorded 

between the two probes fitted near the leading edge and near 

the trailing edge respectively, then since: 

h = c(l-A8in8), 

h^ " c(l-A8in(*+Y)) 

and h^ - c(l-A8in(*+Y+a)) 

where y is the position of the leading edge probe from the edge, 

and a is the angle between the probes, see fig (47), or 

h^ " c[l-A(sin*co8Y+co8*sinY)] (a) 

and hg, - c[l-A(8in4cos(Y+a)+co8*sin(Y+a^ ..(b) 

Let - cos(Y+a) « sin(Y+a) 

Bg = C08Y and B^ « sinY 

then eliminating A between (a) and (b); 

h^ ^^(B^sint+Bycos*) 
1 -c (Bg8in*+B^co8+) 

where D_ * 1 
1 c 
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(Bgtan^+B^) ^ c " ^2 

giving: 

• • -•' ' % $ ' 

From (a) 

A(BgSin4+B^cos4) = 

from which 

D, 

(Bgsin^+B^cos*) 

The mean geometric clearance is: 

hd8 I (1-A3in8)d8 

jL 
'1 (^-4) 

therefore c - c 1 + A(co8*-cos*) 

Now A -
c .2 

PgC SpgC^ 

for air at standard conditions, and with R = 1 in. 

The above equations were used to relate the experimental and 

theoretical parameters. 
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Appendix (5) 

"Analytical" Program. 

The following A.L.G.O.L. computer program, was written to 

evaluate equations (40) and (36), for the plotting of the W-Xp 

curves by the analytical method. 

Like the program in appendix (6), it was written in a modified 

form, for operation on an I.C.T. 1909 digital computer. 

The data should be presented in the following order: 

6, 4^4, N, LS, LING, LNO, PS, PINC, PNO, A^, Ag, Ag, A^, 

Where we have: 

5 - limit of convergence on the mean dimension!ess pressure 

$ - # - in degrees, 

N - number of values of A Co be read i.e., 1 to n, 

LS - starting value of Ac, 

LINC - increment in Ac, 

LNO - number of values of Ac to be computed 

PS - starting value for 0 

PINC - increment in * 

PNO - number of values of # to be computed. 
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BEGIN REAL DELIA,SPAND,LS,LINC,PS,PINC,PHI,PSI,L,NEWPM,C1,C2,B1,B2, 
B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,T,I,IA,IB,0LDFM,TI,SPAN, 
RAD; 
INTEGER N,LNO,PNO,K,E,F,Y; 
DE1TA;"READ; SPAND:=READ; N:-READ; LS:"READ; LINC:-READ; 
LND:"READ; PS:=READ; PINC:=READ: PNO:=READ; 
BEGIN ARRAY A[l:N], lC[l:5^1:LN0+l], PHID,HB,x[l;N,l:LNO+l, 
1;PN0+IT; 

FOR K:=l STEP 1 UNTIL N DO A[Kl:=READ; 
FREE INPUT; 
RAD:-360/6.28318; SPAN:-SPAND/RAD; 
FOR K:-l STEP 1 UNTIL N DO 
BEGIN Bl: 

B3: 
B5: 

+A[K]+2/4+A D(r+4/8; B2:-A 
K KJ+2/4+3xA[K]+4/16; B4:=A, 

,k]+4/16; B6:-A[Kj/2+3xA|Kj 
B7:-l+3xA[K]f2/4+5xA[Kj+4/8+35xA[K]+6/64; 
B8:-A" ' 

/2+A[K]+3/4; 
+3/8; 

+3/8+5 AM+5/16; 

B10:-A[^ + 
/2+A[K] +3/2+15 xA[K] +5/32; 

B9:-A[K1+2/4+5xA[X] +4/l6+21xA[K] +6/64; 
3/8+3xA%K]+5/16; 
B11:-AM +4/16+7xA[K] +6/64; B12:-A[k] +5/32; 
B13:-AJ^+6/64; 
LC[K,lJ:-LS; 
FOR E:=l STEP 1 UNTIL LNO DO 
BEGIN PHlF^E,!] :=PS; 

FOR F:"l STEP 1 UNTIL PNO DO 
BEGIN PHI:"PEID[K,E,Fl/RAD; PSIz-PHI+SPAB; 

L:-iC^K,E]/((l+A{K]x(COS(PSI)-COS(PHI)) 
/(PSI-PHI))+2); 
NEWPM:-0; 
L3:Cl:-A[K]/((l+L+2)x(EXP(LxPHI)-EXP(L% 
PSI))) 
x((L+2-KEHrM)x(SIN(PSI)-SIN(PHI))+Lx(l+NEWPM) 
x(COS(PSI)-COS(PHI))); 
C2:-AiK]/((l+L+2)x(EXP(LxPSI)-EXP(LxPHI))) 
X(EXP(LxpHI)X((L+2-NEWPM)xSIN(PSI)+L*(l+NEN 
PM)xCOS(PSI)) 
-EXP(LxPSI)X((L+2-NEWPM)xSIN(PUI)+Lx(1+NEW 
PM)xCOS(PHI))); 
T:-PSI; Y:-l: 
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Ll:I:=Clx(EXP(LxT)x(Bl/(L+2+l)x(LxC0S 
(T)+SIN(T)) 
+B2/(L+2+4)x(LxSIN(2xT)-2xC0S(2%T)) 
-B3/L+2+9)x(LxC0S(3xT)+3xSIH(3xT)) 
-B4/L+2+16)x(LxSIN(4xT)-4xC0S(4xT)) 
+B5/(L+2+25)x(LxC0S(5xT)+5xSIN(5xI)))) 
-C2/A[KlxLN(l-A[K]xSIN(T))-Lx(l+NEWPM)/A 
rKl/(l+L+2)x 
(2xS0RT(l-A[K]+2)xARCTAN((SIN(T/2)/C0S 
(T/2)-A[K])/SqRT(l-A[K]+2)) 
+A[K]xC0S(T)-T)-(Lt2-HEWPM)x(A[K]xSIN 
(T)+LN(l-A[k]xSIN(I)))/A[K]/(l+L+2); 
IF Y=1 THEN 
BEGIN IA:=I; Y:=2; T:=PHI; 

GOTO LI; 
END; 
IA;=IA-I; 
T:=PSI; Y:-l; 
L2:I:=CIx(EXP(LxT)x(B6/L+B7/(L+2+l) 
(LxSIN(T)-COS(T)) 
-B8/(L+2+4)x(LxC0S(2xT)+2xSIN(2xT)) 
-B9/(L+2+9)x(LxSIN(3xT)-3xC0S(3xI) 
+B10/Lt2+16)x(LxC0S(4xT)+4xSIN(4xT)) 
+Bll/(L+2+25)x(LxSIN(5xT)-5xC0S(5xT)) 
-B12/(L+2+36)x(LxC0S(6xT)+6xSIN(6xT)) 
-B13/(L+2+49)x(LxSIN(7xT)-7xC0S(7xT)))) 
+C2x(2/SQRT(l-A[K]+2)%ARCTAN((SIN(T/2)/ 
C0S(T/2)-A[K])/SQRT(l-A[K]+2))-
T) / A [id ;Lx (1+NEWPM) x(A[K] xSIN(T)+LN(l-
ArK]^SIN(T)))/ 
A[k]/(l+L+2) + (L+2-NEWPN)/A[K]/(l-L+2) 
x(2/SQRT/l-A[K]+2)x 
ARCTAN((SIN(T/2)/C0S(T/2)-A[Kj)/SQRT 
(l-A[K]+2))+A[KixC0S(T)-T; 

Y=1 THEN 
BEGIN IB:=1; Y:=2; T:-PHI; 

GOTO L2; 
END: 
IB:=IB-I; 
WB[K,E,F]:-SqRT(IA+2+IBt2); 
OLDPM:=NEWPM; NEWPM:-WB{K,E,F] / SPAN 
IF NEWPM-OLDPM>DELTA THEN GOTO L3; 
T1:=ARCTAN(IB/IA); 
X[K^E,F]:-(TI;PHI)/SPAN; 
PHID[k,E,F+l]:=PHID[K,E,F]+PINC; 
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END; 
LCTK,E+l|:=LC|K,E|+LINC; 

END; 

END; 
END; 

END; 
FOR K:=l STEP 1 N DO 
BEGIN miTE TEXrC'^'P ' G.PITTS ANALYTICAL |l VALUES [JFOR 
UW] I BAR-PIVOT U GRAPH''3C^DELTA^bS^SPAN''6^A''IC")^); 

"PRIMT(DELTA,1,4); PRINT (SPAND,3,2); SPACE(2); 
PRINT (A[K] ,1,4); 
WRITE TEXT(^''4c'iLAMBDA''4S^PHI<' 7S'lx''9S'̂ wUBAR''2C''̂ ); 
FOR Ez-l STEP 1 UNTIL LNO W 
BEGIN PRINT(LC [k^E].2.2); NEW LINE (1); 

FOR F:=l STEP 1 UNTIL PNO ̂  
BEGIN SPACE(9); PRINT (PHID[K,E,F],3,2); 

PRINT (X[K,E,F],1,3); 
SPACE(1); PRINT (WB[K,E,F],2,5); 
NBf Llt^Cl); 

END; 
END; 

END 
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PR0GRAI4. 

BEGIN REAL DELTA,SPAm,LS,LINC,PS,PINC,A,R/J),SPAM,GRID,PHID,B,IHC, 
?N,T,OLDB,PSNTOT,PCSTOT,PSN,PCS,THEIA; 
INTEGER Z,MESE,M,LNO,PNO,K,E,F,J,M; 
L9:DELTA:=READ; MESH:=READ; SPAMD:=READ; M:=READ; LS:=READ; 
LIHC:=READ; 
LNO:=READ; PS:=READ; PINC:=FEAD; PNO:=READ; M:-READ; 
BEGIN ARRAY A[l:H],LC[l;i:Ll:LNO+l],W,X,PSI,Pin,?HID[l:N,l:LNO+l, 
1:PN0+1],P,PSH,PCS [OzMESti] ; 
FOR K:=l STEP 1 UNTIL N ,00 A[Kl:=READ; 
RAD:=360/6.28318; SPAN:=SPAaD/RAD; GRID:=SPAN/MESH; 
FOR K:=l STEP 1 UNTIL N DO 
BEGIN LC(%riT:=LS; 

FOR E:-! STEP 1 UNTIL LNO DO 
BEGIN PHlD%^E,lj :=PS; 

FOR F:-l STEP 1 UNTIL PNO DO 
BEGIN PHl't^,F] :=PHID[K,Ej^/RAD; 

PSl[K,E,F]:=PHl[K,E,Fj+SPAN; 
Z:-0; B:=0; INC:=1; 
LI: P[0 
FOR J:= 
BEGIN P 
x(l-A[K 

0; PN:=1; T:=PEl[K,E,F]; Zt^Z+l; 
STEP 1 UNTIL NESE DO 

jj:=LC[K,Ej xGRIDx(PNx(1-A[K] xSIN(T))+B)/(PN 
. .xsiN(T))+3)+p[j-l]; 
IF P[j| <-l THEN 
BEGIN INC:=INC/2; B:=OLDB+INC; 

GOTO LI; 
miD; 
T:=T+GRID; 
PN:=p[jj + l; 

END; 
IF Z>M p E N BEGIN 
W^,E,Fj :=100; X[K,E,F]:='100; GOTO L5; 
END; _ 
IF p[MESH]>DELTA THEN 
BEGIN OLDBz^B; B;=B+INC; 

GOTO LI 
E m ; 
IF P[MESn]<0 THEN 
BEGIN INC:=INC72T B;=OIDB+INC; 

GOTO LI; 
END; 
PSMT0T:=PCST0T:-0; T:PHl[K,E,F]; 
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FOR J:=0 STEP 1 UNTIL ]̂ 1ESH DO 
BEGIE t3jxSlM(T) ; PCS [j] :=P [j] xCOS (T) ; 

T:=T+GRID; 
END; 
FOR J:=0 STEP = UNTIL OlESH-2) DO 
BEGIN PSNT0T:=PSNT0T+GRIDx(PSN|:J]+4xPSN[j+l]+PSN[j+2])/3; 

PCST0T:=PCST0T+GRIDX(PCS [j]+4xPCS [j+lj+PCS [j+2j)/3; 
END; 
THETA:-ARCTAN(PSNTOT/PCSTOT); 
xTK.E.Fj : = (THETA-PHI [K,E,F] ) /SPAl̂ ; 
W[K,E,F::=S0RT(PSin'0T+2+PCST0T+2); 
L5:PHID|K,E,F+l]:=PHID[k,E,F]+PINC 

END; 
L^,E+1] ; =LC [K,E] +LIMC; 

END; 
END; 

WRITE TEXT("P^G.PITTS .VALUES [J FOR|J U(J BAR-PIVOT [J POSITION [J GRAPH U BY [J 
FINITE U DIFFERENCE'' 3C^ 
DELTA^ 7S ̂ MESH''8S ̂SPAN''C ̂  b ; 
PRINT(DELTA,1,5); SPACE(2); PRINT(MESH,3,0); SPACE(7); 
PRINT(SPAtm,3,I)! im7LINE(2) ; 
miTE TEXT (''A'gS 'LAMEDA^SS ̂ PHI^8S [J BAR^5S ̂ PIVOT[j POSITION''2C ̂  ̂ ; 
FOR K:-l STEP 1 UNTIL N DO 
BFGIN FOR E:=l STEP 1 UNTIL LNO ̂  

BEGIN FOR F:=l STEP 1 UNTIL PNO DO 
BEGIN PRI#TATK] , 7 7 ^ SPACE(l) ; PRINT(LC [K,E] ,3,1); 
SPACE(6); 

PRn]T(PHID[K,E,F],3,l); PRnn:(w[K,E,F],3,4) SPACE(l); 
PRINT(X[K,E,F],0,4); 
NEIf LINE(l) 

END; 
END; 

END; FREE OUTPUT; 
END; GOTO L9; 

END; 
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APPENDIX (6) 

"Numerical" Program, 

This program is written to derive the W-X curves by 

"numerical" means. A backward difference method is employed 

for the integration of equation (43), and a flow diagram for 

the evaluation of is shown in figure (6). 

The data should be presented in the following order: 

5,MESH,4;-*,N,LS,LINC,LNO,PS,PING,PNO,M,A^,A ,Ag, A^, 

where 6,,N,LS,LINC,LNO,PS,PINC, PNO, and A, are explained in 

appendix (5), and the following are; 

MESH - the nunter of mesh points taken around the 

circumference of the pad. 

M - the maximum number of iterations considered 

worthwhile for obtaining . 

The program is designed to read in any number of sets of data 

without further instructions, provided the results are given for 

the previous set of data first. The input is usually terminated 

by a stop instruction. 
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