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SUMMARY.

This thesis is concerned with an analytical approximation to
the steady-state solution of Reynold's equation, which makes
possible the separation of axial and circumferential character-
istics existing in the lubricating film of a tilting-pad gas-journal
bearing.

An introduction to gas-bearings is followed by a consideration
of the particular aspects of the single pad bearing., It is shown
how the basic equations of fluid flow may be reduced to Reynold's
equation for a compressible lubricant.

At this stage, an analytical approximation to the solution of
the equation is developed, leading to expressions for load capacity
and pivot position. The validity of the solution is tested against
numerical results.

The test~rig constructed for the experiments, is described in
detail, and the experimental results of pressure distribution,
viscous losses, and pivot stiffness are tabulated and discussed.

Finally, design curves are presented for a 120° pad, in a
dimensionless form, which is independent of bearing length; the
use of these design curves, for complete bearing assemblies, being

illustrated by a set of worked examples.
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Nomenclature.

constant of integration for the infinite bearing
constant

PH

the value of ¥ for the infinite bearing,
PH

h/c

tm/c dimensionless minimum clearance
defined in section 7.1

integral

integral due to end flow correction
constant of separation

defined by equation (27)

bearing length

shaft speed (r.p.m.)

shaft speed (r.p.s.)

dimensionless gauge pressure

P~ 1

P for an infinite bearing

p/pa dimensionless absolute pressure
p,/p,

journal radius

1.



relative surface velocity
applied load
component of anplied load

component of applied load

dimensionless load, equation (40)

dimensionless arc coordinate of pad

dimensionless pivot position
dimensionless axial coordinate
defined by equation (17)
machined in radial clcarance
mean geometric clearance

vh

- defined in eppendix (1)

film thickness

minimum film thickness

coefficient defined in equation (45)

finite mesh position
absolute pressure
mean film pressure

ambient pressure

figure (2)

A W N A

veleocities at a point in the fluid film, defined in



coordinates defined in figure (2)

S N N Nt Nt

angle of tilt of the pad about the 6 datum
position of pad leading edge
6uwR?

2
PaC1

p,c?

coefficient of viscosity
density

position of pad trailing edge
defined by equation (17)
angular coordinate

angular position of the pivot

limits of integration

3.



1.0. Introduction.

The gas bearing which was once the toy of a few creative
researchers, is now taking its place in modern engineering as a
practical proposition.

The earliest reported observation of gas as a lubricant,
seems to be that made by Hirn(l) in 1854, who remarked that a
shaft running in a "dry" bearing appeared to be supported on a
fluid film, which he rightly suggested to be air. Kingsbury(z)
in 1897 carried out a number of ingenious experiments with a plain
journal bearing supporting its own rotor mass. For his studies
he evolved a somewhat crude, but very effective system of film
thickness measurement.

The years that followed saw a number of isolated attempts to
exploit this new found phenomenon, one notable example being its
application to spinning machines by Dr. Ferranti(3) in 1904, but
this project was abandoned due to other mechanical limitations on
the machines. It was not until the widespread development of
nuclear power that these bearings became a commercial reality.

It had been found that if oil was used to lubricate the cool-
ing circulators of a reactor, it had to be changed at frequent
intervals due to polymerisation. This not only represented a
regular maintenance problem, but also one in the disposal of radio-
active waste. The major attraction of gas bearings in this partic-

ular application, is their ability to use the cooling gas as a
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lubricant, linked with the advantages of unlimited life, and their
unchanged characteristics over a wide temperature range.

The advantages of long bearing life, made them particularly
attractive to the designers of gyroscopes. Previously the wear
on ball or roller bearings led to the frequent replacement of those
instruments, and to some extent hindered the progress of inertial
navigation. Under steady running conditioms the life of gas
bearings is unlimited, but under practical gyro conditions, it is
necessary to stop and start from time to time, resulting in the
development of materials with good dry rubbing properties and an
ability to maintain a gas film.

Recently they have found uses in many fields of engineering.
Their low noise level and high speeds made them ideally suited for
uge in dental drills, and their operational cleanliness offers an
attractive proposition in food processing. The machine tool in-
dustry too has found numerous uses for them, such as grinding and
drilling spindles, small hand tools, rotating work tables and ex—
perimental machine slides to mention but 2 few.

The various forms of bearing will now be outlined.

1.1. Hydrostatic Bearings.

These bearings rely on the creation of a gas film by some
external compressing means, the pressurised gas being fed to the

film through small holes in the bearing surface. The viscous or
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"creep" flow of the gas from the point of entry to exhaust, main~
taing a pressure gradient in the film, which in turn enables an
applied load to be supported. As the clearance decreases the
resistance to flow increases, giving a higher load capacity.

The obvious advantage of this type of bearing is that a load
may be supported without relative surface movement. In theory
the size of load is only limited by the supply pressure available.

When the efficiency of this bearing, operating at low surface
velocities, is compared with simple boundary lubrication, the
pumping effort required is generally more than offset by the
frictional saving. .

1.2, Hybrid Bearings.

When hydrostatic bearings are operating at low clearances and
high speeds a substantial hydrodynamic effect can be experienced,
which contributes to the load capacity. This bearing is known
as a hybrid bearing and is becoming very common in gas-bearing
practice.

1.3. Hydrodynamic Bearings.

The hydrodynamic bearing relies on the relative movement of
the two bearing surfaces to "drag" gas into the film, and to main~
tain the film pressure. This is usually achieved by creating a
convergent passage in the film, such as that occurring in journal

bearings. In the case of a hydrodynamic thrust bearing the two



surfaces may be parallel, and one method of producing the film is
to machine spiral grooves in the surface, in such a way that they
terminate before reaching the bearing centre. The action of these
grooves is to pump the gas radially inwards from the edge.

The bearing is a self-contained unit, and requires no external
gas supply. Under starting conditions however, the surfaces rub
together, and it is essential to use either low friction materials,
or make available some form of external jacking. It is therefore
preferable to install them where stopping and starting is at a
minimum.

Their greatest manufacturing handicap is the high degree of
precision required to achieve a small operating clearance. This
is further aggravated by the need for large bearing surfaces if
sizeable loads are to be supported. It is often mistakenly im-
plied that gas bearings have better frictional properties than
their liquid counterparts, which is not strictly so.,  Although
gas viscosities are lower than those of liquids, it must be
remembered that to support the same load, the bearing must either
be larger, have a smaller clearance, or operate at a higher speed.
Usually, where a frictional saving does occur, it is either be-
cause the bearing must operate over a wide range of speeds and at
different ambient pressures, gas having the advantage of steady

characteristics, or in the case of lightly loaded bearings, where



the liquid theory calls for designs impractically small, the gas
bearing theory requires a bearing of a size which can be easily
manufactured thus obviating over design.

In hybrid, and particularly in hydrodynamic journal bearings,
a phenomenon experienced is whirl instability. Although this
condition can be serious, it is now possible to predict whirl onset
speeds for a number of bearing geometries, in order that bearings
may be desigmed to operate in a stable regionm.

l.4. Squeeze Film Bearings.

The squeeze film bearing relies on the high frequency
"squeezing' motion of the two bearing surfaces to maintain the gas
pressure. One way of creating this mechanism is by feeding a
high frequency signal to a bearing manufactured from a plezo~
electric crystal. The bearing is probably most suitably applied
as a small low friction bearing in scientific instruments.

1.5. Tilting Pad Bearings.

The idea of a tilting pad bearing, using oil as a lubricant,
was conceived independently by both Michell and Kingsbury at the
turn of the century. Michell who had demonstrated the load carry-
ing advantages of this bearing over the simple viscosity thrust
collars, was convinced that similar advantages could be gained in
applying the same principle to journal bearings. This is certainly

not the case with gas bearings, as the absence of a negative
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pressure zone in the bearing, and the ambient pressures existing
between pads, can lead to lower capacities than those attained in
plain journal bearings. The bearings did however find a use
where problems of bearing misalignment occurred, such as in marine
propeller shafts, but with the increase in shaft speeds, whirl
instabilities became a major problem, and these bearings took on

a new role as anti-whirl bearings.

It was this anti-whirl property which attracted the designers
of gas circulators to apply them in the field of gas lubrication.
They had found that when the circulator rotors were supported in
plain journal bearings they experienced whirl. As a result, pad
bearings were designed on the simplified theory of Snell(s), and
a programme of research and development initiated. Moreover
hydrodynamic gas bearings have a tendency towards large length to
diameter ratios, whichk present serious alignment problems, giving
an added advantage in the use of pad bearings.

The tilting pad bearing consists of a number of curved seg~
ments, which maintain the shaft in its running position figure (1).
The lubricating film is usually generated by hydrodynamic action
between the pads and the shaft, although some attempts have been
made at external pressurisation.

As already stated, the pad bearing possesses good anti-whirl

(4)

properties which the author has previously suggested may be due



to the movement of the pads. Marsh<6) has shown that whirl is

a function of bearing geometry, and it is likely that when con-
ditions are such that a pad bearing begins to whirl, the bearing
geometry is changed by the movement of the pads, due to the small
rotating pressure field. The pads moving in such a manmer as to
stabilise the rumning conditioms. Although the pad may return
to its original position and the whirl recommence, the whirl is
never allowed to reach measurable proportions.

The werk carried out by Snell, was based on the assumption
that the fluid was incompressible; this yields a good approx-
imation to a gas film, when the specific loading on the pad is
low, but is in error for heavy loading and high speeds.

Research by the Franklin Institute, was based on the direct
numerical selution of Reynold's equation, and is presented in the
form of design curves. Unfortunately, the parameters chosen are
not truly dimensionless, and a set of curves is required for each
length to diameter ratio, for a particular compressibility number,
and for every span of pad. Although these curves are very useful
for the limited range they cover, they would be expensive to ex~—
tend in terms of computation time, and in certain regions, numerical

instabilities occur.
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2.0, The Objectives of This Study.

At the ocutset, an attempt was made to find an analytical

solution to Reynold's equation, so that suitable nondimensional
parameters could be selected, to effectively include as many
variables as possible., The theoretical and experimental invest-—
igations, were then studied in terms of these parameters, with a
view to producing comprehensive design curves with a minimum of

computation time.

11.



3.0. Basic FEquations of Fluid Flow,

In classical fluid dynamics, the fluid is considered to be
inviscid, which simplifies comsiderably the mathematical treat-
ment of the equations of state. Practically however, the regions
of greatest interest are those involving large velocity gradients
and occurring near solid boundaries. It is these regions which
are of direct importance to the understanding of fluid film
lubrication.,

For a gas, the conditions at any point in it, may be defined
by six basic equations, together with certain supplementary ones,
such as that relating the coefficient of viscosity to temperature.
These equations are: the continuity equation, the three Navier-
Stokes momentum equations, the energy equation, and finally in the
case of a perfect gas, the gas law. Although a mathematically
correct solution could be obtained for conditions existing any-
where in the film, it would be a very laborious process, which
in general, is not justified. The usual approach is to simplify
the basic equations, by neglecting terms, which in relation to
the rest of the equation are small.

To apply the necessary basic equations we must assume that
the lubricating film behaves as a Newtonian fluid. Burgdorfer(7)
shows that this is a reasonable assumption provided that the

separation between the two bounding surfaces is greater than one



hundred times the molecular mean free path of the gas. In general,
for lubricating films, this condition is satisfied, but special con~-
sideration must be given to certain gases at low pressures, such as
helium. TFor example air at standard conditions, has a mean free
path of about 2.7 x 10-6 ins., and helium at 3 Lb/in2 (absolute) and
32°F, about 36 x 10°° ins.

A further simplifying assumption is that the viscosity of the
gas remains substantially constant. This may be justified since
viscosity varies only slightly with the temperature apnd a number of
experimenters have shown the film conditions to be of an isothermal
nature, ref. (8).

Applying these assumptions the three time independent Navier-

(i)
Stokes equationsAbecome:~

Ju Ju Ju ap
plogprvg+tvgs) =x-22

ay oy X oz
v v ov d
D(u-am-*f- —55;"5'!«73-2*)"‘!"337
2 3 ou oV W 3 v
3% MRty 8zﬂ 2% |5y
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o aw owy _ ., _ op
P(uax+v-é~§+t~é—-)—z e

)

The three quantities X Y and Z are known as body forces, and
in the case of a hydrodynamic lubricating film consist of gravity
on the film, and any centrifugal components due to film curvature.
Clearly the former cam be neglected, and a simple calculation will
show that centrifugal forces acting on the film are very small com~
pared with the load capacity generated, resulting in these terms
being neglected.

The fourth equation required in the lubrication analysis is

that for continuity:~

3 3 3 _
== (puw) +~§§; (pv) o (pw) =0 vesaeal2)

ALZ
Figure (2) shows the coordinate

system for a slider moving with

velocity U over a plane sur- //////fy

face, the lubricating film thick-

nesg being h, If h 1s very small fig (2)
compared with typical distances in the x and y directions of N and

Yo» and the fluid flow is laminar, then the velocity w is shown by

14.



(9)

Curle to be of the order of u-%» or v-gm, and hence may be

o o
neglected by comparison with the other velocity components.
Furthermore, he has shown that the derivative of any function

s . ]

¢ say with respect to v will be of the ordcr of-H, whereas the

derivatives of the same function with respect te y and x, will be
9] o] . . .

of the order of — and-im. These derivatives are much smaller
) o

than the y derivative and may be neglected.

The terms on the left hand side of equations (1) are due to

(10) to be very small

gas inertia and have been shown by Brand
within the present operating regime of gas bearings.

Applying the above criteria, equations (1) reduce to:~

2.3 [

9% oz oz

2 .b [, o

By 3z H 3z 'QGIOOQQU(B)
..,a;g.:o

oz

The third of the above equations indicates that across the
film, the pressure is substantially comstant.
The other two equations may now be integrated with respect to

z, the boundary conditions from fig (2) being:-

u=107at z = h
u=0at z =0
v=0at z =0 and z = h

15.



givings~

=k 2oy + 2
J"‘"‘i”]’: SXZ(Z h) +hU- ..t.o.(a)
.aoa-(&)
and v = L 2p %z (z-h) cenesolb)
2y 3y

Substituting (4) into (2) and integrating with respect to z between

the limits of 0 and h, yields:-

d L 3 3 3
= (phagﬁ) +-§; (phigg) = 6uU'3§(ph) sesoa(5)

Since the fluid flow is assumed to be laminar, the mass flow normal
to the surfaces, is small compared with that in the other two
directions, and the third term in the continuity equation is there~
fore neglected.

Powell(s) found experimentally that the conditions in the film
were approximately isothermal, i.e. p is directly proportional to

the pressure p. Hence (5) becomes

2 (pn32) + 'g'; ( h3~§-§-) = 6uU - (ph) ceeea(6)

The above equation is known as Reynold's equation for a
compressible fluid film, and is the basic equation of dynamic

gas film lubrication.
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3.1, Solutions to Reynold's Equaticn.

A major obstacle in the solution of (6) is its nonlinearity.
Although exact analytical solutions may be found for a few simple
geometries, it is in the main, necessary to mzke certain approx—
imations, or to scek a numerical solution.

The two most common analytical approximations for finite plain
. . « . (11)
journal bearings, are due to J. S. Ausman. In the first , the
pressure is cexpressed as a power series of eccentricity, yielding
an infinite group of linear differential equrtions which are more
readily solved. A good approximation for small eccentricities may
be attained by comsidering only the first of these linear aquations,
and is known as the first order pertubation solution. In practical
operation however, bearing eccentricities tend to be large, and
this technique is now more often employed in the studies of stability

. . 6
criteria, such as those made by Marsh( ), Ausman then made a
further approach to the solution by introducing the product of the

. . (12) .

pressure and the radial clearance as a variable group . This
substitution allows certain approximations to be made in linearising
the resulting differential equation. The philosophy behind this
method is similar to that for the first order pertubation solution,
except that the group 'ph' is used in the series in place of 'p',

. . . (13) . .
and is explained fully in reference » and its adaptation by the

author for use on tilting pad journal bearings will be given in the

17.



following chapters.

Mumerical solutions require the construction of a two dimensional
mesh system over the bearing surface. A finite difference equation
being set up for the pressure at each grid point in terms of the
pressure at neighbouring points. The result is a set of simultan~
eous equations involving ‘p' which may be solved between the given
boundary conditions.

L particular case of Reynold's equation is that for an infinitely
long bearing, where the end flow is zero.

Equation (6) then reduces to :-

3 39Dy 3
= (phz=) = 6ul ==(ph) ceeeneo (D)

(7) may be integrated with respect to 'x' yielding a first order

differential equatiom:-

4 6uU(ph+B
"a% = ”’LM uno-cvo(s)
ph3

4 solution to (8) was given by Katto and Sada(lé), but is only
applicable to the continuous film of a plain journal bearing, and
as a consequence is not suitable for tilting pad analyses.

Eauation (8) can also be sgolved numerically, by using the
finite difference technique, but with a unidimensional mesh system,

or by using the Runge~Kutta method outlined in this thesis.

18.



3.2, The Linearised ‘ph' Solutionm.

Making the substitution f = ph, (6) becomes:-

n2 2 2
[a £, j}~ g2[3%h , 2 ?]ﬂ 6u53§

Lax ay? 9x? oy 8
= g2 2L, b BE| | [(OE)2 af)2 )
3x 9% 9y oy 9% oy Trrnere

Ausman shows that as U »~ © and U » 0 the right hand side of
(9) tends to zero. He therefore assumes the right hand side to be
everywhere zero, This has been shown experimentally to give a
good approximation for plain journal bearings. This, however,
must be used with discretion. Contained in this study is a compari-
son between this method of approach, and a direct numerical one, to
establish its validity for pad bearings.

Thus (9) becomes

2 2 2 2
hf 8 f «?m:g- — 6“{%‘ f2 a h B h‘-} -u-pn.o(lo)
ax?  ay2 ax?  oy?]

or

2 2 2 2
3<f + OE 6uU'§£ = p 3“h !
9x? dv?  ph? * ax? 8y2

The above equation is still nonlinear, but could be linearised

by approximating the coefficient P to some constant Pq» and the
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2”

group ph2 to a constant pacl

Ausman assumed that Py = P which for a plain journal bear-
ing is of similar magnitude to the mean pressure around the bear-
ing, and gives favourable agreement with experimental findings.
For a pad bearing however the mean film pressure is above ambient.
The value taken for Py will be discussed later in this report,
(Section 7.2).

Again Ausman assumed that cy = which for a plain journmal
bearing would be the mean radial clearance, but for a pad, ¢

must be some constant clearance within the film, (Section 7.1).

Applying these approximations

32f | 32%f 6uU  af 3%h ., 3%n
+ — u ,..5.;; 1 {-—-—-—- m) Qo"@.#.!(]—l)
9x2 ay? Paclz ax? day?



Before making a mathematical analysis of a tilting pad bear—
ing, it is necessary to have some understanding of the basic
requirements.

Probably the most important condition to be satisfied, is that
the centre of the fluid film pressure must act through the pivot
position. In arriving at the position, it must be borne in mind
that the centre of pressure for a curved surface, is not the same
as the one for a development of that surface, since we are inter-
ested in the chord length rather than the circumferential length.

A source of error in finding the pivot position is the use of
approximations to the pressure profile. Although these profiles
may have the same integration values as the true distribution, to be
a useful representation of the pressure, their centre of pressure
must also correspond.

Finite difference solutions require very small mesh sizes when
used on pad bearings, otherwise large second derivatives of the
pressure profile produce inaccurate results. Ideally one would
like a small mesh in the circumferential direction, where these
derivatives are likely to be high, and a larger one in the axial
direction where they are low, but this can result in a numerical

instability reference (15).
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The pad bearing differs from the plain journal, in that the
boundary conditions for the journal bearing, are ambient at either
end, and have a pressure distribution which must be periodic in 2w,
The pad bearing although having a repetition of the pressure every
2m, cannot be said to be periodic in 27, because of the discontin-
uities existing between the pads. The boundary conditions are
therefore taken to be ambient around the edges of the pad. For
an analytical solution, this a2dds a complication since nonperiodic
terms in the pressure distribution cannot be neglected, which would
have resulted in simplified integration for load capacity.

4.1. Tilging-pad Bearing Solution.

In the case of a pad bearing with the pad parallel to the shaft
. . . . 9%n
in the oxial direction = = 0
Byz
In the circumferential direction from fig (3)

h = ¢ = RBsind

or nondimensional clearance H ig:~

H”"fl:l”iésine ..........-q..(lz)
C (o4

Substituting into equation (11), nondimensionalising and changing

the coordinate system to that of fig (4) we have:-

3F . 9%F oF

M+M-A~§§”?1A5ine .ana.a.ﬁu.c’cn(lB)
562 8Y2
2
where A=-13;§. and A:m
c 2
Pa%1

22.



The coordinate system has been sclected in order that values
may be stated in terms of the nondimensional minimum clearance Hm.

A good approximation to B is found from fig (4) where:-—

Hlnal"A. noao.ouun-c(lé)

T in equation (13) is a function of the nondimensional absolute
pressure. Therefore the boundary conditions for (13) will be
¥ = H along the edges of the pad. If however nondimensional gauge
pressure P is used, in place of absolute pressure‘ﬁ, the boundary
conditions become F = 0, where F = PH, which simplifies the evalua-
tion of the constants in the solution. A further advantage is
that P may be integrated directly to obtain the load capacity, with-
out considering the ambient conditions existing on the reverse side
of the pad.

Now F = PH
but if we replace P bylﬁé +Porl+7?P since'ﬁé = 1 then ¥ =

(1+P)H=F + H, (13) becomes:~

2 02 :
PELE

5 5 ae Sine"‘ACOSe) ooaqoo-o.-a(ls)
a6 Y

1

A particular solution of this equation is that for an infinitely
2

long pad, where £m§-= 0 and the equation becomes
Y
92 3 .
“'”"""'}?" had A“a"'Eé"’ = A(Plslne"flcose) paceraOEsED S (16)
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If the solution to (16) is F = F_ we may seek a general solution

to (15) of the form
F*FW*GZ unn--ooeno(l?)

where 0 is a function of 6 only, and Z a functicn of Y only.

The general solution to (16) is:—

{c eAe+C2+A(1+Pl)ccse+(A2“P1)Sine} seeeenese(18)

F = 1

(1+42)
The boundary conditions for equation (15) are ambient i.e. P = 0 at

the leading and trailing edges,

or when 6 = F_ =0
6 = ¢ F, =0
Hence:~
C RS S —(A2~P )sin6+A (1+P )cose]w sneeseasns(19)
1 (eA¢~eAw) i 1 1 6

C., = st eA¢{(A2~P1)sinw+A(1+P1)cosw}

~~eAw{(Az-Pl)sin¢+A(1+P1)cos¢}} vesssnes (20}

or

eA(¢+¢) {A(1+P1)cosﬁ+(A2-Pl)sine}w

2" Gy | R ¢

Equation (18) gives the value of T for the infinite bearing, and the

pressure profile may be found from
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FOO
P = i«m ...u-----a-~-'(21)

In the case where P1 is assumed to be ambient ref (16), then P1
simply becomes zero in the above equations.

Substituting (17) into (15) and eliminating F_ by subtracting (16)

we have:—
0"z + 0z" ~ AB'Z =0 P 73
Rearranging
I —%: - A%l = -K?2 (say)

Where K is the constant of separation; since Z and 0 are independ-
ent of one another K can only be a constant.
Considering Z:-

z" - R2Z = ¢

A sclution is:~

Z = C3 COSh KY -n'ccocecrn(23)

Since 0Z is in effect a correction to the case of an infinite bear-
ing, we require the maximum correction to the pressure profile at
the bearing edge, fig (5); furthermore, Z must be an even function,
these conditions are satisfied by solution (23)

Considering o:~

@""A@v +I{26=O ......-....(24)
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which has the indicial equation
D2 = AD + K% = 0

WIVa'Y
Ai-g l"K ..u!.k."(zs)

D=

Again the boundary conditions are ambient at the leading and
trailing edges, which are only satisfied if (16) has complex roots.

Giving the solutions—

A
-2-6
@ = C4B SinKl(9~'¢) p.oooo'c-(26)
202
where K, = VARZ-A evascanse(27)
1 2
Once again when 6 = ¢ 6 = 0
and 6 = @ = 0
thus Kl(w"'(b) = nmw ouoo-o-co(zg)

Considering only the first harmonic:-

A
e
I A )
6 Cae mnm
A
Thus F =F + C e‘i‘e 1o cosh KY (29)
. 5 S m RN RN

From equations (27) and (28)

o

% = {(ﬁ)ﬂ(g)z} ereen(30)
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Originally, the author assumed, (reference 16), that since CS
is a product of C, and C,» then Cg could be an arbitrary function
of 6; this however contradicts the assumptions used for obtaining
equation (17), It is shown in anpendix (1), that if 05 is a con~
stant, then equation (29) is a solution to equation (15). If, how=-
ever, thc assumpticn is made thot Cg is a function of 6, then it is
possible to scparate the axial and circumferential flow conditions.,
A study of this approximation is made in appendix (2). Applying

this essumption gives the following:-
L
atY::i.z‘f"; P =0

Fquation (30) becomes:~

F:’*Fw (l" QQQ;O‘Q.O#!‘!.(31)

.O.l..'.i"l.(32)

Hence the pressure distribution for a finite bearing is given as the
product of the pressure for an infinite bearing, and o correction
factor in terms of the longitudinal coordinate.

The shape of the correction factor in the axial direction, i.e,
a 'cosh' form, satisfies equation (29) and K is defined mathemat—
ically by equation (30). Since the axial pressure distribution must

be ambient at the pad edges, then the errors may be considered in



terms of the pressure profile at the pad centre, which will be com-

pared with the findings of reference (17) in section (8.0).

4.2, Load Capacity and Pivot Location,

If the pressure forces on the pad are resolved into two compon-
ents, one parallel te the € datum and the other perpendicular to it,
then after summation, a resultant can be obtained making an angle 61
with the datum. The pivot position due to pressure forces, i.e.
neglecting pad weight, friction, etc., is thus given by the angle
81.

Resolving parallel to the datum:~

7R 0
= R%p ( Pcos8d6dY
)

L ‘¢
2R

L

v 7R
= R%p_ J P_cos0do J (1 -EM%} ay cereeeesaa(33)

L cosh -i-ﬁ-

7R

-

Resolving perpendicular to the datum:~

L
v 2R
W2=R2paJPwsin8d6J (1-539—’-11-%.) ay eeeenenes(34)
6 L cosh 3R

2%

The integration with respect to Y is:-—
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L _2 KL
IY"‘E Ktanh"z"ﬁ' t-.o.o-u--poo(35)

IY is a factor which takes into account the length of the bearing.
Similar end flow factors were determined by Ausman(lz) for journal

bearings, but are far more complex in form than IY'

The pivot position is given by:—

v
. P 1
Wz j¢km31n6de
tanolz-ﬁ?]j= (l) 00------¢-¢¢o(36’>
J P_cos6do
¢

It is interesting to note that with this approximation, the pivot
position is independent of bearing length, and can be calculated on
the basis of an infinite bearing for simplicity.

Equations (34) and (35) now become:~

1
= 2 A AB 2. N c0s0do
Wl IYR P, [¢ zz:};; {Cle +Ciﬂ(1+P1)cose+(A Pl)slne} Tohsint
2_
) (Il + 12 + 13 + (A Pl) 14)
= R°p A IY
2 (1 + A?)
=R2Pa Ia IY ti--oanu-ouuot<37)

(15 + 16 + A(1+Pl) I4 + 17) )
Y

and W. = R%p A
') )
2 a 1+ A2>

= Nl
Rpa I.b IY Ol'iOcaoonaaod<38)
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The total load W is given by,

P

N = 2 2 L B B B B B N ]
W (Wl + W2 ) . (39)
or the nondimensional load W by,
1
Tl = (1.2 4 1,22 R o)
R27 & b
Pat ty

It is possible to comsider three limiting conditions to

equation (35):~

. L

(i) A » =, then IY -+ /R,
This means that the load capacity of the pad is directly preportional
to the bearing length, a conditiom which is omly satisfied if
there is no pressure gradient in the axial direction, figure (5).
W then becomes a dimensionless load per unit length of the pad.

(ii) Y/

R » «, then IY -

Again there is no pressure gradient in the axial direction; and

W is in effect the nondimensional load per wit length, but since
L/R is infinite, W is also infinite.

(iii) /R > 0 then I, >0

As may be expected a pad of zero length produces zero load capacity.
It should be noted however, that W may still have a positive value
other than zero.

£s already indicated in section (4.0) the solution for a plain

journal bearing contains only periodic terms, whereas the solution
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to a pad bearing may also have nonperiodic cnes. In this solution
the nonperiodic terms are contained in Il and IS. Although an ex—
act integration is not available for Il and 15, it is possible to
make a series expansion of these groups. The approximation made
here, is a binomial expansion of the denominator, which was selected
in preference to a power series, since it remains reasonably accurate
when & becomes very large. The number of terms has been taken such

that the integration may be valid down to values of Hm = L2,

Hencez~

A
A
I = ¢ Ml (hcosbtsing)
A+1
A— [‘A.3
+ (Asin26-2c0820) = e (Acog36+3gin306)
A2+4 149
A/ A v
- } (Asinbb~4cosbt) + - (Acos56+551in58) }
A%+16 2425
b
_ A2 AM _ A AP
Ay slrg g by=35*73
A% 3pt A3
Ay =t Ay =5
_ A
As =%
..C2 q)
12 =T [log(l—-Asine)]
¢
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~A(1+P ) - tars-a ’
13 = s | 2 (1=A2)? tan ( é) + Acos6~§

T 10
14 =L Asin8+log(1-Asin6)}
A L b
A A
IS = C1 eAeﬂxg + / (Asinb~cos8)
i 2241
Ag A
- (hcos26+28in26) - (Asin36-~3c0os38)
A2+4 A%+9
A A1
+ (Acos46+4sindb) + (Asin56-5¢cos50)
£2+16 £2425
A A v
- (Acos6O+63in66) - (Asin76-7cos76)}
A%4+36 A2+49 s
A, 3a%  5AS 342 5A% | 3548
Ao =5 * g * 5~ hp =LA+ =g 64
_ A A% 1545 A% spt 21A6
Ag =5 + 5=+ S bo T T T5 Y TEG
3 5 L 6
A 3A _ A 7A
Mo =Tt M1=T6 %3
A, = AS A8
12 35 A3 =T
ﬁanQ-A ¥
C 2
I =2 [ 2 tan” 2 i) -8
6 A (1"A2)% (1=-A%) o
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L]

1) 9 -1 tand-A
I, = T tan ( j) + Acosd~6

A2 (1=£2)2 (1-52)*%

The methods for obtaining some of the above integrated groups are
not altogether obvicus. For this reason the detailed integration

is given in appendix (3).
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5.0, Validity of the lipearised 'ph' Apslysis,

This analysis may be examined in two stages. Initially it
must be established that Reynold's equation gives a true representa~
tion of conditions existing in the gas film, and secondly the approx—
imations made in its solution should be justified.

It is more convenient to study the solution of the equation
first, and then to compare theoretical and experimental values in
order to assess its utility.

It is important, when carrying out such an assessment, that
the theoretical and physical properties are compared at the earliest
possible stage in the analysis, which for lubricating films requires
the comparison of predicted, and actual pressure profiles. To com~
pare load capacities, would lead to the possibility of discrepancies
being disguised by the process of integration.

Accurate solutions may be obtained by numerical means, the
accuracy depending on the time and computational facilities available.
These solutions may then be employed as 'mathematical standards' for
purposes of comparison.,

Although it is possible to obtain solutions numerically for
finite bearings, it is less demanding on computation time to deal
with the infinite cases. The approximations however, must then be
studied to determine the part played by end flow in their modifica~-

tion.
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Equation (9) is symmetrical in x and y, except for the term in
U, If the approximations made in obtaining equation (10) from
equation (9) are legitimate, then all the terms on the right hand
side of (9) must be small compared with those on the left. When
the legitimacy is only tested for an infinite bearing, it might be
argued that the term in U is 'weighting' the left hand side, and the
other terms in x are of the same order as those on the right, this
would mean that although the approximation was valid for the x
direction it may be invalid for y, since y has no 'weighting' term.

This condition camnot occur, for in order to maintain the
equality of the equation, either one or more of the terms on the
right, or the remaining terms on the left must be of the same order
as the term in U. Therefore to show that the approximation is good
for an infinite bearing, would be to show that all the terms on the
right are small, and that the same order of validity exists for a
finite bearing.

For this reason the numerical solutions discussed in the follow-
ing chapters will be limited to those for infinite pads, with the
exception of existing solutions obtained by The Franmklin Institute
reference (17).

5.1, The Mumerical Solution of Reynold's Equation.

From section (3.1), equation (8), we have Reynold's equation for

an infinite bearing:~
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é«B = m 0‘!0..‘.!(8)

dx Phg
nondimensionalisings~
d-f; AC(PH+BI)
"“d"é" - iy uoa-n-ono(é’l)
Py3
p2
where he = SHRZ
b’
a5 Ac(P(l*Asln6)+B1)
or 'a"'e" = anuaonae(éz)

P(l~Asin0) 3

The above equation contains P, the absolute nondimensional pressure.
In most calculations concerning pad bearings, P will take on values
between 1 and 2. When these values are stored in the computer,
they are handled in floating point form. If gauge pressure 1is
again substituted for sbsolute pressure, the values between 1 and 2
have one less digit to be stored, and between 1 and 1.1, two less
digits, etc. The result is a reduction in rounding errors when

small mesh sizes are employed. (42) then becomes:~

ap _ Mel®rD) (1-asing)+B,) o
d@ (P+1) (1~Asin0) 3

Equation (43) requires two boundary conditions for its com—
plete solution., These are given by the ambient conditions at
either end of the pad, i.e.

when € = ¢ and ¥ P =0
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One boundary condition provides a starting value for the numerical

integration, while the other determines the value of By -

5.2. Evaluation of BLL

Unfortunately, Bl can only be found by satisfying the boundary
conditions after integrating (43), which for a step by step process
involves trial values for Bl.

Returning to equation (41), and considering the point at which

the pressure is a maximum, 1.e.

@
de

= 0, then:~-
PH = -B,

Since P and H must always be positive, B1 must take on negative
values. By similar reasoning, it can be shown that when integrating
in the positive direction, a reduction in B1 causes a positive re—
duction in the value of P at the trailing edge of the pad.

A flow diagram of this iteration is shown in figure (6).

A condition which must be borme in mind, is that in practice
P cannot take a value of less than -1, which corresponds to absolute
vacuum, It was found that if this limit was exceeded during the
integration process, the remainder of the process became unstable,

it was therefore necessary when this did occur to increase B1 immed~

iately, and to recommence the integration.
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6,0, Numerical Study.

6.1. Finite Difference Solution.

If equation (43) is written in a backward difference form,

with an interval A, and a pivotal point (Gn, Pn), it becomes:~

P - P ) Ac((Pn+1)(1~A31n9n)+Bl)

—-Aai 3
8 (Pn+1)(1 ASlR@n)

or :
ABAC((PH+1)(I*Aslnen)+Bl)

P = +F‘ oocn.c-v-o(é‘é‘)
nt+l (p_+1) (1-Asino, ) 3 n

The above expression may be handled in one of two ways. A
set of simultaneous equations can be set up in Pn and Bl’ and
solved by matrix methods, or a step by step method may be employed.
The step by step method was favoured in this instance, since the
computation was performed on a multiprogramming machine, where it
is better to sacrifice time in preference to storage space.

The finite difference solution assumes that the curve between
two adjacent mesh points is in fact straight. The accuracy of
the solution is therefore improved by a reduction in mesh size,
which is assisted by the use of dimensionless gauge pressure as
already outlined. The importance of a small mesh size becomes
marked when the compressibility number is high, not only because

of accuracy, but also to maintain a convergence for B1°
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6.2, The Runge-Kutta Method.

Unlike the finite difference solution, the Runge~Kutta method
assumes an approximation to the curve between mesh points, and as
a result can attain the same accuracy with far fewer points. There
is however a stability limitation on the minimum number of points
chosen.

The Runge-Kutta method can take many forms, but in this thesis
is restricted to what is known as the classical form, reference (18).

We then haves-

AeAc
D =
..n+1 ?n+"é'"-‘(k0+2k1+2k2+k.3) -ao-»ooan(lf's)
where .
.. Pn(l—A51n6n)+Bl
0 P (1-Asin® )3
1) n
P +} 1-Asin(6_+3A
.. (”n+2k0)( Asin( ot 6>)+Bl
1 5 oxl — s | 3 '
(Pn+2ko)(1 A81n(6n+§A6))
P ol —h e 1
o (P +hk;) (1-Asin(B_+3A.))+B,
2 -
1 —had 1 3
(Pn"'zkl) 1 ASln(en"‘er))
(Pn}kz)(1—A51n(9n+A6))+Bl
and k3 =

(§n+k2)(l~Asin(Gﬂ+Ae))3

The calculations for each iteration using the Runge-Kutta

method, take about four times as long as those using the finite
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difference solution. Thus it is necessary for the Runge~Kutta
method to attain a greater accuracy when using a quarter of the
mesh points to make it worthwhile,

6.3, Numerical Evaluation of the Analysis for the Infinite Pad.

The analytical solution of the film pressure profile is given
by equations 18, 19, 20 and 21. These equations contain the para-
meter:-—

A = 6LwRZ

2
c
Pa 1

The value of ¢y was taken by Ausman (12), for a plain journal
bearing, to be the radial clearance between the journal and the
bearing. For that particular case, it was in fact, also the mean
film thickness. In this study, the value of cq has been tzken as

the mean geometric clearance under the pad, which is :-

< e{1 4 A(‘nggws@} teeeeena (46)

‘1
The validity of ¢y will be considered in a later chapter.

The relationship between A and Ac is then given by:~

2
.-:/}»n £ (ﬁ) Uuu."!h.'(47)

This relationship has been used in determining the analytical

pressure profile for various values of A.
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The actual calculation of the analytical pressure profiles,
has been approached in two ways. The simpler involves assuming
the value of p; to be ambient, i.e. P, = 0, and results in the
direct evaluation of equation (18). In the alternmative method,
Py is taken to be a mean value of P along the film, and is arrived
at by taking a starting value of ?1 = 0 and iterating until the
variations in Pl are negligible. This is a very rapidly conver=-
gent process.

The two methods are compared in section (8.0).

6.4. Numerical Stability.

It has often been noted, that when solutions are being sought
for Reynold's equation at high values of Ac, numerical instabilities
may occur, Solutions for an infinite pad bearing are no exception.

The instability stems from the relationship between B, and the

1
pressure profile. As the compressibility number increases beyond a
certain range, very small variations in B, cause large variations in

the computed pressure distribution. This is best illustrated by

the example shown in figure (7) and the following table:
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Ac = 15 6=-30° y~¢=12°  A=.5 mesh = 50,
- B, Pat 6=y
0 63.5625
1 56.2504
1.125 53,9647
1.1875 50,7278
1.195312 49,2447
1.199218 47.3882
1.205078 43,4153
1.205322 39.7655
1.205353 37.9099
1.2053683 35,5664
1.2053759 30.9391
1.2053769 28,0581
1.2053774 15.0112

The starting value for Bl in the iteration is zero. When the
integration is commenced from the leading edge, a pressure of 63
atmospheres results at the trailing ome. As the value of B1 is
reduced to some amount a little less than ~1.2, the calculated
trailing edge pressure begins to fall towards ambient, and would
indeed fall to ambient if the computer were infinitely accurate.
Unfortunately the variations in successive values of B. become so

1
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small, that they are lost in the computers rounding error. This
condition is further aggravated when a two dimensional mesh system
is employed, and has in the past limited solutions to those for
small compressibility numbers.

It was found in practice that for a value of A = ,5, and

¢ = ~30, the stability limit on a 120° bearing using a finite

i

difference solution was A, = 10, and using the Runge-Kutta solution

Ac = 6. For this reason, a counter was incorporated in the pro-
gramme to limit the number of iterations should instability occur.
Although the Runge-Kutta method produced fast and accurate
solutions at low compressibility numbers, it was abandoned in
favour of the finite difference method, because of its unstable

behaviour when h, was high.

6.5. Construction of Design Curves.

The analytical approximation for end flow correction shows
that to design a single pad, two forms of design curve are re~
quired if the parameters are to be truly dimensionless.

One form is shown in figures (8) to (12), and represents the
dimensionless load capacity per unit length of an infinitely long
bearing, plotted against the dimensionless pivot position. The
other get of curves, allows correction due to end flow to be made,
end takes account of bearing length.

It should be noted that in the first set, parameters are
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plotted for lines of constant Ac, whereas in the second set, they
are given for values of constant A. Equations (46) and (47) are
therefore used for conversion.

The nondimensional load W, may be calculated using equations
(36) to (40) or computed using Simpson’s rule from the components
of the elemental pressure forces obtained by the finite difference
solution. The former method may take two forms, either, that
where Pl is set equal to zero, or that where Pl is taken to be the
mean pressure. It will be seen later that the latter produces the
more accurate solution.

In the second form of curve, IY is plotted directly from
equations (30) and (35).

Curves of W against X, are plotted here for particular values
of A (i.e. A= 1-Bm), this is contrary to reference (19) where
similar, but not truly dimensionless curves, are plotted for par-
ticular values of Ac. It seemed preferable in this case to pre-
sent Ac in an infinitely variable form, since it is dependent on
both machined~in clearance and speed, whereas A is only related to
the nondimensional minimum clearance, which for design purposes can
be increased in steps of 0.1,

Figure (13) shows a comparison between design curves of W
against X, obtained by the analytical method, (solid line), and the

finite difference method, (broken line). The points marked on
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the numerical curves represent their intersection with lines of
constant ¢.

At high Ac, good agreement is obtained between the two solutions,
this is an important point, since it is in this region that numerical
solutions become unstable, or are slow to converge, and for this
reason, the analytical solution is most useful. At first sight,
the difference between the curves at low compressibility numbers
appears to be great, but in fact when it is comnsidered that XP is
plotted on an expanded scale, it can be seen that the maximum devia-
tion on the Ac = .6 curve is X, = 613 - .568, i.e. less than 57 of
the pad length.

In practice, the design curves are not likely to be used at the
maxima for W for fear of slight variations in rumning conditions
causing a rapid fall-off in load capacity, but would be used for
pivot positions nearer the leading edge. For this reason, it is
important to plot load capacity accurately, rather than the pivot
position at capacity fall-off,

As is shown later, the comparison of theoretical pressure
profiles indicates that the analytical solution for ﬁ, tends to
slightly over—estimate the load canacity of the pad; it has been
decided that where a deviation between the two solutions does occur,
the numerical solution will be used, resulting in curves being
constructed from the numerical solution at low Ac, and the analytical

solution at high Ac.
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7.0. Approximations in Lipearising.
: 2
7.1, Study of the Group P.C1e

This group was substituted in place of ph? to obtain the linear
equation (11). Its value affects the relaticnship between A and Ac
as given by equation (47).

The substitution assumed by Ausman, for plain journal bearings,
of ph? = pac2 was to good effect, for in Journal bearings, "c¢" is
also the mean radial clearance, and P, approximates to the mean
pressure in the bearing.

For a pad bearing, it is a simple task to calculate the mean
geometric clearance between the pad and the shaft, but the mean
pressure calculation is more complex.

The method adopted in this report was to take ph? = Paclz’ where
cy is the mean nondimensional radial clearance.

If the linearisation is sound, equation (10} is valid for all
points over the pad surface, and for any given position a definite

value for ph? exists. If it is assumed that the mean value of ph?

over the film gives the best conversion from A to Ac, then a com-

parison can be made between it, and the quantity Paclz'
= 5
Let Paﬁ (PH4) iean
= 5
then H (PH*) mean®

The ratio H will then give the factor by which ¢y is in dis-

agreement when converting from Ac to A. This ratio is plotted from
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the finite difference solution to the infinite bearing in figure
(14), for a pad with a span of 120° and with A = .5. As can be
seen, when Ac - O the ratio » 1, and hence gives complete agree—
ment, but when Ac » = the values become asymptotic to values be-
tween .79 and .88,

When the conversion is used to determine the end flow correct—
ion factor Iys it is seen from the inset graph on fig (15) that
errors in the determination of A, create only small variations in
the value of Iy, and this is most marked for 2 £ A 5 7,

= 1,9, and when A= 3, I = 2.07,

For example when A = 2, I

Y Y

a difference of less than 107 under the worst condition.

The other conversion of Ac to A, is in plotting the analytically
derived design curves and pressure profiles. Since the analytical
design curves are only plotted for the higher compressibility numbers,
they fall in a region where large variations in A and Ac have only a
small effect on the change in W. This is further borme out by the
good agreement of these curves with the numerical curves in fig (13),
The effect of errors in A for plotting the pressure profiles can be
observed in two ways, one is the scaling effect, and the other the
movement of the pressure peak along the pad.

7.2. The Quantity PLL

From equations (18) to (20) it is seen that P] acts as a scaling

factor on the trigonometric terms, and as a result, has some effect
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on the shape of the pressure distribution as well as its magnitude.

Its effect on magnitude will be apparent in the following chapter.
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8.0. Comparison of Theoretical Presgsure Profiles,

In fig (16) the analytical solution for an infinite bearing,
with P, taken as the mean pressure around the centre line of the
bearing, is plotted against the finite difference solution com-
puted with a mesh size of 100.

The analytical solution tends to predict a pressure distribu-
tion greater than that of the numerical one, and a displacement of
the distribution towards the leading edge. The effect of this
displacement is for the analytical pivot position to be forward of
the numerical position.

At high and low compressibility numbers, the pressure amplitudes
are in closer agreement; this is in keeping with the limiting con-
ditions given in section (3.2). Tor high compressibility numbers,
both the amplitude and the shape of the curves agree well,

Figure (17) shows the analytical solution with Pl = 0, plotted
against the same numerical curves as in the previous figure. It
should be noted that the amplitude of the distribution is brought
more in line with the numerical curve, when Py is taken as the mean,
although the direct evaluation of equations (36) to (40) make the
solution with Pl = 0 a simpler proposition. The improvement in
taking P, as the mean, is most marked for Ac = 1.5,

Direct numerical solutions for a finite pad with a span of 94.5°

were plotted at the Franklin Imstitute, referemce (17).
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Pressure distributions taken from this reference, are shown
in figures (18) and (19). Figure (18) shows the circumferential
plot along the pad centre, the Frarnklin solution being compared
with the infinite finite difference solution, which has been corrected
for end flow by equation (32). The curves display good agreement on
the amplitudes of the pressure peaks. The Franklin curves however,
have their peaks displaced towards the trailing edge. One of the
disadvantages in obtaining a numerical solution to the finite pad,
is that owing to the limitation on computer time and space, the megh
size must be fairly large, and this displacement of the pressure peak
could result from this condition. When the numerical solution is
obtained for an infinite bearing, it is possible to take a smaller mesh
size without any great demand on computation time. For 2xample if
the finite bearing is computed with a mesh size of 20 in either
direction, 400 mesh points have to be evaluated, whereas a mesh size
of 100 for an infinite bearing produces a fifth of the mesh size in
the circumferential direction, and only requires 100 points to be
evaluated, with a major increase in accuracy. A further disadvantage
with the two dimensional mesh system is that of obtaining a stable
convergence in both directions. Tigure (19) shows the comparison
between the axial pressure plots., Most of the deviation between
these curves stems from the differences in the circumferential plots.

If the circumferential profiles agreed exactly, then the axial

50.



pressure distributions would be in agreement on the pad centre line,
and if this were the case, it can be seen that there would be good
agreement for Ac = 1.5 and Ac = 4, and fair agreement for Ac = 10,
It should be remembered that as Ac -+ @, the pressure gradient in the
axial direction becomes zero, as in the case of an infinite bearing,
fig (15). It would appear that the curve of Ac = 10 taken from
reference (17), does not follow this limiting trend, and since it is
at a value of Ac, where accurate numerical solutions to a finite
bearing are difficult to obtain, it is not a very reliable standard
by which to compare a new solution.

In conclusion, it can be said that by comparing the analytical
solution with numerical solutions, a test is being made on the
analysis as a mathematical evaluation of Reynold's equation. The
findings are that the analysis with Pl as the mean pressure is an
improvement on that of Pl = O, the analysis becomes very accurate
at high compressibility numbers, the pressure amplitudes agree well
at low compressibility numbers, and from figure (19), the axial

pressure distribution is in good agreement with numerical findings.
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9,0, The Test Apparatus.

9.1. The Experimental Rig.

A specially constructed rig was used for the experiments
described in the following chapters. A sectioned diagram of
this rig is given in figure (20).

It 1s designed such that it can be operated with any number
of pads in positicn. This allows single pad tests to be made,
and minimises both the extent of instrumentation required, and
the number of pads it is necessary to manufacture. It is also
desirable to have a loading system whereby zero load can be attained,
and in which the load is unaffected by gravity forces acting on the
pad,

For these reasons, the shaft is maintained vertically by two
pressurised air slave bearings, its upper portion protruding with
minimum clearance through a hole in the top plate. The protruding
length provides the working section. At its lower end, the shaft
is supported by a pressurised thrust bearing containing a mercury
well, by means of which, a needle extending from the shaft centre,
provides an earth contact.

The slave bearings are in turn rigidly fixed to a machined
channel section encastré in a concrete block. The block provides
a cheap and rigid base structure for the rig, and is isolated from

the floor by "Metalastic' antivibration mountirgs. As can be seen
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from the diagram, the block is formed in a 'U’ shape, providing
a soundproof housing for the turbine, and acts as a safety wall
in the event of a shaft failure.

The services to the turbine cavity pass from the rear of the
structure, through a four inch diameter tube cast into the block.
The tube also becomes an exhaust for the turbine air, and is packed
with corrugated paper for silencing. A control panel containing
air regulators and pressure gauges, provides a front to the turbine
cavity, and convenient regulation of the various compressed air
services.,

Shaft motion in either of the two slave bearings, may be mon-
itored from the two capacitance transducers, positioned in quadra-
ture at each of the bearings. The running speed is recorded from
a "Southern Instruments® electromagnetic pick-up, triggered by two
small holes drilled in opposite gsides of the shaft to maintain
dynamic balance.

9.2, Loading System.

An air lubricated cross-slide, was located on the top plate,
to which a circular pad carrying three pivot supports, was attached.
This facilitated the mounting of three pads on a common structure,
whilst allowing easy access for instrumentation, and being suitgble
fer any extension of the present work to malti-pad systems. The

cross-slide provided pivot movement normal to the shaft axis.
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It was designed such that loads could be applied by compressed
alr trapped in the cavity at the forward end of the cross—slide,
the air pressure being indicated on a gauge, The slide was cali=-
brated against a dead weight load, when it was in its mid-position,
this being determined by a dial gauge.

Unfortunately, the slides were constantly becoming clogged with
dirt, and after a while, distortion of the cross slide made it
difficult to obtain repeatebility of the load calibration due to
surface contact occurring.

Since these experiments involve the use of a single pad, it
was decided to have a simple dead weight loading system, rather than
spend time correcting the slide-way.

The loading was finally achieved by locking the cross-slide in
position, and replacing one of the pivot supports by a simple bell-
crank lever, with a pivot for the pad at cne end, and a weight
carrier at the other, (fig (21). This gave a three to one load
magnification.

It is likely that with improvement, the cross—slide loading
system would provide a valuable means of loading a multi-pad bear-
ing, as the load can be orientated by means of the circular pad
support, fig (21).

9.3, The Test Shaft.

Originally, the two inch diameter shaft was made by modifying

an old rotor used in tests by the U.K.A.E.A. This had the
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advantage of having a hard chrome surface, which reduced the risk
of damage in the event of a bearing seizure. As proper grinding
facilities were not available in the University workshop, the shaft
had to be ground by an industrial concern, and when returned, al-
though round, it was found to have a bent axis.

Owing to the difficulties and delays of having a shaft manu-
factured in this way, an attempt was made to machine a shaft from
mild steel, using laboratory workshop facilities. The use of a
mild steel shaft, was made possible by the pressure jacking of the
pad during starting, but greater care had to be taken during experi-
ments to avoid surface contact.

The mild steel shaft was first machined to a2 dimension a few
thousandths of an inch in excess of the finished size, The centre
portion of the shaft, which had to be knurled, fig (23) was turned
to a diameter of 1.9 ins., and the knurl applied. At this stage,
internal stresses in the bar could exist, and consequently the shaft
had to have cyclic heating in a small furnace. The shaft was then
turned between centres, until it was .00l ins., greater than the
finished size, thus producing a true axis. In fact, the distortion
due to stress relieving was hardly measurable, The final finishing
was by honing between centres, and the roundness attained measured
by a pneumatic ring gouge, was in the order of .0001"., A polish

was obtained by the light application of a piece of polishing paper,
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whilst the shaft was rotating in the rig. Finally the centre at
the lower end of the shaft was drilled and tapped to take a brass
earthing necedle for immersion in the mercury well,

As a check on the axis of rotation, a .001" capacitance dis-
placement probe was mounted in place of the pivot and showed a peak
to peak deviation of .00004" when the shaft was rotated slowly.

The polar moment of inertia of the shaft was calculated assum-
ing a standard density for the mild steel; to verify this value, its
weight was also calculated and compared by weighing, leading to an
agreement of better than .17, and giving a value of I = 1.703 x 10“3
slugs £t2,

9.4, The Rotor Drive.

A number of possible drive systems were comsidered for the pur-
pose, finally reducing to three probable arrangements.

A steam impulse turbine had the advantages of providing a power—
ful but compact unit, with very high jet velocities. It presented
however, problems of exhausting the steam, and maintaining a thermally
stable rig. An electric induction motor was considered, but it was
feared that it may have been difficult to balance the rotor at high
speeds. On the other hand, balancing a hysteresis motor would have
been much simpler, but here there was the danger of heat being
generated in the shaft.

An air turbine drive was finally selected, comsisting of five
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"Laval' nozzles directed onto the knurled surface of the shaft.
The knurled shaft form of drive, had previously proved very effect-
ive in reducing turbine noise, with little loss in driving power.

In order to manufacture a "Laval™ nozzle, it is necessary to
create a smooth convergent—~divergent bore, otherwise a shock wave
may exist near the throat, resulting in an energy loss within the
nozzle itself. Under normal machining conditions it is difficult
to manufacture small bores to this requirement, and consequently
the author decided to adopt the following technique.

A short length of quarter inch diameter smooth bore, hard
copper tube, was held between two rollers, and formed along ome of
its diameters to cause a reduction in flow area. The pipe was
then trimmed in such a way, that the divergence continued up to the
exit, and the exit shaped to follow the contour of the knurled shaft,
fig (26).

9.5. The Tiltin&mPads.

The pads were made by modifying existing full journal bearings.
These bearings came from the remains of rigs used by the U.K.A.E.A.
in conjunction with the chrome nlated shaft mentioned previously.
The exact nature of the material is not kpmown, but it is some form
of fairly hard copper alloy. As the mild steel shaft could not be
allowed to make moving contact with the pad, the rubbing properties

of the pad were unimportant.
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Two pads were cut from each bearing, and were machined in
such a way as to form a pair of flanges on their rear side to act
as stiffeners; this made possible a thinner and lighter pad, with-
out a great loss in rigidity. The pivot positions were formed by
120° conical recesses in which the pivot, having a 90° cone, could
be located. Pressure tappings consisted of .013" diameter holes in
the pad surface, leading to short lengths of hypodermic tubing
cemented into the back face, fig (27).

The required radius for the pad was achieved by lapping. The
lap used, was of the helical exnanding type, consisting of a tapered
mandrel passing through the centre of a cast iron lap, into which
was cut a helical slit, The mandrel and lap were first mounted in
a lathe, and the pad was slowly traversed by hand along the lap,
whilst the machine was in motion. Once the condition had been
reached, where all the pad surface was in contact with the lap, the
lap was removed from the lathe, and supported between a pair of
"dead" centres, to obtain a final finish by hand lapping. During
the lapping operations, the lap had to be constantly "dressed" to
avoid it "necking" at its centre, where most of the wear took place.
The lapning medium was diamond paste, of which two grades were used,
cne for roughing, and the other for the hand finishing. A particular
danger when lapping pads as opposed to full bearings, is the build

up of compound at the leading and trailing edges; if allowed to
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accumulate, these surfaces will be cut back below the ;amiﬁ&éf of
the pad.

As no roundness measuring equipment, suitable for checking
the pads, existed in the laboratory, the pads had to be compared
with a standard cylinder. Tor this purpose, some accurately manu~
factured rotors, used on another rig, were employed. These rotors
were inspected and sized, using a pneumatic ring gauge.

The method of checking, consisted of smearing the surface of
the cylinder with a thin layer of engineers blue, and rubbiﬁg the
pad against it. This technique was found to be most satisfactory,
because when blue appeared all over the pad surface, it was found
that after cleaping these surfaces, the pad and cylinder could be
easily wrung together, suggesting that the limitation on accuracy
was set by the pneumatic gauging, which was better than .0001 ins.

9.6, Pressure Jacking.

For starting purposes, jacking gas was applied to the pad
through the pressure tanping holes, this allowed starting to take
place without causing surface contact. A diagram of the layout of
this system is shown in fig (28). Once the journal had reached a
load bearing speed, the jacking gas was clamped off.

9.7. Measuring Techniques,

The pressure distribution was recorded on a mercury manometer,

connected to a ‘Dralim" channel selection valve. Since only six
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chamels could be selected with a single valve, a total of three
valves was used, and by interconnecting, nade available sixteen
possible tapping points. In order to put the minirum of constraint
on the pad, the pressure tappings were joined to the selectors by
small bore plastic tube, as used for electrical insulation.
Digplacement was measured by capacitance transducers of the
"Wayne Kerr' type, ref (20). This form of capacitance transducer,
has the advantage of producing a voltage signal, which is linear
with displacement. The capacitance probes themselves, were spec~
ially made for the experiments, since the standard manufactured
probe is bulky and heavy. The probes consisted of a central
electrode, around which a guard ring of minimum thickness was con—
structed, the fabrication was then shielded by "Tufnol", to insu~
late it from the pad. A photograph of the probe is shown in fig
(25). Very small diameter co-axial cable was soldered to the
electrode and guard ring, so that little force was applied to the
pad. Unfortunately, the small diameter cable had a very high
capacitance, and only a short length could be used, before a joint
with a larger cable had to be made. Experience had shown that if
the probe and cable capacitance exceeded 130 p.f., a2 nonlipear
signal was produced by the neter. These capacitance probes were
fitted at the four cormers of the pad, but in a part of the pad

outside the bearing surface. The displacement calibration was
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made against a barrel micrometer, which was only rotated in ome
direction to obviate "back-lash'". The calibrations are given

below, and a typical calibration curve is plotted in fig (29).

Maxinum nominal displacement = .002",

mumber of unit divisions on meter = 10.

Probe Meter divisions/inch displacement
1 5.45 x 103
2 5.13 x 103
3 5.34 x 103
4 5.56 x 103

Speed was recorded by a digital counter triggered from a
"Southern Instruments' tachometer. The original signal being
taken from a magnetic pick-up near the two holes on the shaft sur-
face. This made possible a very accurate estimation of the speed,
and during run—down tests, could be set to count the period over a
given number of cycles, and thus offer a very rapid and accurate

method of speed recording, as well as measuring the time interval.
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The capacitance probes when calibrated with the barrel micro-
meter, were checked at different positions on the micrometer thread,
to average out any local thread imperfections. It was found, how-
ever, that the readings taken at different positions, were repeat-—
able. The estimated accuracy as a result, could be put at about 17
of the full scale deflectiom. Since the probes gave a nominal full
scale deflection of ,002", it follows that the most pessimistic error
in obtaining D, and D, (appendix 4), occurs when ¢ = ,625 X 10w3 ins.,
and assumes that all the error is in the region of the scale used for
the experiments; this gives an error in the order of 37Z.

From appendix 43

D,B,~D.B

-1 (27477172
(b-_:tan W
DlB1 DZBB

It can be seen that if the quantities D284 and Dle or DlBl

and D2B3 were of the same order, their difference could be composed
mainly of the error. In these tests however, the quantities D234

and DZBB were positive and DlB7 and DlBl negative; thus maintain-

ing the order of error to less than 37.

Again from appendix (4):

0

A= 7§3sin¢+84cos¢)

It was found that the experimental values of ¢ were always
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negative, which leads to the first term in the denominator being
negative, and the second positive. Hence the error in A could be
large if both terms were of the same order, and in any case, the 37
error would be increased. Fortunately, for this series of tests,
one term was always twice the magnitude of the other, limiting the
error in A to less than 67.
A possible source of error in using displacement probes, is
the zero datum setting. Because of the wringing together of the
pad and the standard cylinder, no problems were encountered, since
the variation in datum reading was very much better than one meter
division for all positions on the cylinder. (’ﬁlyﬁ%w»téaM, 1 % F.s. b)k
These displacement measuring techniques, appear to be consistent

with obtaining a high degree of experimental accuracy.
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11.0. Actual Pressure Distributions.

In keeping with the policy of studying the film pressure dis-
tribution, to test the validity of the two solutions obtained to
Reynold's equation, a study of the actual pressure profiles in the
bearing film yzgg/made. The aim was to obtain pressure plots at
conditions as widely separated as the rig pewrmitted, in order to

test the theory over the greatest possible range.

11.1. Experimental Procedure,

The pressures were recorded at small tapping holes in the pad
surface, which have already been described, and were displayed on
the mercury manometer. Layouts of the tapping holes for the two
conditions tested, are given in fig (30).

For starting, jacking gas was supplied through the pressure
tapping holes, and when the rig had reached its load bearing speed,
the jacking gas supply was sealed off, and the rig operated hydro-
dynamically. It was found with the smaller clearance pad, that
the trailing edge jacking was too great owing to the concentration
of pressure tapping holes in this region; it became apparent when
the pad began to pitch during the run-up, and was easily cured by
pinching the trailing edge tapping tubes with a small pipe clamp.

During the recording of the distribution, an attempt was made
to hold the rig at a constant speed, but at the higher speed, due

to the lack of sensitivity in the nozzle regulator, whilst passing
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a large volume of air, the speed tended to follow the compressor
pressure cycle. This necessitated the recording of the pressure
at the instant the cycle passed through the test speed.

The response of the manometer was relatively slow, owing to
the small bore of the plastic tube, and the size of the tapping
holes. To expedite the recording of the pressures, instead of
tappings being selected in geometric order, they were selected by
their pressure magnitude, the pressure change between each selected
point was thus kept to a minimum, resulting in a shorter settling
time for the manometer.

The rig was first operated using a pad with a machined=-in
radial clearance of .975 x 10_3 ins, giving a compressibility num-
ber of 1.232, In order to attain a high compressibility number,
it was necessary to both reduce the machined-in clearance, and
incregse the operating speed to a point near the controllable limit
of the rig; this produced a compressibility number of 5.3.

11.2. Experimental Results.

For the above operating conditions, three different loads were
applied to the pivot, and the resulting dimensiocnless pressures
were recorded at the tapping points. These pressures are given

in tables (1) and (2) and plotted in figures (31) to (33).
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TABLE (1)

v - ¢ = 120° ¢ = .975 x 1072 ins. R =1 in. I
L =3 ins X, = .584 N = 11,100 r.p.m. |
Ae = 1.232 w PRESSURE DISTRIBUTION (P) |
LOADS (LBS) |
TAPPING X v 12,12 | 15.12 | 18.12
1 .750 1.25 104 131 154
2 .960 .75 171 213 248
3 .208 .75 113 .139 161
4 .960 .20 .193 240 277
5 .834 .20 .314 .384 460
6 .667 .20 .360 . 456 .559
7 .375 .20 .213 .260 .308
8 917 .20 .208 250 .288
9 .750 .20 .362 .453 544
10 .584 .20 .330 420 .507
11 .166 .20 .083 .100 .115
12 .709 .75 .288 .357 J421
13 917 1.25 .069 071 074
14 .250 1.25 1.191 .054 .063
FILM THICKNESS LEADING 1.072 | 1.124 | 1,191
NS x 1073 EDGE
TRAILING 424 475 .532
EDGE ‘
A .567 .535 .521
6 ~25° ~31.8° | ~41.67
I 2.305 | 1.970 | 1.65
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TABLE (2),

c = ,625 x 10»3 ins.

- ¢ = 120 R =1 in,
L = 3 ins. X, = .584 N = 18,900 r.p.m,
Ac = 5.3 ) PRESSURE DISTRIBUTION (P)

LOADS (LBS)

TAPPING X Y 15.12 | 21.12 | 27.12
1 . 750 1.25 .137 .192 . 240

2 ,960 .75 .103 .151 ,199

3 ,250 .75 144 .202 .247

4 .960 .20 .151 .216 ,260

5 .835 .20 .363 514 .637

6 666 .20 407 .580 747

7 .375 .20 \254 .356 459

8 .920 .20 \254 .350 V445

9 .709 .20 .418 .582 .755

10 .542 .20 .356 .513 .679
11 .167 .20 .116 ,151 .185
12 .750 .75 .332 446 .583
13 .960 1.25 .013 .021 .021
14 .250 1.25 055 .079 .100
PN THICKIESS | 1.06 .59 ,931
s > 107 TR@SEéNG .610 .518 . 458
A .635 .565 .523
6 -99,5 | -81 ~70.6

A 2.96 3.10 3.40
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The theoretical pressure distributions plotted in figures (31)
to (33) were computed from the data given at the foot of each table;
these values being calculated from the expressions in appendix (4).

11.3. Discussion of Results.

The curves shown in fig (31) for Ac = 1.232 give a good correla-
tion between experiment and theory. It should be noted that the
analytical solution tends to over-estimate the pressure distribution,
but gives a good positioninc of the pressure peak, whereas the numer—
ical solution presents a more correct order of magnitude to the pro—
filey, but tends to displace it towards the trailing edge.

Fig (32) represents the axial pressure distribution over one
half of the pad, and is plotted on the generator X = .7. The ana-
lytical curves are plotted directly from the pressure distribution
obtained by means of the analytical solution, but the "numerical
curves' are plotted by obtaining the numerical pressure profile for
an infinite pad, and using equation (32) to plot the axial profile,
which in fact is making use of the analytical solution.

It can be seen that the "numerical’ distributions agree more
closely with the experimental points, but this is only so, because
at the position where the axial distribution was taken, there is a
closer experimental agreement with the "numerical® curves than with
the amalytical. What is important, is the form of the axial dis~

tribution. If a theoretical curve can be constructed to pass

68.



through all the experimental points, then equation (32) is a valid
approximation, and only requires an accurate value for P«

Referring back to fig (32), it seems reasonable having regard
for the closeness of the numerical curves to the experimental points,
that by selecting a suitable value for P_, equation (32) could be
shown to be almost exact, the greatest error being at the extremities
of the pad, where an inflection appears to occur.

Reconsidering the question of design curves, (Section (6.5)),
it would appear better, to construct design curves in this region of
lower compressibility number, using the mumerical method.

The curves of circumferential pressure distribution for Ac = 5.3,
(fig (33)), show some deviation between experiment and theory. The
first point to be comsidered is that the two theoretical distribu—
tions agree well, and therefore the error does not lie in the solu~
tion of Reynold's equation. This leaves fwo main possibilitiesy
one, that the error is to be found in the experimental readings, and
the other, that Reynold's equation does not truly represent the con~-
ditions existing in the film.

To check ocut the possibility of experimental errors, the author
took further results at both high and low compressibility numbers,
and remeasured the pad and shaft dimensions, yielding results con~
sistent with those included in this thesis.

The question of Reynold's equation not truly representing the
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conditions in the film, could account for a substantial proportion
cof the deviation.

The experimental distribution being displaced forward of that
predicted by theory, suggests that greater friction exists in the
film, than was accounted for in the theory. This would mean that
the intake pressure gradient, created by the gas being "dragged"
into the film beneath the pad, would be greater, and as a result,
the pressure peak would occur neaver the leading edge. On the
other hand the viscous flow of gas between the peak pressure position,
and the trailing edge, would result in the lower pressure gradient.

The actual viscous loss being greater than the predicted loss,
will be verified in the section on bearing friction.

The assumption made in obtaining Peynold's equation for the
fluid film under the pad, was that the boundaries were smooth. In
practice however, all machined surfaces have a finite roughness.

On the author's rig, the problem of surface finish was further
aggravated by the use of the mild steel rotor, had facilities been
available for the manufacture of 2 hard steel or chrome rotor, a
better finish could have been attained.

From the film shape parameters measured during the experiments,
the load capacities and pivot positicns were computed from the
design curves. These values are compared with the actual values

in the following table.
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TABLE (3)

COM~ |ACTUAL | COM- ACTUAL |ERPOR
- PUTED PUTED IN

o A W W W XP XP X,

-

~99.,5° .635 <4947 | 14.85 15.12 «67129 584 | 97
+565 .6955 | 21.10 | 21.12 .67385 584 | 97

~70.6° | .523 | .8472 26,51 | 27,12 +67345 584 | 97

Although the experimental and theoretical profiles are dis-
placed relative to each other, it can be seen that the actual and
computed loads correspond well, It is shown however, that the
computed pivot position is nearer the trailing edge. If the pos~
ition of operation on the design curve is not near the point of
load fall~off, then as the pivot is moved nearer the trailing edge,
the load capacity is increased. It is evident that this ig the
condition which could result when a single pad arrangement is being
designed for high compressibility number operation. The computed
pivot position would be "aft" of the actual position to support the
load, this would make possible & higher capacity at the clearance,

and would suggest that the theory tended to under-estimate the applied

load.
Care must therefore be taken, when using design curves at a
high compressibility number, to avoid working too near the lcad fall-

off condition, and in the case examined, not within 107 of it.
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In general, it appears that good agreement is obtained between
experiment and theory at lower compressibility numbers, but at high
values of Ac, although there is good agreement on load capacity,

some error does occur in calculating the pivot position.
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12,0, Bearing Losses.

The estimation of bearing losses in any system, is an impor-
tant factor in system design., Although it may be impossible to
calculate exactly these losses, it is essential to have some idea
of their relative magnitude.

12.1. Viscous Loss,

From a theoretical point of view, the viscous loss for a
single pad may be treated in one of three ways.

A simple approach, like that of Petroff’s for a plain journal
bearing, may be used, taking a pad with a concentric clearance equal
to the actual mean clearance. With this method, it is first nec~-
essary to calculate the mean clearance, and from there it is only
a small step to consider the actual form of the film, and to assume
a linear velocity profile between the two surfaces, which leads to
a solution more in keeping with the physical conditions. The
third way involves considering the velocity profile as derived
from the Navier-Stokes' equations, equation (4a). Although this
is a more desirable form of velocity distribution it is necessary
to use numerical integration to determine the torque.

In this study, a linear velocity distribution between the two
surfaces has been assumed.

The clearance at any position in the film is:-

h = c[1-Asiné]
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The viscous shear stress then becomes:

Ju - HwR
3z cLi~Asin6

From which the torque on the shaft will be:-

S_ay1¥
27uR3NL fw de _ 2muRSNL | 2 can-l (tan;-A)
Aal = 1 ———
c s [1-Asing] c (1-42)? (1-42)*
¢
and the corresponding horsepower loss:~
4n2N12uR3L . (tan9~A) v
2 -1 2
I{P:: SSOC tan T qo--owooaqq(48)

’(1—A2§g (1~-A2)2

Where 'Nl' is the shaft speed in cycles per second.

12.2. Experimental Investigation of Viscous Losses.

The rig design is particularly suited to determining the loss
by viscous retardation of the shaft.

It was first ne:egsary to carry out a run—-down test, with the
pad operating hydrodynamically against the shaft, and to measure
the retardation at various speeds, The run~down had then to be
repeated without the viscous drag of the pad, but with the same
conditions as before prevailing in the slave bearings, the drag
from the pad being the difference between these two cases.

When the loaded pad is operating against the working section,

some degree of deflection is to be expected at the slave bearings.
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If the pad is completely removed from the working section, the
slave bearings will operate in an unloaded condition, producing a
change in their frictional characteristics. For this reason it
was decided to leave the loaded pad in position, and to apply
jacking gas via the pressure tapping holes, to 1lift it as far clear
of the shaft as possible.

This situation was complicated by more jacking gas escaping
from one end of the pad than the other, producing a turning moment
on the shaft, The problem was overcome by repositioning the pivot
so that the gas escaped equally in either direction. The condition
being achieved when the shaft remained in a state of static equilibrium,

It was not possible to use the displacement probes mounted in
the pad for clearance measurements under jacked conditions, owing
to the limitation on their range, (.002"). For this reason, the
pivot displacement was measured by an externally mounted probe.

The pivot clearance under jacked conditionms was .0032", and to give
some idea of the frictional loss at such a clearance, calculations
were made on the assumption of a .0025 in., concentric clearance,
which yielded a horsepower loss of .00115 at 236 c/s. Clearly if
this value is compared with the actual losses measured and calculated
in tables (4) and (5), the jacked pad can be considered as contribu-

ting nothing to the retardation.
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Retardation was méasured by means of a digital counter,
triggered from the tachometer circuit,

To obtain accurate speed values at short and even intervals
of time, the counter was set to measure the periodic time over
10 cycles every 6.05 seconds, enabling a five digit accuracy to
be recorded, and to be inverted on a desk calculator to obtain
speed and retardation.

It was found that a plot of retardation against speed, for
both the pad retarding, and the pad jacked, produced an almost
linear relatiomship. For this reason, a linear interpolation
was employed to find the retardation at specific speeds under both
conditions, enabling the difference due to the frictional drag
of the pad, to be determined accurately.

The run-down test with the pad operating hydrodynamically was
repeated, and held at certain speeds while clearance measurements
were taken, to ascertain the film shape parameters, from which the
losses were calculated using equation (48).

The final results are tabulated in tables (4) and (5) and

plotted in figure (34).
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TABLE (4)

Results from run-down tests
Speed Retardation Power Loss
/s . c/s? HP
225 13,40 .367
200 12.55 . 306
175 11.50 +245
150 10.59 .193
125 9.50 <144
100 8.35 .102
77.5 7.36 .069

Moment of imertia of shaft = 1.703 x 107> slugs ft?2

TABLE (5)
Calculated values of power loss
Speed ‘ ¢ A Power Loss
c/s ' HP
236 -36.5 <493 234
196 -32.7 .519 171
172 -29.2 543 .139
151 , =27.5 +560 L1117
132 ~23.8 592 091
106 ~20.1 .639 064
92.5 -18.2 «655 052
61.5 ~12.4 779 032

The above values were calculated from the actual leading and
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trailing edge clearances during hydrodynamic operation.

12.3. Discussion of Results.

Figure (34) shows the horsepower loss due to viscous shear
between the shaft and the pad.

The upper curve is that plotted from the run~down tests, and
the lower ome is calculated from the film shape and running con-
ditions. It can be seen, that the calculated values under estimate
the losses by almost 507, and clearly equation (48) can only be used
as an approximate guide to design. Nevertheless, it does give
some indication of the orders of magnitude to be expected, and some
allowance can be made for them in the power supplied.

In reference (17), run-down tests were performed on a2 4 inch
diameter rotor, freely supported in two sets of tilting pads, and
frictional losses, calculated on the basis of a nonlinear velocity
distribution, were compared with the experimental results. The
calculations yielded losses which were a quarter of those found
experimentally, the authors attributing the difference to windage.

On the fom of rig they used, it was impossible to measure the actual
bearing friction experimentally, and to say that the difference is
due to windage, can only be speculation. It is likely in fact, that
their calculations also under estimated the losses, and the differ-
ence was only in part due to windage.

It would eppear that if the bearing power consumption given by
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equation (48) is doubled, some resemblance to the friction may be
attained.

12.4. Prossure Loss.

In integrating the pressure around the pad, a single force was
found, which acted along a line through the centre of curvature of
the pad, and gave the centre of pressure or pivot position. A gim~
ilar resultant force will act on the shaft along a line through the
shaft centre,

If the pad is tilted about its pivot position, the two centres

will not coinecide, and the conditicn shown in fig (36) will arise.
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The resultant forces on the pad and shaft respectively, are given

e

by R1 and ﬁz. ﬁl can be resolved into two components, one acting
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along the line of §2’ and the other normal to §2. The normal
component, (E), must in someway be transmitted through the f£ilm as
part of the loss, and in effect represents the summation of the
pressure forces acting on the projected area 'a'., The value of
this component can be found from the product of the load on the pad,
and the angle of tilt about the pivot,

The values of horsepower loss due to B acting along the film,
were calculated from the film shape parameters at various speeds,

and at constant load. They are tabulated in table (6).

TABLE (6)
Loss due to pressure calculated from film conditions.
Speed Angle of tilt about pivot Power loss
c/s radians Hp
-t ' -
236 3.48 x 107" 1.165 x 1072
196 3.43 " . .953 "
172 3.35 "t «817 "
151 3.24 " 693 "
132 3.22 " .603 i
106 3.12 " . 469 "
92,5 3.02 " .396 "
61.5 2.88 " .251 "

These losses are shown in fig (35) and may be compared with
those obtained from the run—down tests in fig (34). The losses

due to run~down, are of the order of 500 times as great as those
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from pressure. It therefore secems reasonable in the practical
bearing, to neglect the effects of the tangential pressure~force.

12.5. Radial Position of the Pivot.,

If the frictional forces acting on eclemental arecas around the
pad surface are resolved into a total moment about the pivot, then

the pad will tend to pitch.

Fig (37a)

Figure (37a) shows the effect of the radial pivot position
being a long way outside the pad surface, and figure (37b), the

effect of it being near or inside the surface.

—

Fig (37b)
In figure (37a) the resultant moment tends to make the pad pitch

leading edge down, and figure (37b), leading edge up.
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Clearly, at a given rumming speed and film shape, there exists
a radial pivot position about which the turning moment due to
friction is zero. It is this position which has been assumed in
calculating the design curves, as frictional moments were neglected
in their derivation. In practice however, the frictional moments
are small compared with the moments duc to pivot loading, providing
the pivot is not at an unreasonable distance outside the pad surface.

In reference (21), it is claimed that one of the assumptions
made, is that the pivot lies on the pad surface. This in fact
cannot be so, as friction was neglected in the authors' calculations.
A better assumption would be that the pivot was positioned radially,
such that frictional turning moments about it were zero.

Although under normal conditions, the frictional moments acting
on the pad are small, it is better to position the pivot as near the
surface as possible, so that when a lightly loaded pad tends to
pitch, the effect of friction is to pull the leading edge clear of

the shaft, and thus avoid 'lock~up'.*

* "Lock-up' is the condition arising when the leading edge of the
pad is sucked on to the shaft resulting in seizure.
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13.0. Pivot Stiffpess,

Pivot stiffness may be defined as the rate of change of film
clearance under the pivot with change in pivot load.

This is an important factor in tilting~pad bearing design,
since it is in fact, the overall relative stiffness between the shaft
and housing, along the line of the pivot. The stiffnesses of the
individual pivots may be resolved to determine the radial stiffness
of the shaft relative to the bearing housing, in any given direction.

13.1. Obtaining Values of Stiffness from Design Curves.

Stiffness, at a given compressibility number, is best obtained
by cross—plotting from curves similar to those shown in figure (38).
The alternative method would be to store the curves shown in figures
(8) to (12) in a computer. This could only be done by obtaining
intermediate points to those computed, by interpolation, and then for
a given pivot position, selecting the nearest corresponding values
of ﬁ, A, and ¢, from which the clearance and stiffness could be cal-
culated. Although the amount of storage space required, would not
be ocutside the range of a large computer, it would mean that sets of
curves of stiffness for individual pivot positions, and different
compressibility numbers should be presented. The author feels that
for the purposes of simplicity, it is better to reduce the number of
design curves to a minimum, and to usc the basic design curves for

cross—plotting the load~clearance, and stiffness curves.
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Figure (38) may be comstructed in two ways. It can be plotted
by the direct evaluation of equations (36) to (40) as outlined for
the design curves, or it can be cross-plotted from figures (8) to
(12). The former method was favoured in this thesis, but in practice
it may be more convenient teo cross—plot from the design curves.

To obtain the load-clearance curves, and hence the stiffness,
lines of comstant pivot position are drawn on figure (38), (in this
case X, = .5 and .584), and corresponding values of W, ¢, and A, are
taken from the curves, From the dimensionless pivot positiong

6,6
Xp = 555 cosseeneeaas(49)
61 can be determined, and from equation (12), the dimensional
clearance.

The various values of W may be obtained from W by using equation

(40) and figure (15). It should be moted, that A plotted in figure

(15) can be obtained from Ac by means of equation (47).

13.2. Experimental Investigation.

The investigation required the monitoring of pivot movement
during the variation in applied load.

Since the test shaft was mounted vertically in two slave bear—
ings, the danger arose of including the deflection of these bearing
films in the absolute deflection of the pivot. Although the

capacitance probes fitted at each slave bearing to detect instabilities,
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could have been used to measure these deflections, it was a simpler
task to position a displacement probe on the reverse side of the
shaft to the pivot. The method also took account of any bending
of the shaft which may occur.

The pivot deflection was measured by a probe recording the de-
flection of the loading arm at a position directly along the pivot
line. As the actual pivot consisted of a screwed shank surmounted
by a conically machined cap of "Araldite", to give electrical in-
sulation for the touch meter, it was necessary to determine the
contribution made by the elasticity of this structure to the deflect—
ion of the loading arm., This part of the investigation consisted
of allowing the pad to remain at rest in contact with the shaft,
whilst applying loads to the loading arm, and measuring the arm
movement with the probe positioned along the pivot line.

It was found that the elastic deflection of the pivot was of
the same order as that of the film, and that under each load, the
"Araldite" exhibited a time lag in settling to its fully deflected
position. The time lag was alse observed during the actual read~
ings, and care was taken in allowing it to settle fully. The read-
ings were found to be repeatable within the limits of the instrumenta-
tion.

Before the tests could be started, a datum for film thickness

measurements had to be found. This datum was one of zero film
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clearance at the pivot, which is obtained when the loaded pad is
in contact with the shaft. In practice however, this condition
is pot so easily achieved, and it was found that the contact
friction allowed the pad to remain twisted about the pivot axis.
To overcome the problem, the pad was turned slightly by hand, and
the point at which the displacement meter needle reached the end
of its swing, and began to return, was taken as the point of zero
pivot film thickness.

The actual load~deflection curves were cbtained by running the
shaft and pad combination under hydrodynamic conditions, whilst
loading the pad, and taking readings of the pivot deflection. The
deflection results so obtained, permitted the calculation of the
real pivot movement,

The limitation in load capacity was reached when slight touch-
ing was detected; it is likely that this limit could have been
exceeded by improving the surface finish.

The results obtained are given in the following table and

plotted in figure (39).
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TABLE (7)

b= ¢ = 120° ¢ = .975 x 107" ins
N = 13,200 RPM he = 1.5
R=1 1in L = 3 ins
PIVOT LOAD ’ PIVOT FILM THICKNESS (INS x 107 °)
W (Lbs) ¥p = .584 ¥y = 45
6.12 1.04 .73
9,12 .84 .59
12.12 .70 48
15.12 .60 W45
18.12 .52 .39
21.12 .46 .32
24,12 42 .29
27.12 .37 .29

13.3. Discussion of Results.

The experimental and theoretical results shown in figure (39)
exhibit some discrepancy. It should be bornme in mind at this
stage, that the absolute values of deflection obtained from the
experiments, are somewhat suspect, due to the difficulty in obtain-
ing the zero clearance value, although there is little doubt in the
accuracy of measuring deflectiop changes. Another quantity known

accurately, is the applied load, and it therefore follows, that



comparisons between theory and experiment, should be made in terms
of these two parameters.

Under the heavier load conditions and where the pivot film
clearances becane small, the gradients of the experimental and
theoretical curves agree well, the gradient in fact being the stiff~-
ness of the individual pad assembly, neglecting material elasticity.

For light loads, the experimental curves tend to indicate a
more rapid increase in clearance, than do the theoretical curves.
Excluding experimental errors, which it is felt could only partially
contribute to this difference, the variation may stem from the
following possibility,

Reynold’s equation is based on laminar flow between the two
bounding surfaces. When the clearance between the surfaces in-
creases, so does the value of Reynold's number based on the film
thickness. Reynold's number of course is a measure of the trans-
ition between laminar and turbulent flow. In a full jourmal
bearing, the film thickness is limited by the machined in clear—
ance of the bearing, but for a pad, it is only limited by pitch
stability, and may become large in comparison. It was found by
Abramowitz ref (22), that for a water lubricated tilting-pad thrust
bearing, transition could commence at a Reynold's number as low as
600. If the same Reynold's number applied for a tilting-pad air-

bearing, a clearance of .9 x 10*3 ins would be sufficient to cause
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transition at the test speed of 13,200 r.p.m. Since the pivot
thickness at the lighter loads shown in figure (39), are approach~
ing this value, it is likely that the leading edge thickness has
exceeded it, and greater 1lift is being generated than is predicted
by the lamipar theory.

The theory would also tend to predict a limit to the clearance
under lightly loaded conditions, which would be brought about by
the reduced convergence of the wedge, and could be likened unto a
full journal bearing with the journal rumning at the centre of the
bearing. This is apparent from fig (39), since the theoretical
curves, if continued, would intersect the clearance axis. If the
experimental conditions do create turbulence, the experimental
curves may cross the clearance axis at some higher value.

Another factor emerging from the curves, is the increase in
stiffness at high loads, occurring when the pivot position is moved
nearer to the centre of the pad. In this particular case, for a
load of 20 Lbs, the theoretical curves give stiffnesses of 5.5 x 104
Lbs/in for X, = .584 and 11 x 104 Lbs/in for X, = .5.

Stiffness is important in dynamically loaded systems, and it
would appear that for heavily loaded bearings, a central pivot
position would be preferred. It must be pointed out however, that
a centrally pivoted pad is more prome to pitch instability when

lightly loaded, (a condition discussed in the next chapter), and
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care must be taken to see that a dynamic load does not exceed this
lower limit,

Generally, for design purposes, it is more convenient to work
in terms of minimum film thickness than pivot thickness, as the
former is governed by accuracy of machining.

In conclusion, it can be said that the design curves predict
an accurate pivot stiffness providing the bearing is operating at
one of the smaller clearances, i.e. something less than half the
machined in clearance. It is also shown that a centrally pivoted
bearing is stiffer, at these clearances, although the clearance
may be smaller at a given load, and care must be taken to see that

the lower load limit is not exceeded for rcasoms of stability.
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14, Pitch Stability.

The stability of individual pads in pitch, is an important
factor in bearing design. If the pads begin to pitch, there is
a danger that the leading edge may come into contact with the
shaft, and ‘lock-up’ result.

Under normal operating conditions, the gas film is either
convergent, or convergent-divergent as shown in fig (40a). If
however, the fluid film is allowed to become divergent-convergent,
as shown in fig (40b), the narrow clearances at the leading and
trailing edges will cause a reduction in pressure at the leading
edge, and possibly an increase in pressure at the trailing edge,
with the result that the pad will tend to pitch leading edge down.

The boundary between these two conditions, is when the film

]

is parallel, in which case H o =1.

1f H always occurs at § = +-§, and if under ncrmal operating
conditions the film is convergent-divergent, which is the basis of
the design curves, then when Hm becomes greater than one, the
divergent—convergent film results. Although in simple theory,
provided that Hm < 1 the pad would be stable; in practice, any
slight disturbing force could cause H  to exceed one, and then
the instability could occur. It is therefore better to design

with Hm as far below unity as possible.

It should be noted that when Hm = 1 the load capacity is zero,
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from which it follows that the pad must remain loaded for stable
operation, A simple way of achieving this condition, is to pre~
load the bearing, either by spring loading one of the pivots, or
by fixing the pivot circle such that when the maximum journal load
is applied, all the pads remain loaded.

It was considered unwise to attempt to study this aspect of
tilting-pad performance on the rig described in this thesis, since
the effects the pressure tapping tubes and cavities have on the
damping of the pad is unpredictable. In fact a full investigation

of pad stability, is a project in itself.
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15.0. Use of Design Curves.

By virtue of their geometry, tilting-pad bearings are in
general more complex to design than the plain journal bearing.
The geometry of a plain journal bearing is simply defined by the
journal, and bearing diameters, and by the eccentricity ratio.

A multi-pad bearing on the other hand, requires the relative
geometry betweer the shaft and each pad to be given. Although
the minimum clearance under each pad may be likened to the eccen~
tricity of the plain journal, each pad also makes an angle with
the shaft.

In any study of pad bearings, the properties of a single
pad must be examined, as in this thesis, and the complete bearing
studied in temms of the equilibrium conditions existing between
individual pads.

This section sets out to give some of the factors governing
the design of the multipad system, and includes a set of five
worked examples illustrating the application of the single pad
design curves to the complete bearing. To avoid unnecessary
repetition, it has been assumed that the reader will study the
examples in numerical order. Only pads of 120° span are con~
sidered, as design curves for other pad configurations are not

included in this thesis.
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15.1. Load Capacity when Ac - =,

Unlike a liquid bearing, a particular gas-bearing can only
support a maximum finite lcad, even though the speed of rotation,
or Ac, may tend to infinity. Figure (45) shows a plot of W
against X, for Ac - », with varying H . Thig graph may be used
to make a preliminary study of the bearing should the load capacity
of a particular configuration be in doubt. The graph yields the
maximum load that it is possible to carry with a single pad. It
is used in the same way as the other Q-XP design curves, but has
the advantage of displaying Hm on the one graph., It should be
I, > /R

noted that when Ac - ®,

15.2. Selection of @m'

The effect of H on pitch stability has already been dis-
cussed in the previous chapter. The other factors affecting Hm,
are load capacity and machining accuracy.

It is evident from the design curves, that if the other
parameters are held constant as Hm decreases, the dimensionless
load W becomes greater. It is therefore desirable, in order to
support a substantial load, to maintain Hm at a minimum. But
the minimun value of Hm is slso dictated by the accuracy of manu-
facture. If the bearing is to function hydrodynamically, the two
surfaces must remain out of contact. This consideration is

illustrated in example (1).
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15,3. Optimum Conditions.,

In deciding the optimum design conditions, the operating
conditions must be conmsidered. For example; if the bearing is
under some form of dynamic loading, high pivot stiffness may be
desirable, in which case, the pad would be pivoted near its centre,
(section 13). The stiffness of a particular geometry can always
be determined, by plotting out the load-displacement curves, using
the method in example (5).

On the other hand, it may be necessary to obtain the greatest
minimum clearance for a given load, in which case, the bearing
would be designed with the pads operating near to the peaks on the
ﬁ"XP curves, which are plotted for constant Hm. It should be
pointed out at this stage, that a small shift from the peak con-
ditions could cause a rapid fall-off in W, it is therefore better
to choose a design with the pivot a little nearer the pad centre,
so that some latitude can be given to the bearing manufacture.

15.4, Distortion.,

It must be remembered that the design curves are presented
for particular bearing geometries, and that any pad distortion due

to either loading, or thermal conditions, must be accounted for.
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1 E les,
Example 1.

A shaft is supported on two bearings, each bearing consisting
of two 120° pads, with pivots positioned at 60° either side of the
vertical centre-line, and at .55 of the distance from the pad lead-
ing edge. The diameter of the shaft is 6 ins, and the length of
each pad is 10 ins.

The nominal machined-in radial clearance, between the pads and
the shaft, is 1.5 x 1073 ins, and the accuracy of machining for both
the shaft and the pad, is * .2 x 1072 ins.

What is the load capacity of the assembly when rotating at
3,000 r.p.m.]

The total variation in accuracy, which could reduce the film

thicknessy, is .4 x 10 3 ins, or as a proportion of the machined-in
clearance .4/1.5 = ,267,
This means that if the value of H was .267, the two surfaces

may touch. In order to avoid touching, let the design be Hﬁ = .4

Considering a single pad:

Ae = 6uwR2
p,c?
3.728 27x3,000 3 42 12 2 1
SO BT ) 2 ) < =)~ )
Ac = 1,33
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From fig (10) i.e. the design curves for H = .4, when
X, = .55 and Ac = 1.33, then W = .66 and ¢ = 9°,

But the pivot load W, from equation (40) is:

] = 21 W
18] paR IYW
Equations (46) and (47) give:
1 2
c([1+h(cosw~cos¢)])
o (Y-9)

A = A

where ¥-¢ = 120°, or y = 129°
and A=1-1H,
m

therefore,
- ! :
A 1'33([1+.6(cq§}29°~cos9°)3)
2,09
A= 4,55

Now from figure (15), with L/R = 10/3 = 3.33, and A = 4,55,
Hon
Iy = 2.62, but:
W= p RELW = 14.7x32x2,62x.66
= 229 Lbs
This is the load applied along the axis of each pivot.,
The total load supported by the four pads is:

4 x 229 cos 60°

Totalload = 458 Lbs
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Example (2).

A rotor is supported in the same manmer as in example (1),
the dimensions of the pad and shaft, the accuracy of machining,
and the speed of rotation, being the same. The bearing must how-
ever support a load, inclusive of shaft weight, of 550 lbs. What
must the machined~in clearance be?

The load carried by each pad is:

550
4 cos 600

= 275 1bs

Since the load per pad, is greater than in the previous example,
then either Ac must increase, or Hm decrease. Because of the
machining accuracy, the latter is not possible, and since Ac is
inversely proportional to ¢, then c must become less than 1.5 x 10~3
ins. It must be remembered that Hm is a proportion of ¢, and to
maintain the actual minimum clearance, when c¢ is reduced, H  must
be increased.

Let us therefore assume that Hm becomes .5.

For this type of problem, it is necessary to plot a small sec~
tion of graph in the region of interest, and for this particular
problem; a graph of W against Ac.

It is convenient to calculate the values in a tabular form for
the graph. These values are calculated in exactly the same way as

example (1).
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Taking values of Ac = 2, 3, 5 and 6:~

REMARKS fe 2 3 5 6
From fig (11), W .56 .63 .692 .708
meoowmoom é 9° 12° 16° 18°
P = 120° " 129° | 132° | 136° 138°
From eq's 46 & 47| A 5.36 | 8.20 | 14.0 | 16.99
" fig 15 I, 2.72 | 2.90 | 3.08 3.15
" eq'n 40 W(lbs) | 202 242 282 295

These values are plotted in fig (41). From this graph it can be

seen that for W = 275 Lbs, Ac = 4.5,

2
but Ao = M

2
[
pa

3.728 27%3., 000 342 1242 1
or 43 =6 | 107 ) wgo )< g5 < (=)~ Crm T,

from which ¢ = ,81 x 107> ing,

New Hm = ,5 and thus hm = ,405 x 10~3 ins., This minimum
clearance only just allows for the machining accuracy, and in
practice, it would be better to increase this minimum clearance, by
trying a greater value of Hm’ or by changing some of the parameters,

such as increasirg the speed, or moving the pivot to the .6 position.
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Example (3).

A triple-pad bearing, supports a shaft load of 800 Lbs, and
the top shoe has a pre~load of 400 Lbs, If the diameter is 8 ins,
the length of the pads 12 ins., the machined—in radial clearance
2 x 10~3 ins., and the operating speed 5,000 r.p.m., what is the
minimum clearance under each pad, assuming that the pivot position
is .6 of the way from the leading edge on all pads, and the pivot

for the top pad lies on the vertical centre~line?

6LUWRZ
Ac = SHWR

2
P,C

3,728 275,000 42 12 1
F 6 3 i Bt % n_..___..a&_.__.-....) X (m) X ( — ) X ( )
( 107 N 60 12 5 x10-3 14.7x144

= 2.17

For this example, it is necessary to determine Hm or A,
(A = I—Hm), for various loads applied to a particular pad. It
should be noted that all the pads are operating under similar con-
ditions, and it is therefore possible to construct a single graph
of W against Hm, and to apply it to any of the pads in the system.

Again the following values are calculated in a tabular form.
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REMARKS H o2 «3 ob |5 6

m
{with X, = .6} W 2,16 | 1,43 | 1.01] .73 | .52
{ }
{From curves } b 9° 5° 0% | -8° |-19°
{ =6 = 120° v | 129° 1125° | 120° | 112°]101°

From eq’ns (46 & 47) A 15.0 {11.1 | 6,73 | 4.81{3.56

" fig (15) L 2.75 {2.65 | 2.512.32{2.16

134

eqn. (40) W 11,398 | 891 | 594 | 398| 264

A graph of W against B is given in figure (42).
For the top pad, a load of 400 Lbs yields Hm = ,495,
The load supported by each of the lower pad pivots, is:~

=5 M =

giving Hm = ,230.

Since the minimum clearance hm of the pad circle, occurs at
6 = 90°, then provided ~30° < ¢ < 900, the minimum clearance will
occur beneath the pad, as in this example. TFor ¢ < ~30°, the
actual minimum clearamce of the pad will be at the trailing edge,
and this must be calculated from
h = ¢(1-AsinB), where 0 =y,
For this example the minimum clearance for the top pad is:-

495 x 2 x 1070 = ,990 x 1073 ins.,

and for the lower pads:-

3

1230 x 2 x 107° = L460 x 107> ins,
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Example (4)

It is necessary for a shaft to rotate in either direction.
It is supported in two pairs of 120° pads, the pivots being 60°
either side of the vertical centre-~line. The journal diameter
is 2 ins., and the length of pads 4 ins., with a radial machined-in
clearance of 5 x 10'»4 ins. If the weight of the shaft is 50 Lbs,
what would be the vertical change in displacement of the shaft, if
the speed of rotation was reduced from 12,000 r.p.m. to 4,000 r,p.m?
In order that the shaft may rotate in either direction, the

pads must be pivoted at their centres, i.e. X, = .5.

T
2
Now Ac ='§3£§~ and R = 1 in.
2
PaC
. B -4,
with ¢ = 5 x 10 ins.

Then for a rotation of 12,000 r.p.m.,

he = 5.2
and for 4,000 r.p.m.,

Ac = 1,73
To find the deflection, the film shape parameters A, and ¢ must be
known for each running condition. Since H = 1-A, a graph of H
against load, and against ¢,will allow these parameters to be
determined for the particular running conditioms.

As in previous examples, the following tabular layout has been

adopted.
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Tor N = 12,000 r.p.m.:~

REMARKS Hm .3 A .5 6
i 1.09 .73 | .52 .36

8 29° 27° 25° 23°

¥ 149° 147° 145° 143°

%fﬁ;agiéaiéng T, | 3.85 3.8 3.75 3.65
W(Lbs)| 61.8 40,7 28.6 19.3

These values are plotted in figure (43a).

In a similar manner, the curves given in figure (43b) were
calculated for N = 4,000 r.p.m.

Now the load per pad pivot, is:

50
4 cos 60

W o=

= = 25 Lbs.,

from figure (43), the following values result:-
N = 12,000 r.pm.  H_= .535, § = 24,5°,

N = 4,000 r.p.m. Ho= .45 ¢ = 18°,

but h = c(1-Asind) where A = 1~Hm, the pivot clearance, is the

value of h when 6 = el,

Gln¢

and XP-“‘-W: 3,

giving a pivot film thickness of 2.68 x 10_4 ins, for N = 12,000 r.p.m.,

and 2.32 x 1074 ins, for N = 4,000 r.p.m.
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The pivot deflection becomes:-

4

(2.68-2.32) x 10°% = 3.4 x 107 ins.

The vertical deflection of the shaft
= 3.4 x 107 cos 60° = 1.7 x 107 ins.

If a bearing is operating under fluctuating speed conditions,
a graph of rotor displacement against speed may be plotted by cal~
culating various points in the sbove manner. It should be remarked,
that when the two load supporting pivots are displaced symmetrically
on either side of the vertical load line, the load line becomes the

locus of the shaft centre.
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Example (5).

1f the shaft in example (4), now weighs 20 Lbs, and continues
to run at 12,000 r.p.m., but if a top shoe is fitted to each bear—
ing, with the pivot rigidly conmected to the other two pivots via
the bearing housing, such that the total pre~load under these con—
ditions is 60 Lbs, what will be the deflection of the shaft, if a
load of 20 Lbs is epplied to it.

The shaft load, pre—load, and the applied load for each bear-
ing, will be a half of those stated above,

The running conditions for a single pad are similar to those
given in the last example, with the result that Ac is also 5.2,
and figure (43a) may be applied to a single pad in this example.

From figure (43a) the following values of W, Hm and ¢ have been
obtained, which cnables the calculation of the pivot film thickness
to be made. The ebsolute displacement of the shaft is based on
the zero datum being the shaft resting statically on the pads, and
is equal to cos 60° times the pivot film clearance. As in the
previous examples, it can be shown that the load applied to each
lower pivot is equal to the total load on the bearing, since the
pivots are 60° from the load line.

The following table will enable two graphs of displacement

against load to be plotted:~
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REMARKS W 60 50 40 30 20

From fig (43a) | B .305 | .340 | .405 | 490 | .575
" n b 25.9° | 28.1°] 26.9° | 25.2°] 23.6°
81~¢ o} 0 o o o
Xp = o 6, | 88.9° | 88.1%| 86.9% | 85.2 83.6
h = c(l—Asin@l) hl 1.525 | 1.70 | 2.02 2.46 | 2,89
' ine 107%

Absolute shaft | h.cos60° | .762 .85 1.01 1.23 | 1.44

. 1
displacement ins 10 4

Where hl is the actual clearance at the pivot position.

Now the pivot film clearance for the top pad will be hl and
the absolute displacement of the shaft is hl cos 60° or %hl.

In figures (44a) and (44b) the pivot f£ilm thickness for the
top pad, and the absolute displacement of the shaft are plotted
against load,

When the bearing is operating under the ‘no load' conditionm,
the load on the top pad, is the pre~load of 30 Lbs per bearing, and

on the lower pair of pads, it is the preload plus the shaft weight =

30 + 10 = 40 1bs.
From figures (44a) and (44b) under these conditions,

4

Top pivot film thickness = 2.46 x 10 " ins.,

Absolute shaft displacement = 1.0 x 10,4 ins.

106,



If we plot the change in preload on the top pad with shaft
deflection, for any given deflection, by adding the shaft weight,
shaft load, and the preload, it is possible to plot the loading on
the lower bearing against the shaft deflection. 1In a like manner,
the load capacity of the lower bearings, can be plotted against
deflection. Since the deflection must be common to the top pad
and the lower pads, if these curves are plotted on the same axes,
their intersection denotes the condition of equilibrium, and the

corresponding deflection can be noted.

Deflection (insx10™>) | 0 .5 1] 1.5 | 2
Top pivot (insx10™™) 2.46 | 2.51 | 2.56| 2.61 | 2.66
clearance

Top pivot load (Lbs) 30 29 28 | 27 26
Abs. shaft (insx10™%) 1.0 95 | .9 .85 | .8
displacement

Load capacity (Lbs) 40 43 46 50 55
Loading (Lbs) 50 49 48 47 46

5 .
ins.

From figure (44c) the intersection occurs at 1.2 X 10~
Hence the deflection = 1.2 X 10“'S ins.
A complete lcad~displacement plot can be made in this way,
in order to determine the overall stiffness of such a bearing.

In practice, the minimum clearance often occurs near the pivot

position, and in these cases, a good approximation can be made for
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the pivot film clearance and the pivot film stiffness by con-

sidering only the minimum clearance.
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16.0 Conclusions.

The approximations made in obtaining equation (31), appear to
be justified experimentally, and are also confirmed by the com=-
parison made with the numerical curves obtained from reference (17).
Indeed, had this approximation not been made, it would not have
been possible to obtain an analytical solution, which satigfies the
boundary conditions at the sides of the pad, and most certainly,
would not have provided a solution where the circumferential and
axial conditions were separable.

Tests have been made on the approximation over a limited range
of Ac, but it is shown that as Ac -+ =, the finite bearing correct-
ion tends to zero, resulting in the same load capacity per umit
length as an infinite bearing; in which case the approximation
tends to an exact solutiom.

It has also been demonstrated, that the analytical solution
for the infinite bearing, with Pl as the mean film pressure, can
be considered valid for high compressibility numbers; this is the
region in which it is most useful, as it is here where numerical
solutions encounter stability problems.

The result of this work, is sets of design curves, which may
be used to design 120° pad bearings over the complete range of
length to diameter ratio, at the same time, predicting their per-

formance quite accurately. The errors due to the approximations
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are likely to be far less than those encountered in manufacture.
This offers a major step-forward in the steady state design of the
tilting-pad gas—bearing, as previously, only the numerical curves
presented in reference (19) were available to the designer. These
curves eonly covered a very limited range of pad configurations, and
for each length to diameter ratio, the set of curves required, took
several hours to cowpute, reference (23), whereas a set of curves
at a constant Hm’ presented in this thesis, took only a few minutes
to compute.

It has also been shown experimentally, that these design curves
may be used to accurately predict the overall stiffness of the
single pad system,

The use of gauge pressure instead of absolute pressure, has
simplified the evaluation of the boundary conditions, and has also
reduced the round-off errors at low compressibility numbers. This
problem was also reported in reference (23), and the author has
already made a written contribution to that paper making the zbove
suggestion., It would appear, that this technique could be employed
to advantage on many forms of bearing, any sub-ambient pressures
being denoted as negative.

Finally, an experimental investigation of the viscous losses

in the bearing, has shown that the theoretical prediction may only
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be used as a guide, and not as an "exact" design quantity. As far
as the author is aware, this is the first time the viscous losses
in a tilting-pad gas-~journal-bearing have been studied in this detail,

16.1. Suggestions for Further Work.

The most obvious extension of this study, is the production of
design curves for spans other than 120° it must be borme in mind,
that the accuracy of approximation should first be tested for these
new configurations. An improved presentation of the design curves
could be made, by plotting the characteristics for a particular
pivot position; this would allow Hm to be infinitely variablie, and
would assist in the derivation of the load-displacement and stiffness
curves.

As it stands, the theory is quite general within the limitg of
the approximation, and lends itself to other forms of partial arc
journal bearing, such as the axial grooved bearing. It may however
be more convenient in such a case, to present the design curves in
terms of other parameters, for example eccentricity.

One possible application, is to speed-up the computation of the
pressure profile for a gpiral groove journal bearing., It is possible
that the land between the grooves could be considered as a partial
journal bearing, with the ambient conditions at the leading and

trailing edges replaced by the conditions existing in the groove.
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A change of coordinates may be required to account for the angle of
the spiral.

A most promising field of application is in the study of the
dynamic characteristics of the tilting-pad bearing. At present
the study is of a numerical nature, and is most demanding on com~
putational time. The steady-state approach outlined in this thesis,
could probably be utilised in the form of changing steady state
conditions producing a rapidly obtained approximaticn, which could
be used as a starting value for the final numerical solution.

It is the intention of the author to follow-up some of the

above suggestions.
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Appendix (1)

C. as a Constant,
To show that when C. is a constant:
A
=16
(2) (9»-({)

F=F_+Cce sinw—-—mml' cosh KY

5 =)

satisfies equation (15).

let ¥ = Fw + G5g cosh KY
oF
LI
35 = 55 * Cs5p cosh K
2
2 °F 42
\.E,E = + CS-Ewg cosh KY
202 382 362
2
E»—-E=Cg1{2 cosh KY
ay2 5

Substituting into equation (15):~

B2F_ 22,

+ C5 2.8 cosh KY + CS g K2 cosh KY
862 062

Fo e, 28
= A= = MG % cosh KY = A(PlslnenAcose}

subtracting the equation for the infinite bearing, equation (16),

and dividing by C. ccsh KY¥:~-

5

22g 2 ag

______,Za.*.. ?K. - [l 5= () .;c.‘oo-ou-(a)
02 o
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_ . (6=4)
but g e 51n7vTE:$T

then substituting into (a) and dividing throughout by the exponential

and sin terms yields:-

2 2 .
«ml;mm.+.%m - K2 = 0
=07 7

2
b 1@ = Ty (b

therefore equation (29) satisfies equation (15) provided C. is a

5

constant.
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Appendix (2)

The Effect of C_ being 2 Variable.
7

let 65 = C(8)
therefore:~
F =T + Cg cosh KY
oF _ °Fo o °g
=5 = 55 +»§3 g cosh XY + C Y cosh KY
2
22p O, 52

|

+-w§ g cosh KY + 2'%%"%% cosh KY
362 302 367

2
+ C Ewg cosh KY
364

and 34F

.

3v2

i

K2 Cg cosh KY

Substituting into equation (15)

3%F 5
+ 2L g cosh KY + 2-%%-%% cosh KY

62 2672

52 T,
+ ¢ & cosh KY + K2Cg cosh KY - “5@"

262

8C g

Agg g cosh K¥Y - AC Y cosh KY

= A,(Plsine""Accse) + 6(6) a-onﬁuonoaoqasocb)

where 6(8) is some deviation from the zero duc to assuming "C" to be
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a variable.

Subtracting equation (16) and dividing by cosh KY

2 2 Yo 5(6)
278 4 o2 - p28) 4+ 28 2 3g 80 __8(0)
€ (392 + g2 = dsB) + o2 o 25556 ~ '35 &~ Cosh kY

From appendix (1), the first group on the left hand side of

the sbove equation results from the correct solution, and is zero,

therefores-
320 g + 280 ag - a9C §(6) (¢)
b’ @ © & @ & 20 QB a8 2R
862 86 36 89 cosh KY

now C5 from the analysis was assumed to be

~F
Cy = s = C(6), in this appendix.
gcosh-ﬁeﬁ
DF_
B e oo € BN
2 4

Substituting into equation (¢)

oF 8%F 9 5
@%"%% 35 e A F Q%%) + i~Fm'2“&)
& v/ 362 gz g 892
oF 9 oF
2D =28, 2y, (35
g 36 36 F, (58] * 033
g * 98 cosgh KY
hence:~
24 5
S AmaFw] ~E;‘i’._,§2g + Ay 83 _=08(8)
LBGZ 98 2 3@2 g @ a6 D cosh XY
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and then from equation (16) becomes:~

A(PlsinG*Acosﬁ) ~'gi (2%% - A%%) w—5~%§§§lﬁg
but ) 4(?)6 . (6=
g = e sin Moy
therefore substituting and simplifyings~
A(Psint-Rsing) + T, ((u:)z N {%)2) i %

or

X «cosh-%% §(6)
A(P181n9”ACOSG) +F K= cosh KY

It can be seen from a study of the theoretical pressure profiles

that a good approximation results if P, =0

KL
5 cosh -'i'fi
Je A B = § ..
Acos6-F K (6) T
ors~— hﬂg&
Meosd 52 . _8(0)  S°T IR @
1“A8ine e l""ASi.De COSb Y s eB BB sa s E a0

If the assumption that C. may be an arbitrary function of 0, is

5
valid as a good approximation, then the right hand side must be small,
or in the limit tend to zero. If the right hand side was zero, the

assumption would be exact, and then the two terms on the left hand

side, would be everywhere equal to each other.
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Mcos( .
If 202 is plotted on the same axes as P_, then for a

K2 (1-As8in0)

good approximation, the difference between these two curves must be
small.

In figure (18) a comparison has been made with the direct mmer-
ical method employed in reference (17) and the analytical end flow
correction. One of these curves will therefore be used to study the
magnitude of the right hand side of equation (d). Since the curve
of Ae= 1.5 is the one most affected by the end flow, this curve will
be used as an example.

P_ is plotted in figure (46) together with the corresponding

Acos0

CURLVEE s
1~Asind

It would appear that the maximum values of the
right hand side of equation (d), (i.e. the maximum differences be-
tween the two curves), are of the same order as the difference in
assuming Pl equal to ambient, and Pl equal to the mean film pressure
in section (8.0). Since Pl appears on the right hand side of the
original differential equatiom, (b), it would affect the pressure
profile in a similar way to which the right hand side of (d) affects
the profile end flow correction. Furthermore, the right hand side
of equation (d), takes positive and negative values, which will
result in a small average value over the length of the film,

Tt would seem in this particular case, that equation (31) is a

good approximation to the solution of the original differential
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equation in F, this is further borme out by section (8.0). If at
higher compressibility numbers, the end flow correction error does
increase, this is less important, since as previously mentioned, the
end flow correction itself becomes small,

Individual cases may be examined in this way to give some idea

of the accuracy of the sclution.
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APPENDIX (3)

Tvaluation of Integrals.,

The groups Il, Tys T3s 14, 15, Igs and i7, were evaluated in

the following way:

I = Jw ClAecaseda
1 ¢ 1~Asin®

Expanding the denominator as a binomial series

~
i

]
I c.leAecose(1+Asine+A?—sin2e+A3sin3e+A‘*sin“e)de
¢

i

v 2 4 3
Cq J eAe{(l + %—- + %«]cos%(«% + -%»)sinze

2 b 3 L
- .%,. N -%%"—-)cos39 - £ sino + '%g cos56}d6

Y
C1 J eAe(Alcase+A

= . zsin28~A3c0539~A43in46+A5c0356)d8
Yielding the value given for I, in section (4.2)
Y C?cos@&G
12 B J(p 1-Asin®
<, !
ﬁT log(lﬁAsinG)
- ¢
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1 2
- ( cos<06do
Iy = Asrp) j¢ T~Asin
a2, ) oo ¥ v
= 1 { Al . de J Asin6de + J de}

- 22 J¢ (1-As1ind) ¥

¢ ¢

The first integral. may be evaluated using the tangent of the half

angle substitution:~-

Af1+P tan 2 ~A v
13 = — 1) {;(A2~13 tan”l{ 2 T ) ~Acos6+6
A2 U}'*AZ)Z (I”AZ})'
¢
I - Jw 5inbeos0dd
A 1~Asind
¢

This may be evaluated by making a substitution of the form:—

u = 1-Agin®
giving:-
1 . ke
14 = e [}1—A31n6)~log(l~Asine)
A? -J¢

and since the limits of integration are given, this reduces to:-

-1 . A
I, = e Asxn6+1og(l—A51ne)t
g 2
A ~¢
Jw ¢.e"¥sinade
I, = 1
? ¢~ 1-Asind
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As with I., expanding the denominator as z binomial series
1 Xp 24

P
IS = J CleAe(sin6+Asin26+A25in39+A3sin”8+A”sin56
¢

+ASsinbo+Absin’0)de

Y 3 2 b 6
_ J c AS{G% L 3A 5A IS R 342 54t 34A

A 1© g gt g )sing
A A3 15AS Sf“ 21464 .
QE * s Jcos26- 4 it ”@Z"151n36

&
+-~ +~g%i)cosée+(16 72 )31n58

A.S
- 35 cosbb- -gz sin’76}de

14
= f CleAe(A +A731n9~A cos20-A sin3e+Alocos46

+A. . 8in50-A. ,cosb6~-A, ,8in70)d6

11 12 13

Again this gives the value of I, stated in section (4.2)

I c v 53inode
6 1~-Asin®
¢
- ¢ {wade -fp 8y
2 A(l=Asin0® A
5 ( sind) 5

Using the half angle substitution as in 13 then 16 becomes ;-
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2.p
a(a ”1) ¥ 5in2e do
T-Asind)

d6

-

v L
J 8infdO ~ e f de
¢ A% e ]

>
Penan' lomant
pd =
+ N
= §
[N 3
L ——_
L —
N,
-©- =
>
N
N
%—.-l
g
o
1)
o
]
@
o
e

0 4
(Azm}?l) 9 -1 fan s = A
tan (‘”""‘"‘""""T’") + Acosb-8
(1-42)° (1-82)* o
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APPENDIY (4)

In calculating the film shape parameters A and ¢, it is
necessary to have some relationship between these quantities
and values recorded from the capacitance displacement probes
fitted to the pad.

If hL and hT are the mean values of displacement recorded
between the two probes fitted near the leading edge and near

the trailing edge respectively, then since:

h = c(l-Asin®),
hL = o(l=Asin(¢+v))
and hT = c(l=-Asin(¢+y+a))

where Yy is the position of the leading edge probe from the edge,

and o is the angle between the probes, see fig (47), or

h = c[i~A(sin¢cosY+cos¢siny)] cessevenseseasela)
and hy = ¢ [1-A(sindcos (y+0) +cosdsin (y+a)] consssnsreasssalb)
Let B1 = cos (y+a) Bz = sin(y+a)

B3 = cosY and 34 = giny

then eliminating A between (a) and (b);

hT Dl(Blsin¢+B7cos¢)
= =1~ (BBSin¢+Bécos¢)

where Dl = 1 -
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(B, tang+B,,) h
OrDM: =
1 (BBtan¢+BA) c 2
giving:

-1 P28 P15,
DyB;=D,B,

¢ = tan

From (a)

A(Bgsin¢+B4cos¢) = D1

from which

!

= (Bgsin¢+B4cos¢)

A

The mean geometric clearance ¢, is:

1

v L4
J hde f (1-Asin®)d6

=c 2

‘17 Qo) =)

- A(cosw*cos¢7]
therefore cy c[% + ) )

6uwR?  _ muR2N

Now Ac " >
pc 5pac

for air at standard conditioms, and with R = 1 in.

N Ry 2

A = —
923x107

<

[

The above equations were used to relate the experimental and

theoretical parameters.
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Appendix (5)

YAnalytical" Program.

The following A.L.G.0.L. computer program, was written to
evaluate equations (40) and (36), for the plotting of the ﬁ—XP
curves by the analytical method.

Like the program in appendix (6), it was written in a modified
form, for operation on an I.C.T. 1909 digital computer.

The data should be presented in the following order:

8, ¥=¢, ¥, LS, LINC, LNO, PS, PINC, PNO, A;, Ay, A=A ,

Where we haves

8 - limit of convergence on the mesn dimensionless pregssure
P

1
Y - ¢ = in degreces,
N ~ mumber of values of A to be read i.e., 1 to n,
LS -~ starting value of Ac,
LINC =~ increment in Ac,
LNO - mumber of values of fc to be computed
PS ~ starting value for ¢

PINC -~ increment in ¢

PNO ~ number of values of ¢ to be computed.



Program.

BECIN REAL DELTA,SPAND,LS,LINC,PS,PINC,PHI,PSI,L,NEWPM,C1,C2,B1,B2,

RAD;

®¥3,84,B5,B6,87,88,89,810,811,812,B13,T,1,I4,IB,0LDPM, TT,SPAN,

INTEGER N,LNO,PNO,K,E,F,Y;

DELTA:=READ;
LNO:=READ:

SPAND:=READ;  N:=READ; LS:=READ; LINC:=READ;
PS:=READ; PINC:=READ; PNO:=READ;

BEGIN ARRAY A[1:N], LC[l:N,l:LNo+1j, PHID,WB,X[1:N,1:LNO+1,

1:PNO+17 3

FOR K:=1 STEP 1 UNTIL N DO A[K]:=READ;

FREE INPUT:

RAD:=360/6,28318;  SPAN:=SPAND/RAD:
FOR K:=1 STEP 1 UNTIL N DO

B3

s=A[K]+2/4+3xA[R]14/165  Bh:=A[K]43/8;

BEGLN Bl:=1+A|K] 12/ 4+A[K]14/8; B2:=A§?}/2+A[K]+3/4;

B5:=A[K]|44/163 B6:2AfK]/2+BXA[K +3/8+5 A[K]+5/16;
B73=1+3xA [K] 42/ 4+5xA [K] 44 /8+35xA[K] 46/64;
B8:=A[K]/2+A[K]+3/2+15xAK] 45/32;
BY:=A[K|+2/4+5xA[K] +4/16+21xA[K]46/64;  B1O:=A[K]+
3/8+3xA[K]45/16; '

Bl3:=A

K146/64;

Bll:=A§?%+4/16+7xA[kﬂ¢6/64; B12:=A[K]+5/32;

LC[K,1] :=LS;
FOR E:=1 STEP 1 UNTIL LNO DO
BEGIN PHID[K,E,L]:=PS;

FOR F:=1 STEP 1 UNTIL PNO DO
BEGIN PHI:=PHID|K,E,F|/RAD;  PSI:=PHI+SPAN;
L:=1C[K,E] /((1+A[K] x(COS (PSI)~COS (PHI))
/ (PSI~PHI))42);
NEWPM:=03
L3:C1s=A[K] / ((14142) x (EXP (LXPHI) ~EXP (Lx
PSI)))
x ((LA2-NENPM) x (SIN(PST)~SIN(PHI) ) +Lx ( 1 +NEWPM)
% (COS (PSI)~COS (PHI))) ;
02 :=A[K] / ((1+142) x (EXP (LxPSI)~EXP (LXPHI)))
x (EXP (LXPHI) x ( (L4+2~NEWPM) xSIN(PSI)+Lx(1+NEW
PM) xCOS (PST))
~EXP (LXPSI) x ( (L42~HEWPM) xSIN(PHI) +Lx (L+NEW
PM) xCOS (PHI))) ;
T:=PSI;  Y:=1;
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L1:I:=C1x(EXP (LXT)x(B1/ (L42+1) *(LxCOS
(T)+SIN(T))
+B2/ (LA2+4) x(LXSIN(2XT)=2xC0S (2%T))
~B3/L42+9) x (LXCOS (3xT) +3xSIN(3%T) )
~B4/LA2+16) x (LXSTN(4XT)~4xCOS (4XT))
+B5/ (142+25) x (LxCOS (5XT)+5x3IN(5%T) ) ))
~C2/A[K] LN (1-4 [R] xSIN(T) ) =Lx (L+NEWPM) /A
K]/ (1+L42) x
(2xSORT (1-A [K] 42) xARCTAN((SIN(T/2)/COS
(1/2)~A[K]) /SORT (1-A [K] 42)) _
+A [K] xCOS (T)~T) - (L+2~NEWEM) x (A [K] xSIN
(TY+LN(L1-A[K] xS IN() ) /A K]/ (1+142) 5
IF Y=1 THEN
BEGIN TA:=L; Yi=23 T:=PHI;
TTTTTeoTO L1
END;
TA:=IA~T;
T:=PS1; Ye=ls
L2:T:=CIx(EXP (LXT) x (B6/L+B7/ (LA2+1)
(LXSIN(T)-COS(T))
~B8/ (L42+4) x (LXCOS (2%T)+2xSIN(2XT))
~BY/ (L42+9) X (LXSIN(3XT)~3%xC0S (3xT)
+BLO/LA2+16) x (LXCOS (4xT)+4xSIN(4XT))
+B1L/ (L42425) x (LxSIN(5xT)=5%xCOS (5xT) )
~B12/ (L42436) x (LXCOS (6XT)+6xSIN(6%T) )
~B13/ (LA2449) x (LXSIN(7XT)~7xCOS(7xT))))
+C2x(2/SORT (1-A [K] 42 ) ARCTAN( (SIN(T/2)/
COS(T/2)-A[K])/SQRT (1-A [K] +2) )~
T) /A [K] 3 Lx (L+NEWPM) x (A [K] xSIN(T)+LN(1~
A[K] *xSTH(T)))/
A%K [ (1+142)+ (LA2-NEWPM) /A [K] / (1-142)
x(2/SQRT/1=4 [K] +2) x i
ARCTAN((STN(T/2)/COS(T/2)~2[K]) /SQRT
(1-A[K]+2))+A[K] xCOS(T)~T;
IF Y=1 THEN
BEGIM IBs=l;  Y:=2;  T:=PHI;

©OT0 123
END:
TB:=1B-1;
WR [K,E,F] :=SORT (TA42+1B42) ;
OLDPM:=NEWPM;  NEWPM:=WB|K,E,F|/SPAN
IT NEWPM-OLDPM>DELTA THEN GOTO L3;
T1:=ARCTAN(IB/IA) S -
X[K,E,F] :=(TI3PHT) /SPAN;
PHID [K,E,F+1] :=PHID [K,E,F]+PINC;
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END;
TCTR, E+1
END;
END;
FOR K:=1 STEP 1 UNTIL N DO
BEGIN WRITE TEXT('(PT G,PITTS ANALYTICALL{VALUESL,FOR
UcﬂlBAR»PIVOTLJGRAPH‘3C‘DhLTAfbs‘SPANf6 AfICY)Y;
PRINT (DELTA,1,4); PRINT (SPAND,3,2); SPACE(2);
PRINT (A[K],1,4);
WRITE TEXT(ffac‘LAMBDAfac\9ﬂ1f7°\vfgs\wLJBAszc“)
FOR E:=1 STEP 1 UNTIL L0 DO
BEGIN PRINI(LC [K,E|,2,2);  NEW LINE (1);
FOR F:=1 STEP 1 UNTIL PNO DO
BEGLN SPACE(9); ~ PRINT (PHID|K,E,F),3,2);
TPRINT (X[K,E,F],1,3);
SPACE(L); ~ PRINT (wB[K,E,F],2,5);
NEW LIME(l)«

:=LC|K,E|+LINC;
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PROGRAM,

BECIMN REAL DELTA,SPAND,LS,LINC,PS,PINC,A,RAD,SPAN,CRID,PHID, B, INC,
PN, T,0LDB, PSNTOT, PCSTOT, PSN, PCS , THETA;
INTEGER Z,MESK, ), LNO, PO, K, E, ¥, J,1;
TOITEITA:=READ;  MESH:=READ; ~ SPAND:=READ;  N:=READ; LS:=READ;
LINC:=READ;
LNO:=RE/D; PS-~RLAD PINC:=ILAD;  PWO:=READ;  M:=READj
BEGIN ARRAV A 1aA],Hu[1 I 1.LNO+1], %,PS1,PHI ?htﬁ[l:»,l LNO+1
TePHO+1 ,PCS [03MESH
ro Re=l svrv 1 UNTIL 1 N0 A[K] :=READ;
D:=360/6.28318;  opali= UpAﬂﬁ/QAD CRID:=SPAN/MESH;
TFOR K:=1 STEP 1 UNTIL ¥ D
BECIN LC[K,TI]:=L5; =
T FOR E:=1 STEP 1 UNTIL LNO DO
BECIN PHID[K,E,1]:=P53
TOR F:=1 STEP 1 UNTIL PNO DO
BEGIN PHITK, p,F]°“PHIDLK E,¥|/RAD;

T psi[K, E,r] 1K, E, T +EPAN;

Z =03 B‘=O 1NC:=1,

Ll: P[o]«~o PN:=1; T:=PHI[K,E,F]; Z:=Z+l;

FOR J:=1 STEP 1 UNTIL MESE DO

BEGIN P{J}°WLC[K LB ] XGRIDX (PRx (1=A[K] xSIN(T) )+B) / (PY

SOI-E [R] xST(T)) 43) 4P [3-1] 5

IF P[J]<-1 THEN
BEGIN INC:=INGC/2;  B:=OLDB+INC;
GOTO L1

LD
Tr=T+CRID;
PN:=P [J]+1;
END 5
TF z>M THEN BEGLL
WK,E,Fl:=100; %|K,E,F]:=100; GOTO L5:
END 3
i T 0 [MESH] >DELTA THEN
BECIN CLDB:=B;  B:=B+INC:
[0TO L1
EID 3
B?PUm&J<OWEux
BECIN INC:=INC/7; B:=0OLDB+INC;
COTO L1y

PSNTOTs=PCSTOT =0y TePHI[K, 1,7 ;

Bo.



FOR J:=0 STEP 1 UNTIL MESH DO
BECIN PSN[J]:=P [J]xSIN(T); ~ PCS[J]:=P[I]xC0OS(T);
T:=T+GRID;

EXNDs

TOR J:=0 STEP = UNTIL (MESH-2) DO

BEGLI PSNICT:=PSNIOT+GRIDX (PSH [F1+4xPsN[J+1]+Psn[0+2]) /3;
PCSTOT s =PCSTOT+ERID® (PCS [T]+4xPCs [J+1]+Pcs [1+2]) /33

END g

THETA=ARCTAN{PSNTOT/PCSTOT) 5

X K,E,Fié=(THETA»PHI[K,E,F])/SPAN;

1[K,E, 7] :=SORT (PSNTOT42+PCSTOT42) 3
L5:PHID K, L,F+1] :=PHID [K,E,F|+PINC
END3
LCIK,E+1] s=1.C [R, B] #1100,
END;
END 3

WRITE TEXT(P'G,PITIS,.VALUES | |FOR
FINITE| |DIFFERENGE' 3¢)
DELTA' 75 MESH 88 span V)
PRINT(DELTA,1,5);  SPACE(2);  PRINT(MESH,3,0); SPACE(7);
PRINT (SPAND,3,1) YEWLINE(2) 5
WRITE TEXT(7A?9S%LAMBDAf55‘Pg1f85‘WLJBARfSS\PIVOTLJPOSITIONfzc‘\);
FOR K:=1 STEP 1 UNTIL N DO
BEGIN FOR E:=1 STEP 1 UNTIL LNO DO
BECLN FOR T:=1 STEP 1 UNTIL PNO DO
BECIN PRINI(A[K],1,403 SPACE(1);  PRINT(LC[K,E],3,1):
TPACE(6) 3
PRINT(PHID[K,E,F],3
PRINT (X[K,E,F],0,4)
NEW LINE (1)
ENDs
END;
END; ~WREE OUTPUT:
END; GOTO L9;

JullBAr-rIvoT||PosITION| | GRAPH] |BY| |

1)s  PRINT(W[K,E,T],3,4) SPACE(L);

¥
o
2
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APPENDIX (6)

"Numerical" Program,

This program is written to derive thelﬁvxp curves by
"numerical” means. A backward difference method is employed
for the integration of equation (43), and a flow diagram for
the evaluation of By is shown in figure (6).

The data should be presented in the following order:

A

§ MESH, §~¢,N, LS ,LINC,LNO, PS , PLNC , PNO, M, A, ,A -As

ian LI
where 6,y~¢,N,LS,LINC,LNO,PS,PINC, PNO, and A, are explained in
appendix (5), and the following are:
MESH -~ the number of mesh points taken around the
circumference of the pad.
M -~ the maximum number of iterations considered
worthwhile for obtaining Bl'
The program is designed to read in any number of sets of data
without further instructions, provided the results are given for

the previous set of data first. The input is usually terminated

by a stop instruction.
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