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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SOCIAL SCIENCE 

Doctor of Philosophy 

Knowledge Acquisition for Knowledge-Based Systems: 

An Empirical Comparison of Two Methods 

by Clive Norman Washington Nicholson 

In the search for more efficient ways of developing accurate knowledge bases, 

many methods have been used to acquire knowledge. Some writers have 

conjectured about which methods are likely to be most successful for different 

problem-solving tasks. But few studies have tried to predict, and then test 

hypotheses about, the differential efficacies or efficiencies of the methods. This 

research focused on the repertory grid technique and knowledge acquisition 

from a minimal set of examples, compared their external features, then 

examined their probable effects on the mind of the knowledge source. This 

analysis allowed some hypotheses to be stated about the performance of the 

two methods. 

To test these hypotheses, a single-factor within-subject experiment was 

designed, and the SCENIC knowledge-acquisition tool developed. Volunteers 

used the tool to elicit, by both methods, their own knowledge of a domain. The 

subjects also classified exemplars, which were then used to evaluate the 

knowledge bases generated. A multivariate analysis of variance on the data 

collected in the experiment supported some of the hypotheses. Those not 

supported highlight opportunities for improving the efficiency of the repertory 

grid technique; and some ideas are expressed as to how this improvement might 

be achieved. 
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But little do we perceive what solitude is 

Or how far it extendeth. 

For a crowd is not company; 

And faces are but a gallery of pictures; 

And talk a tinkling cymbal, 

Where there is no love. 

- Francis Bacon {On Friendship) 
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Preface: what this thesis is about 

When a knowledge-based system is delivered to its users and incorporated 

successfully into their routine operations, it is generally the product of a 

sequence of actions in which prospective users, knowledge engineers, and 

domain experts participated. Such a system would normally be accepted for 

routine use only when it has been shown to work with a high degree of 

accuracy. Some of this accuracy can sometimes be achieved by refining the 

knowledge base (Politakis, 1985; Ginsberg, 1988). But the size of the refinement 

task, and even the necessity for refinement, can be reduced if the knowledge 

acquisition process is itself capable of producing highly accurate knowledge 

bases. 

Knowledge acquisition can be a difficult problem; and several methods 

have been used to try to solve it. Some of these methods are variations of other 

methods; even some apparently new methods are simply variations of old ones. 

Some of the methods have been implemented in knowledge-acquisition tools. 

Chapter 1, "The Knowledge Acquisition Problem" on page 1 discusses these 

issues to provide a background for the rest of the work. 

The method used for knowledge acquisition can have profound effects 

on the pace and outcome of the process. Indeed, when a domain expert agrees 

to have his knowledge elicited by a knowledge engineer, it is crucial that this 

elicitation be as effective and efficient as possible. Such efficacy and efficiency 

are unlikely to be achieved unless the elicitation process closely matches the 

cognitive processes of the domain expert. Few pointers exist for someone faced 

with choosing among the tools or indeed among the methods. Boose (1989) has 

tried to position several of these tools in a multi-dimensional space. However, 

both the dimensions and the positions of individual tools on them partially 

reflect Boose's own biases. 
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This research, however, is not concerned with selecting among all 

possible techniques, but singles out two: the repertory grid technique and 

knowledge acquisition from a minimal set of examples. When the repertory 

grid technique (Kelly, 1955; Shaw, 1980) is used for knowledge acquisition, the 

process can be subdivided into six stages. Knowledge acquisition from a 

minimal set of examples can also be subdivided into six stages, which are 

parallel with those of the repertory grid technique. At the second of these 

stages, the repertory grid technique elicits constructs while knowledge 

acquisition from a minimal set of examples elicits attribute descriptors and 

values. Chapter 2, "Learning Without Case Records: a mapping of the 

repertory grid technique onto knowledge acquisition from examples" explores 

the external difierences and similarities of the two methods, and tries to 

determine why using one might be more advantageous than using the other. 

But it is difficult to explain why one knowledge-acquisition method 

might be more efficient or efficacious than another, without considering how 

the knowledge underlying a cognitive skill is represented in the mind and how it 

is retrieved. For example, in trying to retrieve an expert's knowledge, the 

repertory grid technique constrains the expert to generate constructs by 

considering three elements at a time. In knowledge acquisition from a minimal 

set of examples, the expert also follows the analogous process of generating 

attribute descriptors and values by considering the classes. This method, 

however, does not constrain the expert to consider any specific number of 

classes at a time. Instead, the expert is given the freedom to consider classes in 

any groupings that seem natural or expedient. 

Some cognitive theorists assert that a domain expert cannot access the 

compiled productions that govern his or her performance. What can be 

retrieved is declarative knowledge, but that is generally sufficient to produce 

accurate knowledge bases, if combined with appropriate meta-knowledge. In 

Preface: what this thesis is about XUi 



the same way as a novice can produce effective productions from declarative 

knowledge, meta-knowledge embodied in a knowledge-acquisition tool can 

operate on declarative knowledge to fashion productions that exhibit expert 

performance. Such considerations give rise to hypotheses that can be tested 

empirically. Chapter 3, "Some Implications of Cognitive Psychology for 

Knowledge Acquisition" on page 57 discusses these issues. Here is the essence 

of the questions raised by the hypotheses: Do experts find it easier to express 

classification knowledge by describing examples or by making distinctions 

between examples? 

It is also difficult to compare the two methods and to articulate 

objective theories without measures of the various variables of interest. How 

have researchers defined and measured these variables? And how are they 

correlated? Chapter 4, "Evaluation Measures" on page 85 surveys the 

literature concerned with this. 

Although researchers in this field are fond of case studies and 

benchmarks; the controlled experiment appeared ideal for hypothesis testing: it 

might be appropriate if sufficiently strong reasons could be found for using it. 

This is not the usual method of doing research on knowledge acquisition, but a 

few controlled experiments have been used, each having lessons for others to 

learn. Chapter 5, "The Controlled Experiment in Knowledge-Acquisition 

Research" on page 109 surveys the literature on using this approach for this 

purpose. 

Against this background, it was necessary to design an experiment that 

would provide the data to test the stated hypotheses. Chapter 6, "Design of an 

Experiment to Compare two Knowledge-Acquisition Techniques" on page 123 

discusses the design of the experiment. To perform the experiment, it was also 

necessary to design and build a vital piece of apparatus: a knowledge 

acquisition tool embodying the two methods mentioned above. Chapter 7, 

Preface: what this thesis is about x i v 



"Design of SCENIC; a CAKE Tool for Empirical Work" on page 143 describes 

the design of the tool. The act of proceeding with this design and development 

helped to refine both the objectives of the experiment and the nature of the 

tool. 

With all the preparations completed, the time came when it was 

appropriate to involve volunteer subjects in the experiment. The data collected 

was subjected to a multivariate analysis of variance to identify significant effects 

of independent variables. Chapter 8, "How Technique Affects Knowledge 

Acquisition: a Controlled Experiment" on page 168 is an analysis of the data 

collected. 

The analysis shows that, whereas the two methods produce equally 

accurate knowledge, the domain expert needs to expend more effort when the 

repertory grid technique is used. This increased effort is at two stages of the 

process. At one of these stages, shortcomings of the repertory grid technique 

are evident, but are probably capable of being remedied so as to make the 

technique more efficient. 

Chapter 9, "Discussion of the Results" on page 190 is an extended 

discussion of the results of the experiment. The thesis ends with Chapter 10, 

"Overall Conclusions" on page 201, which assesses the worth and significance 

of the research, its shortcomings, and the further work that it invites. 
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Chapter 1. The Knowledge Acquisit ion Problem 

Abstract 

This chapter develops the background for the rest of the work by looking at the 

problem of knowledge acquisition and some of the approaches taken to its 

solution. It argues that these approaches are aimed at making the process more 

manageable, finding methods powerful enough to cope with the challenges, and 

finding efficient ways of building systems. Interviews of various kinds, protocol 

analysis, and ways of coping with the copious textual material they typically 

generate, are discussed. Some other methods, e.g., the repertory grid technique 

and knowledge acquisition from a minimal set of examples ehcit rather less text 

and more knowledge units that are directly usable in knowledge bases. In spite 

of the range of approaches available, there is little evidence to inform the choice 

among the methods and tools. 

Introduction 

Computer programs have been developed to model various kinds of 

decision-making activities. The simplest of these decisions involve considering a 

number of factors in order to make a choice from a set of possible consequents. 

Some kinds of diagnosis and classification tasks are like this. More complex 

tasks involve a series of interrelated simple decisions, the outcomes of which are 

used to assemble and tailor a plan or design (Garg-.Ianardan & Salvendy, 1988), 

or a skeletal report (Klinker, Bentolila, Genetet, Grimes, & McDermott, 1987). 

The potential of these models has been evident ever since a system to 

infer the partial structure of substances from their mass spectra began to take 

shape in 1965. Since then, numerous other knowledge-based systems have been 

developed for a wide range of tasks. In recent years, the deployment of these 

systems (KBSs) has progressed from primarily analysis to synthesis problems. 

These systems have proved to be useful in a variety of applications from risk 
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classification (e.g., Shaw & Gentry, 1990) to process planning (e.g., Joseph & 

Davies, 1990). 

Diagnostic systems are also increasingly being based on models of the 

physical system rather than merely models of the expert's decisions. 

Increasingly KBSs are being developed for imbedding in traditional 

systems (see, e.g., Freundlich, 1990) rather than for stand-alone use. In such 

situations, many of the questions from the KBS are addressed not to a user, but 

to a database or to a program that seeks the judgement of the KBS. Often the 

result of the inference is also not displayed for a person, but rather passed to 

another program or used to initiate a process. 

However, despite the growing range of their application, KBSs depend 

for their development on eliciting knowledge from a source — often a difficult 

task, which Feigenbaum (1977) described as the "critical bottleneck". The 

knowledge-acquisition bottleneck has become a cliche in the field of 

knowledge-based systems development (see, e.g., Mitchell, 1983; Wielinga, 

Bredeweg, & Breaker, 1988; McGraw, 1989; Rowley, 1990; Aganval & Tanniru, 

1990). 

Three project-management factors, susceptible to managerial action, 

appear to contribute to the existence of the bottleneck. Firstly, knowledge 

acquisition often occupies a critical position in the sequence of tasks for 

building a knowledge-based system. As Hart (1986) has noted, "all the 

knowledge must be acquired before it can be represented". Secondly, large 

amounts of knowledge are usually required to build meaningful systems (see, 

e.g., Jacobson & Frieling, 1988). And thirdly, the process of acquiring 

knowledge is often slow (see, e.g.. Smith, 1984; Shalin, Wisniewski, & Levi, 

1988). These factors are discussed in the sections that follow. 

Various approaches have been brought to a concerted assault on the 

problem. A growing number of tools that have been called knowledge-support 
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systems, knowledge-acquisition tools, knowledge-engineering workbenches, and 

computer-assisted knowledge-engineering (CAKE) tools, have been developed. 

Boose (1989) lists 65 of these tools; and several others have emerged since then. 

These tools share the aim of solving some of the problems evident in 

transferring knowledge from knowledge sources' to knowledge bases. 

These tools attempt to provide computer support at various stages of 

the knowledge acquisition process, and seek to make building a 

knowledge-based system "a piece of cake". Most of these tools are designed to 

facilitate the acquisition of knowledge for what Kitto & Boose (1989) refer to as 

"analysis tasks", although a few of these tools, for example, SALT (Marcus, 

1987; Stout, Caplain, Marcus, & McDermott, 1988; Marcus & McDermott, 

1989) and CGEN (Birmingham, 1988), have tackled typically more complex 

"synthesis tasks". 

A knowledge-acquisition tool generally models a particular style of 

interaction between a knowledge engineer and a domain expert. Behind the 

interaction, the tool organises and interrelates the information being obtained. 

A systematic appraisal of the problem of transferring knowledge into a 

knowledge base is an essential foundation for understanding the task faced by 

knowledge-acquisition techniques and tools. This chapter therefore discusses 

these difficulties, and offers a perspective from which they may be viewed. 

Three reasons are suggested for the existence of the bottleneck, which is being 

attacked by several techniques and tools. 

' Throughout this thesis, the term "knowledge source" is used to mean the person or 

artifact possessing the knowledge to be elicited. The term has been used in other senses 

in the literature (see, e.g., Clancey, 1983; Wielinga, Schreiber, & Breuker, 1992). 
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Critical Task 

It has long been known (see, e.g., Koontz & O'Donnell, 1972) that certain 

activities are difficult to control, because they tend to reach 85 or 90% 

completion and stay there while time continues to elapse, and costs continue to 

be incurred. One solution has been to subdivide such activities into smaller, 

more manageable, units which can be monitored and perhaps even resequenced. 

These task sequences also enable explicit consideration of choices between 

reducing costs and shortening the schedule by selectively allocating additional 

effort (see, e.g., Buffa, 1972). 

Several writers have proposed normative sequences of tasks to perform 

in building a knowledge-based system. Figure 1 on page 5 shows some 

contrasting prescriptions for the process. It is evident that the approach which 

Forsyth recommends is a casual one, perhaps suited to small systems in which 

the builder is archiving his or her own knowledge with the aim of becoming 

familiar with tools for developing knowledge-based systems. Weiss & 

Kulikowski, on the other hand, propose a more structured process, while 

Bowyer, Markowitz & Yusko recommend a process along the lines of some 

system-development methodologies. Even so, there are clear similarities 

between the different processes. 

Where knowledge acquisition fits in the process depends to some extent 

on how the former is defined; and there is some disagreement as to what 

knowledge acquisition involves. While some writers (e.g., Buchanan, Barstow, 

Bechtal, Bennett, Clancey, Kulikowski, Mitchell & Waterman, 1983) see 

knowledge acquisition as the entire process of building a knowledge-based 

system from scratch, others (e.g.. Hart, 1986) define it simply as elicitation. 

Waterman's (1985) definition of knowledge acquisition as "the process of 
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Forsyth Weiss & Bowyer, Markowitz Wielinga, Schreiber 
(1984) Kulikowski (1984) & Yusko (1987) & Breaker (1992) 

1 Purchase 1 Define problem 1 Define system 1 Knowledge 
a she l l ( c o n s t r a i n t s , o b j e c t i v e s iden t i f i c a t i o n 

goa l s , r o l e s , 2 Define subsystems a) Col lec t data 
p a r t i c i p a n t s . b) I d e n t i f y t a s k s . 
resources) concepts , and 

r e l a t i o n s r e l a t i o n s 
3 Create Cause Tables 3 Create Cause Tables 
4 Write knowledge- 2 Knowledge 

2 Conceptual ize engineer ing document model l ing 
a) Interview an a) Col lec t data 

2 Prototype exper t 5 Pareto a n a l y s i s 
u n t i l you 6 Build control flow b) Se lec t i n t e r -
know what b) Abst rac t model p r e t a t i o n model 
you want c h a r a c t e r - 7 Ver i fy knowledge- c) Define domain 

i s t i c s engineer ing document schema 
3 Write 8 Define s k i l l d) Build domain 

production parameters s t r u c t u r e s 
vers ion e) Assemble model vers ion e) Assemble model 
in another 3 Computer r e p r e s - 9 Code knowledge base f ) Val ida te model 
language e n t a t i o n g) D i f f e r e n t i a t e 

model 
4 Build prototype h) Construct model 

using a general bottom-up 
purpose tool 

5 Tes t , r e f i n e . 10 Es tab l i sh t e s t cases 
s p e c i a l i z e , & 
gene ra l i ze 11 Test & v a l i d a t e 
knowledge base 

Figure 1. Four normative processes for building a knowledge-based system 

extracting, structuring, and organizing knowledge f rom some source, usually 

h u m a n experts, so it can be used in a p rogram" typifies this latter view. 

F r o m his perspective on medical diagnosis systems, Politakis (1985) 

argues that they are developed in a process the first stage of which is 

"specification of the diagnostic conclusions and the findings", bu t that real 
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knowledge acquisition "consists of formulating the rules that relate the findings 

to the conclusions". 

The first three processes shown in Figure 1 on page 5 assume the 

acquisition of heuristic knowledge for analysis tasks. But some researchers, e.g., 

Breuker & Wielinga (1987) and Sykes (1987), argue that systems based on 

heuristic knowledge have the following shortcomings in their operation: 

• The explanations that they give of their reasoning are often shallow. 

• They tend to arrive abruptly at the limits of their knowledge. 

• The knowledge they contain is difficult to transfer to other problem-solving 

tasks. 

A growing number of researchers think that these difficulties can be resolved by 

modelling the physical system to which the knowledge relates. The KADS 

methodology assumes a model-based paradigm (see, e.g., Voss, 1990). 

Knowledge-acquisition tools, e.g., CAUSA (Dilger & Moiler, 1990), have also 

been used to acquire knowledge for such systems. 

Whether heuristic or model-based knowledge is used, it would clearly be 

useful to have more flexible methodologies, allowing development to be 

expedited by assigning increased resources, or allowing several tasks to proceed 

in parallel. The value of prototypes has long been recognised as a means of 

demonstrating design concepts and of visualising what an emerging product 

looks like. Weiss & Kulikowski (1984) recommend building a "prototype as 

soon as possible" because it provides something tangible around which 

knowledge acquisition can progress. Forsyth (1984, p 17) also argued for using 

an expert-system shell "as a prototyping tool till you know what you want". 

Rapid prototyping seems to have the potential for enabling builders of 

knowledge-based systems to break free from the constraints imposed by a serial 

methodology such as that of Buchanan et al (1983) or Weiss & Kulikowski 
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(1984). Rapid prototyping effectively repositions knowledge acquisition in a 

knowledge-based system building project, because stages after elicitation (i.e., 

representation and testing) can proceed apace in a cycle of elicit-build-test. 

With the growing emphasis on integrating knowledge-based systems with 

traditional systems (see, e.g., Freundlich, 1990), this approach is especially 

important when the knowledge-based system being built is part of a larger 

system. An early prototype of the knowledge-based system can be used to test 

the rest of the system or even to refine its design. 

Knowledge-acquisition tools can provide support for the rapid 

prototyping approach (see, e.g., Gutwald & Wallace, 1987; Shaw, 1988a and b; 

Boose, 1988; Gaines, 1988; Whipple, Davis, Kam, & Needham, 1989). 

Moreover, a knowledge-based system can be prototyped in pieces, which are 

later fitted together as a complex whole, thus allowing the possibility of 

expedited completion by concurrent development. According to (Boose & 

Bradshaw, 1987), the techniques embodied in AQUINAS "combine to make it a 

powerful testbed for rapidly prototyping portions of many kinds of complex 

knowledge bases". One insight to emerge from this is that tools like AQUINAS 

might not be very effective for tackling complex problems. 

However, rapid prototyping is not without its detractors: Neale (1987, p 

60) has cited criticisms by Breaker & Wielinga (1987 and 1983) that constantly 

referring the "emerging system to the expert for comments" is a waste of "the 

expert's valuable time". 

Large Amounts of Knowledge 

From as early as 1965, when DENDRAL was being developed, it had already 

started to become evident that large amounts of knowledge were required to 

build significant knowledge-based systems. According to Shirai & Tsujii (1985), 

DENDRAL has "a large number of rules for inferring the partial structure of a 

Chapter 1. The Knowledge Acquisition Problem 7 



substance" from the substance's mass spectra. Weizenbaum (1976) similarly 

describes MACSYMA as "an enormously large program for doing symbolic 

mathematical manipulations". 

According to Partridge (1986), "intelligent behaviour within the 

ill-defined empirical world ... is founded upon vast amounts of information". 

Future systems are expected to be even more knowledge-hungry than past and 

present ones. As Wilkins (1987) has noted, "autonomous computer systems of 

the future will need far more knowledge than humans can explicitly transfer". 

However, it is difficult to determine when the amount of knowledge in a 

knowledge base is optimal for its intended purpose. Wilkins (1987) has asserted 

that 

extant techniques for reasoning under uncertainty for expert systems 

lead to a sociopathic knowledge base ... [that is,] there exists a subset of 

the knowledge base that gives better performance than the original 

knowledge base. 

But if data is collected in a form that can be fed into an inductive or other 

learning process, a distillation can take place, thus reducing the sociopathy of 

the knowledge base. This distillation is discussed in Chapter 2, "Learning 

Without Case Records: a mapping of the repertory grid technique onto 

knowledge acquisition from examples" on page 26: a mapping of the repertory 

grid technique onto knowledge acquisition from examples": a mapping of the 

repertory grid technique onto knowledge acquisition from examples" on 

page 26. Indeed, some knowledge-acquisition methods seek to minimise the 

input to the learning process. This is appropriate where the data is not already 

available. 

Another approach to the problem of large amounts of knowledge is to 

avoid it if possible, by selecting appropriate domains that produce significant 
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payback from small amounts of knowledge. The validity of this approach is 

demonstrated by several small knowledge-based systems, built quickly, that 

have provided their users with considerable payback (Nicholson, 1988; 

Department of Trade and Industry, 1992a and 1992b). These small systems are 

often well structured problems which are the best candidates for 

knowledge-based systems, according to Partridge (1986), who asserts that 

if we take most of the vagaries and ill-structure of everyday life out of 

the picture we are left with realistic and serious potentially tractable ... 

grist of the expert system mill. 

Because large knowledge bases can be difficult to update, Hart (1986, p 

26) advises against building systems containing knowledge that is likely to 

change often. According to her, systems containing volatile knowledge "will 

need updating if [they are] to retain [their] expertise". Naylor (1983) argues 

that if the task to be modelled "can be reduced to a series of judgements ... you 

have a good chance of building an expert system to do it". 

Recognizing that the problem of knowledge acquisition becomes even 

more daunting as the scope of a potential domain expands, Partridge (1986) 

argues that "the success of expert systems rests largely on the very restricted 

and specialised nature of the domains in which they operate". 

Slow Process 

Knowledge acquisition is widely recognised to be an inherently slow process. 

Buchanan et al (1983) assert that "manual methods for acquiring strategic 

knowledge push the limits of human cognitive abilities". 

Some writers argue that the process is slow because it is not well 

understood. For example. Smith (1984) asserts that 
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while tools and methodologies have emerged to provide considerable aid 

in this activity, the process of eliciting, representing, and refining the 

knowledge utilized by the domain expert remains ill-defined and time 

consuming. 

Whether the remarks discussed above are valid or not, one reason that 

the process is slow is (see, e.g., Johnson-Laird, 1983; Anderson, 1982) that, in 

general, human experts are poor knowledge sources because they find it difficult 

to explain how they make their decisions. 

The difficulty in articulating the thought processes behind expert 

performance is often attributed to tacit knowledge. Tacit, or implicit, 

knowledge contrasts with explicit knowledge. Examples of explicit and tacit 

knowledge given by Nickerson (1977) are: 

Explicit Tacit 
0 2 + 4 = 6 . 0 The Miss iss ippi f lows downhill 
0 Whales are mammals. o J u l i u s Caesar had a mother. 

Tacit knowledge is not stored for the individual items to which it relates, 

but can be inferred or computed. Retrieval of tacit knowledge takes more time 

than that of explicit knowledge (Camp, Lachman, & Lachman, 1980), but, as 

discussed in Chapter 3, both are subject to conscious control. 

Anderson (1982) has offered a theory explaining why experts have 

difficulty communicating their expert knowledge. Anderson's ACT* (adaptive 

control of thought) theory about memory and expertise asserts that there are 

two forms in which people store knowledge: declarative and procedural. Both 

explicit and implicit knowledge of facts is declarative. A person with an 

understanding of a domain, but with no experience of applying the knowledge 

to tasks, is armed with only declarative knowledge. As the knowledge is 
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exercised repetitively in performing some task, a process of compilation takes 

place, creating a second version of the knowledge in a procedural form, which 

the expert cannot retrieve consciously. Findings of empirical studies (e.g., 

Lundell, 1988), are consistent with ACT* theory. 

Some knowledge acquisition methods take knowledge compilation into 

account by seeking to acquire the knowledge underlying expert performance 

without asking directly for it. While experts may have difficulty explaining how 

they perform their expert task, they are still good at actually performing the 

task in new (or even hypothetical) situations. Protocol analysis, task 

observations, and forward scenario simulation attempt to take advantage of 

these abilities. Kolodner (1983) argues that experts are also good at recounting 

previously handled cases. Both the repertory grid technique and knowledge 

acquisition from examples draw on these abilities. 

But according to Anjewierden (1987, p 29), "AI has very little to say 

about methods or techniques that could be used to alleviate [the 

knowledge-acquisition bottleneck]. 

Some writers (e.g., Neale, 1987) see this lack of effective techniques as 

caused by the fact that people who build knowledge-based systems do not 

spend enough time reflecting on their own methods, documenting these 

methods, and generally trying to develop insights into which methods work well 

under which circumstances. Neale has also indicted knowledge engineers for 

being too ready to accept explicit knowledge while ignoring tacit knowledge, 

which is difficult to access without the use of well developed techniques from 

psychology. On the other hand Anderson (1982) argues that the expert does 

not have conscious access to the knowledge that produces the skilled behaviour; 

and attempts by knowledge engineers to access the inaccessible may also 

explain the slowness of the process. 
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Other writers (e.g, Forsythe & Buchanan, 1989) argue that the process is 

slow because of the techniques, the tools, and even the people involved in 

knowledge acquisition. But knowledge-acquisition technology is still evolving; 

and some researchers feel that the labour-intensive process of knowledge 

engineering is unnatural and goes against the trends in computing (see, e.g., 

Shaw & Gaines, 1987b). They argue that the process can probably be made 

more efficient by creating tools capable of organising and analysing the 

information being obtained more efficiently than people can. 

Even so, Forsythe and Buchanan (1989, p 435) have criticised the CAKE 

approach as 

glossing over detailed questions of how to gather the material [in favour 

of a] focus on higher-level issues such as classifying information 

collected from the expert or insuring that this information is complete. 

Making Knowledge Acquisition Manageable 

Reitman Olson & Rueter (1987) have described seven knowledge-acquisition 

methods as direct and five as indirect (see Figure 2 on page 13). In general, 

the direct methods are approaches for obtaining information from a knowledge 

source whereas the indirect methods are techniques for analysing and organising 

the data obtained into forms that reduce the "representational mismatch" 

between knowledge source and knowledge base. 

Interviewing 

First among the direct methods listed by Reitman Olson are interviews. 

Essentially, the different kinds of interview are all conversations in which a 

knowledge engineer asks questions and a domain expert tries to answer them. 

Neale (1987) has listed fourteen types of interviews used for knowledge 

acquisition. As Figure 2 on page 13 also indicates, LaFrance (1987) has 
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Reitman & al (1987) Neale (1987) LaFrance (1987) 

DIRECT METHODS: 
0 In terviews -^Interview Types: 

0 E thnography— 
0 Teachback 
0 Goal d i s t i n c t i o n -
0 R e c l a s s i f i c a t i o n -
0 Domain divis ion— 
0 Laddered gr id 
0 Case e l i c i t a t i o n : 

- Re t rospec t ive case 
- C r i t i c a l i n c i d e n t -
- Forward scenar io— 

simulat ion 
Systematic l i n k i n g — 
St ruc tu r ing— 

0 Focusing 
0 I n t rospec t ion 
0 Twenty ques t ions-

0 Ques t ionnai res 
0 Task observat ion 
0 Protocol a n a l y s i s 
0 I n t e r r u p t i o n a n a l y s i s 
0 Drawing closed curves 
0 I n f e r e n t i a l flow a n a l y s i s 

INDIRECT METHODS: 
0 Multidimensional s ca l ing 
0 Hierarch ica l c l u s t e r i n g 
0 Weighted networks 
0 Ordered t r e e s from r e c a l l 
0 Repertory gr id 

Question Types: 
->o Grand tour 

*-o Cataloging 
c a t e g o r i e s 

->0 Ascer ta in ing 
a t t r i b u t e s 

#̂ 0 Determining 
in t e rconnec t ions 

0 Seeking advice 
0 Cross-checking 

Figure 2. Three perspectives on knowledge acquisition methods 

identified six types of questions that a knowledge engineer might ask, depending 

on the " fo rm of knowledge" being sought. 

Al though it might be expected that different types of questions would be 

asked in a single interview, some of the interview types listed by Neale (1987) 

can be shown to involve certain aims primarily and can therefore be linked to 

certain question types. These links are also shown in Figure 2. It is also 
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interesting to note that three of Neale's interview types are aimed at eliciting 

examples. These three interview types can all be used in knowledge acquisition 

from a minimal set of examples (KAMSE, see page 29), one of the two methods 

with which this research is chiefly concerned. 

Three of LaFrance's question types are involved in several 

knowledge-acquisition methods, including the repertory grid technique (see page 

32), the other method with which this research is mainly concerned. It should 

also be noted that although Reitman Olson classifies the repertory grid 

technique as an indirect method, it is a style of interviewing coupled with a 

method of analysis. 

Evidently, the developers of CAKE tools can choose from a wide range 

of techniques for elicitation and analysis of domain knowledge. Typically, these 

tools simply model the interaction used in a particular interview method 

combined with one or more techniques for analysing and organising the 

knowledge elicited. 

So far, none of these tools is universally applicable to all knowledge 

domains for which their use might be contemplated. As Clancey (1991) puts it, 

there is no "big switch" tool, which is one reason that comparative evaluations 

like Boose (1989) are useful. One of Boose's primary objectives seems to be to 

draw conclusions about which tools are suited to which application tasks. 

Of all the dimensions on which Boose compares the tools, the one to 

which he attaches foremost significance is the application task for which a tool 

is suited. This is a pragmatic choice, since a tool user would be primarily 

interested in finding a tool that can handle the problem for which its use is 

being contemplated. 

A prospective tool user will also want to know how easy a particular 

tool is to learn and use, whether it runs on the equipment available, and 

whether it delivers knowledge bases to an appropriate performance system. 
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Boose used seventeen dimensions to compare the 26 tools, and he presents 

scatter tables involving a few of these dimensions (domain dependence, 

application task, degree of automation, training needed, and life cycle support). 

Even so, Boose's primary concern seems to be classifying 

knowledge-acquisition tools according to the application tasks for which they 

are suited; and very few tools have been developed that are suitable for 

applications that do both analysis and synthesis. For example, no 

knowledge-acquisition tools for expert instruction systems have been reported 

(see, e.g, Tompsett, 1989); but it is clear that such tools are more difficult to 

build, because they have to handle a dimension of complexity not present in the 

modelling of simple decisions. They may also have been slow to appear 

because they have to embody two problem-solving methods: heuristic 

classification and heuristic construction (Clancey, 1986). 

One important test of any knowledge acquisition tool must be how well 

it enables its user to capture, record, and exploit domain knowledge. Whether 

one tool is more suitable than another for a given purpose has to be determined 

empirically. But AQUINAS is primarily a knowledge acquisition tool; its 

purpose is to elicit knowledge and create a knowledge base. If Boose's 

distinctions between the tools are accurate, the knowledge base generated might 

be useful, during domain definition, in advising on a suitable tool for the 

problem. 

Builders of knowledge-acquisition tools are therefore beginning to 

include components that assess the suitability of tool for domain. For instance, 

Kitto & Boose (1989) have modified the "dialog manager" in AQUINAS: by 

adding "the automated guidance facility [which] provides advice on strategies 

and tools based on application characteristics" (p 149). Stout et al (1988) have 

also changed SALT so that it now recognizes when a domain is not quite suited 

to itself A further step might be to generate a suitable tool, which can then be 
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used to elicit the knowledge required. PROTEGE (Musen, 1989) uses this 

approach. Yet another approach is taken by the ACKnowledge project (see, 

e.g., Shadbolt, 1990), which tries to integrate a number of different tools within 

the framework of a knowledge-based workbench. 

It appears that, to be really effective, such front ends and generators of 

knowledge-acquisition tools need to be based on the kind of information that 

Boose (1989) presents. It is therefore quite useful to try and place tools within 

some comparative framework that highlights their differences and similarities 

and gives some indication of which approaches or tools are most likely to be 

successful when applied to a given knowledge-acquisition situation. 

A Deluge of Words 

While using the methods discussed above may make the knowledge engineer 

more confident, and the domain expert more talkative, some of these methods, 

particularly protocol analysis and various types of interviewing, can generate a 

surfeit of words. One research focus therefore centres on obtaining knowledge 

from text. This section briefly reviews these methods. 

Protocol Analysis 

Verbal protocol analysis, or thinking aloud, (see, e.g., Ericsson & Simon, 1984; 

Hart, 1986; Neale, 1988) is a method that produces at least a transcript of the 

expert's protocol (what s/he claims to be paying attention to while performing 

the expert task). This protocol can be developed at the same time as the task is 

performed, or later when the videotape recordings are being viewed. KRITON 

(Diederich, Ruhmann & May, 1987), in addition to using other 

knowledge-acquisition methods, analyses verbal protocol transcripts, as 

discussed later in "Knowledge Acquisition from Text" on page 18. 

Natural-language processing does not have to be automatic, it can be 

done by careful analysis. But this analysis is likely to be more productive if the 
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relationships being found can be represented in the text stored in the computer. 

Hypertext has been used as a way of helping knowledge engineers analyse 

textual information. According to Storrs (1989), 

hypertext, in its simplest form, is a set of nodes connected together by 

undifferentiated links. Each node is an unstructured piece of text or 

graphics (or both) and each link is a uni-directional association between 

two nodes. 

These text nodes are viewed on a computer screen, and the reader can 

request any of the other nodes linked to the one being viewed. The reader thus 

makes his or her own non-linear path through the text. Use of hypertext to 

analyse a verbal protocol is not an automatic process. The knowledge engineer 

studies the protocol transcript, chunks it, and loads it into a hypertext system. 

S/he then creates links between concepts thought to be related, and makes 

annotations as s/he does the analysis. One of the KPT tools (Anjewierden, 

1987), the Protocol Editor (PED), is a hypertext editor that enables a 

knowledge engineer to analyse the transcripts of verbal protocol analysis 

sessions. 

Gaines & Linster (1990) used "the hypermedia tool HyperCard a general 

purpose knowledge acquisition tool for unstructured material in the form of text 

and diagrams". According to them, "the annotation and explanation captured 

in the hypermedia system were available as context sensitive help to the user of 

the expert system". 

Some writers (e.g., Storrs, 1989) argue that the product of protocol 

analysis in hypertext ought to be usable, not just as help text, but as a 

knowledge base in its own right. According to Storrs, hypertext and semantic 

networks resemble each other in important respects, with a richly 

interconnected hypertext document being equivalent to a semantic network. It 
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may therefore be possible to use hypertext in place of a semantic network, 

which presumably could be used in a knowledge-based system if it were 

surrounded by appropriate meta-knowledge. 

Knowledge Acquis i t ion f rom Text 

Some knowledge-acquisition methods generate large amounts of textual 

information. Even knowledge engineers who intend to use an interview method 

are advised to read existing texts on the domain before seeing the experts. Both 

kinds of text generally contain knowledge units which can be identified only by 

careful time-consuming analysis. The need for this analysis highlights a 

mismatch (identified by Buchanan et al, 1983) between the form in which an 

expert uses knowledge and the form in which it is required for building a 

knowledge base. One facet of this mismatch is discussed in Chapter 3. 

Another facet is that the expert may express domain knowledge in natural 

language while the knowledge-based system requires it as rules, frames, or some 

other formalism. This mismatch is seen by Gruber (1988) as "a fundamental 

problem in knowledge acquisition". 

Natural-language understanding, which has long promised to enable 

people to communicate with computers without using a formal language, is also 

seen as a way to find meaning in large bodies of text. Both these goals, if they 

can be achieved, would relieve much of the drudgery of acquiring knowledge 

from interview transcripts, thinking-aloud protocols, and other textual sources. 

Roskar (1988) argues that "the difficulty of transferring expert 

knowledge to the computer ultimately depends ... on the way in which the 

knowledge is represented within the computer". Buchanan et al (1983) see the 

"representation mismatch" as being overcome by two approaches: "learning by 

being told", and natural-language conversation with the expert combined with 

an "English-like" representation. The second approach was used by Tanyi & 
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Linkens (1989), who included in their expert-system shell "a module, KAM, 

which allows rules to be constructed in a pseudo natural language, FKRL". 

However, this approach still requires either the expert to express knowledge in 

this pseudo-English, or the knowledge engineer to translate the expert's natural 

language into the pseudo-English. 

Even pseudo-English rules may have to be translated into a more 

concise formalism (in the system described by Tanyi & Linkens, the rules 

expressed in FKRL are translated into PROLOG). This translation involves 

the same mechanisms used in natural-language processing (e.g., Sager's, 1981, 

"Linguistic String Project"), i.e., the following components: 

• Rules of grammar for the language 

• A parser to do syntactic analysis on sentences 

• A lexicon containing words in the language 

• "Procedures for transforming string parse trees" into a semantic 

representation. 

However, much of the work in this area seeks to determine the semantic 

content of individual sentences, rather than paragraphs or larger chunks of text. 

Various devices have been used to understand these larger chunks of specific 

kinds of text (e.g., Schank, 1975, used scripts to guide story understanding). 

Schank argued that humans reduce sentences heard or read into a 

semantic representation, which has two ways of enriching what is being said. 

One device involves making explicit the implicit concepts embodied in the words 

and sentences. The other involves inferring what has not actually been said, 

but what may have been hinted at in previous sentences or what would 

normally be expected. The usefulness of Schank's theory is in its potential for 

converting one representation to another via the intermediate semantic 

representation or semantic dependency graphs. Clearly, the target 
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representation can be either another natural language or a 

knowledge-representation formalism. 

But even tools without strong semantic capabilities can generally acquire 

some knowledge from text. Gettig (1989) describes a tool (KAM) that analyses 

textual data and extracts rules and facts, some of which may be suitable for 

direct use in knowledge bases. The text is scanned for certain words (e.g., if and 

when), which act as cues for the presence of condition/action pairs. Text in the 

vicinity of each cue is analysed more closely to try and isolate a rule. The 

analysis and extraction are guided by heuristics which the user can specify. 

This (and the fact that the system only partially generates some rules) means 

that the system is not completely automatic. 

Moreover, there is no guarantee that any rules will be extracted, those 

extracted may not be relevant, and some of them may contain either ambiguous 

pronouns, or nouns incorrectly inferred from pronouns. These problems, 

according to Gettig (1989), are being addressed. 

According to Rau, Jacobs, & Zernik (1989), storing text in a semantic 

representation (or "conceptual format") is unusual, but makes it easier to access 

text via natural language. They also assert that lexicons are not rich enough, 

i.e., "lack of extensive linguistic coverage is the major barrier to extracting 

useful information from large bodies of text". They therefore propose that 

natural-language processing systems should be tolerant to unknown words, and 

should "acquire lexical information automatically from the texts". Their 

SCISOR prototype information retrieval system, implements both 

recommendations. 

Channier & Fournier (1988) have pointed out problems with automatic 

processing of technical texts: 

• Scarcity of "general tools to recognize the constituents of the texts" 
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• Representing their contents to enable users to "modify and check them for 

consistency". 

The ACTES project of Channier & Fournier was aimed at extracting "rules for 

an expert system simulating ... processors responsible for managing ... alarms". 

The project also aimed at finding a formalism to define grammars, and an 

intermediate semantic representation of information gathered from processing 

texts. 

Reimer (1990) used a system called WIT, which does semantic analysis 

on technical texts, and "builds up representations of the concepts described in 

the text". Introductory material and textbooks are not used, because, Reimer 

argues, they are often out of date, and parsing mechanisms cannot yet cope 

with them. Reimer's system acquires knowledge of the terminology used in the 

domain, and proposes a hierarchy of concepts. This hierarchy is then 

restructured by "inductive generalization". This approach does, however, 

requires "small domain specific" knowledge before it can do any processing. If 

this approach (which is not based on any deep understanding of the text) 

works, it may speed text analysis in the early stages (domain orientation) of 

knowledge acquisition. 

Schmidt & Schmalhofer (1990) also point out that the rules found in 

textbooks may be inaccurate, incomplete, conflicting, or open to interpretation. 

They argue that these problems can be solved by "enriching" the knowledge 

acquired from text, by eliciting "records of solved cases" from a domain expert. 

Cogni t ive Mapp ing 

The methods discussed in the preceding sections elicit text-rich information. 

Some other methods elicit information rich in knowledge units rather than text; 

the data they elicit are readily transformed into knowledge bases. One of these 

methods is cognitive mapping, a by-product of the ideas of Kelly (1955). The 
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technique is used in operations research by consultants (also called facilitators) 

to help clients (also called problem owners) define their problem space (see, e.g., 

Klein & Cooper, 1982; Eden, Jones & Sims, 1984; Morecroft, 1988; Eden, 1988). 

The problem space is represented by "word-and-picture maps, algebraic 

'sentences', models and simulations" (Morecroft, 1988, p 316-317). These 

representations are used to indicate "relationships that are perceived to exist 

among attributes and/or concepts" in the problem space (Zhang, Chen & 

Bezdek, 1989, p 31). Eden, Jones & Sims (1984) developed a tool called COPE 

to store, manipulate, analyse, and display cognitive maps. COPE's analysis of 

the concepts and the relationships between them highlights clusters, hierarchies, 

and loops. Facilitators focus on loops in particular, because loops indicate 

"vicious circles" in the problem owner's thinking, which must be resolved if 

progress with the problem can be made. 

Morecroft (1988) argues that the fields of knowledge acquisition and 

cognitive mapping have enough in common to be able to influence each other's 

progress. In particular, knowledge acquisition may be able to contribute to 

cognitive mapping a "better [understanding of] how to elicit and reconstruct 

policymakers' broad business knowledge". 

Improvements in the technology used for cognitive mapping may also 

make it feasible to use the same maps and models, either as an operational or 

an intermediate representation for knowledge bases. Zhang et al (1989) have 

developed a tool called Pool2, which gathers knowledge of a problem space 

from multiple experts. If developed further, Pool2 could, Zhang et al argue, 

generate knowledge bases. 

The repertory grid technique and knowledge acquisition from a minimal 

set of examples are even more focused on knowledge units. These two methods 

are discussed in Chapter 2. 
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Escaping the Strait-Jacket 

But some researchers feel that the techniques embodied in many CAKE tools 

are too structured and therefore restrict the natural flow of ideas that can occur 

during knowledge acquisition. One product of this view is "sloppy modelling", 

which allows the user to take the initiative sometimes, and to give it back to the 

tool, when appropriate (Wrobel, 1988, p 461). 

This means that the user is not required to develop a complete and 

well-structured model beforehand in order to then transfer it into the 

machine. Instead, the modeling activity itself becomes part of the 

system-supported knowledge-acquisition process. 

According to Wrobel (1988, p 461), sloppy modelling "differs from those 

approaches [e.g. that of AQUINAS] in its emphasis on a cooperative 

mixed-initiative modeling process". 

The sloppy modeling paradigm has objectives identical to those of other 

knowledge-acquisition approaches. Indeed, a well designed (or really effective) 

CAKE tool ought to coax the knowledge out of the expert while interacting 

with him or her. 

Conclusions 

Building a knowledge-based system is constrained by the development cycle, the 

large amount of knowledge that must typically be elicited, and the slow speed 

inherent in the acquisition process itself These three factors can probably be 

addressed by fashioning methodologies that reposition acquisition relative to 

other tasks, by trying to minimise the amount of knowledge needed to construct 

useful systems, and by streamlining the acquisition process itself 

This may involve subdividing the task into manageable units, using an 

iterative development cycle, and applying resources in parallel. In addition, 
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problems have to be selected which can provide significant payback from small 

amounts of knowledge. These systems should be developed with tools that can 

recognise when enough knowledge has been obtained, thus minimising the 

"sociopathy" problem. Where the methods used generate plenty of textual 

material, it is useful to find efficient ways of processing the text. Another 

approach is to use other methods that generate less text, and more knowledge 

knowledge units that are directly usable in knowledge bases. Two such methods 

are examined in Chapter 2, "Learning Without Case Records: a mapping of the 

repertory grid technique onto knowledge acquisition from examples." 

Tools for knowledge acquisition facilitate these approaches by modelling 

techniques for eliciting, analysing, and organising knowledge. These techniques 

include different styles of interviews, knowledge acquisition from text, and 

learning from examples. Few of these tools have actually reached the market, 

so a person needing a knowledge-acquisition tool today may still have to build 

one. What the existing tools do is to demonstrate a range of approaches to the 

problem of knowledge acquisition in various domains. A more useful objective 

than choosing among tools might therefore be simply choosing among 

approaches, methods, and techniques. 

With so many approaches to choose from, there appears to be a need 

for information to enable intelligent choice among them for any given problem 

domain. Because different techniques may be suited to different circumstances, 

builders of knowledge-acquisition tools have begun to include in them front 

ends that assess the suitability of the tool for the intended domain. 

However, when there is a choice between two methods for a given 

domain, little evidence exists to favour the choice of one approach over 

another. It is evident that there is a need for the development of a sound 

theoretical basis for matching methods to situations. Such a theory would have 

to stand up to empirical testing; and the empirical data can help shape and 
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refine the theory. There is little doubt that such a theory will develop over 

time, as individual pieces of research fill in parts of the overall jigsaw. 

One of the current limitations of most of these approaches is that they 

can be used only to build systems for analysis tasks, while there are other types 

of tasks for which the elicitation problem is no less significant. The knowledge 

required for design and tutoring systems, for example, tends to be more 

complex. But complex knowledge can often be subdivided into a set of related 

simple decisions. 
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Chapter 2. Learning Without Case Records: a 
mapping of the repertory gr id technique onto 
knowledge acquisit ion f rom examples 

Abstract 

In contrast with the text-intensive methods discussed in Chapter 1, building a 

knowledge-based system can sometimes be expedited by applying some machine 

learning process to a set of historical cases. In some problem domains, 

however, such cases may not be available. In addition, the classes, attribute 

descriptors, and attribute values that comprise the partial domain model in 

terms of which cases are expressed may also not be available explicitly. In 

these circumstances, the repertory grid technique offers a single process for both 

building a partial domain model and generating a set of training examples. 

Alternatively, a minimal set of examples can be elicited directly. This chapter^ 

explores the relationship between knowledge acquisition from a minimal set of 

examples and the repertory grid technique, and discusses their shared need for 

machine learning. Fragments of business-strategy knowledge are used to 

illustrate the discussion. 

Introduction 

The repertory grid technique and KAMSE both elicit information that is rich in 

knowledge units rather than text. Knowledge units elicited by either method 

can be used to build knowledge bases. The knowledge units elicited by one 

method can also be mapped to those elicited by the other method. Moreover, 

these knowledge units can be organised as input to different kinds of learning 

^ A paper based on this chapter has been published as Nicholson (1992a). 

Chapter 2. Learning Without Case Records 2 6 



processes. These processes are discussed, with special emphasis on machine 

induction, the usual learning method used with the repertory grid technique. 

This chapter explores KAMSE and the repertory grid technique, 

showing the similarities between the two approaches, the equivalence of the 

information elicited, and the shared need to distill this information into a 

representation to support inference. 

Eliciting Examples 

Consider the five examples shown in Figure 3 (the names of the organisations 

are disguised) of cases in which a consultant in business strategy advised his 

clients on the best way to implement their product or market development 

strategy. These cases are expressed in terms of three attributes: cost of entry 

(sometimes called startup cost), payback period (or the importance of early 

return), and risk of failure. Three classes are present in the training set: 

internal development, joint venture, and acquisition. 

Entry Payback S t ra tegy 
Set Co. Cost Period Ri sk Implementation 

1 Ace low shor t low In te rna l development 
BU low shor t high J o i n t venture 
Cha high long high J o i n t venture 
Day high shor t low In te rna l development 
EZ low long high Acqui s i t i o n 

Figure 3. A training set (set 1) for nmachine learning. 

The set of examples is therefore expressed in terms of a partial domain 

model, as shown in Figure 4 on page 28. This model consists of familiar 

entities (Clancey, 1986), but also relations which are usually assumed rather 

than stated explicitly. Attributes describe an example, which belongs to a class. 
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The examples help to establish a mapping between patterns of attribute values 

on the one hand, and classes on the other. 

Classes 

In te rna l development 
J o i n t venture 
Acquis i t ion 

At t r i butes 

I d e n t i f i e r s Values 

Entry cos t Low, High 
Payback period Shor t , Long 
Risk Low, High 

Examples 

belong to are descr ibed by 

Figure 4. The partial domain model implicit in the examples 

It may be argued that the induction algorithms do not require the 

partial domain model to be explicit; they require only that all cases be expressed 

in terms of the same model. Where historical records of cases are available with 

this information, it is simply a matter of distilling them into a knowledge 

representation, as discussed in "Deriving Heuristic Knowledge" on page 40. 

In situations where such records are not available, one possible 

approach is to set up a mechanism for recording historical case data and then 

wait for enough data to be collected. Roskar (1988) set up a database to collect 

data about medical cases. According to him, this approach is "especially 

suitable for a domain in which the relative power of different pieces of 

diagnostic information has not yet been identified". Although this approach 

has the disadvantage of taking a long time, it has the advantage of capturing 

information about the expected frequency of each class. 

However, if time is of the essence, or collecting data in this way is 

inconvenient or infeasible, retrospective case description, critical incident, and 
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forward scenario simulation (all concisely described in Neale, 1988) are 

interviewing techniques that can be used to elicit data in the form of examples. 

Lundell (1988) lists two of the kinds of examples that can be elicited: prototypes 

and exemplars. Exemplars, which can be elicited by forward scenario 

simulation, are random examples. A large number of examples is not 

necessarily required. For each class, a typical example (a prototype) and a few 

atypical ones (exemplars) can provide a high degree of coverage. This view 

underlies knowledge acquisition from a minimal set of examples (KAMSE), 

which is described further on page 72. In the domain being discussed, an 

exemplar might be elicited by the question: 

Suppose a company was facing a high cost of entry into its intended 

development area, and payback was expected to take a long time, but 

the risk of failure was low, what would you advise? 

Prototypes, which can be elicited by the retrospective case description 

technique, are examples representative of a class — Lundell refers to them as 

"the central tendency" of cases seen in the past. A prototype might be elicited 

by the question: 

Give an example of a situation in which you would advise internal 

development. 

But these methods all presuppose the existence of a partial domain 

model. Gruber (1988, p 583) recognises the necessity for a partial domain 

model, and asserts that 

for any application of machine learning to knowledge acquisition, ... 

somebody has to set up the learning problem for the induction 

algorithm: designing a representation for examples and generalizations, 

Chapter 2. Learning Without Case Records 2 9 



defining all of the terms in those languages, encoding a set of training 

examples in the representation, and providing background knowledge ... 

that guides the induction algorithm to choose the right generalizations 

from the potentially infinite set of possibilities. This can require a 

significant knowledge engineering effort. 

Morik (1987, p 93) also distinguishes between learning from cases and 

the domain theory in terms of which the cases are expressed. She sees "the 

construction of a domain theory as the first phase of the knowledge-acquisition 

process". Where this domain theory (or partial domain model) has not been 

made explicit, it must be developed before any meaningful gathering of 

examples can take place. 

Of course, the attributes, their values, and the classes can be elicited as 

by-products of the recall and description of cases, as the following example 

illustrates. A knowledge engineer (KE) talks with an experienced business 

strategy consultant (Expert) about the same decisions discussed above. 

KE: "Can you remember an actual specific case you worked on involving 

this decision? How did you decide which method of implementation to 

recommend?" 

Expert: "Yes. At Ace the cost of entering the proposed industry was 

going to be low, and the payback period was quite short. So we advised them 

to pursue their product development strategy by internal development." 

The expert has thus recounted a case in terms of two attributes and a 

class. At this early stage, the model consists of a single class and two attributes 

with two possible values each. The attribute "payback period", for example, 

can so far have a value of either "short" or "some other value". This 

information may be viewed as the beginnings of a domain model. But the 

question arises as to what other values each of the two attributes can assume. 
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because it is quite likely that the two attributes will not be sufficient to describe 

all cases of interest. 

The knowledge engineer tries to expand the model by eliciting an 

exemplar. 

KE: "Can you recall another case in which the cost of entry was low, 

and the payback period was short, but you made a different recommendation?" 

Expert; "In BU's case, the cost of entry was also low and the payback 

period was reasonably short, but we recommended a joint venture because the 

risk of failure was quite high." 

This case introduces a third attribute and a second class to add to the 

partial domain model. 

The process discussed above is an unstructured one in which lists of 

classes, attributes, attribute values, and cases are being built up. In a more 

structured approach, the expert would be asked to list all the possible classes 

s/he could think of When this list is complete, the expert would be asked to 

state the attributes or factors considered in making the decision and the possible 

values of each attribute. With this partial domain model in place, the expert 

can then be asked to recount cases that exemplify each class. 

Any knowledge acquisition tool that uses this approach can probably 

enhance its efficacy (see page 82) by checking for conflicts (two cases with 

identical attribute values but different class) and for missing cases (classes for 

which there are no cases). 

Some people find it necessary to produce a case for every possible 

combination of attribute values. Except where there are many classes, this kind 

of case-based approach is tedious. According to McClanahan & Luce (1988, p 

112), 
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If there are many values for each factor [attribute], the system can 

represent very fine distinctions. On the other hand, the number of 

examples increases dramatically with the number of alternative values 

per factor, as with the number of factors .... Even four factors, with 

four alternatives each, will require 4x4x4x4 or 256 examples. 

In practice, these numbers are likely to be reducible if don't-care attribute 

values are catered for. 

While cases per se can be used as the basis for inference (see, e.g.. Bain, 

1986) in a knowledge-based system, they are usually distilled into a 

representation (rules, a decision tree, or an artificial neural network) capable of 

supporting inferences about new cases. Machine induction, which is a way of 

distilling examples into rules, is discussed in "Deriving Heuristic Knowledge" on 

page 40. When a sufficiently comprehensive set of cases has been recorded, it 

can be processed by an induction algorithm or by any other process of learning 

from examples (e.g., a neural network or a genetic algorithm). The resulting 

knowledge can then be deployed in a performance system for validation, 

refinement, and consultation. 

Another method of acquiring the same knowledge is the repertory grid 

technique described in the next section. 

The Repertory Grid Technique 

Although the repertory grid technique does not appear to be widely used by 

knowledge engineers working without CAKE tools (see, e.g. Nicholson, 1988), it 

has become a popular technique in the tools (see, e.g.. Boose, 1985; Boose & 

Bradshaw, 1987; Shaw & Gaines, 1987; Garg-Janardan & Salvendy, 1988). 

Seven of the 26 tools compared in Boose (1989) use it. 

The repertory grid technique, which was developed by Kelly (1955; see 

also Shaw & Thomas, 1978; Bradshaw & Boose, 1990) can be used for eliciting 
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the constructs that an expert uses in making decisions. Kelly (1955) used the 

technique to access the inner worlds of his patients. These inner worlds are 

modelled by multidimensional spaces in which each orthogonal axis represents a 

personal construct of the patient. Concepts, things, and people important to 

the patient are all located in that space, which is made explicit by the 

interviewing strategy and the grid used to analyse and structure the information 

being uncovered. 

This same set of techniques has been employed in knowledge acquisition 

for knowledge-based systems (see, e.g.. Hart, 1986). In this context, Hart 

describes the grid as 

a representation of the expert's view of a particular problem. A grid is 

composed of.. . elements [and] constructs ... bipolar characteristics 

which each element has to some degree. 

One early program to assist in repertory-grid analysis was Mildred 

Shaw's (1979) PEGASUS. She did not, however, use the elicited knowledge to 

build knowledge-based systems. Instead she used the grids to study agreement 

and understanding among individuals on a subject about which they shared 

knowledge. Later she did become interested in using grid techniques to acquire 

knowledge for knowledge-based systems (see, e.g., Shaw, 1981). As Boose 

(1988) has explained, "distinctions captured in grids can be converted to other 

representations such as production rules, fuzzy sets, or networks of frames". 

Another tool embodying the repertory grid technique is AQUINAS 

(Boose & Bradshaw, 1987), which attempts to enable one or more domain 

experts to bypass the knowledge engineer, and use the tool to elicit their own 

knowledge. Using the repertory grid that it elicits, AQUINAS can generate 

knowledge bases in different formats suitable for use in some expert-system 

shells (e.g., S.l, KEE, EMYCIN). 
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An element E, can be identical to a class from knowledge acquisition 

from examples. Alternatively, it can be equivalent to an example, allowing the 

possibility of multiple elements per class. 

A construct Cj can be equivalent to an attribute identifier in knowledge 

acquisition from examples. Where constructs are grouped in named clusters, 

the constructs are equivalent to attribute values. 

A single construct is equivalent to a single attribute using the visible 

pole as the descriptor, and yes and no as the values. For instance: 

Construct Attribute 
Green / Not green ===> Green 

- no 

A related set of constructs can often be equivalent to a single multivalued 

attribute. For example: 

Constructs Attribute 
Green / Not green ===> Colour 
Amber / Not amber - green 
Red / Not red - amber 

- red 

A user of the repertory grid technique starts by listing all the elements as 

in knowledge acquisition from examples. The user then employs a style of 

questioning, which Kelly called "the repertory test", and which is often referred 

to nowadays as triadic elicitation. The repertory test involves repeatedly going 

through the following steps (which can end when all elements are distinguished, 

by their ratings, from all other elements): 

• Select three elements (perhaps, but not necessarily, at random). 

• Ask which two are similar and different from the third. 

• Ask for the construct Cj that makes two elements similar while different 

from the third. 

• Ask for the opposite of Cj that characterises the dissimilar element. 
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• Ask for all other elements to be rated as fitting Cj, its opposite, or neither. 

While following this procedure, a knowledge engineer gradually builds 

up a list of constructs and a set of ratings within a grid. But this grid can also 

be viewed as a list of prototypes, one for each element. 

When Kelly used the technique he allowed only for entirely bipolar 

constructs. Every element E, was rated against every construct Cj to assign in 

effect a value of 0 or 1 to the rating Rjj. More recently, people have used rating 

scales with an odd number of points (e.g., 1 to 5 ,1 to 3, or even -2 to +2) with 

the central value indicating neither pole or either pole (or don't care). The 

rating scale is sometimes interpreted as a probability distribution. For instance, 

on the 5-point rating scale that AQUINAS uses. Boose (1989) appears to 

interpret ratings of 2 and 4 respectively as 40/60 and 60/40 distributions. 

Under the repertory grid technique, the business-strategy expert might 

be asked; "Which of the following three situations is different from the other 

two — internal development is advised, joint venture is advised, and acquisition 

is advised?" 

The expert selects internal development, and is then asked: 

What makes indications for joint venture similar to those for acquisition 

and different from those for internal development? 

The expert says: "low risk of failure". This information is used to create 

an attribute with two possible values: "yes" and "no". Also created are three 

cases expressed in terms of the only attribute elicited so far. But all classes are 

not yet distinguishable from all others. Indeed, two of these cases conflict; so 

the same questioning is repeated with the same triad (since there are only three 

elements in this grid). 
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Herein lies one weakness of the repertory grid technique. Where the 

number of elements is small enough, triads cannot be found. Where there are 

only three elements, some tools will simply not embark on the repertory test 

(Garg-Janardan & Salvendy, 1988). Others use dyads to try and augment the 

list of elements while eliciting constructs (Boose, 1985). 

One reason for the small number of elements in the domain discussed 

above is that classes are being used as elements. When this is done, only 

knowledge about prototypes is elicited. It is therefore likely that only three 

examples will be elicited, instead of the five shown in the previous section. A 

safer approach is to use examples rather than classes as elements. Later the 

elements can be clustered into class groupings. Applied in the domain being 

discussed, this approach increases the number of elements from three to at least 

five — and perhaps more, if the expert can think of other cases. Indeed, using 

cases as elements helps handle awkward disjunctive relationships, because each 

variation from the typical can be introduced as a separate element. 

The repertory test asks for similarities and differences only to elicit 

distinctions between the elements in the grid. Once enough of the problem 

space has been captured to be able to distinguish every element from every 

other, it is unnecessary to elicit any further constructs. Indeed, there is no need 

to present any triad in which all three elements are already distinguished from 

each other. 

For this reason, the repertory test can be optimised if constant attention 

is paid to these conditions. They will indicate which triads need not be 

presented and when to end the repertory test. But restricting the composition 

of triads could limit the knowledge acquired. This is because further 

distinctions between already distinguished elements could lead to ratings that 

distinguish between other elements not in the triad. 
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The repertory grid technique, which has been the basis for several 

knowledge-acquisition tools - e.g., AQUINAS, ETS, FMS-Aid, KITTEN, 

KRITON, KSSO (Gaines, 1987), and PLANET (Gaines & Shaw, 1986) - does 

not naturally accommodate disjunctive relationships between constructs. Yet 

such relationships occur in some domains. For example, in one of the word 

domains discussed on page 134, a compound verb may be formed by an AfV 

(affix + verb) or a PV (preposition + verb) combination (Selkirk, 1983), but 

not both at once. The kind of disjunctive relationship among constructs can be 

handled by having multiple elements of the same class and by catering for 

clusters of elements in the grid. So, in the example just given, we might be able 

to say that xV is a compound verb, and further that x= Af is one type of 

compound verb while x — P is another. 

It is clear that the list of elements is crucial; and the questions asked to 

elicit these should be designed carefully to obtain both elements that are typical 

of a class, and those that are atypical. In addition to asking, as AQUINAS 

might, "list all the strategy implementations you can think of, one to a line", 

further questions are necessary. AQUINAS' question elicits the response "joint 

venture, internal development, and acquisition" — classes as elements. It would 

be useful to pose a further set of questions for each class so as to elicit the 

name of a typical case, and the names of other cases that differ from the typical 

one and from each other. 

A repertory grid tool may also have facilities for displaying or printing 

scatter tables, and presenting various relationships that exist in a grid. Such 

facilities help to communicate the contents of a grid, and their implications. 

Several of these facilities are demonstrated in Boose (1989), which uses them, 

rather than statistical tables and graphs, to present the results of a comparative 

evaluation of 26 knowledge-acquisition tools. Boose's comparison conveys 

much more information about AQUINAS itself than any of the other tools 
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being compared, because AQUINAS is used as the vehicle for presenting the 

data. 

So many scatter tables are typically possible, that there is a danger of 

presenting too much information, unless they are used selectively. AQUINAS 

appears to have overwhelmed Boose with data, and he seems to feel compelled 

to give his readers a glimpse of it without fully explaining or discussing what he 

presents. These data include the grid itself, scatter tables of one construct 

against another (a plane in the multi-dimensional space), and an implication 

graph. These different presentations do not in themselves identify 

inconsistencies in a grid, but may provide the information for the meticulous 

analyst to find inconsistencies. Indeed, his early presentation (p 5) of KNACK, 

OPAL, and SALT as using heuristic construction methods and being suited to 

synthesis applications seems inconsistent with his later presentation of both 

KNACK and OPAL under diagnosis tasks in a scatter table. 

There are limitations in AQUINAS' ability to present hierarchies of 

constructs in scatter tables. For instance, the application tasks that Boose uses 

may be viewed as the hierarchy shown in Figure 5. However, the AQUINAS 

scatter table involving application tasks shows a flat scale with eight points. 

Applicat ion task 

I— C l a s s i f i c a t i o n 
Analysis '— Diagnosis 

Synthes is Conf igurat ion 
Scheduling 
Design 

Figure 5. Boose's application tasks 

AQUINAS thus gives no indication of the relationship between diagnosis and 

analysis, or between design and synthesis. However, these shortcomings can 

probably be overcome by users highly skilled in interpreting the tool's output. 
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But some writers question the worth of the repertory grid technique. 

According to Anjewierden (1987, p 31), "the weakness of AQUINAS is the use 

of [a] particular knowledge elicitation technique ('rating grids'), which is 

thought to be insufficient for general KBS development". 

Analysis of the g r id 

When the analysis of the grid is left to be done after the repertory test (rather 

than during it), a batch job is in eflect created for which the user must wait. In 

addition, when two constructs are found to be parallel, it is difficult to decide 

which one to delete at that late stage. It would be much more straightforward 

to look for a parallel construct immediately after rating. If a parallel construct 

is found, the similarity can simply be pointed out, and the user allowed to select 

one of the following actions; 

• Introduce a new (or existing) element that would be rated differently on the 

two constructs. 

• Rerate on one of the constructs. 

• Leave the two constructs as they are. 

• Discard one of the two constructs; one will be discarded later by machine 

induction anyway. 

Ongoing grid analysis to determine when to end the repertory test does 

not always work well. One problem is that random triads may have a low 

probability of containing the two elements that are still indistinguishable (what 

Gammack, 1987, calls a "confused pair"). As discussed above, the triads can be 

restricted so that they contain these interesting elements. Or the tool could 

gauge when no further progress is being made by the repertory test. At that 

point, the tool could enter dyadic elicitation and show the confused pairs. 
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It is also during analysis of the grid that clusters of elements can be 

proposed and confirmed. Constructs can be treated in a similar way. 

Boose (1988) has explained that "distinctions captured in grids can be 

converted to other representations such as production rules, fuzzy sets, or 

networks of frames". The next section discusses this conversion, which is in 

many ways identical to the transformation from cases to a knowledge 

representation. 

The completed repertory grid is used to generate cases, which are then 

fed through a learning process (usually machine induction). 

Deriving Heuristic Knowledge 

Whether knowledge acquisition from examples or the repertory grid technique 

has been used to build up the partial domain model and gather a set of 

examples, these examples need to be reduced to a decision model which can be 

used for inference on new cases. This reduction is done by passing the 

examples through a machine-learning process that detects regularities in the 

data. 

In general, machine learning starts out with a set of examples (the 

training set) and seeks to distill them into knowledge that can be used to 

diagnose cases outside the training set. 

Machine learning, according to Mitchell, Carbonell & Michalski (1986), 

involves the study and development of computational models of learning 

processes. A major goal of research in this field is to build computers 

capable of improving their performance with practice and of acquiring 

knowledge on their own. 

Research in machine learning has led to different approaches, including 

incremental learning, explanation-based learning, inductive or similarity-based 
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learning, neural networks, and genetic algorithms. These approaches are seen 

as essential by some writers (e.g., Wilkins, 1987), who have argued that the 

human-mediated methods described in Chapter 1 are not capable of generating 

the kinds of large knowledge bases likely to be required in the future. 

According to Wilkins, "this requires that computers learn independently". 

Incremental Learning 

Crawford (1989) argues that when machine induction (see page 46) is used, new 

examples are accommodated by the "brute force method" of adding them to the 

existing training set, and rerunning the induction algorithm. Matwin & 

Oppacher (1988) also argue that "relearning from scratch could be 

cumbersome" where a large set of training examples is involved. This viewpoint 

concludes that, while learning systems should "be able to learn from scratch", 

they should also be able to learn incrementally. 

The solution provided by Crawford (1989) is to extend the CART 

induction algorithm to include "incremental learning., in which newly acquired 

examples can be used to update an existing tree". The training set still has to 

be retained, because a new example may cause a part of the existing tree to be 

"pruned away and the cases ... repartitioned". 

Matwin's solution involves a tool called LEW, which acquires 

knowledge by parsing "cues" (question-solution pairs), and relating them to 

previously stored generalisations. Negative cues are used to specialise the 

knowledge, while positive ones are used to generalise. LEW, which uses 

concept clustering to "combine aspects of learning from examples and learning 

by analogy" (Matwin, Oppacher & Constant, 1989; Constant, Matwin, & 

Oppacher, 1988), can also be used for planning problems. The tool breaks such 

problems (e.g., the towers of Hanoi) into a set of simple problems each of 

which can be concentrated on, in isolation from the remainder. 
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Berwick's (1985) system for the acquisition (from example sentences) of 

knowledge about how to parse (syntactic knowledge) used an incremental 

learning approach. Incremental learning is also used in the 

knowledge-acquisition component of VIE LANG (a German-language dialogue 

system). According to Buchberger, Zsolnai, & Trost (1989), the system 

"incrementally augments its knowledge based on a sound basic repertoire". 

Explanat ion-Based Learning 

Explanation-based learning (EBL, see Mitchell, Keller, & Kedar-Cabelli, 1986) 

is a method of refining an existing knowledge base, rather than a way of 

building one from scratch. An EBL system starts with a knowledge base, also 

referred to as a complete domain theory. A single example is then presented to 

the system, which uses a theorem prover to build a deductive proof tree for the 

example. This proof tree shows why the "example is a member of a concept 

class" (Whitehall, 1990). The EBL system then generalises the proof tree (e.g., 

by changing constants into variables). 

Genetic A lgor i thms 

Another approach to creating knowledge bases from examples is by using a set 

of learning programs called genetic algorithms. Genetic algorithms, which use 

processes analogous to those in Darwinian evolution, were developed by 

Holland (1975, see also Smith, 1980). 

The user first describes the form of the examples to be fed into the 

process. This description specifies the target expression (or class field) and 

where it is found in the examples. The attributes, and their position in the 

examples, are also described. A set of examples is then fed into the process, 

which uses them to generate (randomly, according to Forsyth, 1984b) a 

tentative set of rules. These rules are all expressed as strings of equal length 

(see, e.g., Yoneda, Minagawa, & Kakazu, 1992). 
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The next step is the essence of genetic algorithms: the accuracy of each 

rule is determined by applying it to the examples. Inaccurate rules are 

discarded, and accurate ones survive but are changed by genetic operators. 

These genetic operators change rules in three ways: crossover, mutation, and 

inversion. Crossover operates on two rules (character strings) at a time to 

produce "descendants [from] a kind of mating"; mutation is "a random 

transcription error", and inversion is "an internal crossover with reordering" 

(Forsyth, 1984b). In one iteration, or generation, all the rules are evaluated and 

either discarded or modified. The process is repeated for a number of 

generations specified by the user, or until convergence is achieved. 

Typically, genetic algorithms require a large number of generations, and 

hence computer time, to reach convergence. 

Art i f ic ia l Neural Networks 

Rather than generating rules or decision trees, neural networks simulate the 

physiology of arrays of nerve cells and thereby learning from examples. 

Forsyth (1984b) has asserted that the early researchers in the field had the 

dream of 

building a richly interconnected system of simulated neurons [which] 

could start off knowing nothing, be subjected to a training program ... 

and end up doing whatever its inventor wanted. 

Rosenblatt's perceptron is only the best known of these early models of nerve 

cells. Rosenblatt (1958, pp 387-405) describes the perceptron as: 

a hypothetical nervous system, or machine, ... designed to illustrate some 

of the fundamental properties of intelligent systems in general, without 

becoming too deeply enmeshed in the special, and frequently unknown, 
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conditions which hold for particular biological organisms .... [These 

systems] can learn to associate specific responses to specific stimuli. 

According to Bischel & Seitz (1989), "most applications of neural networks are 

classification problems". When classifying, a neural network takes as its input 

a number of binary-valued features of the item to be classified. The binary 

pattern is propagated through the network, and arrives transformed at the 

output ports, which indicate the class of the item. The transformation that the 

input undergoes as it passes through the network is brought about by the 

attenuation characteristics developed during training. 

Rosenblatt's contemporaries (Farley & Clark, 1954) also built a model 

that could store knowledge in the links between its nodes, and thus learn to 

distinguish patterns of input. In the model of Farley and Clark, a neuron is 

represented as a simple organism with certain properties discussed briefly below. 

In the network, any neuron can be connected to any other neuron, but 

in general is not connected to every other neuron. Farley & Clark define a 

connectivity ratio, K, as the probability that any given node will be connected 

to any other. With K = 0.4, for example, any node may in the extremes be 

connected either to all others or to no others, but on the average will be 

connected at random to only 0.4 of the other nodes. 

Normally, the weights cormection start out with random values; but 

Rada (1984) used a scheme based on the perceptron for refining knowledge. 

The weights do not start at random values; instead they are specified (or 

estimated) by domain experts). Refinement occurs as cases, whether for 

training or validation, are fed through. During learning the neural net is given 

feedback as to the correctness of its classifications. Where it finds that it has 

classified an object incorrectly, it makes adjustments to its internal 

characteristics so as to improve its performance. 
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According to Forsyth (1984b), Minsky & Papert (1969) proved that 

perceptrons "could be taught to recognise patterns, but only a limited class of 

patterns". After Minsky & Papert (1969) discredited the neural network 

approach as having serious limitations, the ideas were abandoned for several 

years until recently, when advances in computer technology have produced 

processors capable of implementing larger and more complex neural networks. 

But Minsky & Papert (1988) have reaffirmed their reservations about the entire 

connectionist approach. 

There are now several neural-network models, including single-layer and 

multi-layer perceptrons (see, e.g., Lippmann, 1987). Several neural network 

software packages are on the market and applications are being developed for 

production use. Applications such as speech recognition, robot vision, 

diagnosis of lower back pain, mortgage underwriting decisions, stock price 

predictions, bond rating, signature verification, handwriting recognition for 

input to computers, and the grading of plywood have been reported. 

But there are still problems with neural networks. According to Bischel 

& Seitz (1989), "an unfortunate property of most neural networks is the large 

number of training patterns necessary for the teaching". This does not 

necessarily require that a large training set be available. A small training set 

can be used repeatedly until the network stops learning anything new. But, as 

Bischel & Seitz (1989) point out, "this implies that the training phase is very 

computation-intensive". 

However, this may not be very important. Buchanan et al (1983, p 158) 

have pointed out that intensive use of computation resources is often an 

acceptable price to pay for reducing the amount of work that knowledge 

engineers have to do. 
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Machine induct ion 

Unlike EBL, similarity-based learning does not require the existence of a 

knowledge base, rather it generates one by finding regularities in a set of 

examples. Machine induction, which originated with the concept-learning 

system of Hunt, Marin, & Stone (1966), is a form of similarity-based learning 

which involves analysing a set of examples to discover relationships between 

classes and patterns of attribute values. Like the direct process of interviewing, 

machine induction is also widely used is used in CAKE tools. Sometimes it is 

used to distill the knowledge obtained from an interview method into a 

compact, efficient, representation to support inference (see Chapter 2), 

Michalski & Chilausky (1980) used machine induction to generate a 

knowledge base for diagnosing soybean diseases. According to Buchanan et al 

(1983), the knowledge base's diagnosis did not coincide with that of the expert 

in 100% of cases. However, the knowledge base was much more accurate than 

one made up of rules elicited directly from the expert. 

But, as these and other writers (e.g., Gruber, 1988) have demonstrated, 

before relationships can be induced, the classes and the attributes (often called a 

partial domain model) have to be elicited. These attributes and classes must, in 

general, first be elicited from the domain expert or from other sources. As 

Buchanan et al (1983) put it, "finding meaningful, causal associations in a large 

data base requires considerable basic knowledge of the domain". Gruber (1988, 

p 583) argues that creating a partial domain model "can require a significant 

knowledge engineering effort when the task is more complicated than simple 

classification". 

A few tools, e.g., KRITON (Diederich, Ruhmann & May, 1987), 

therefore include both the repertory grid technique for eliciting the required 

data, and an induction algorithm to distill the data into a compact, efficient, set 

of rules. 
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In addition to the carefully selected examples from which the rules are 

induced, a separate set of examples is generally required to validate the induced 

rules. Michalski and Chilausky (1980) used some three hundred examples for 

induction and a similar number of other examples to validate their induced 

knowledge base. Thus, gathering the examples, and expressing them in terms of 

attribute values and classes, can be an onerous prerequisite to induction. 

Some writers (e.g., McClanahan & Luce, 1988) argue that every possible 

combination of attribute values should be present in the training set. Typically, 

this involves using a large number of examples. Others (e.g., Quinlan, 1986) 

argue that the induction process is more efficient if a small number of examples 

is used. Even where numerous examples are available, a window of a few (fifty 

or less) carefully chosen ones is actually used for induction. The remaining 

examples are used for testing the coverage of the induced knowledge, 

Politakis (1985) has referred to inductive methods as "black boxes" 

which create rules that domain experts and humans in general sometimes have 

difficulty making sense of This is especially true if continuous-valued attributes 

are involved, because induction typically subdivides them into ranges (Fayyad & 

Irani, 1992), which are often quite meaningless to domain experts. But 

Politakis points out that in some domains, such as medical diagnosis, domain 

experts will not have confidence in a system unless they understand and agree 

with the rules that it uses. 

Generalising about the applicability of method to problem, Politakis 

(1985) argues that approaches such as machine induction are better suited to 

small problems, and not good enough for large or complex ones, which need 

"better methods ... to reduce the dimensionality". Quinlan (1991) has also 

pointed out that, while the attribute/value approach may be adequate for simple 

systems, many situations exist, e.g., engineering design, that involve hierarchies 
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of objects. A new approach embodied in a tool called FOIL generates 

PROLOG statements by detecting regularities in the structured examples. 

The ultimate objective of machine induction is to break the training set 

into several smaller sets, each containing cases of a single class. The distilled 

knowledge is simply a trace of the sequence of decisions that brought about the 

transformation from a single multi-class set to several single-class sets. 

Consider again the set of cases presented in Figure 3 on page 27. A 

visual inspection of the data reveals that there are three different ways of 

subdividing this set. One way is to subdivide it into two sets based arbitrarily 

on the risk of failure. (This division is not entirely arbitrary, because inspection 

reveals that low risk selects a single-class set, i.e., internal development.) As 

Figure 6 shows, Ace and Day fall into set 1.1 while BU, Cha and EZ fall into 

set 1.2. 

Entry Payback S t ra tegy 
Set Co. Cost Period Risk Implementation 

1.1 Ace low shor t LOW In te rna l development 
Day high shor t LOW In te rna l development 

1.2 BU low shor t HIGH J o i n t venture 
Cha high long HIGH J o i n t venture 
EZ low long HIGH Acquis i t ion 

Figure 6. Sets 1.1 and 1.2 

Because set 1.1 contains just one class, it needs no further subdivision 

and can be left alone. But set 1.2 contains more than one class, so further 

subdivision is necessary. Visual inspection of the three cases in set 1.2 reveals 

that this set can be subdivided based on either entry cost or payback period. 

Using payback period results in the three sets shown in Figure 7 on page 49. 
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Set Co. 
Entry 
Cost 

Payback 
Period Ri sk 

S t ra tegy 
Implementation 

1.1 Ace 
Day 

low 
high 

shor t 
shor t 

LOW 
LOW 

In te rna l development 
In te rna l development 

1.2.1 BU low SHORT HIGH J o i n t venture 

1.2.2 Cha 
EZ 

high 
1 ow 

LONG 
LONG 

HIGH 
HIGH 

J o i n t venture 
Acquis i t ion 

Figure 7. Sets 1.1, 1.2.1, and 1.2.3 

It is evident that there are now two single-class sets and one two-class 

set (1.2.2). Obviously, set 1.2.2 is further subdivided by a test on entry cost. 

The distilled knowledge can be expressed as a decision tree. But this can 

be converted (Quinlan, 1987) into a set of rules, as follows: 

a) IF r i s k of f a i l u r e i s low 
THEN in t e rna l development i s recommended. 

b) IF r i s k of f a i l u r e Is high 
AND payback period i s shor t 
THEN j o i n t venture i s recommended. 

c) IF r i s k of f a i l u r e i s high 
AND payback period i s long 
AND cos t of en t ry i s high 
THEN j o i n t venture i s recommended. 

d) IF r i s k of f a i l u r e i s high 
AND payback period i s long 
AND cos t of en t ry i s low 
THEN a c q u i s i t i o n i s recommended. 

Of course, this bit of manual induction has been done in a somewhat 

arbitrary manner. The rules arrived at are not the only ones possible. Indeed, 

this consultant's view of the problem space is not the only one possible 

(Appendix A, "Entry strategy selection: a broader view" on page 212 provides 
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a somewhat fuller discussion of the problem). In addition, the simplicity of the 

problem allows an intuitive approach to be successful. But when the size of the 

training set, the number of attributes, and the number of classes is increased, 

more systematic methods are needed. Such methods are embodied in 

algorithms for machine induction (Quinlan, 1986; Michalski & Larson, 1983; 

Niblett, 1987; Clark & Niblett, 1987 & 1989; Cestnik, Kononenko & Bratko, 

1987^ 

These algorithms all require as input a set of possible classes, a set of 

attributes and their possible values, and a set of training cases. 

The preceding discussion of manual induction illustrates the process that 

machine induction follows. One difference is that machine induction does not 

arbitrarily select attributes for splitting the training set. One approach is to 

select the test that minimises entropy (Quinlan, 1986). Other approaches are 

also used (see, e.g., Mingers, 1989; Buntine & Niblett, 1992). 

It will be recalled that although all the cases were expressed in terms of 

the same attributes, not all the attributes were required in determining some 

classes. For example, the class "internal development" was determined by a 

single attribute, viz., risk of failure. On the other hand the other two classes 

could be distinguished from each other only by considering the other attributes 

as well. So, the inductive process generalises from specific cases and eliminates 

redundant or unnecessary tests. Clearly, some process of this kind is necessary 

in producing an efficient knowledge base and eliminating what Wilkins (1987) 

called "sociopathic" knowledge, discussed earlier on page 8. 

The algorithms developed for finding regularities in examples include 

Quinlan's (1986) "iterative dichotomiser" (ID), which has gone through several 

refinements. 1D3 is the best known of these refinements. Michalski has been 

associated with a series of algorithms called AQ (see, e.g., Michalski & Larsen, 

1983). A Q l l , one refinement in this series, was used by Michalski & Chilausky 
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(1980) to demonstrate the power of induction to distill effective and accurate 

knowledge from a set of training cases. 

The different algorithms have their weaknesses and strengths, (see, e.g., 

Roskar, 1988; Hart, 1986) and attempts continue to find better methods (see, 

e.g., Fayyad & Irani, 1992). Clark & Niblett (1987) have tried to combine the 

best features of the AQ series and the ID one and produce an algorithm that 

has advantages over the two on which it is based. 

Don't-Cares 

If elements are allowed to be given don't-care (or not-applicable) ratings in the 

repertory test, that creates the problem that the induction algorithm will have 

to cater correctly for the don't-care attribute value. Similarly, if prototypes are 

used in knowledge acquisition from examples, it is quite likely that some cases 

will have don't-care attribute values. One approach is to expand each 

don't-care by generating several cases (one for each possible value of the 

attribute). This approach, however, can run into a combinatorial explosion. 

Another approach avoids this explosion by generating a random value in 

place of each don't-care, but this can result in an erroneous knowledge base. 

Quinlan (1986) originally argued for replacing each don't-care with the most 

common (and, presumably, most likely) value of the attribute in question. Even 

that is not guaranteed to be entirely satisfactory. 

A more effective approach lies in the way the grid is analysed. The 

distance between a don't-care and any other rating should be taken as zero. 

This encourages the knowledge source to distinguish adequately between what 

could be identical ratings. Even so, some don't-cares may still reach the 

induction process. Here, a satisfactory way to process don't-cares is to treat 

them as being equivalent, during learning, to every possible value (see e.g.. 

Gams & Lavrac, 1987; Quinlan, 1989). 
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Induct ive Tools 

Learning from examples has been vaunted by many writers (e.g., Michalski & 

Chilausky, 1980; Quinlan, 1986; Michie, 1991) as a key solution to the problem 

of knowledge acquisition. Typical of these, Norris (1986) argues that 

the usual approach based on informal interviews ... is time-consuming, 

error-prone and often results in a knowledge base that is significantly 

incomplete. 

Michalski & Chilausky (1980, p 79), argue that 

current computer induction techniques ... offer a viable knowledge 

acquisition method if the problem is sufficiently simple and well defined. 

But not everyone is convinced: according to Roskar (1988, p 81), 

several limitations of the existing software for machine induction from 

examples have to be solved before this method can become efficient 

enough. 

Roskar argues that logic-based induction is more suitable for 

representing "general and specific knowledge, and is thus more suitable" for 

medical diagnostic domains than similarity-based learning. 

Tools discussed in learned journals — e.g, RL4 (Clearwater & Provost, 

1990) and ITRULE (Goodman & Latin, 1991) — tend to be induction engines 

without the user interfaces that would make them worthy of being called 

knowledge-acquisition tools. But several commercially available tools (e.g„ 

Ist-Class, and Autolntelligence) for expert systems development incorporate 

induction algorithms in knowledge acquisition from examples. These tools 

allow users to input both a partial domain model and examples, which the tool 
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then uses to induce rules. Such tools are often targeted at domain experts for 

their direct use without the mediation of knowledge engineers. 

Learn ing 's Promise 

Machine-learning systems tend to be involved only during the 

construction of a knowledge-based system. The learning tends to be abandoned 

as soon as the system is judged good enough to be put into operation. Some 

writers (e.g., Bain, 1986; Kolodner, 1983) think that this is unfortunate. 

According to Bain: 

people tend to improve their abilities to reason about situations by 

amassing experiences in reasoning. The more situations which a person 

knows about, the more able he is to account for feature differences 

between new input and old knowledge .... The inability to save accounts 

of previous experience for future application and modification represents 

a serious shortcoming of most, if not all, rule-based systems. 

Two aims of learning from experience involve refining 

• Knowledge in the knowledge base 

• Probabilities of different consequents. 

The first aim requires a post-hoc analysis of each consultation to 

determine whether the consequent proved accurate, and, if not, what the correct 

consequent was, and how its antecedents differ from those that generated the 

wrong consequent. This is a kind of failure-driven learning, but it is by no 

means automatic. 

The second aim does not necessarily require external confirmation, but 

assumes that the knowledge in the system is accurate. An episodic memory can 

be built up for future use in re-inducing the knowledge base (see, e.g., Kolodner, 
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1983); or this learning can be done incrementally. If the episodic memory 

shows that 90%, say, of all consultations result in a certain consequent, it may 

be appropriate to reorder the consultation so as to rule out this commonest, or 

most probable, consequent first. 

Gaines (1989) has proposed an architecture for knowledge support 

systems, which eliminates the false dichotomy between acquisition and 

performance. 

Conclusions 

This chapter has explored two routes to the same objective. One route, 

knowledge acquisition from examples, is direct and can be either structured, 

unstructured, or a mixture of both. The other route, the repertory grid 

technique, is somewhat indirect, but efficient in that a single procedure gathers 

the partial domain model and a sufficiency of cases. Figure 8 on page 55 

depicts the stages in knowledge acquisition from examples at the left, the 

repertory grid stages at the right, and the shared stages down the centre. With 

both approaches, machine induction or some other learning process can be used 

to distill the knowledge into an efficient knowledge base. 
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Knowledge Acquisition 
From Examples 

The Repertory 
Grid Technique 

Describe domain 

Elicit classes 

E l i c i t 
a t t r i b u t e s 

E l i c i t examples 

Learning 

Performance 

Figure 8. Two routes to a single objective 

Describe domain 

E l i c i t elements 

E l i c i t 
c o n s t r u c t s 

E l i c i t r a t i n g s 

Learning 

Performance 

It has also been shown that the elements used in the repertory grid 

technique should be examples rather than classes. Otherwise, the knowledge 

acquired would not include important disjunctive relationships. The elicitation 

of elements should therefore be modified to focus on examples. 

Some writers (e.g., O'Leary & Watkins, 1990) argue that different 

methods acquire different types of knowledge, and 

individual task comparisons of different forms of knowledge acquisition 

may understate or misstate the problems of interest to developers of 

expert systems. 

However, if two methods are shown to produce the same kind of knowledge, 

then it is indeed useful to compare their relative efficacies and efficiencies. The 

preceding discussion has shown that the repertory grid technique and 

knowledge acquisition from examples do acquire the same kind of knowledge in 

different ways. 
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If, as in knowledge acquisition from examples, the domain expert has to 

think of suitable distinguishing attributes without much prompting, it can be 

fairly difficult. So any method that seeks (as the repertory grid technique does) 

to make these attributes easier to access and articulate is likely to speed up this 

part of the knowledge acquisition process. But there is little evidence to 

support or refute this conjecture. 

Moreover, if the problem space (or domain model) is viewed as 

multi-dimensional, the attributes provide the dimensions of such a space. Each 

domain object (or class, or element) is located in the space at a point that can 

be expressed as Cartesian coordinates. The coordinates of all the classes can be 

organised as a matrix (as in Figure 7 on page 49). Whereas this matrix is built 

up one column at a time by the repertory grid technique, it is built up one row 

at a time by knowledge acquisition from examples. But it is by no means clear 

which way would be expected to be more efficient or effective. 

Compilation of the expert's knowledge (Anderson, 1982) into procedural 

memory makes it futile to ask directly for rules; but examples can be 

successfully elicited. It may well be that experts find it easier to compare cases 

rather than to elaborate a partial domain model and describe individual cases. 

But there is little evidence to support this conjecture. 

It is evident that light needs to be shed on a number of questions. 

Without answers to some of the questions raised above, it is difficult to plan 

knowledge acquisition activities confidently. It is also difficult to select 

knowledge acquisition methods intelligently. 
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Chapter 3. Some Implications of Cognitive 
Psychology for Knowledge Acquisit ion 

Abstract 

Explanations of why one knowledge acquisition method may be more 

efficient or effective than another are likely to originate from consideration of 

not just the knowledge engineer's techniques but the expert's mind as well. In 

particular, it is enlightening to consider theories about how knowledge is stored 

in the mind and how it is retrieved. This chapter discusses these notions and 

some hypotheses implied by them. The hypotheses relate to two 

knowledge-acquisition methods: the repertory grid technique and knowledge 

acquisition from a minimal set of examples. 

Introduction 

A domain expert's performance is a product of what s/he knows. This 

knowledge is developed, stored, and retrieved in certain ways (Anderson, 1982; 

Kolodner, 1983). Any attempt to elicit a domain expert's knowledge is 

therefore likely to trigger some amount of activity inside his or her mind. The 

nature of this activity is influenced by several factors including the 

knowledge-acquisition method used. Indeed, the pace with which knowledge is 

elicited and the nature of the knowledge obtained appear to depend on the 

extent to which the knowledge-acquisition method encourages appropriate 

mental operations to take place. 

An important part of any comparative analysis is to understand the two 

methods being compared. The following two perspectives seem relevant to this 

understanding: 

• External processes, stages, and outcomes, e.g., how the methods can be 

described, what they acquire, and what is done with the data obtained 
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• Internal (cognitive) processes, i.e., how the knowledge sought is represented 

in the expert's mind, how it can be retrieved, and what happens when 

particular techniques are used in trying to elicit it. 

The two methods to be compared are the repertory grid technique and 

knowledge acquisition from a minimal set of examples (KAMSE). The external 

features of the two methods have already been compared in Chapter 2, 

"Learning Without Case Records: a mapping of the repertory grid technique 

onto knowledge acquisition from examples." This chapter is about the internal 

processes. 

There are several levels of abstraction at which mental representation 

and retrieval can be modelled and understood. One of the lower levels is the 

neurophysiological; one of the higher ones is the cognitive. Although a 

complete mapping between these two levels is yet to emerge, cognitive 

psychology is concerned with modelling the mind and mental processes, without 

detailed consideration of the brain and central nervous system (Johnson-Laird, 

1983; Anderson, 1976). This high-level view focuses on cognitive structures 

(e.g., memory) and processes (e.g., attention, learning, and recall). 

But what is taking place in the mind cannot actually be observed. What 

can be observed is behaviour and perhaps stimuli that affect this behaviour. 

So, in some ways, the mind is a black box; and it is possible to propose 

different models that produce identical input-output behaviour. Such models 

are judged, not on how well they represent what is taking place inside a 

person's head, but on their predictive power; that is, how well their 

input-output behaviour corresponds to that of the system they seek to model 

and explain. 

This chapter discusses the structure of human memory, and how 

information is stored in and retrieved from that memory. These notions provide 
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a framework for reasoning about what might be happening in the domain 

expert's mind while his or her knowledge is being elicited by either the repertory 

grid technique or KAMSE. Assuming the validity of these conjectures, some 

hypotheses are stated about the two techniques. 

Divisions in Memory 

Although questioned by a few cognitive psychologists (see, e.g., Morris, 

1988, p 91), it is generally agreed that there are at least three kinds of memory: 

long-term, short-term, and perceptual. 

According to Gilmartin, Newell & Simon (1975), information from the 

outside world enters the system through sensory organs (e.g., eyes and ears) and 

into sensory-related buffers. There are "two buffers in series for each sensory 

modality (a sensory store and an imagery store)". When a person receives a 

sensory input (whether visual, auditory, or other) from the external world, this 

input is held very briefly in perceptual store, then transferred into short-term 

memory. 

Short-term memory is a controversial concept. Baddeley (1976) refers to 

studies of short-term memory as "concerned with short-term forgetting". Some 

writers (e.g., Baddeley, 1976; Posner, 1973; Anderson, 1983) use the expression 

"short-term" or "working" memory to mean a limited-capacity input store. 

Posner (1973, p 16) argues that short-term memory 

provides a system within which incoming information can be related to 

previously stored information ... providing a means of reorganizing and 

updating long-term memory. 

Others (e.g., Mandler, 1986) argue that there is no limit to the capacity 

of short-term memory. Consciousness is the limited-capacity mechanism, while 

short-terna memory is those contents of long-term memory that are activated 
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but not currently in consciousness. These writers also refer to short-term 

memory as "active memory" (see, e.g., Shwartz & Kosslyn, 1982) and 

"immediate memory" (see, e.g.. Case, 1980). 

The contents of short-term memory can be quickly replaced by 

subsequent input, but can also be retained by recycling (e.g., repeating a name 

just heard, over and over). Information can also be brought into short-term 

memory from long-term memory (as when we recollect, reflect, or imagine). 

In contrast, long-term memory is a very large-capacity, very low-loss, 

store of information. Mandler (1986) sees long-term memory as the sum total 

of a person's life experience. He also argues that long-term memory is the 

unactivated portion of these memories. Some psychologists further subdivide 

long-term memory into different areas. For example, Tulving (1985) has 

proposed a "tripartite system: episodic, semantic, and procedural memories". 

Although some writers (e.g., Snodgrass, 1989) approve of Tulving's model, 

others (e.g., Baddeley, 1976) argue that the episodic-semantic distinction is too 

sharp. According to Claxton (1980, p 230), Tulving "makes the error of 

assuming that, because people can make judgements about knowledge, these 

judgements directly reflect basic principles of storage". Mandler argues that 

episodic memory is simply a subsystem of semantic memory, not a different 

kind of memory. 

In addition to the changes in long-term memory brought about by 

information from short-term memory, access to some information in long-term 

memory may be lost through forgetting. The more or less permanent 

information stored in long-term memory includes: 

• Events 

• Schemata (or prototypes) 

• Cultural values, attitudes and beliefs 
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• Knowledge underlying cognitive skills. 

But these items are thought to be stored at different levels in long-term 

memory. Figure 9 shows the kind of information stored in short-term memory 

and at Tulving's three levels in long-term memory. Each kind of information is 

described briefly below. 

Perceptual 
s t o r e s 

Episodic 

Events 

Short - term 
memory 

External & 
in t e rna l 
input 

Long-term memory 

Semantic 

0 Schemata 
0 Cul ture 

Procedural 

Skills 

Figure 9. Memories, and types of information thought to be stored in them. 

Episodic memory is described by Cohen (1989) as "memory for personal 

experiences ... [consisting] of subjective specific facts". According to Morris 

(1988, p 105), "episodic entries retain information about their place and time of 

occurrence", which is really another way of stating Aristotle's theory of 

association: recalling one event can trigger the retrieval of other events 

associated by contiguity, whether in space or time (see, e.g., Dalton, 1988). 

Mandler (1986) contends that some episodic entries may be conceptually, rather 

than temporally, organised. This might account for the fact that people 

sometimes recall an incident, and then have difficulty remembering where or 

when it happened. Kolodner (1983) argues that the richness of episodic 

memory is one of the main factors distinguishing an expert from a novice. 
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Schemata are knowledge structures that represent concepts or objects in 

generalised, idealised, or stereotyped form. For example, a person's schema for 

an elastic band might include the following information: made of rubber, can 

stretch, shaped like a flexible loop. This schema is generated from the person's 

experience of encountering elastic bands. It is a distillation of the essential 

characteristics of every elastic band the person has ever seen. A person's 

schemata help him or her to understand the world (Bartlett, 1932; Rumelhart, 

1975; Noble, 1989). 

So, for example, the next elastic band a person sees will be recognised as 

such, because it matches the person's schema for elastic bands. Conversely, 

items not matching this schema will be recognised as not being elastic bands. 

But Bartlett also points out that schemata are "active developing patterns"; so, 

although they shape a person's interpretation of things seen and events 

experienced, schemata are in turn generated and refined by a person's 

experiences. 

Although Figure 9 on page 61 shows episodic memory as separate from 

semantic memory, the latter appears to have some influence on what is stored 

in and retrieved from the former. According to Bartlett (1932), people do not 

remember episodes as a whole, but rather they have memories of the essence of 

events based on their schemata. And when they recall past events, it is not so 

much a retrieval as a reconstruction. This reconstruction involves retrieving 

episodic memory of peculiarities about the specific event, and combining it with 

a schema for the type of event being recalled (see Bower, Black & Turner, 

1979). Baddeley (1990; see also Rumelhart & Norman, 1985), notes that frames 

(Minsky, 1975), scripts (Schank, 1975, 1982), and schemata, although not 

identical, are very similar concepts. 

Cultural knowledge is deeply rooted and generally not available to 

conscious retrieval, but it governs the way people think and act (see, e.g, 
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Connerton, 1989; Hofstede, 1980). People's minds can store these pieces of 

information unconsciously, not just at an early age, but throughout adult life as 

well. This ability is reflected in the phenomenon of corporate culture (see, e.g., 

Marshall & McLean, 1985), which is in many ways similar to national culture — 

but rather than being characteristic of members of a society, typifies employees 

in a company or members of a club. 

Skill is the knowledge underlying many forms of expertise. This 

knowledge is improved by experience or practice and manifests itself in 

increased competence at performing a particular task. But although increased 

skill is manifested in improved performance, it is also often accompanied by a 

difficulty in explaining exactly how this performance is achieved. 

Johnson-Laird (1983, p 465) is one of several psychologists to point this out: 

You can never be completely conscious of how you exercise any mental 

skill. Even in the most deliberate of tasks, such as the deduction of a 

conclusion, you are not aware of how you carried out each step of the 

process. 

That is not to say that a person may not try to explain; but, if Johnson-Laird is 

right, such "post-hoc rationalisations" (discussed on page 67) are not guaranteed 

to be reliable. 

Retrieval of Information 

Information in long-term memory can also be classified according to the 

means by which it can be retrieved. In particular, information can be at the 

conscious or unconscious level. Anderson (1982), for example, has argued (but 

he is by no means the only one; Posner, 1973; and Bainbridge, 1986, advance 

similar arguments) that the knowledge related to a cognitive skill can also be 

distributed between the conscious and the unconscious within long-term 
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memory. Strictly, conscious and unconscious describe the way information can 

be retrieved rather than anything about the information itself 

As shown in Figure 10, Posner (1973, p 43), distinguishes between 

"effortless retrieval [which] occurs when the input contacts its address in 

memory without any conscious search" and 

effortful retrieval [which] occurs when the subject is forced to search the 

items retrieved into active memory, or when he does not have sufficient 

content to locate the items in long-term memory unambiguously. 

Retr ieval 

Conscious Unconscious 

E f f o r t l e s s E f f o r t f u l 

Figure 10. Modes of retrieval from long-term memory 

But even "effortful" search can retrieve only information that is subject 

to conscious retrieval. As mentioned on page 10, Anderson refers to the 

consciously retrievable knowledge as "declarative" and to the unconscious 

knowledge as "procedural". According to Anderson (1982), the distribution of 

knowledge underlying a skill shifts from the conscious to the unconscious as a 

result of practising the skill. It is not that the declarative knowledge is lost; the 

declarative knowledge remains subject to conscious retrieval, while the 

productions underlying expert performance are developed beyond conscious 

reach. 

Anderson's ACT* (adaptive control of thought) theory implies, for 

example, that when a business administration student first learns about "cash 
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A "cash cow": 
0 i s the market l eader 
0 i s in a low-growth market 
0 can be "milked" f o r cash . 

Figure 11. An example of declarative knowledge 

cows" (see, e.g., Kotler, 1984), the knowledge is probably stored as the set of 

facts shown in Figure 11 on page 65. This is not Anderson's example, but it is 

consistent with ACT* theory. 

This is an example of declarative knowledge and is probably (as 

discussed later) stored as a schema in semantic memory. Once this knowledge 

is deployed in the performance of some act (e.g., analysis of a marketing 

strategy case), it is used in the form of productions. ACT* theory implies, in 

this instance, a set of productions of the form shown in Figure 12 on page 66. 
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IF the goal i s to c l a s s i f y a s t r a t e g i c bus iness un i t (SBU) 
THEN a subgoal i s to see what the SBU's compet i t ive 

pos i t i on i s l i k e . 

IF the goal i s to c l a s s i f y an SBU 
AND the SBU's compet i t ive pos i t i on i s l i k e t h a t of a "cash cow" 
THEN a subgoal i s t o see what the SBU's market growth i s l i k e . 

IF the goal i s to c l a s s i f y an SBU 
AND the SBU's compet i t ive pos i t i on i s l i k e t h a t of a "cash cow" 
AND the SBU's market growth i s l i k e t h a t of a "cash cow" 
THEN the SBU i s a "cash cow", 

POP the goa l . 

IF the subgoal i s to see what the SBU's compet i t ive 
pos i t i on i s l i k e 

AND the SBU i s the l eader in i t s market 
THEN the SBU's compet i t ive pos i t i on i s l i k e a "cash cow's" 

POP the subgoal . 

IF the subgoal i s t o see what the SBU's market growth i s l i k e 
AND the SBU's market growth i s low 
THEN the SBU's market growth i s l i k e a cash cow's , 

POP the subgoal . 

Figure 12. Tentative productions constructed from declarative knowledge 

Anderson (1983, p 30) asserts that in each production of this kind, the 

condition portion 

specifies some pattern that should be active in working memory, and the 

action specifies some cognitive or external operation that will be 

performed if the pattern is matched. 

Repeated use, according to Anderson (1982), causes these tentative 

productions to be unified, two at a time. So, eventually, after using the 

knowledge a large number of times, a business strategist might end up with a 

more compact production, as shown in Figure 13 on page 67. 
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IF the goal i s to c l a s s i f y an SBU 
AND the SBU i s a market l eader 
AND the SBU is in a low-growth market 
AND the SBU can be "milked" f o r cash 
THEN the SBU i s a "cash cow", 

POP the goa l . 

Figure 13. Example of a compiled production 

As this unification of productions (knowledge composition) takes place, 

the productions are stored beyond the person's conscious access. So, if asked 

why s/he says that a particular SBU is a "cash cow", a person might have 

difficulty answering, or might rationalise by constructing an answer from 

declarative knowledge. According to Anderson, compilation accounts for the 

speedup phenomenon that accompanies repeated use of a skill. It should be 

noted that this procedural knowledge, although shown as compiled productions, 

is essentially a mapping between a set of attribute values and a class. The 

productions provide a convenient and intelligible notation; but the essence of 

ACT* theory remains intact even if this knowledge is represented in the model 

as a neural network. 

One argument against Anderson's procedural/declarative divide is that it 

is too closely based on computer models, with declarative knowledge being 

analogous to data, and procedural knowledge being analogous to programs. 

But Cohen (1989) is among those who affirm that ACT* theory explains most 

of the phenomena observed in expertise formation. However, she points out 

that (Cohen, 1989, p 177) it does not explain "the effects of emotional and 

attitudinal factors" (Morris, Tweedy & Gruneberg, 1985), or "the blurring of 

conceptual boundaries" (Murphy & Wright, 1984). Anderson (1989) has 

recently refined and updated ACT* theory. The new theory, embodied in a 

model called PUPS, includes "analogy-based generalization, a discrimination 
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mechanism, and principles of making causal inferences" among its induction 

mechanisms. 

It can also be argued that object identification (see, e.g., Marr, 1980; 

Ellis & Young, 1988) is based on schemata. The first time a child sees an 

elastic band and learns what it is, s/he might develop a schema for elastic bands 

(see, e.g., Flavell, 1985, pp 48-54). This schema might include the size, shape, 

texture, flexibility, material, elasticity, and perhaps even the colour of such an 

object. When asked what elastic bands are like, s/he might say: "I've only ever 

seen one, but I think they are stretchable, they are about this size, brown, and 

made of rubber". The next one the child sees might be very similar to the first 

and would therefore reinforce the schema. Perhaps eventually the child will 

encounter an elastic band very different in size from any s/he has experienced 

before. The child might well be able to recognise the strange elastic band for 

what it is; but the match with the schema will be imperfect. This experience 

will cause the schema to be refined, perhaps to indicate that the size can be 

within some range. There is, however, little justification for supposing that the 

development of schema precludes that of productions, or vice versa. 

The focus on conscious retrievability implies a model of long-term 

memory as shown in Figure 14 on page 69. When viewed alongside this 

model, Tulving's (1985) semantic memory appears to be a half-way house 

spanning the consciously and unconsciously retrievable contents of long-term 

memory. 
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Long-term memory 

Conscious 

0 Episodes 
0 Dec la ra t ive models 

Unconscious 

0 Automatic product ions 

Figure 14. Retrievability of long-term memory. 

One of the explanations that Johnson-Laird offers for unconscious 

retrieval of knowledge is that several strands of information are being used in 

parallel. So, according to Johnson-Laird (1983, p 468), 

any attempt to use introspection in order to become conscious of 

something that is normally unconscious is unlikely to succeed. Not only 

is the information inaccessible, but also an essentially parallel process 

has to be grasped by the serial deliberations of [our introspection 

mechanisms]. 

The discussion so far has focused on the possible structure of memory, 

and on the kinds of information stored in short-term and long-term memory, 

and split between conscious and unconscious retrieval. According to Posner 

(1973), there are three codes (formats) in which information is represented in 

these memories. First, there is an iconic code which represents images 

perceived, whether visually, auditorily, or by other sensory means. Second, 

there is a symbolic code that represents mainly words. And thirdly, there are 

motor codes that represent skills in doing physical things (like balancing the end 

of a broom in the palm of one's hand, riding a bicycle, or serving a tennis ball). 

It is also interesting to reflect on the similarity between knowledge 

stored as motor codes and knowledge stored as compiled productions. 

Productions behave very much like motor codes: in an intellectual skill, 
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involving observation, discourse, and decision, a person may not be able to say 

how s/he actually makes a decision — in the same way as it is almost impossible 

to describe the procedure for riding a bicycle. Motor skills are similar to 

intellectual skills in that a first attempt to ride a bicycle is likely to end in 

failure. By continued practice (and what Schroder, Frank, Kohnert, Mobus, & 

Rauterberg, 1990, refer to as "failure-driven learning"), a person can reach a 

point where s/he has learnt how to succeed rather than fail. After that point, 

practice increases proficiency and speeds up performance (in what Schroder et 

al, 1990, call "success-driven training"); and the underlying knowledge is 

retrieved only by performance of the skilled act. 

Implications for Knowledge Acquisition 

As noted above, ACT* theory asserts that knowledge compilation in 

experts prevents their performance knowledge from being consciously retrieved. 

The compiled automatic productions are retrievable only by performance of the 

skilled act. But this performance knowledge is developed as a function of 

declarative knowledge (and experience in applying it), as a person progresses 

from being a novice to being an expert. Even after knowledge compilation, the 

declarative knowledge is not forgotten, but remains in long-term memory, and 

can be retrieved by appropriate cues. However, this declarative knowledge is 

not what the expert uses in performing the skilled act. 

Fortunately, declarative knowledge can be transformed into productions 

that model expert performance. When eliciting knowledge from experts, it is 

therefore worth encouraging them to retrieve and articulate the pieces of 

declarative knowledge from which accurate productions can be generated. The 

minimum knowledge needed to model a simple classification decision (see, e.g., 

van Melle, 1981) consists of the following kinds of knowledge units: 

• Classes (the possible outcomes of a classification decision in the domain) 
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• Attributes (factors to be considered in making the expert decision between 

possible classes), each in the form of 

- An attribute descriptor 

- Attribute values (the possible values that an attribute can assume). 

• Information to link patterns of attributes to particular classes (for instance, 

rules, decision trees, or an artificial neural network, which can all be 

generated by detecting regularities in either of the following); 

- Examples or cases (instances of the domain classes expressed in terms of 

attribute values) 

- Ratings (estimates of the degree to which particular attribute values 

describe particular classes). 

These are among the units processed by knowledge-acquisition tools 

such as AQUINAS (Boose & Bradshaw, 1987), FMS-Aid (Garg-Janardan & 

Salvendy, 1988), and KITTEN (Shaw & Gaines, 1987); and expert-system shells 

like Ist-Class. Their successful use in these tools demonstrates their adequacy 

for at least some kinds of analytic knowledge-based systems. The classes and 

attributes comprise a partial domain model, while the linking information, 

which is an important part of an expert's compiled knowledge, enables a 

representation to provide the basis for inference. 

While these units are sufficient to model a simple decision, many 

problems involve making several such interdependent decisions. For example, 

MYCIN makes two: diagnosis and treatment. Some tasks (e.g., developing a 

plan) require effortful solution by the expert. Even these tasks are likely to be 

subdividable into several simple decisions, the results of which can be used to 

tailor a skeletal plan into a specific plan. 

As noted in Chapter 1, "The Knowledge Acquisition Problem," several 

methods have been used to elicit knowledge units from knowledge sources (for a 
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list of methods, see, e.g., Neale, 1988; Foley & Lehto, 1989). The rest of this 

chapter, however, concentrates on two methods: the repertory grid technique 

and KAMSE. The two methods can be subdivided into five parallel stages as 

shown in Figure 15. Although the stages are shown as having distinct 

boundaries, they often overlap. For example, a list produced at stage 1 might 

need to be augmented when subsequently elicited attributes and examples act as 

cues to elicit further classes. Stages 4 and 6 are computer-intensive, while the 

other stages demand mental activity from the expert. 

Stage Repertory Grid KAMSE 

1 L i s t ing a l l elements t h a t I d e n t i f y i n g the c l a s s e s t h a t 
exemplify the domain cases in the domain can belong 
c l a s s e s to 

2 I d e n t i f y i n g c o n s t r u c t s I d e n t i f y i n g the a t t r i b u t e s ( e . g . , 
t h a t d i s t i n g u i s h elements supply vol tage) considered in 
from each o the r deciding the c l a s s of a case , and 

l i s t i n g the values ( e . g . , 3V, 5V, 
24V) t h a t each a t t r i b u t e can have 

3 Rating a l l elements on Descr ib ing, without r e p e t i t i o n , 
each cons t ruc t e l i c i t e d examples of a l l c l a s s e s in terms of 

a t t r i b u t e d e s c r i p t o r s and values 

4 Using machine induct ion Using machine induct ion to f ind 
to f ind r e g u l a r i t i e s , and r e g u l a r i t i e s , and d i s t i l l the 
d i s t i l l the gr id in to a examples in to a knowledge base 
knowledge base 

5 C l a s s i f y i n g a se t of C l a s s i f y i n g a s e t of exemplars, 
exemplars and using these and using these to eva lua te the 
to eva lua te the knowledge knowledge base produced in the 
base produced in the previous s t e p . 
previous s t e p . 

Figure 15. Stages in the repertory grid technique and KAMSE 

An analysis of only the external features of the two methods (see 

Chapter 2, "Learning Without Case Records: a mapping of the repertory grid 
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technique onto knowledge acquisition from examples") does not make clear 

whether the repertory grid technique or KAMSE would be more efficient or 

efficacious, although both methods are capable of producing identical results on 

a given domain. But, from the standpoint of the expert's mental activity, 

several hypotheses can be stated. Five of these are discussed and presented in 

the sections that follow. In these discussions, the expert's mental activity is 

often described in terms of a knowledge domain involving identification of 

objects. 

Elici t ing Domain Elements 

Gammack & Anderson (1990) stress the importance of context in 

determining both the information elicited and the meaning to be given to it. In 

two different contexts, the same expert might give different information. For 

instance, Gammack & Anderson (1990, p 20) point out that "the similarity of 

Pepsi-Cola to Coca-Cola depends on ... the third item in the comparison". But 

if two knowledge-acquisition methods contain a stage in which the interaction 

with the knowledge source is the same, it is reasonable to expect that on the 

same domain and in the same context, the shared stage of the two methods will 

elicit identical knowledge and demand equal amounts of effort from the 

knowledge source. Stage 1 of the two methods fits this description: the expert 

identifies and lists all classes (in KAMSE) or elements (in the repertory grid 

technique). 

If the objects, or facsimiles, are present (e.g., specimens in object 

identification, or historical records in some other domains), recognition (i.e., 

knowing that you have seen an object before) and then reminding (i.e., 

recognising the object activates the word that describes it) may occur. Such 

retrievals are likely to be quick and effortless. 
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If the objects are not present, but logically related to each other (e.g., 

things you would expect to find in an office, or in a desk drawer, or on the 

menu in an Indian restaurant), their normal location in the world probably acts 

as a cue for retrieval from episodic memory, and activation might spread to 

other items seen in the same location. Some of the items might be retrieved 

effortlessly; some might require effortful search, perhaps involving visualisation 

of the item's milieu (as when a person tries to recall all the windows in a 

familiar room). Activation may also spread to items related temporally (e.g., all 

the ailments diagnosed on a particular day). 

Hypothesis I: The elicitation of elements in the repertory grid technique 

is very similar to the elicitation of classes in knowledge acquisition from 

examples. When both prototypes and exemplars are used as elements, the 

repertory grid will require the greater effort. In any event, eliciting classes is 

not likely to ever require more effort than eliciting elements. If the elements 

elicited are all prototypes, then the two methods are identical at this stage; and 

no difference is expected, between methods, in the mental effort required of the 

expert at this stage of the process. 

Elici t ing Attr ibutes and Constructs 

In the repertory grid technique, constructs (bipolar attributes) play an 

important part. Both poles of a construct are vital because they delimit the 

construct's "range of convenience" (Ford, Retry, Adams-Webber & Chang, 

1991). And a construct is valid only within its range of convenience. As 

discussed in Chapter 2, "Learning Without Case Records: a mapping of the 

repertory grid technique onto knowledge acquisition from examples," across the 

two methods, there is an analogy, or even equivalence, between attributes and 

constructs. But the attribute values in terms of which examples are described 

under KAMSE have a single pole. 
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Eliciting Attributes 

During stage 2 of KAMSE, the expert has to list a set of distinguishing 

attributes (declarative knowledge) without conscious access to the automatic 

productions that contain references to them. But s/he can see the list of classes 

that s/he developed in stage 1. It is by considering the items in this list that the 

expert is able to identify distinguishing attributes. The limited capacity of 

working memory may not accommodate all the items along with any other 

information. Subsets must therefore be focused on at any given instant. But, 

because the list is there, schemata of all the items are probably activated in 

long-term memory. 

If the expert can look at only the list of classes, several strategies for 

finding the distinguishing attributes might be used (focus on one, two, or some 

other number of classes at a time to see how they can be described, then using 

these attributes on some of the other classes to see if they are useful as 

discriminators). The expert might observe: "These things are made of different 

materials and have diflFerent shapes". So s/he might decide that shape and 

material are two of the important attributes. 

If the expert can look at both the list of classes developed in stage 1, 

and the items themselves, s/he can compare the actual items rather than merely 

their schemata. This gives the expert more options than not having the items 

present; and some people employ sorting (physically separating out the items 

currently in consciousness) as a strategy to help them become aware of 

distinguishing attributes. 

Whether the items are present or not, the expert is free to choose how to 

consider them, what groupings to make, in trying to become aware of the 

distinguishing attributes. In forming these groups, the expert is trying to 

interrelate different pieces of declarative knowledge. Although the attributes 

that a person articulates might not be sufficient to make all the required 
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distinctions, they do provide a language for starting to express the examples. 

During stage 3, there may be occasions when the expert has to return to the 

search for distinguishing attributes, but at such times, the search is aimed at 

resolving confused pairs; so two items at a time are compared there. But the 

attribute definition process depends on comparing the objects to find how they 

differ, and on defining these differences as new attributes. Whether it takes 

place all at once or as a consequence of describing examples, it is likely to 

require comparable amounts of mental effort. 

Having identified an attribute, the expert then has to develop a list of 

values that are adequate for describing all the items. For instance, when a 

person thinks of the attribute "material", there are a vast number of materials 

in the world: cloth, paper, brass, steel, different kinds of plastic, rubber, and 

countless others. But not all of these are important in distinguishing among the 

items in the domain. To articulate the values that are important, a person 

actually considers the items in the list, thereby being reminded that some of the 

items are made of metal, some of plastic, and some of rubber, and that these 

three are sufficient values of the attribute "material" to distinguish among the 

items. 

Eliciting Constructs 

In the repertory grid technique, the situation is a bit different when the 

expert tries to identify constructs for distinguishing among the set of domain 

elements. 

If the elements are present, the expert may select the triad physically, 

and look at its members for differences. Whether the elements are present or 

not, s/he may compare the schemata of the items in consciousness, trying to 

find constructs on which they differ. S/he focuses consciousness on the three 

schemata, trying to find differences between them. 
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The expert is not left to make her own choices about which items to 

consider, and what groupings to put the elements into. Rather, s/he is 

constrained to consider the elements in sets of three, and neither the 

composition nor the size of the sets is of her choosing. Kelly (1955) prescribed 

a set size of three elements for what appears to be as much a mathematical as a 

psychological reason; three elements form the minimum set from which it is 

possible to find two that are similar and one that is different. But it may or 

may not be true that, being left to their own devices, subjects would actually 

select items in threes to consider. 

Kelly found that using the repertory grid technique enabled him to elicit 

the inner worlds of his patients. However, it is not clear whether he could have 

found an easier method, or whether the technique was easier on him but harder 

on his patients. It is not clear whether he could have found a direct style of 

questioning that would have requested the information he sought, in such a way 

that the patients would have been able to provide it without much effort. Of 

course, Kelly did not want them to employ defence mechanisms to cover up 

how they actually felt, by giving answers that were not painful for them. 

It is also not known whether domain experts have the same kinds of 

inhibitions about stating what they think their knowledge consists of Although 

it is clear that the repertory grid technique is useful and effective, it is not clear 

whether it is optimal or whether it restricts the domain expert. The repertory 

grid technique is potentially inefficient in that it has no safeguards against the 

repeated elicitation of parallel constructs. A few parallel constructs may be 

useful in helping the expert clarify her thinking, but in general they are 

redundant and therefore largely wasted. But it seems reasonable to assume that 

the technique is more efficient than asking directly for attributes. 

Hypothesis 2: A set of constructs (or attributes) adequate for 

distinguishing among all the elements (or classes) in a domain can be elicited 

Chapter 3. Some Implications of Cognitive Psychology for Knowledge Acquisition 7 7 



more easily with prompting, as provided in the repertory grid technique, than 

without, as in KAMSE. 

Travers ing an Inference Matr ix 

If the classes in a domain (for example, classification of a strategic 

business unit) form the set E == {question mark, star, cash cow, dog} and the 

attributes form the set A = {growth less than 10%, relative market share less 

than 1, a lot of cash required, highly profitable}, there is a kind of connection 

matrix between the two sets. This matrix, which is shown in Figure 16, is what 

is referred to as the inference matrix. 

Rela t ive A l o t of 
Growth mkt share Cash High 
< 10% < 1 required P r o f i t s 

Question mark No Yes Yes No 
S ta r No No Yes No 
Cash cow Yes No No Yes 
Dog Yes Yes No No 

Figure 16. An inference matrix for classification of a strategic business unit 

In KAMSE, the range of applicability of the knowledge elicited is 

enhanced if the minimal set of examples used includes both prototypes 

(schemata) and exemplars (atypical examples). This is also true of elements in 

the repertory grid; so the inference matrix is the same, whichever of the two 

methods is being used. The repertory grid technique elicits the inference matrix 

one column at a time, whereas KAMSE elicits the same matrix one row at a 

time (see Chapter 2, "Learning Without Case Records: a mapping of the 

repertory grid technique onto knowledge acquisition from examples"). 

It is also interesting to consider the problem space as opposed to the 

mental model. The repertory grid technique is based on the notion that a 

person's micro-world can be represented in a multidimensional space, with each 
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dimension accommodating a construct. This space can map onto a 

two-dimensional inference matrix. 

However, Tulving's (1962) theory of subjective organisation asserts that 

people organise information to make its use easier, but this organisation bears 

little relationship to the way the information is normally stored in the person's 

long-term memory. Gammack (1987) argues that the representation is simply a 

metaphor to help people discuss and partially appreciate what is going on. 

Whatever the mental representation, it is clear that classification knowledge can 

be mapped onto this multidimensional space. 

Elici t ing Examples 

An example, which might be reconstructed from semantic and episodic 

memory, is described in terms of attribute values and a class. In describing an 

example, the expert considers the domain object and focuses on the values that 

it has for the various attributes. Having made the observations (or while 

making them), s/he articulates the relevant values. 

On the first object for which the expert describes an example, s/he will 

simply consider the object and state the values that it has on the attributes. 

However, when s/he focuses on a subsequent object, the attribute values that 

s/he states may be identical to those for a previously stated example of some 

other object. For instance, if s/he identified "material" and "shape" as the 

attributes, as discussed in "Eliciting Attributes and Constructs" on page 74, 

and s/he used a one-penny coin as the first example, then the attributes will be 

sufficient to describe the penny (which has the values metal and round). The 

adequacy of the two attributes is tested only when a similar object is focused 

on. For instance, if the expert takes the one-cent coin as the second case, then 

s/he will be stating "metal" and "round" again. And those attribute values will 
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be identical to the ones for the penny in the previous example, creating a 

confused pair. 

The only satisfactory way of resolving this conflict is by finding a new 

attribute on which the two objects differ. For example, "engraved figure" with 

values of "woman's head", "man's head", and "other". This process of new 

examples taking the existing attribute set to its limits and exposing its 

inadequacy is one that continues until examples of all the domain objects have 

been described. So, there is first a process of considering the values that the 

object has on existing attributes. There is sometimes the additional process of 

comparing a confused pair of objects to identify an attribute on which they 

differ, and then defining that attribute. Of course, it is possible for a sufficient 

set of attributes to be identified during the initial definition of the attributes in 

stage 2, so that subsequent expression of examples in stage 3 is smooth, without 

any return to stage 2. 

Elici t ing Rat ings 

After a construct has been identified, the expert is asked to assign a 

rating to each item to reflect the degree to which the item possesses the feature. 

Because the construct is personal, whatever a domain expert states as a 

constructs, it ought to be relatively simple to rate all the elements on it. That is 

as long as the constructs are defined to be generally applicable to elements 

outside of the triad. 

It might be expected that people inexperienced in using the repertory 

grid technique will sometimes articulate constructs that are not generally 

applicable to elements outside of the triad. For example, if the triad consisted 

of "penny", "paper clip", and "elastic band", an inexperienced user of the 

repertory grid technique might introduce a construct of "made of metal" as one 

pole and "made of rubber" as the opposite pole. When faced with rating other 
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elements, this person might have difficulty rating the plastic paper clip, because 

it is made of neither metal nor rubber. A scale with a central point rescues 

such persons, and allows them to rate the element as neither pole. Those with 

more experience at using the technique might have decided to use the construct 

"made of metal" / "not made of metal". They would probably have found it 

easier to rate all elements. Indeed they would have been able to assign extreme 

ratings to all the elements. 

Hypothesis 3: There is little reason to expect an expert to find it easier to 

express cases in terms of attribute values than to identify similarities and 

differences between examples of classes. 

Efficacy of Method 

Efficacy differs from efficiency (see page 82) in that, whereas the latter takes 

account of effort for results, the former is concerned merely with results. So a 

method is efficacious if it produces the desired results. Efficacy can therefore be 

defined as the diagnostic accuracy of the knowledge acquired. So, one method 

could be considered more efficacious if, regardless of how much effort it 

required (within reason), using it resulted in more accurate knowledge. 

A word about accuracy is appropriate here. Accuracy is a measure of 

the ability of the knowledge base to arrive at decisions with which the 

knowledge source (domain expert) agrees. If the expert's decision is noted in n 

cases, and these cases are then presented to the knowledge-based system, the 

KBS will in general arrive at the same decision as the expert in m cases (where 

m < == n). The accuracy of the knowledge base is computed as m/n. This 

measure has also been referred to in the literature as diagnostic, classification, 

and predictive accuracy. 

Adequate accuracy is normally a necessary (although not always 

sufficient) quality that a knowledge base must have if it is to become 
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operational. But it is difficult to find any reason why a knowledge base 

developed from the repertory grid technique should be either less or more 

accurate than one developed using KAMSE. 

Another possible measure of efficacy is the number of knowledge units 

acquired. Knowledge units are the entities that can be observed as increasing in 

number when a successful attempt is made to elicit an expert's knowledge. 

They are the entities acquired that are useful for building a knowledge base. 

Among these are the kinds of units listed on page 70. 

But it is difficult to say whether a larger number of knowledge units 

(Burton et al, 1990) means that a method has more efficacy. In some ways, it 

depends on one's point of view. Wilkins (1987) expresses the view that a 

method that acquires all the required knowledge as a small number of units is 

more efficacious than one that acquires all the knowledge as a large number of 

units. 

Hypothesis 4: Overall, for the entire knowledge acquisition cycle (stages 

1 to 5 in Figure 15 on page 72), there is no efficacy difference between the two 

methods; the knowledge base generated by induction will be equally accurate 

between methods. 

Efficiency of Method 

Efficiency can be defined as effort per unit of knowledge acquired. 

According to Dhaliwal & Benbasat (1990, p 149), it is 

associated with the resources expended in the development of a 

knowledge base. The effort, cost and time of the expert(s) and the 

knowledge engineer(s) are the major determinants... 

Burton, Shadbolt, Rugg, & Hedgecock (1990) measure efficiency "in 

terms of effort for gain". The effort is measured in elapsed minutes, while the 

Chapter 3. Some Implications of Cognitive Psychology for Knowledge Acquisition 8 2 



gain is in the number of clauses acquired. However, their misgivings about the 

appropriateness of number of clauses as a measure of gain led them to perform 

a further experiment in which the experts evaluated the acquired knowledge to 

provide a more meaningful estimate of the gain. 

One method would be said to be more efficient if using it resulted in 

acquiring a given amount of knowledge with less effort. We have already 

predicted, in the previous sections, that the two methods require the same 

amount of effort at stages 1 and 3, but that at stage 2 the repertory grid 

technique requires less effort than KAMSE. If this is true, and the differential 

effort is large enough, it will be reflected as a difference in the overall process 

(stages 1 to 5), unless there is a compensating difference at the evaluation stage. 

The author was of the opinion that the differences in effort would cancel each 

other out for the overall process. 

Hypothesis 5: Overall, for the entire knowledge acquisition cycle (stages 

1 to 5 in Figure 15 on page 72), there is no efficiency difference between the 

two methods. 

Conclusions 

Anderson's ACT* theory, because it accounts for most of the observed 

phenomena relating to experience and performance, is useful for proposing 

plausible accounts of what goes on in the domain expert's mind. Firstly, 

becoming an expert appears to be an iterative process of enriching episodic 

memory, refining schemata and composing productions. Secondly, expert 

performance is largely driven by these productions. But episodes, schemata, 

and productions are not retrievable to the same extent, thus imposing limits on 

knowledge acquisition for knowledge-based systems. Any attempt to capture a 

person's expertise must therefore contend with the retrievability constraints of 

these knowledge structures. 
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Although cognitive psychology does not allow many conclusions to be 

drawn with certainty, it does provide some insight into the domain expert's 

mental activity during knowledge elicitation. It is useful to consider this 

activity in trying to explain why one knowledge acquisition method might 

perform with more efficacy or efficiency than another. Effective methods need 

to facilitate those mental processes that result in the expert articulating the 

knowledge units required to build an accurate knowledge base. These units can 

be structured and processed to produce a useful knowledge base. 

The repertory grid technique and KAMSE acquire knowledge, not only 

of a very similar kind, but also in stages that are directly parallel and analogous. 

At some stages, the activity taking place in the domain expert's mind appears to 

be similar between methods. Although the style of the two methods is different 

at the attributes/constructs and examples/ratings stages, the expert's mental 

activity often appears to be quite similar. Even where the expert's mental 

activity appears to differ between methods, there is little reason for expecting 

one method to demand of the expert a greater effort than the other method. It 

is difficult to see why one method should acquire more accurate knowledge than 

the other. 

Several hypotheses have therefore been stated about the effect of 

method on knowledge acquisition. For some of these hypotheses, an attempt 

has been made to describe the mental processes that cognitive theory and 

introspection would suggest are taking place. If the empirical data support 

these hypotheses, these expectations will continue to appear justified. But if the 

data contradict these hypotheses, it might be possible to make statements about 

what mental processes appear not to be occurring. In addition, the empirical 

data is likely to uncover reasons to use one knowledge acquisition method 

rather than the other or to be indifferent between them. The data could also be 

useful to those interested in developing new methods. 

Chapter 3. Some Implications of Cognitive Psychology for Knowledge Acquisition 8 4 



Chapter 4. Evaluation Measures 

Abstract 

Any knowledge can be described in terms of its characteristics (e.g., its 

accuracy). Comparing two knowledge bases involves contrasting their 

descriptions. For example, one knowledge base may be said to be more 

accurate, or larger than another. These characteristics can be influenced by 

factors present while the knowledge base is being conceived or constructed. 

This chapter discusses these characteristics, how they can be measured, and the 

factors that can affect them. 

Introduction 

People who develop knowledge bases tend to evaluate their performance as 

well; that is a familiar problem (see, e.g., Weiss & KuHkowski, 1984; Ginsberg, 

1988; Saito & Nakano, 1988). Typically they do what Cohen & Howe (1988) 

refer to as a "comparison study". But there are two kinds of reasons that 

people have for evaluating knowledge-based systems; certification and research. 

A growing number of researchers evaluate groups of related knowledge bases, in 

search of the influence of knowledge-acquisition method and other factors (see, 

e.g., Michalski & Chilausky, 1980; Burton & Shadbolt, 1988; Adelman, 1989). 

To facilitate such evaluations and comparisons, some writers have called for 

standard problems and measures (see, e.g., Cohen & Howe, 1988 and 1989; 

Adelman, 1989; Hayes-Roth, 1989). The machine-learning community already 

uses such problems, e.g. Fisher's (1936) flower learning set or the 

faulty-calculator data of Breiman, Friedman, Olshen, & Stone (1984), to 

evaluate the efficiency and efficacy of diflerent algorithms. 

This chapter discusses key characteristics of knowledge bases, and 

examines the measures used by some of those who have, for whatever reason, 

evaluated knowledge bases. The chapter argues that there is a need to compare 
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knowledge bases with each other (e.g., knowledge of a single domain elicited 

with two methods, knowledge of two domains elicited with the same method, or 

knowledge of one domain elicited from different sources). These comparisons 

will help to develop a shared understanding of the issues involved in evaluation 

of knowledge-based systems. They will also help provide the foundations upon 

which hypotheses may be tested and theories may evolve. 

The chapter also examines the factors, present in system-building 

activities, that might influence the characteristics of knowledge bases. 

Certification for Operation 

Evaluation (sometimes called verification or validation, e.g., by Buntine & 

Stirling, 1988; or quality analysis, e.g., by Collins, Ghosh, & Scofield, 1988) is 

often a process of testing, faulting and refinement that attempts to transform a 

knowledge-based system into usable software that performs at a level of 

competence comparable to that of a human specialist in the domain. 

Liebowitz (1986) distinguishes between vaUdation ("whether the correct 

problem was solved") and evaluation ("the software's accuracy and 

usefulness"). Vinze (1992, p 312) defines verification as "a method of 

evaluating the effectiveness of" a knowledge-based system. Lydiard (1992, p 

102), who distinguishes between verification ("are we building the product 

right") and validation ("are we building the right product"), sees evaluation as 

"a feature of both verification and validation". 

Evaluation is generally a prerequisite for placing a system into routine 

operation. Indeed, Gaschnig, Klahr, Pople, Shortliffe & Terry (1983) refer to 

evaluation as "certification for operation". Two kinds of testing are necessary: 

the first is to assess the system's expertness or competence; the second is for 

usability. 
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Firstly, the builder of a knowledge-based system evaluates it because 

s/he is interested in seeing what it does right and what it does incorrectly. It is 

here that the program's performance is measured and compared with that of 

some standard. S/he is also interested in making corrections to the knowledge 

base so as to increase the instances in which the system acts correctly and to 

reduce those in which it is wrong (see, e.g., Ginsberg, 1988). The overall aim is 

usually to have the system demonstrating a level of competence that both 

domain expert and user alike will find at best impressive and at worst adequate. 

But mere "expertness" may not be enough to satisfy potential users of a 

knowledge-based system. So evaluation often also aims at finding out whether 

the users are comfortable with the system's style of interaction and speed of 

response, and whether the advice given by the system is useful to them in the 

functions that they have to perform (see also Waterman, 1985, p 199). 

Evaluation for Research 

A growing number of researchers are also evaluating knowledge bases to 

investigate, for example, the effect of knowledge-acquisition method on the 

development effort required (see, e.g., Michalski & Chilausky, 1980). 

Increasingly, researchers (e.g., Adelman, 1989; Cohen & Howe, 1988 and 1989; 

and Hayes-Roth, 1989) have also been recognising the need to compare 

knowledge-based systems as a part of the process of developing theory and 

testing hypotheses. The simplest comparison would be between two knowledge 

bases developed separately for the same domain. As discussed in "Efficacy of 

Method" on page 81, the accuracy and size of the two knowledge bases might 

be important in such a comparison. 

Not long ago, Hayes-Roth (1989) argued that knowledge engineering 

was ripe for transformation from a largely practical discipline into one where 

practice could begin to be viewed within the framework of coherent theory. 
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But, according to Hayes-Roth (1989, p 101), "the field of knowledge engineering 

... lacks meaningful measures of progress". He argued that such measures 

would enable the 

design of knowledge system experiments that would address typical 

categories of knowledge and key knowledge engineering costs and 

performance parameters. 

It is not clear whether a measure of progress is different from a measure of 

knowledge-base quality. Nor is it clear whether he is asking for a vision of the 

future, and progress reports on the current state of the journey towards that 

vision. Perhaps both are interconnected, as in the progress from analysis to 

synthesis systems, or improvements in the ratio of knowledge-base size or 

accuracy to knowledge-acquisition effort. 

Evaluation: What is Involved 

Cohen & Howe describe the actions usually performed in evaluating a single 

knowledge-based system. According to Cohen & Howe (1988, p 40), 

in the basic form of a comparison study, we select one or more measures 

of a program's performance; then, both the program and a standard 

solve a set of problems; and, finally, the solutions are compared on the 

measures. 

This section discusses the standards used for comparison, the 

characteristics (e.g., performance) that are evaluated, and the measures that 

have been used. 
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Standards of Compar ison 

When a knowledge-based system is built, its performance is usually compared 

with that of an appropriate standard. But writers (e.g., Stevens, 1984; 

Hayes-Roth, 1989; Forsythe & Buchanan, 1989) disagree about which standard 

should be used. The standards recommended include groups with known levels 

of expertise, an independent expert, the knowledge source, and normative 

theories. 

Evaluation Panels 

Cohen & Howe (1988, p 40) argue that the standard against which a 

knowledge-based system is compared can be a group consisting mainly of 

domain experts, but with a few novices included as "an interesting control 

condition to ensure that successful performance requires expertise". This view 

is shared, at least partly, by Bratko & Kononenko (1989), who compared the 

performance of some of their medical diagnostic systems to that of specialist as 

well as non-specialist medical doctors. These approaches make it possible to 

locate the performance of the system along a spectrum of expertise ranging 

from novice, through semi-expert, to expert. As discussed in Chapter 3, "Some 

Implications of Cognitive Psychology for Knowledge Acquisition," expert 

performance is generally distinguished from that of novices by accuracy, the 

number of steps in the reasoning process, and speed of decision (Anderson, 

1982). 

If the group contains multiple experts, there may be differences of 

opinion among them about what is correct, which can both enrich and 

complicate the evaluation. It is often useful to seek consensus where a panel of 

experts is used. Kors, Settig, & van Bemmel (1990) have reported satisfactory 

resilts from using the Delphi method. However achieved, this consensus 

becomes the standard against which the knowledge-based system's performance 

is judged (see e.g., Collins, Ghosh, & Scofield, 1988). 

Chapter 4. Evaluation Measures 8 9 



Evaluation by an Independent Expert 

On the other hand, if a "gold standard" is used (see, e.g., Burton & Shadbolt, 

1988, p 11), then the performance of both the knowledge source and the expert 

system may be compared with that of the standard. In such circumstances, it is 

possible for both the artifact and the source to perform less than perfectly. 

Adelman (1989) also used a gold standard, so did Berwick (1985). However, 

there is often little justification for taking as gospel the views of a single expert. 

Where a gold standard is used, its utility in comparing two knowledge 

bases with each other is that it allows each to be measured in turn against a 

common standard. This might be appropriate where knowledge for a single 

domain is acquired, from different sources or by different methods, to build two 

knowledge bases. 

But the standard clearly cannot be universal. It is, in general, not 

transferable between systems. For example, the standard against which a 

rheumatology diagnosis system is compared is quite different from one for a 

mortgage underwriting advisor. Less obvious is the fact that the knowledge 

units in the knowledge base may not correspond to the ones obtained from the 

gold standard. This is especially likely, according to Cohen & Howe (1988, p 

40), "when test problems have so many acceptable solutions that a program 

and a standard cannot be expected to generate the same ones". 

Evaluation by the Knowledge Source 

Of course, the performance of the system can simply be compared to that of the 

source from which the knowledge was acquired. This approach was used by 

Yih (1988), who compared "the performance of the extracted rules ... with the 

performance of the 'expert schedulers', from whom the rules were extracted". 

When the performance of a knowledge base is compared with that of its 

knowledge source, what is being measured is how well the acquisition process 

has created a model of the source's expertise. This is so as long as the test 
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cases fall within the limits of the domain, as a knowledge source (particularly a 

human one) is not necessarily bounded in its domain of expertise in the same 

way as a knowledge-based system is. 

Evaluation against Normative Theories 

In some problems, it is possible to use what Cohen & Howe (1988) 

describe as "objective, recognized standards [e.g.,] normative theories". For 

instance, Yih (1988) compares 

the performance of the optimal policy ... with that of the resulting rules 

from trace-driven knowledge acquisition .... The results show that the 

rules extracted from trace-driven knowledge acquisition ... yield near 

optimal performance. 

Clearly, not every domain is susceptible to this kind of analysis, but wherever 

problems can be selected that have model answers, these answers will provide a 

scoring key against which to assess the system's performance. The question 

arises, however, as to the reason for using a knowledge-based approach for a 

problem that has a clear algorithmic solution. 

Test Cases or Expert Assessment 

Some builders of knowledge bases have found it convenient to compile a set of 

test cases along with their solutions from the expert and to store these in a case 

database. Such a database can be used for testing a knowledge base via a batch 

process (that is, where the knowledge-based system is equipped to deal with 

input in that form; see, e.g., Roskar, 1988). This is an approach commonly 

used for inductively generated knowledge bases, but it also allows evaluation to 

proceed rapidly even where induction is not used. It also has the advantage 

that it can easily be an iterative process of evaluation and refinement until the 

system performs as well as the knowledge sources. 
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To be usable in this way, test cases must be expressed in terms of the 

same domain model as the knowledge base to be evaluated. Or the latter must 

be a subset of the former. For instance, if the knowledge base includes a test of 

colour, the test cases must also be described in terms of colour. 

If a knowledge base exists without compatible test cases, exemplars can 

be generated for solution by the expert (Lundell, 1988). They can then be used 

to evaluate the knowledge base. Refinements to the knowledge base may also 

demand changes to the test cases. 

It is possible, as Cohen & Howe (1988) have pointed out, that each test 

case could have several correct solutions. To cater for such situations, the 

representation used for each case should be flexible enough to accommodate 

several classes. If this flexibility is not available, as Cohen & Howe (1988, p 40) 

put it, "one cannot compare the program's performance with the expert's but 

must instead rely on the expert's direct assessment of the program". This is 

how Muggleton (1986) evaluated his chess end-game expert system, i.e., by 

having a human expert assess the program's play. 

But Cohen & Howe have pointed out the tendency of experts to be 

"overly generous to the program. Moreover, direct assessment does not tell us 

whether the program is performing better than the expert." Only an 

independent expert can do this. 

In systems for synthesis, evaluation by expert assessment is often the 

most convenient method. Indeed, it is sometimes necessary (see, e.g., 

Birmingham, 1988) to go beyond the expert's assessment and to build the object 

designed by the knowledge-based system to see whether it works. This is costly 

and can usually be done only for a small sample of cases. According to 

Birmingham (1988), the knowledge captured by CGEN "was sufficient to build 

an interesting set of designs, one of which was constructed and shown to work". 

Chapter 4. Evaluation Measures 92 



Nicholson (1988) also contains the following account given by a 

knowledge engineer regarding the validation strategy for an expert design 

system built by his organisation: 

When [the knowledge-based system] comes out with a configuration, 

the first level of validation was: 'Is it a system that would be acceptable 

to the experts?' The second level of validation was: 'Can we build it; 

and does it work when we build it?' So your only real validation is 

experience ... that's only a way of proving it's wrong, but never a way of 

proving it's right. 

Evaluation is not always easy. Davis & Lenat (1982, p 123) assert that 

judging the performance of a system like AM ... is a very hard task, 

since AM has no 'goal'. Even using current mathematical standards, 

should AM be judged on what it produced, or the quality of the path 

which led to those results, or the difference between what it started with 

and what it finally derived? 

But AM is a special case: it is a program that discovers interesting 

mathematical relationships by a kind of introspection. 

Character ist ics of Knowledge Bases 

Knowledge bases have several characteristics; some appear to be only 

describable while others are also measurable. Among the characteristics that 

people have found interesting are performance, usability, cost, size, and 

intelligibility. These are discussed in the rest of this section. 

Performance 

The term "performance" has already been used in discussing standards. But, 

like several other writers, this author has done so without explaining or defining 

Chapter 4. Evaluation Measures 9 3 



it. When you evaluate the performance^ of a knowledge base, you are likely to 

be interested in being able to say that the conclusion of the system coincides 

with that of the standard in some percentage of cases. 

Builders of knowledge-based systems often invest considerable effort in 

satisfying themselves about their systems' performance and in demonstrating to 

prospective users that the systems are likely to perform well. It is often said, 

for instance, that DENDRAL performs better than domain experts (see, e.g., 

Weizenbaum, 1976, p 230), although it is more usual to find that 

knowledge-based programs perform somewhat less impressively. 

Different writers have used their own expressions in referring to 

performance: 

• "Performance" (e.g., Davis & Lenat, 1982) 

• "Number of times correct" (Stevens, 1984) 

• "Effectiveness of rules" (Buchanan et al, 1983) 

• "% correct diagnosis" (Michalski & Chilausky, 1980) 

• "True positives" (Politakis, 1985; Weiss & Kulikowski, 1984; and Ginsberg, 

1988) 

' "Hit rate" (Cohen & Howe, 1988 and 1989) 

• "Appropriateness of choices" (Hayes-Roth, 1989) 

• "Diagnostic accuracy" (Bratko & Kononenko, 1989). 

As mentioned in "Efficacy of Method" on page 81, the computation of 

this quantity appears to be widely agreed. When N cases with known solutions 

are presented to the knowledge-based system, it produces M (less than or equal 

Lydiard (1992, p 102) equates knowledge-base performance with efficiency of execution. 
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to N) correct solutions. The diagnostic accuracy (or whatever you wish to call 

it) is said to be M/N, often expressed as a percentage. 

There are difficulties with this measure in domains where several correct 

solutions to a given case may exist. The system's solution may be correct but 

different from that preferred by the standard. Michalski & Chilausky (1980) 

used a supplementary measure ("% preferred diagnosis") to indicate the number 

of cases in which their expert system was not merely correct, but had produced 

the solution preferred by the standard. 

Moreover, such a bald statistic as diagnostic accuracy is likely to suffer 

from the same weakness as any measure of central tendency: it says nothing 

about the number of cases used to evaluate the system. Stevens (1984) 

expresses a concern for the statistical significance of apparent differences in 

performance: 

if a modification to a system means that the number of times it is 

correct increases from say 60% to 65% how can we know whether this 

increase is significant? ... How can we exclude the possibility that an 

improvement is the result of chance? 

Perhaps the statistical F-test based on an analysis of variance for the 

data is one way, in properly designed experiments, to alleviate such concerns 

(see, e.g., Chapanis, 1959). 

Equally important, diagnostic accuracy does not indicate how 

representative these test cases are of the universe of cases that the system will 

be required to handle over its lifetime (Gaschnig et al, 1983). This concern is 

shared by Lehner (1989, p 658), who recommends "the use of a representative 

set of randomly selected test problems". 

Some researchers have also supplemented the diagnostic accuracy 

measure with a measure of the number of times that the system fails to produce 
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a correct solution. This has been called "% false positives" (see, e.g., Politakis, 

1985; Weiss & Kulikowski, 1984) and "% not diagnosed" (see Michalski & 

Chilausky, 1980). The less restricting latter measure is not strictly equivalent to 

the former. They are subtly different because "% not diagnosed" allows for the 

counting of those cases in which a knowledge-based system, unblinkered by the 

closed-world assumption (see, e.g., Steels & Campbell, 1985), fails to offer a 

solution. 

The percentage of false positives is used in combination with % false 

negatives to describe the performance of systems that make binary-valued 

decisions, e.g., whether a thermostat is normal or faulty. In such systems, the 

measures are related as follows: 

diagnostic accuracy + % false positives + % false negatives + 

% not diagnosed = 100%. 

In situations where assessment by the expert is necessary, diagnostic 

accuracy and the other performance measures may be difficult to interpret. 

In contrast with the situation where two knowledge bases for the same 

domain are compared, it is also useful to be able to compare two knowledge 

bases for different domains. One dimension on which they can be compared is 

how well they achieve their intended objectives. Buchanan & Feigenbaum 

(1982) refer to this as "power ... to perform its task well". Good measures, even 

qualitative ones, of how well an expert system is achieving its objectives would 

facilitate such comparisons. However, the measures discussed above appear 

adequate. If two knowledge bases have diagnostic accuracy of 80%, it is safe 

to conclude that they have both modelled their source's expertise imperfectly to 

the same extent, assuming the knowledge source is used as the standard in both 

instances, and the test cases are obtained by the same method. 

Performance is probably the most important attribute of a knowledge 

base, because if the diagnostic accuracy is not acceptable, then other features of 
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the knowledge base are hardly likely to persuade anyone to put the system into 

routine operation. 

Usability 

Rasmus sen (1980) has argued that software users appear to have 

internal models (stored in long-term memory, and accessed subconsciously) of 

familiar situations. These models respond to perceptual inputs and operate like 

fast analogue computers. But in strange situations, outside the applicability of 

their stored models, users reason at a conscious level. This conscious reasoning 

uses cognitive processes that are slow and have low capacity. It is therefore 

important that interactive computer systems harmonise appropriately with these 

two distinct human information processing modes. 

So some builders of knowledge-based systems also subject their systems 

to some form of testing by users, mainly to assess how easy the systems are to 

use, how appropriate their user interfaces are, and overall how useful thee 

systems are. The importance of this characteristic is clear to Vinze (1992), who 

treats usability and effectiveness of a knowledge-based system as synonymous, 

measuring them by using a questionnaire that focuses on users' satisfaction with 

the system. 

Measuring usability may also involve a pilot operation or the release of 

a beta version to selected users (see Nicholson, 1988). Problems found here 

may demand restructuring of the knowledge base to improve response time, 

rewording of the system's questions to eliminate ambiguity, or even a change of 

the delivery platform. Where large knowledge bases are integrated into 

database systems, this is especially vital (see, e.g., Mumford & MacDonald, 

1989, pp 

One of the dimensions proposed by Davis & Lenat (1982) for evaluating 

their AM system is "the character of the user-system interactions". But while 

some aspects of usability (e.g., the quality of the questions asked) may be 
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characteristics of the knowledge base itself, others may be characteristics of the 

user interface or the inference engine. 

Cost 

The cost of developing a system is a part of the history of that system. 

It may not be readily observable after the system has been built, but it can be 

especially useful if known before the system is developed. Both Gaschnig et al 

(1983, p 247) and Hayes-Roth (1989, p 109) acknowledge the importance of this 

characteristic, for which Hayes-Roth proposes "cost per knowledge unit" as a 

measure. 

After the system has been built, it carries with it a further intrinsic cost, 

which, according to Gaschnig et al (1983, p 247), includes the expense of 

"providing for its maintenance". Hayes-Roth (1989, p 109) proposes "costs and 

effects of knowledge incrementation", and "ease of knowledge deletion" as 

measures of this characteristic. Gaschnig et al (1983, p 247) argue that the cost 

of "running it, interpreting the results" is important. 

But Buchanan et al (1983, p 158) attempt to put costs in perspective by 

distinguishing between computing costs and human costs: 

the cost of computer resources is falling rapidly with recent progress in 

hardware technology, while cost of human labor (especially of 

knowledge engineers) is increasing. Thus the benefit of reducing human 

resource costs far outweighs the cost in computer resources. 

Cost is, of course, a relative concept: it might be sensible to incur great 

costs if even greater returns are expected to result. Connell (1987) argues that, 

whereas a proof-of-concept system may be appropriately judged by whether it 

works, an operational system can be subject to more stringent measures, such 

as return on investment. 
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Size of Knowledge Base 

Michalski & Chilausky (1980) describe the size of their soybean disease 

diagnosis system in terms of the number of findings or attributes, the number of 

conclusions or classes, and the number of rules. Both Politakis (1985) and 

Ginsberg (1988) also describe the size of their rheumatology diagnosis system in 

these terms. These measures (especially number of rules) are to be used with 

caution because it is well known that the inclination of the knowledge engineer 

and the restrictions of the formalism can both affect the number of rules in a 

knowledge base. 

It is not necessarily true, for example, that a knowledge base with 1000 

rules is smaller than one with 2000 rules. However, the three quantities of 

Michalski & Chilausky taken together give a good indication of relative sizes, if 

the tool being used is also stated. 

Another source of difficulty is that the size of knowledge bases 

represented as frames or semantic networks is difficult to compare meaningfully 

with that of those represented mainly as rules. Indeed, a system cam perform 

the same task with either a rule-intensive or frame-intensive representation. So 

some people reckon size by the number of bytes of storage occupied by the 

knowledge base. Even that has its pitfalls, as verbose people may use long 

character strings to express classes and attributes. 

Intelligibility 

Some writers insist that rules must make sense to the human expert. Politakis 

(1985), for example, argues that this is vital in medical diagnosis systems, to 

help the experts feel confident about the soundness of the systems' underlying 

knowledge (see also Spackman, 1991). Other writers (e.g.. Hart, 1986) point 

out that certain induction algorithms sometimes yield rules which, although 

diagnostically accurate, are unintelligible. 
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Szolovits (1986) has pointed out that although rules are more commonly 

used to represent knowledge in expert systems, Lisp functions are sometimes 

used. They achieve "efficiency and ease of initial construction at the expense of 

making its knowledge inaccessible in an explicit form". Hayes-Roth (1989) 

proposes "accessibility of knowledge via queries" and "understandability of 

results" as measures of intelligibility, while Sykes (1987) mentions "ability to 

explain its reasoning". 

But intelligibility may sometimes be obtained at the expense of efficient 

operation, or even of tractability (Michie, 1982). 

Even so, it may be enlightening to evaluate expert systems on the 

quality of their reasoning, not just the accuracy of their results. 

Other Characteristics of Knowledge Bases 

There are other dimensions beside those discussed above. Some 

knowledge-based systems in current use are valued not only because they can 

arrive at the same decision as an expert almost every time, but equally because 

they are able to do so in a fraction of the time that the domain expert 

traditionally took (see e.g., Nicholson, 1988). By using such a system, the 

expert can perform more efficiently. 

Sykes (1987) mentions brittleness (Cohen & Howe, 1988, p 40 refer to 

the opposite pole of this as "robustness"), and depth of reasoning as important 

attributes of a knowledge base. He sees shallow reasoning being characteristic 

of knowledge bases that model experts' heuristics, while deep reasoning is 

characteristic of systems that model "the underlying physical mechanism" of the 

domain. (The trend towards using the latter kind of architecture is mentioned 

on page 6.) 
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Possible Influences 

A number of factors appear to be capable of influencing the outcome of a 

knowledge acquisition project; five of these are listed by Adelman (1989); the 

knowledge-acquisition method, the knowledge representation formalism, the 

domain and the type of knowledge that characterises it, the knowledge source, 

and the knowledge engineer. 

To be able to analyse sensibly what is going on, it is necessary to 

develop measures that can characterise each of these factors. With such 

measures, it will begin to be possible to discover causal links or correlations 

between the knowledge-base characteristics discussed in "Characteristics of 

Knowledge Bases" on page 93 and other variables that may affect them. 

This section examines some of the factors that writers have, whether 

from experiment or experience, seen as influential. 

Internal Inf luences 

It is hardly fanciful to expect that some characteristics of a knowledge base will 

be strongly correlated with others. For example, intelligibility may be 

influenced by representation (see, e.g., Szolovits, 1986), and both intelligibility 

and size of a knowledge base may affect the cost of maintenance. Size may also 

affect speed, especially in backward-chaining systems (see, e.g., Davis & Lenat, 

1982, pp 409-410). But while speed may degrade with increases in 

knowledge-base size, speed can sometimes be increased by restructuring a large 

knowledge base into a hierarchy of smaller ones. 

Another assertion about the possible effect of knowledge-base 

characteristics on each other was made by Feigenbaum & Buchanan (1982). 

According to them, 

as with all such insights, it appears in retrospect to be common sense: 

that the power of an intelligent program to perform its task well depends 

Chapter 4. Evaluation Measures 1 0 1 



primarily on the quantity and quality of knowledge it has about the 

task. 

But researchers are not likely to find out how well, how much, and what kind 

without effective measures of important characteristics of knowledge-based 

systems. And without such measures, researchers are unlikely to be able to 

transform this conjecture of Buchanan & Feigenbaum into more precise forms 

such as those depicted in Figure 17 and Figure 18 on page 103. 

Diagnost ic 
accuracy 

ox 

0 

X 

ox 

0 X 

Poss ib le 
i n t e r p r e t a t i o n 
of Buchanan & 
Feigenbaum (1982) 

Typical machine 
induct ion curve 
( see , e . g . , 
Pazzani & Kibler , 
1992) 

E f f e c t of 
" soc iopa th ic" 
knowledge (see 
Wilklns, 1987) 

Quanti ty of knowledge 
about the task 

Figure 17. Possible relationship between knowledge quantity and KB performance 
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Figure 18. Possible relationship between knowledge quality and KB performance 

Inf luence of Method 

Quite apart from the efTect that knowledge-base attributes may have on each 

other, it is clear that factors external to the knowledge base also influence 

knowledge-base characteristics. Arguments have clearly been forwarded in 

Chapter 3, "Some Implications of Cognitive Psychology for Knowledge 

Acquisition" about how the repertory grid technique and KAMSE might affect 

the knowledge they are used to acquire. More generally, empirical work has 

been done to demonstrate that these effects do exist. For instance, Michalski & 

Chilausky (1980) showed that machine induction created a knowledge base with 

higher diagnostic accuracy than "hand-crafted" rules. 

But Michalski & Chilausky appear to have failed to determine how 

much better machine induction was, because they set the inference threshold for 

the inductively generated knowledge base at a higher level than that for the 

hand-crafted system. Perhaps a richer experiment would have been to 

determine the effect of threshold on diagnostic accuracy (Levi, 1989, also 

discusses this connection) for the two methods. Had that been done, Michalski 

& Chilausky would have been able to establish (subject admittedly to grave 
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doubts about statistical significance) the sort of relationship depicted in 

Figure 19 on page 104. But there really is only a single point on each of those 

two curves. 

Diagnostic 
accuracy 

98% + 

88% + 

x x x x x x x x x x x Expert 

+ Induct ive 

0 Hand-crafted 

.7 .8 .9 
+ — + — + • 

In fe rence th reshold 

Figure 19. A possible context for the two observations of Michalski & Chilausky 

With a different experiment design, Michalski & Chilausky's findings 

would have enabled the knowledge-engineering community to say more than 

Buchanan et al (1983) did in their assertion that 

A Q l l has been used to formulate factual knowledge in the form of rules 

for diagnosing plant diseases. These rules have proved more effective 

than those generated by an expert (although the expert could still 

analyse test cases more effectively than the program using its 

automatically formulated rules). 

In addition, Michalski & Chilausky's failure to describe their 

"hand-crafted" method more precisely than "conference with the experts" 

deprives others of further valuable insights. 

The other major finding of Michalski & Chilausky was that the effort 

required to create an accurate knowledge base is much less when machine 
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induction is used than when rules are hand-crafted. However, Michalski & 

Chilausky employ a crude measure of knowledge-acquisition effort: 

"approximately 20 hours were required to [develop] the descriptions for the 

above 15 diseases" (p 70). And other researchers are left to assume, for 

example, the number of people and thence the effort in person-hours. 

Researchers at Nottingham University, notably Mike Burton and Nigel 

Shadbolt, have over several years done a series of experiments to discover 

relationships between the knowledge-acquisition method used and "the time and 

effort taken ..., the amount of information generated ..., and the amount of 

genuine, usable knowledge generated" (Burton & Shadbolt, 1988, p 11). 

Knowledge-acquisition method is also linked with effort by Muggleton 

(1986, p 67), who asserts that whereas 

designers using dialogue acquisition methodologies talk of constructing 

prototype systems in terms of years, MUGOL-based applications have 

been consistently prototyped in around six person months. 

This comparison of his, however, lacks precision as it compares elapsed time 

(years) with effort (person months). Yet it still indicates that both are possible 

measures of the cost of building a knowledge-based system. 

But how can knowledge acquisition methods be characterised, placed 

along a continuum, in a plane or within a space? This is a difficult endeavour, 

as is evident from Chapter 1. On one dimension they can be said to be either 

interactive or inductive (Muggleton, 1986). But that is not enough. Other 

writers have used other dimensions: Politakis (1985) classifies 

knowledge-acquisition methods as direct and indirect. According to him, 
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a direct approach has tried to find efficient techniques to extract 

knowledge from the domain expert, while other research efforts have 

sought ways of acquiring expert knowledge indirectly from sample cases. 

Clearly, his direct / indirect construct is equivalent to Muggleton's interactive / 

inductive. 

Inf luence of Domain 

It would also be useful to have dimensions that characterise a domain 

adequately. Some writers (e.g., Partridge, 1986) have classified domains 

according to their degree of structure, with one extreme being highly structured 

and its opposite pole being ill structured. Some (e.g.. Boose, 1989) have classed 

them as either analytic or for synthesis. And some (e.g., Muggleton, 1986) have 

categorised them as either evaluative or controlling. In addition, some kinds of 

expertise appear to be stored in different ways in people's minds. For example, 

knowledge of how to find one's way around the campus might be stored 

differently from knowledge about correct spelling. Some writers (e.g., Burton & 

Shadbolt, 1988) have also mentioned as well that a domain might be highly 

procedural or it might be classificatory. 

Politakis (1985, p 33) describes the kind of knowledge domain for which 

learning from examples is unlikely to work well: 

realistic and large-scale medical diagnostic applications where the 

dimensionality is large both in numbers of findings and conclusions and 

there is much uncertainty in diagnostic reasoning. In these applications. 

Neuropsychological evidence of selective impairment of some types of knowledge (e.g., 

face recognition; see Ellis & Young, 1988) supports this. 
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a set of cases rarely covers the range of possible ways of arriving at 

diagnostic conclusions which an expert physician has experienced. 

in f luence of People 

A domain expert can perhaps be characterised according to how much 

expertise he or she has. Novice and expert would be represented by points on 

this scale. A domain expert is simply a person, and could therefore be classified 

like any other person, e.g, by psychometric testing. In a similar way, the 

knowledge engineer might be tested. Some writers (e.g., Forsythe & Buchanan, 

1989) have also mentioned power differences between the domain expert and 

the knowledge engineer as being potentially significant. Perhaps some way 

could be found of characterising the power of each one. Some writers have also 

mentioned willingness, articulateness, and being busy as possible dimensions 

(see, e.g., Bell, 1985). 

Adelman (1989) used knowledge engineer (he had six of them 

participating in his experiment) as an independent variable, but failed to 

propose any meaningful dimensions on which these people could be 

characterised or compared. The dimension he settled for was crude: he grouped 

them by the institution in which they were trained. 

Other inf luences 

Anjewierden (1987) briefly evaluates five knowledge-acquisition tools (ROGET, 

KEATS, AQUINAS, ETS, and KREME) based on the "level of representation" 

(see Brachman, 1987) that they support. 

Several writers (e.g., Rasmussen, 1980; Arblaster, 1983; Waterman, 1985) 

have indicated that the user interface is an important factor in the success of 

their systems. If they are correct, a CAKE tool's user interface may affect the 

knowledge that it can acquire. The user interface also affects how easy a tool is 
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to learn to use (Boose, 1989), and how much information the user has to enter 

(Klinker et al, 1987). 

Muggleton (1986) uses the concept of inductive efficiency to measure the 

effort that an algorithm expends in transforming examples into formal 

knowledge. 

Conclusions 

People evaluate knowledge bases to certify them for operation or to discover 

interesting relationships through experimentation. Several characteristics of 

knowledge bases can be measured, but the most commonly used is diagnostic 

accuracy as an indication of performance. Few agreed quantitative measures 

exist for describing the other attributes of knowledge bases. 

Several measurable factors can influence the characteristics of a 

knowledge base. With appropriate dimensions for each factor, and suitable 

measures of knowledge-base characteristics, it is possible to investigate 

relationships empirically, through well designed experiments. For not only must 

knowledge-based systems be evaluated, but also the methods and tools used to 

build them. It is evident that metrics are needed, although those adopted for 

conventional software development (see, e.g., Grady & Caswell, 1987) appear 

inappropriate for knowledge bases. 

There is also a sense in which evaluation is a continuing process, and 

that even in routine operation a system's performance is under constant 

scrutiny. Perhaps evaluation over time, or some time-changing factor, would be 

appropriate (see, e.g., Cohen & Howe, 1989). 
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Chapter 5. The Control led Experiment in 
Knowledge-Acquisit ion Research 

Abstract 

This chapter* is based on a review of the literature about controlled experiments 

in research on knowledge acquisition. The review was carried out to help the 

author make decisions about the design of his own experiment comparing two 

knowledge-acquisition methods. The chapter looks critically at six experiments 

reported in the literature, and proposes a framework within which such 

empirical work can be viewed. It concludes that some of the apparent 

difficulties can be resolved, and that controlled experiments can be a useful way 

of discovering the relationships at work in a knowledge-acquisition project. 

Introduction 

Case studies and benchmarks have been used widely in research on 

knowledge-based systems. For example, in a case study, Michalski & Chilausky 

(1980) investigated the effect of the acquisition method in a single domain on 

the effort needed to acquire the knowledge, and on the diagnostic accuracy of 

the resulting knowledge bases. In a benchmark, Quinlan (1986) used several 

case bases as input to different induction algorithms, and observed the effect of 

these variables on the diagnostic accuracy of the induced knowledge bases. 

But there appears to be a growing awareness (Adelman, 1989) that 

controlled experiments can help advance understanding of how the knowledge 

source, representation, acquisition method, domain, and engineer affect the 

effort needed to build a knowledge base and the quality of its performance. 

^ A paper based on this chapter is being published as Nicholson (1992b). 
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Burton & Shadbolt (1988, p 11) argue strongly in favour of controlled 

experimentation: 

Although one can get useful practical information from case studies, 

there will always be many factors unique to any particular knowledge 

elicitation session. Hence the need for a formal experimental analysis. 

Indeed, researchers such as Burton, Shadbolt, Hedgecock & Rugg (1987), 

Lundell (1988), Stevenson, Manktelow, & Howard (1988), Deffner & Ahrens 

(1989), Adelman (1989), and Agarwal & Tanniru (1990) have used methods 

from experimental psychology to explore research questions in knowledge 

acquisition. 

The author's interest in the subject arose from his own need to compare 

two knowledge-acquisition methods in terms of the effort they demand from a 

domain expert, and the accuracy of their outcomes. The controlled experiment 

seemed the ideal way to do the investigation, so a search was made of previous 

uses of this approach in the field of knowledge acquisition. It is evident that 

not many researchers have used controlled experiments for this purpose. 

However, the few that appear in the literature do contain lessons from which 

the author's own design was able to benefit. These lessons, and their influence 

on the author's design, are discussed in this chapter. 

Experiments 

This section discusses six experiments reported in the knowledge-acquisition 

literature. 
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Congruence of Representat ion 

Proposing hypotheses based on Anderson's (1982) theory of skill acquisition, 

Lundell (1988) argues that while novices store their expertise in declarative 

memory, or at the conscious level, experts do so in procedural memory, or at 

the tacit level. Lundell further argues that it ought to be easier to elicit rules 

from novices than from experts, and that it ought to be easier to obtain typical 

examples (or what he calls "prototypes") from experts than from novices. 

In addition, Lundell conjectures that an artificial neural network (built 

using prototypes and exemplars obtained from an expert) ought to have greater 

diagnostic accuracy than a similar knowledge base derived from exemplars and 

prototypes that have been elicited from novices. Conversely, a set of rules 

elicited directly from a novice ought to have a higher diagnostic accuracy than a 

set elicited directly from an expert. 

Lundell's "representational congruence" hypothesis asserts that if, for 

example, a rule elicitation method is used, then it will elicit primarily knowledge 

stored as rules in the mind of the expert. Lundell's representational and 

"elicitational congruence" hypotheses involve the following independent 

variables: 

• Elicitation method 

• Expert's level of expertise 

• Knowledge representation in the knowledge base. 

These variables are all controllable in an experiment. The dependent variable, 

which, Lundell argues, is a function of the variables listed above, is the 

diagnostic accuracy of the knowledge base built using the knowledge elicited 

from a subject. To test his hypotheses, Lundell had to vary the controllable 

variables in turn, and record the effects on diagnostic accuracy. Taking several 

observations for each setting of each controllable variable allowed him to 
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increase the reliability of his results. Of course, the subjects themselves are also 

variable (see, e.g., Chapanis, 1959, and Adelman, 1989). 

Lundell's experiment is essentially a two-group design, in which each 

subject fills in four different types of questionnaire. It used a random 

presentation order in an attempt at eliminating sequence effects. 

Two of Lundell's questionnaires were aimed at eliciting rules directly. 

One he called the "direct rule" questionnaire, and the other the "decomposed 

rule" questionnaire. These two complemented each other in his subsequent 

creation of rule bases. 

The two other questionnaires were aimed at eliciting examples, from 

which knowledge could be derived by some kind of machine learning. One of 

these questionnaires elicited a set of typical examples or cases; this one he called 

the "prototype elicitation" questionnaire. The fourth questionnaire, which he 

called the "exemplar questionnaire", consisted of a randomly generated set of 

undiagnosed hypothetical cases for the subjects to diagnose. 

Using these questionnaires for knowledge acquisition appears to impair 

the external validity of Lundell's experiment. The antecedents and the 

consequents are given, whereas in practice it seems more usual for these to have 

to be elicited from the knowledge source by various methods. The considerable 

amount of knowledge acquisition which clearly went into the preparation of 

these questionnaires deserves to be acknowledged openly. Moreover, 

questionnaires are rarely used to acquire knowledge for knowledge-based 

systems (see, e.g., Welbank, 1990). 

Lundell used the completed questionnaires to build a number of expert 

systems, but little is said, in his dissertation, about this process. And without 

any assurance to the contrary, his readers are left wondering about the scope 

for introduction of errors at this stage. Still, perhaps this criticism is a bit 

unfair, because the graphical representation on his questionnaires seems capable 
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of being easily transformed into production rules. In the case of his 

connectionist networks, it appears obvious that the exemplar and prototype 

data were simply coded as examples and used to train the networks in the 

diagnostic task. 

Lundell's subjects emerged from his training with a range of levels of 

expertise in the diagnostic task. Some had become good at it, and others had 

learned to a lesser extent. Lundell classified his newly trained subjects as either 

skilled or unskilled. He set his criterion at the median test score, so that half 

the subjects were "unskilled" and the others "skilled". It appears to be an 

arbitrary distinction with little basis in theory and little rationale, save that of 

balancing the sizes of the two groups. 

After basing his initial arguments on the theory that experts' skills reside 

at a tacit level while novices' skills are represented consciously, Lundell appears 

to make little use of this representational differential that would be expected to 

exist between his skilled group and his unskilled one. 

Perhaps an improvement would have been to use an adaptive 

questionnaire to gather the same type of data. Under this approach, subjects 

would interact with a computer program that asks questions based on answers 

already given. By doing this, he would have introduced some of the flexibility 

characteristic of real-world knowledge acquisition, while providing systematic 

and consistent recording of data. 

By creating his own experts in a domain of his own making, Lundell 

may have sacrificed external validity, but at the same time he gained a 

ready-made set of test cases against which both the experts themselves and the 

elicited knowledge bases could be evaluated. He also limited the scope of the 

task to a size amenable to analysis and experimental control. 
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Think ing A loud 

Stevenson et al (1988) also did an experiment to test a hypothesis implied by 

Anderson's (1982) ACT* theory. Their hypothesis was that their own method 

of knowledge acquisition would be more effective than "traditional" methods. 

They argue that it is wrong to assume that analysis of thinking-aloud protocols 

accurately unearths the knowledge contained in an expert's automatic 

productions. What thinking aloud is more likely to do, they argue, is to slow 

down and even distort the expert's actions. They argue that it is more effective 

to let the expert perform his task undisturbed except for the scrutiny of a 

videotape camera and recorder. At some later time, the expert can explain his 

actions while watching the videotape. These explanations can be used to 

generate production rules. Stevenson et al call this method an "evaluation 

technique". 

The experiment of Stevenson et al tested their hypothesis by varying the 

acquisition-method treatments to which subjects were assigned. They used a 

two-group repeated-measures design, although one group (the experts) was very 

small (two subjects) compared with the other group (eight subjects). All 

subjects received all treatments, but in the same order (there was no attempt to 

correct for sequence effects by counterbalancing). But time (more than a day) 

was allowed between treatments, perhaps to allow the attenuation of any 

carry-over effects. 

Stevenson et al appear not to have taken the analysis of the data as far 

as Lundell did. They did not measure the diagnostic accuracy of derived 

knowledge bases. They did, however, employ a more qualitative approach than 

Lundell's essentially statistical one. They examined the differences between the 

kinds of constructs that the experts produced and those that the novices 

produced. 
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But although Stevenson et al assert that thinking aloud may be less 

effective than their evaluation technique, they fail to support this empirically. 

Or, more precisely, they appear not to have designed their experiment to test 

this. 

Computer-Assisted Knowledge El ici tat ion 

Deffner & Ahrens (1989) were not comparing knowledge acquisition methods; 

they were simply evaluating the single method embodied in a tool of theirs. 

This method involves having a domain expert enter rules in a formal language 

and, as a second stage, refine any ill-defined quantifiers used in the rules. 

According to Deffner and Ahrens, deferring the refinement solves the problem 

of experts "drying up" when they are interrupted and asked to be more precise 

about quantifiers. 

Like Lundell, Deffner and Ahrens used an artificial domain and created 

experts in it by training their twenty-two subjects. The domain used was 

nutritional prediction in a simulation of a person to be fed from a menu. 

During training, the subjects were free to display their tendency to explore the 

domain. This tendency was observed by tracing each subject's interactions with 

the training software. 

Although apparently not so by design, Deffner and Ahrens' experiment 

is a two-group one. The groups were discovered by post-hoc cluster analysis of 

some of the training interaction data. Both groups received the same treatment 

(elicitation method), but they also had what Deffner and Ahrens assume to be 

two different levels of expertise. One dependent variable is the accuracy of the 

generated knowledge base, and this is measured by testing the rules against the 

simulation. Other dependent variables are the number of rules elicited and the 

average number of attributes per rule. 
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Deffner & Ahrens do not say how many of their subjects fall into each 

group. Nor do they say how they treat the two subjects who do not "fall 

clearly into one of the two groups". 

DefTner & Ahrens (1989, p 359) concede that their tool "may at first 

sight appear not to be very practical". They try to remedy this lack of external 

validity by suggesting where the use of the tool might fit in a series of 

knowledge-acquisition stages. 

Elici tat ion Efficacy 

Whereas Lundell (1988) and Stevenson et al (1988) were testing hypotheses, 

Burton et al (1987) wanted to determine the relative efficacies and efficiencies of 

different knowledge-elicitation techniques. Burton et al wanted to be able to 

predict which methods would be most appropriate for which circumstances, so 

that builders of knowledge-based systems would have some empirical basis for 

their choices. 

Burton et al also stopped short of building knowledge bases, and 

therefore did not reach as far as measuring diagnostic accuracy. However, they 

did perform other kinds of evaluation on the elicited knowledge, which they 

coded as "pseudo-English production rules". In a subsequent experiment, these 

rules were each rated by the experts on a four-point scale ranging from true to 

false. Thus, Burton et al were able to compare (at least for some of their data) 

the overall quality of rules resulting from each elicitation technique. 

In their experiment, Burton et al had as independent variables the 

elicitation method and the expert's personality type. They tried to keep the 

knowledge representation constant. Their dependent variables were the amount 

of knowledge elicited per unit time, and the quality of elicited rules. 

They also made the distinction between procedural and declarative 

knowledge. Indeed, they assert that two of their methods (protocol analysis 
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and formal interview) are likely to elicit procedural knowledge while the others 

(card sort and laddered grid) are likely to elicit declarative knowledge. But they 

were forced to conclude that their results did not support this assertion. 

Although, like Lund ell, they used students as subjects. Burton et al did 

not create instant experts. Thus, their claim of expertise is more credible, 

especially in the light of Anderson's (1982) assertion that it takes a long period 

of practice to create an expert. On the other hand. Burton et al offer little 

proof of the subjects' expertise. Burton's subjects were not tested for skill level 

as Lundell's subjects were. 

There is usually some danger of impairing external validity when 

university students are used as subjects in experiments (see, e.g., Jung, 1969). 

To get some idea of the effect of using students. Burton et al followed their 

1987 experiment with another — this time using "real" experts. The earlier 

results were vindicated (see Burton, Shadbolt, Rugg & Hedgecock, 1990). 

Knowledge Engineer as a Var iable 

Adelman (1989) did not build expert systems with the knowledge elicited from 

his 138 subjects. What he was trying to do was to determine the effect of two 

variables (knowledge engineer and elicitation method) on the "predictive 

accuracy" of the knowledge elicited. 

He used two methods ("top-down" and "bottom-up") and six knowledge 

engineers in what he describes as a "2x6 factorial" design. However, he appears 

to have had some difficulty in specifying exactly how the knowledge engineers 

differed from each other. He finally decided to use the institution from which 

the knowledge engineer had received his or her training as the dimension on 

which to group them. With this grouping, he reduced his data to that of a 2x3 

factorial design. Perhaps it would have been more meaningful to have used 
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either the psychometric profiles of the knowledge engineers to find clusters (as 

did DefTner & Ahrens, 1989), or some aspect of their experience. 

One of Adelman's chief concerns was with the quality of a domain 

expert's expertise. Adelman argues that the expert is a factor in the quality of 

any elicited knowledge. But, as with his knowledge engineers, he appears not to 

have decided what attribute of the expert is the variable of concern. Yet there 

is a theoretical reason for focusing on skill level (see Anderson, 1982). In 

addition, both Deffner & Ahrens and Burton et al have found the expert's 

personality to be important. Thus, Adelman might have tried to vary these 

systematically. He did not. 

Effects of Tra in ing 

Agarwal & Tanniru (1990) used a completely randomised single-factor design to 

compare unstructured interviewing with "a specific kind of structured 

interview". They did this to test four hypotheses about the relative efDcacy and 

efficiency of the two methods of knowledge acquisition. 

They did well to find as subjects thirty "expert practitioners who were 

responsible for [a capital budgeting / resource allocation] decision". The 

subjects were split into three groups of ten; and each group was given one of 

the three treatments. But there is some doubt about the consistency with which 

the treatments were administered in the experiment. 

The control group of experts had their knowledge elicited, via 

unstructured interviews, by what Agarwal & Tanniru call "experienced 

knowledge engineers". However, only some of these "knowledge engineers" had 

any experience at eliciting knowledge for expert systems. The others were 

systems analysts who were experienced at interviewing. Agarwal & Tanniru do 

not say how many of these interviewers were used, but do admit to having been 

unable to find enough experienced knowledge engineers. 
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Novice knowledge engineers, unlike experienced ones, were apparently 

abundant. Agarwal & Tanniru were therefore able to take care to establish that 

the novice knowledge engineers all started with comparable lack of experience 

of the domain and the knowledge-acquisition methods to be used. However, 

the novice knowledge engineers were given training in only one of the methods 

(structured interviewing), and left to administer the other method (unstructured 

interviewing) without the benefit of any training. 

As a comparison of two methods, Agarwal & Tanniru's experiment 

appears therefore to have been biased toward one method. However, they did 

succeed in showing that knowledge engineers who receive training in a 

technique are likely to be more efficient and effective using it than those who 

try to apply a technique in which they have not been trained. 

Conclusions 

Lessons f rom the Past 

Building a knowledge base can be viewed as the process depicted in Figure 20 

on page 120. As noted in Chapter 4, "Evaluation Measures," there are several 

inputs into knowledge acquisition; various characteristics of these inputs 

interplay to produce some acquired knowledge in a representation formalism. 

The knowledge and representation are clearly interrelated, with the latter being 

the form in which the former can exist in a knowledge base. This knowledge 

base itself exhibits qualities, such as diagnostic or predictive accuracy. 
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Figure 20. Factors and effects in building a knowledge base. 

The qualities displayed by the resulting knowledge base are affected by 

ail the variables that provide input to the knowledge base. A major reason that 

researchers do empirical investigations is to see how these potential independent 

variables to the left afiect the dependent variables to the right. 

The understanding gained from experimenting with these variables is 

likely to bring more predictability to building knowledge bases, and allow 

knowledge engineers and planners to make choices based on more solid 

foundations than are available at present. The researchers discussed in this 

chapter have experimented for various purposes: testing hypotheses, evaluating 

a method or a tool, and looking for correlations. The efforts of these 

researchers have highlighted various challenges. 

For example, because of difficulties in maintaining consistency, and the 

constraints on time, it can be difficult to control the acquisition method. Some 

researchers have had to use a restricted of form the method (as did Burton et al, 

1987) or use artificial ones (as did Lundell, 1988). In addition, there are several 

characteristics of both the knowledge source and the knowledge engineer that 

deserve attention as variables in their own right (e.g., level of expertise, and 

personality). 

Being sure that subjects are experts (determining their level of expertise) 

appears also to be a common problem in experiment design. The means used 
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to solve this problem have not been entirely convincing. Some researchers have 

selected people whose expertise they appear to think unquestionable (e.g., 

academics who specialise in the topic). They have also selected subjects whose 

novice status they appear to think indisputable (e.g., first-year university 

undergraduates). Others have trained and tested their own subjects; but these 

researchers appear to have difficulty deciding on appropriate criteria for expert 

and novice. 

There are also problems with using accuracy as a measure of 

expert-system performance or knowledge-base quality. Each researcher defines 

accuracy in a different way, according to what is convenient for the experiment 

design. Even with a consistent definition of accuracy, there is still likely to be a 

problem. If the test cases are taken randomly from a very large set of historical 

records, the frequency distribution of certain attributes and classes is likely to 

have certain characteristics. However, if the test cases are exemplars, or even 

cases that an expert thinks interesting, then the frequency distribution of 

attributes and classes is likely to be quite different. Thus, diagnostic accuracies 

cannot be meaningfully compared without an accompanying comparison of the 

source of the test cases. 

Effects on a New Experiment 

The need for consistent application of a knowledge-acquisition method to all 

subjects can be addressed by modelling the method in a tool, and eliminating 

the knowledge engineer altogether. However, the use of knowledge-acquisition 

tools to compare two methods can introduce a confounding variable: the user 

interface. Even if all the problems identified in this chapter are not solved in 

the author's design (described in Chapter 6, "Design of an Experiment to 

Compare two Knowledge-Acquisition Techniques" on page 123), being aware 

of them helped make the design sounder than it would otherwise have been. 
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The controlled experiment still appears to be a promising approach to 

investigating the relationships at work in knowledge acquisition. As present 

and future researchers respond to the challenges posed by their predecessors, 

the quality of research design and the value of the findings are likely to be 

enhanced. 
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Chapter 6. Design of an Experiment to Compare 
two Knowledge-Acquisit ion Techniques 

Abstract 

This chapter discusses the design of an experiment to test the hypotheses stated 

earlier. The variables to be manipulated and measured are extracted from the 

hypotheses. Decisions are made about the type of experiment and how the 

knowledge-acquisition methods will be administered. The chapter also discusses 

the type of subjects to be used, and estimates how many of them are required. 

Some possible domains are explored, and the most appropriate one is selected. 

The data to be collected and how it will be analysed are also discussed broadly. 

Introduction 

Chapter 3 states a number of hypotheses about the relative efficacies and 

efficiencies of the repertory grid technique and KAMSE. These hypotheses are 

an elaboration of the research question: whether experts find it easier to express 

their classification knowledge by describing examples or by making distinctions 

between examples. However, the hypotheses are only conjectures which 

cognitive psychology and other considerations suggest. These hypotheses have 

to be tested empirically. As Rugg, Corbridge, Major, Burton, & Shadbolt 

(1992) have argued, what is expected to happen with knowledge-acquisition 

methods often has limited basis in reality; and controlled experiments are an 

ideal way of testing how valid those expectations are. 

But controlled experiments are not without their problems. As discussed 

in Chapter 5, there is not a long history of using controlled experiments in 

research on knowledge acquisition. The few that have been done suggest that 

the approach can be productive, if potential pitfalls are anticipated in the 

design. 
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Clearly there is a need to design an experiment to test the hypotheses 

about the repertory grid technique and KAMSE. The variables of interest need 

to be identified. The type of experiment must be decided. Subjects need to be 

targeted in numbers sufficient to provide the data with acceptable power. How 

the variables will be measured and the treatments administered must also be 

decided. This chapter therefore discusses all these matters, culminating in an 

agenda for a session of the experiment, and a list of actions that still need to be 

performed before the experiment can actually be done. This chapter is therefore 

a blueprint for the rest of the investigation. 

Hypotheses 

For convenience, the five hypotheses to be tested, which all compare the 

repertory grid technique with KAMSE, are restated here: 

Hypothesis 1: The elicitation of elements in the repertory grid technique 

is very similar to the elicitation of classes in knowledge acquisition from 

examples. When both prototypes and exemplars are used as elements, the 

repertory grid will require the greater effort. In any event, the elicitation of 

classes will never require more effort than the elicitation of elements. If the 

elements elicited are all prototypes, then the two methods are identical at this 

stage; and no difference is expected, between methods, in the mental effort 

required of the expert at this stage of the process. 

Hypothesis 2: A set of constructs (or attributes) adequate for 

distinguishing among all the elements (or classes) in a domain can be elicited 

more easily with prompting, as provided in the repertory grid technique, than 

without, as in KAMSE. 

Hypothesis 3: There is little reason to expect an expert to find it easier 

to express examples in terms of attribute values than to identify similarities and 

differences between examples of classes. 
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Hypothesis 4: Overall, for the entire knowledge acquisition cycle (from 

element / class elicitation to evaluation of the generated knowledge base), there 

is no efficacy difference between the two methods; the knowledge base 

generated by induction will be equally accurate between methods. 

Hypothesis 5: Overall, as for hypothesis 4 above, there is no efficiency 

difference between the two methods. 

Variables 

Figure 21 shows the independent variables, treatments, and dependent variables 

involved in testing each hypothesis. The stages mentioned are those in 

Figure 15 on page 72. 

Independent Dependent 
Hypothesis variables variables 

1 Method E f f o r t a t s tage 1 
2 Method E f f o r t a t s tage 2 
3 Method E f f o r t a t s tage 3 
4 Method C l a s s i f i c a t i o n accuracy 
5 Method Total e f f o r t ( s t ages 1 to 5) 

Figure 21. Variables involved in the hypotheses 

Figure 21 shows a single independent variable, which is 

knowledge-acquisition method, and there are two treatments: the repertory grid 

technique and KAMSE. 

Another possible independent variable is the domain or problem, but 

that can be fixed by using the same domain for all the subjects. There is little 

point contrasting synthesis domains against analysis ones, because any results 

obtained for analysis systems will have some applicability to synthesis systems. 

This is so because the latter can usually be broken down into analysis 

components (see, e.g., Hayes-Roth et al, 1983). 
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The subjects themselves are also variable; and perhaps some sense of the 

variations can be obtained by testing them as Lundell (1988) did, perhaps to 

establish individual levels of expertise. Indeed, that is one of the things that can 

be noted about Lundell's subjects; that they were all novices in the sense that 

they had just learnt the task. Their knowledge was probably entirely at the 

conscious level because they had just been trained and tested. Perhaps that is 

something else that affected the external validity of Lundell's results. The 

experiment carried out by Stevenson et al (1988) appears more credible in the 

way experts and novices are selected. Indeed, Anderson (1982) himself appears 

to discount the notion of instant creation of experts. (For a fuller discussion of 

this, see Chapter 5, "The Controlled Experiment in Knowledge-Acquisition 

Research.") 

The dependent variables are classification accuracy and the mental effort 

expended by subjects at each stage of the process. So the experiment will have 

to measure these variables. How to measure accuracy was discussed in 

"Performance" on page 93. Measuring mental effort involves a surrogate, 

perhaps the number of key strokes that the expert uses, perhaps the amount of 

time spent interacting with the expert, perhaps other measures. 

The real effort, however, is not the physical energy expended in pressing 

the keys, but the mental resources used to think of the knowledge units. Posner 

(1973) is one of the writers who argue that mental effort can be measured by 

the length of time a mental operation occupies. Anderson (1983) also presents 

empirical evidence about the time taken by various mental operations. So 

comparative mental effort can be measured by timing operations. One practical 

implication of this is that mental operations that take smaller amounts of effort 

enable people using them to be more productive. Other researchers (e.g., Klein 

& Cooper, 1981; Posner & Klein, 1973; Welch, 1898) have tried to measure 
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mental effort in other ways. These other approaches are all variants of the 

secondary task method: 

• Welch measured physical force as an indication of mental effort. The 

greater the effort being expended on a mental task, the smaller the physical 

force the subject is able to exert concurrently on a hand dynamometer. 

• Posner & Klein generated an "auditory probe tone" at random intervals 

during a mental task. The subject must acknowledge this probe by pressing 

a designated key. The amount of time taken to react to the probe "serves 

as a measure o f mental effort. 

• Klein & Cooper played a tape recording that called out a random digit every 

five seconds. The subject was required to call out the sum of the latest digit 

and the previous one. The error rate indicated the mental effort used on the 

primary task. 

These approaches all distract the subject by occupying some of the 

limited capacity of his or her consciousness. This capacity would otherwise 

have been devoted to the primary task. Measuring time is a much less 

obtrusive approach. 

Method 

The hypotheses to be tested demand an empirical comparison between two 

styles of knowledge acquisition: the repertory grid technique and KAMSE. 

Let us look at exactly what would be done in an experiment like this. 

At a high level, one treatment would consist of using KAMSE to elicit subjects' 

knowledge about the domain — i.e., by having a program that would elicit 

classes, attributes, and examples. The other treatment would consist of using 

the repertory grid technique; and this would also require a program. It would 
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also be necessary to train the subjects in the use of the two 

knowledge-acquisition tools first, to ensure that their degree of familiarity with 

the software is not a confounding variable. Those who fail to complete the 

training successfully would not be given the experimental treatment. 

So, in each session, half the subjects will use KAMSE, and the other 

half will use the repertory grid technique. And they will sit there quietly 

interacting with the knowledge-acquisition tool. A two-group design (see, e.g., 

Matheson, Bruce & Beauchamp, 1978) could be used. One group would use the 

repertory grid technique while the other would use KAMSE. Alternatively, a 

one-group design could be used if each subject were given both treatments of 

the acquisition-method variable. This would make more use of the available 

subjects, reduce errors due to subject variability, and enable a within-subject 

analysis of the data (see, e.g., Keppel, 1982, p 68). Whether this can be done 

will also depend on the amount of time subjects have available and the amount 

of time it takes to go through knowledge acquisition with each method. 

Since each subject is to use both methods on a single domain, it is well 

to bear in mind (see, e.g., Stevenson et al, 1988) that once they reconstruct 

units of the automatic knowledge at a conscious level (which is what either 

method of knowledge acquisition is likely to do), then subsequent efforts to 

elicit the same knowledge may be somewhat easier. A reasonable period of 

time will therefore be left between treatments so as to attenuate carry-over 

effects. In addition, the treatments will be randomly assigned to subjects, which 

will probably result in the treatment order being reversed for half the subjects. 

This will tend to ensure that both methods benefit comparably from any 

carry-over effects, and take care of sequence effects (which have been assumed 

to be linear). 

Some researchers have not necessarily compared like with like. Some of 

them have observed a truncated part of knowledge acquisition from examples, 
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and compared that with some other entire process (e.g., Michalski & Chilausky, 

1980). But, as the preceding chapters have made clear, the complete process of 

knowledge acquisition from examples involves more than just running examples 

through an inductive program, although that is a vital part of it. 

For the subjects using the repertory grid technique, the tool determines 

when all the required distinctions have been made. Under both methods, the 

ID3 algorithm will be used to generate knowledge bases for which the 

classification accuracy would be assessed by running through a set of test cases. 

These test cases can be exemplars, randomly generated from the attribute values 

used in the knowledge base, and then classified by the subjects. 

Subjects 

One of the possible confounding variables is directly related to the subjects. 

And that is the level of expertise of the subject. If subjects are not going to be 

trained (if a domain can be found in which all the subjects are likely to be 

expert), then other hypotheses about the level of expertise could also be tested. 

However, this is just a second variable, and it would take the experiment out of 

the realm of single-factor designs and put it into the realm of a two-variable 

experiment, resulting in a need for more subjects or more treatments per 

subject, to give the data the desired power. 

So either a single level of expertise can be assumed, or the subjects could 

be tested to verify their levels of expertise. An expert could be defined as 

someone attaining over a certain grade in the test — and the others could be 

discarded. But this would be wasteful. It should be possible to interest 

university students, university staff, and even people outside that environment 

to participate as subjects, and find a domain in which they are all expert. 
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Number of Subjects Needed 

In deciding on the sample size required to give the data the desired power, it is 

necessary to look at the "critical effect size", and the population mean and 

standard deviation. According to Kraemer & Thiemann (1987), the critical 

effect size is "a measure of how strong the theory must minimally be to be 

'important to society'". Traces built up over six months of developing and 

testing the SCENIC knowledge-acquisition tool (see Chapter 7, "Design of 

SCENIC: a CAKE Tool for Empirical Work") failed to show any consistent 

difference in the amount of time taken by one method or the other. These 

traces therefore provide little indication of what the treatment effect might be, if 

indeed there is any. 

But it is possible to argue, arbitrarily perhaps, that if employing one 

method on a project would mean finishing the work earlier or using less 

resources, and if the findings of this experiment can give pointers that can be 

put to this kind of use, then the community would be interested in the findings. 

The time saved would be that of both knowledge engineers and domain experts; 

and it is well known that the latter tend to be busy people typically able to 

spend only measured amounts of time transferring their skills to a system. It 

appears reasonable to presume that, if one method were shown to take about 

one half less time than the other, developers of knowledge-based systems might 

be interested, other things being equal, in using that method rather than the 

other. From this viewpoint, an interesting difference might be arbitrarily set at 

one half of the mean. 

Kraemer's Method 

The critical effect size (A; see Kraemer & Thiemann, 1987, p 38) requires an 

estimate of the population mean (fx) and standard deviation (a). According to 

Burton, Shadbolt, Rugg & Hedgecock (1990), we can expect to acquire between 

0.8 and 1.6 clauses per minute using the techniques of interviewing, protocol 
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analysis, laddered grid, and card sorts. For this purpose, they define a clause as 

one conditional statement in a pseudo-english production rule. But Burton et al 

report only averages and no variances. It is therefore impossible to use their 

data to estimate the mean and standard deviation in this experiment. 

The most useful estimates came from the trace built up while developing 

and testing SCENIC. Analysis of these data yields a somewhat crude mean of 

9.3 minutes for stages 1 to 4 with standard deviation of 7.4 minutes. Even so, 

using these estimates would yield a 5 (difference in the mean as a fraction of the 

standard deviation; see Kraemer & Thiemann, 1987, p 38), defined as 

- /4)) / <7. 

= (9.3 X 0.5) / 7.4 = 0.63 

Now, the critical effect size is 

A = (e2<5 - 1) / (e2<5 + 1) 

= 0.56. 

Cohen (1977, pp 53-56) has argued in favour of designing for 80% power. The 

power table (Kraemer & Thiemann, 1987, pp 105-112) for a 0.05 level of 

significance (a) with a power of 80% and a critical effect size of 0.56 requires a 

sample size of 21 for the two-tailed test (or about 11 subjects, each receiving 

both treatments). Little guidance is given in the statistical literature about 

estimating sample sizes for experiments with several dependent variables. 

However, because five dependent variables are to be used, the Bonferroni 

adjustment may have to be made. It is therefore appropriate to use the a = 0.01 

tables, which give 31 as the required sample size. For a repeated-measures 

experiment, this means about 16 subjects. Even more subjects will enable a 

smaller effect to be detected with no loss of power. 
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Keppei's Method 

Keppel (1982, p 71) uses a different procedure to estimate sample size. Keppel's 

(/)̂ 2 (the square of "a quantity [used] in consulting power charts") can be 

calculated as 

= sX(9.3 X .5)2 / 2) / 7.42 

where s' is the number of subjects. This yields 

~ 0 20 s'. 

So 4)^ = 0.44 ^s'. 

Different values of s' give different denominator degrees of freedom 

(dfdenom 2 (s' - 1)) and different values of(j)^. So several values of s' have to 

be tried. Keppel's (1982, p 549) power curves for a - .05 and one numerator 

degree of freedom indicate that a (jy^ of between 20 and 25 subjects are required 

for 80% power. This translates to between ten and thirteen subjects in a 

repeated-measures design. The power curves for a = .01 and one numerator 

degree of freedom indicate that between 30 and 35 subjects are needed, which 

means fifteen to eighteen subjects in a repeated-measures design. As discussed 

under Kraemer's method, it is more appropriate to use the latter estimate. 

Qualifying the Estimates 

Two close estimates of the number of subjects required for 80% power — 16 

and 18 — have been obtained. Indeed, if an even larger number of subjects 

could be used without undue increase in cost, it would be sensible to go ahead 

and use them. However, whereas the estimates obtained above are based on a 

univariate experiment, there are five dependent variables in the experiment. To 

cater for the additional variates, the estimates have been subjected to the more 

stringent .01 a level, p. In addition, Stevens (1980) has noted that small effects 

are difficult to detect with small samples. The calculations above have been 

done for 80% power. Stevens argues that even 70% is adequate, but cautions 

that estimates of mean and standard deviation have to be available for all the 
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variates, to produce a rigorous estimate of sample size. So the estimates 

calculated here are only a rough guide. Moreover, if the standard deviation 

found in the empirical data is smaller than that used here, a correspondingly 

smaller difference in the mean will be detectable with acceptable power. 

Based on the foregoing, it would appear that, although a sample size of 

about 18 would be adequate, thirty would be a safe number to use, bearing in 

mind that some subjects might fail to complete the procedure and others might 

generate unusable data. Even after such attrition, there would probably still be 

enough usable cases to achieve the power sought. 

Knowledge Domain 

As discussed in "Method" on page 127, the comparison cannot be made 

effectively unless one or more suitable domains are found. One of the problems 

in doing a controlled experiment in knowledge acquisition is that experts are 

typically scarce individuals. Where they are not scarce, they are busy. So their 

time is at a premium. As discussed in Chapter 5, "The Controlled Experiment 

in Knowledge-Acquisition Research," researchers who have done controlled 

experiments in knowledge acquisition have run into this problem and tried to 

solve it in various ways — usually not entirely convincing or satisfactory. 

An important criterion for an experimental domain is therefore that it 

should be an area of knowledge in which experts are abundant. A more 

complete list of criteria can be enumerated as follows: 

• The domain should be one in which a sufficient number of experts can be 

assembled without too much difficulty. 

• The domain should involve analysis (classification or diagnosis) rather than 

synthesis. Results obtained for the former may be applicable to the latter, 

which are complex exploitations of the fundamental building block (Dechter 

& Michie, 1984). 
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' To ensure its suitability for the repertory grid technique, the domain should 

embody a fair number (say, seven or more) of elements. 

* The domain should also have features that make it suitable for KAMSE. 

That is, it should be reasonably easy to find examples (or cases) that 

instantiate different classes. 

Spel l ing 

At the outset, the author had imagined that it would have been fairly easy to 

find a domain connected with spelling. It had been argued that skills connected 

with spelling and the use of words and language are widespread in the society. 

Domains of this kind include distinguishing a correctly spelled word from an 

erroneously spelled one. 

Judged by some of the criteria, this appeared to be a suitable domain 

because it is evident that educated native speakers of English develop, 

throughout their years of schooling, expertise in making this distinction. 

Moreover, by the time they become undergraduate students, they have 

developed long experience and a well established skill. Although the number of 

classes appears to be small (correctly spelled, and incorrectly spelled), examples 

would create plenty of elements. But correct spelling is not necessarily a widely 

held skill, even among educated Britons. Even a restricted set (e.g., three-letter 

words) contains many words that people are not familiar with. 

Words 

Hall (1965) argues that writing is simply a way of representing speech and that 

the primary purpose of letters is to represent the sounds of a language. This 

idea generates the interesting question: what are the sounds of English, and how 

are they represented in spelling? So it is conceivable that there is abundant 

expertise on the relationship between writing and speech. For example, if a 
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word is pronounced in a particular way, how is it spelled? Or, if a word is 

spelled in a particular way, how is it pronounced? 

This domain appears to have ample classes and attributes, but there is 

one major difficulty: representation of phonemes (minimum significant units of 

speech) in textual form is something that the average person knows very little 

about. 

There are other possibilities in the field of word formation. For 

example, Selkirk (1983) has pointed out that there are rules governing the 

formation of compound words: 

• A compound noun may consist of a noun, adjective, preposition, or verb on 

the left and a noun on the right. 

• A compound adjective may consist of a noun, adjective, or preposition, 

followed by an adjective. 

• A compound verb may consist of a preposition followed by a verb. 

But there is little evidence to suggest that native speakers of a language 

engage in this business of forming compound words. For the most part, 

speakers use compound words with which they are familiar - words that they 

have read or heard previously. If this is so, the experts in this domain would 

again be people who have more than a passing acquaintance with linguistics. 

Grammar 

Another possible domain might be identifying parts of speech. This is a more 

promising domain than spelling, because it is possible to identify several parts 

of speech (noun, pronoun, etc.). And it appears reasonable that many people 

would be able to recognise several instances of words used in contexts that 

cause them to be classified as one part of speech rather than another. 
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It appears likely that, even in this domain, the expertise may not be as 

widespread in the population as might at first be imagined. It would therefore 

be necessary to screen the experimental subjects by having them do a test to 

determine their level of expertise. Although those who pass such a test may be 

classified as experts, those who fail it may not be classified as novices but rather 

as non-experts. This is because novices are people who are learning the skill 

and who have assimilated much of the declarative knowledge, but have not 

accumulated enough experience for compiled productions to have been formed. 

In grammar there are only about eight parts of speech, which (even if 

only prototypes are used as elements) certainly makes triadic elicitation 

possible. The domain also appears suitable for KAMSE, because people can 

usually recognise examples of different uses of a word. A trial with two people 

confirmed the unsuitability of this domain. 

Conversat ion 

One domain that appeared promising at first is described by Taylor & Cameron 

(1987,p 45^ 

The illocutionary act... may be the primitive unit of conversation. A 

description which takes this idea as its starting point is then committed 

to the following three questions: first, what speech acts exist in a 

language, second, what are the rules for producing and interpreting 

them, and third, what are the rules for sequencing them coherently? 

Unfortunately, Taylor & Cameron also argue that there is little evidence 

to suggest that conversationalists have knowledge of these speech acts, and that 

conversation analysts disagree on both the nature of the speech acts and any 

rules for producing, interpreting, or sequencing them. 
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o t h e r Domains 

Another possibility was to use, as Lundell (1988) did, the diagnosis of faults in 

a hypothetical machine. But the authenticity of the expertise generated in this 

type of domain is not altogether convincing. The same problem arises if, as 

Deffner & Ahrens (1989) did, the experiment used the prediction of the effect of 

some action on a simulation. 

The mention by Blythe et al (1990) of object recognition provides the 

most suitable domain, of those considered. Each subject could be given a bag 

of objects that people are familiar with (a pencil, a pen, a paper clip, a button, 

and so on). This is certainly suitable for the repertory grid technique, and will 

provide several examples for KAMSE. 

Object identification is a domain in which experts are abundant. From 

early in our cognitive development, we encounter new objects and learn their 

identities (the words used to describe them). We encounter objects similar to 

ones we have seen before, but subtly different, for example, a leopard after a 

tiger, a cat after a dog, a motorcycle after a bicycle, a donkey after a horse, a 

pen after a pencil, boots after shoes. 

If Anderson (1982) is right, the more a person exercises this knowledge 

and makes identifications involving these distinctions, the more this expertise 

becomes compiled, automatic, and also difficult to articulate, indeed, the more 

skilled a person becomes at identifying these objects. In western societies like 

Britain, most people (by the time they become adults) have already exercised 

the object identification skill often enough to have become good enough at it to 

be worthy of the description "expert". Indeed, it is difficult to find anyone 

unfamiliar with common objects like pens, pencils, rubber bands, coins, and 

erasers. 

An experimental domain was created consisting of a domain package of 

a small number of objects that any university student or office worker or 
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academic living in Britain would be expected to be very familiar with. The 

domain objects were therefore ones that these kinds of people would be able to 

identify quite easily. Indeed, this object identification domain affords the 

flexibility of designing various effects into the domain by carefully selecting 

certain combinations of objects. Based on preliminary trials, the domain was 

designed so that the acquisition of the knowledge could be completed within an 

acceptable length of time. 

Some Requirements for the Apparatus 

It would be useful to have an interactive tool to support KAMSE. This 

tool would essentially ask for examples of all classes, and then induce rules by 

using, say, the ID3 algorithm on the data. Having done that, a further set of 

examples would be needed for testing the diagnostic accuracy of the resulting 

knowledge base. Exemplars could be used for this purpose. 

On the other hand, if enough is known about the domain beforehand, a 

"gold standard" set of test cases could be elicited from a respected expert of 

some sort. This gold standard could be built before the experiment, and would 

contain sufficient examples to test the knowledge bases generated in the 

experiment. However, it could also happen that having come up with a set of 

test cases from an expert, the attributes that s/he used might not include some 

of the attributes elicited from subjects during the experiment. Also the gold 

standard could include attributes that fail to come from some of the subjects. 

Such discrepancies would make the gold standard useless. 

But the efficacy of a knowledge acquisition method is a measure of how 

well the expertise of the knowledge source has been retrieved and modelled. It 

is not an absolute measure of how good the elicited knowledge is; that is not 

just a function of the method but of the expert as well. What is required is a 

measure of how well the source's knowledge has been captured. It is therefore 
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more meaningful to have each expert diagnose randomly generated examplars, 

which can then be used as test cases against the new knowledge base. 

Having administered the treatments, a set of data would have been 

collected in terms of treatment and dependent variables. As for KAMSE, 

software is needed that will use the repertory grid technique and then transform 

the grid into a rule base. As for KAMSE, software is needed that will elicit 

examples, and use them as a set of test cases. Ideally, it should be possible to 

batch-process the test cases, and automatically record the results. It may also 

be necessary, as a preliminary to the experiments, to elicit the knowledge from 

some acknowledged expert, not for the gold standard, but to test the software. 

It is therefore necessary to design and build those bits of software and 

an expert-system shell. This design is discussed in Chapter 7, "Design of 

SCENIC: a CAKE Tool for Empirical Work." 

Data to be Collected 

Performing the experiment discussed in the preceding sections of this chapter 

would generate a set of results for the repertory grid technique and a set for 

KAMSE. These data would enable the statement that, on the average, the 

effort involved in eliciting knowledge under the repertory grid technique was so 

much and under KAMSE so much. The significance of any main effects of 

method could be evaluated by using statistical F-tests. In addition, differences 

in the respective resulting diagnostic accuracies of knowledge bases generated 

under each method would be found. The significance of these differences could 

also be evaluated. Since several dependent variables are being affected by the 

independent variables, the data will have to be subject to a multivariate analysis 

of variance (MANOVA). 
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Summary of the Experiment 

Five hypotheses have been stated (see Chapter 3, "Some Implications of 

Cognitive Psychology for Knowledge Acquisition" on page 57). Here is the 

essence of the questions raised by these hypotheses; Do experts find it easier to 

express classification knowledge by describing examples or by making 

distinctions between examples? 

For the purposes of the experiment, ease is defined as having two 

components: efficiency, and efficacy. Efficiency can be measured in terms of 

effort (time) per unit of knowledge (class, attribute, attribute value, example, 

rating) acquired. Efficacy can be measured in terms of classification accuracy 

of the acquired knowledge. 

A single-factor repeated-measures (within-subjects) design will be used. 

Each of about 30 volunteer subjects will be randomly assigned to one of the 

two knowledge-acquisition methods. Each subject will be given a diskette and 

the corresponding instruction sheet for the assigned method. Each subject will 

be trained to use the relevant portion of a knowledge-acquisition tool 

embodying the method assigned (for about 10 minutes). This training will 

consist of using the tool to build a small knowledge base with the aid of some 

written instructions. 

When each subject completes the training exercise, s/he will be given a 

domain package and asked to use the tool until sufficient knowledge has been 

acquired to distinguish between all classes in the domain. (The domain package 

is useful as a visible reminder of the limits of a domain, which, after all, is an 

artificial subset of a real one.) The tool will create a knowledge base from this 

knowledge. Then each subject will classify some exemplars (about 32), which 

will be used as test cases to evaluate each knowledge base. Invite the subjects 

who completed their first session to return a week later for the other method. 

During knowledge elicitation, the tool will record: 
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• Method 

• Time spent on each stage 

• Number of knowledge units elicited at each stage. 

During evaluation, the tool will record: 

• Method 

• Number of cases processed 

• Number of cases in which the inferred class matched the expected class. 

Store the data for subsequent statistical analysis. 

Agenda for the Experiment 

• Administration (5 minutes) 

- Get a list of subject's names; number them and randomly assign to 

method. 

- Hand out appropriate diskettes & instructions. 

• Briefing (10 minutes) 

- Explain the task 

- Self-training 

- Hand out domain packages. 

• Experiment (30-40 minutes estimated) 

- Handle problems individually, log them, note time wasted. 

- When someone finishes, collect his or her diskette. 

Conclusions 

It is possible to test the hypotheses by using a single-factor repeated-measures 

(within-subject) design involving eighteen or more subjects. Object 

identification is a viable domain, in which there is not likely to be a shortage of 

experts. 
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If a tool is available, the appropriate data can easily be collected to do a 

MANOVA and identify significant main effects of the knowledge-acquisition 

method. 

The variability of administration of knowledge-acquisition methods can 

be minimised, and the appropriate generation and evaluation of knowledge 

bases can be handled efficiently by using a tool embodying the repertory grid 

technique and KAMSE, Chapter 7, "Design of SCENIC: a CAKE Tool for 

Empirical Work" on page 143 describes the design of such a tool. 

Chapter 6. Design of an Experiment to Compare two Knowledge-Acquisition Techniques 1 4 2 



Chapter 7. Design of SCENIC: a CAKE Tool for 
Empirical Work 

Abstract 

Using a knowledge-acquisition tool in a controlled experiment can reduce the 

potential for inconsistent administration of the method treatments. When more 

than one method is involved, differences in the user interface may introduce a 

confounding variable. A single tool with a consistent user interface throughout 

can minimise that effect. A tool also facilitates collection of data, analysis and 

processing of knowledge, and evaluation of knowledge bases. 

This chapter describes the design of SCENIC, a tool embodying both 

the repertory grid technique and KAMSE. SCENIC was built specifically for 

the experiment designed in Chapter 6, "Design of an Experiment to Compare 

two Knowledge-Acquisition Techniques." SCENIC also includes features that 

make it applicable outside the narrow confines of the research laboratory. A 

second version, capable of handling more complex domains, is being designed to 

take it further in that direction. 

Introduction 

The experiment design described in the previous chapter relies heavily on the 

availability of a knowledge-acquisition tool embodying two methods: the 

repertory grid technique and KAMSE. The tool, called SCENIC after its 

author's first initial and surname, will assume that an analysis domain has been 

identified, and will acquire knowledge through all the subsequent stages, 

including generation of a knowledge base and the evaluation of it through batch 

consultation. 

The stages followed by the two acquisition methods are shown in 

Figure 22 on page 144 (for convenience, repeated here from page 72). 
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Stage 
Repertory Grid 

Technique 
Minimal Set of 

Examples 

1 E l i c i t elements E l i c i t c l a s s e s 

2 Repertory t e s t : 
e l i c i t c o n s t r u c t s 

E l i c i t a t t r i b u t e 
d e s c r i p t o r s and values 

3 Repertory t e s t : 
e l i c i t r a t i n g s 

E l i c i t examples 

4 Induce r u l e s Induce r u l e s 

5 0 C l a s s i f y eva lua t ion 
exemplars 

0 C l a s s i f y eva lua t ion 
exemplars 

0 Evaluate knowledge 
base 

0 Evaluate knowledge 
base 

Figure 22. The knowledge acquisition stages of the two methods implemented in SCENIC 

The first stage is the elicitation of classes (for KAMSE) or elements (for 

the repertory grid technique). Whereas this search for classes is seldom 

highlighted in the literature on machine learning, it is openly discussed in 

articles on the repertory grid technique (see, e.g., Boose & Bradshaw, 1987; 

Garg-Janardan & Salvendy, 1988). Both methods use the same program; so 

both the processing code and the user interface are identical. The only 

discernible difference between the two methods at this stage is the panel 

heading (see pages 154 and 159). 

The second stage is different between methods. Having identified the 

elements, the user of the repertory grid technique must also identify the 

constructs that constitute the dimensions of the problem space. To elicit these 

constructs, the tool administers a repertory test — presenting triads of elements 

and asking for the odd one out to be selected. When this selection is made, the 

tool asks for the trait that makes the two similar elements different from the 
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other. Indeed, the essence of the repertory grid technique is the way that 

constructs are elicited. For each construct entered, the tool goes into a rating 

stage, which elicits a rating, on the particular construct, for all elements. It is 

worth pointing out that there is another way that tools do the repertory test. 

ETS (Boose, 1985) and AQUINAS (Boose & Bradshaw, 1987), for instance, 

elicit all the domain constructs before entering the rating stage. However, this 

approach is potentially inefficient, because it cannot assess when enough 

constructs have been elicited. SCENIC's interleaving of the rating and 

construct elicitation stages allows the grid to be analysed continually, to 

determine when constructs are parallel, rotated, potential cluster members, or 

no more are needed. This enables the tool to complete the 

knowledge-acquisition session quickly. 

Under KAMSE, the parallel stage is the elicitation of attributes, which is 

not subject to the degree of analysis and monitoring that accompanies the 

elicitation of constructs. As with the identification of classes, the problem of 

finding attributes is seldom acknowledged in the machine learning literature. 

Perhaps this is because, in inductive knowledge acquisition, it is usually 

assumed that classes, attributes, and cases are all given. But, as discussed in 

Chapter 2, "Learning Without Case Records: a mapping of the repertory grid 

technique onto knowledge acquisition from examples," there are situations 

where this assumption is not correct, and a domain theory must be developed 

before any induction algorithm can be put to work. 

In Chapter 2, it is argued that the repertory test has to be goal-oriented 

to prevent it from going on for an unnecessarily long time, repeatedly eliciting 

parallel constructs. So the repertory test has to guide the user toward 

completion (that point at which all the elements are distinguishable on their 

ratings from each other). Until that state is reached, the repertory test would 

go on presenting random triads. One challenge for any repertory-grid 
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knowledge acquisition tool is therefore to encourage the user not so much to 

find new ways in which the same elements differ, but rather to find new pairs of 

elements and the traits that they share. So SCENIC reduces the randomness as 

the number of confused pairs of elements gets smaller, thus ensuring that a 

triad is never presented unless it contains a confused pair. 

When the tool has elicited distinctions between all the elements, and no 

confused pairs remain, it goes into the next stage: the induction of rules from a 

set of examples generated from the repertory grid. 

With KAMSE, once the classes have been elicited, the tool then elicits 

descriptors and values of all the attributes (that the user thinks have to be 

considered in distinguishing the domain objects from each other). 

After these attribute descriptors and values have been entered, the tool 

elicits a number of examples. A number of checks are also built into KAMSE. 

At least one example of each class must be entered, if the class is to be 

represented in the eventual knowledge base. The tool reminds the user of 

classes for which no cases have been entered. The tool also alerts the user 

when clashing cases are entered (i.e., two cases with identical attribute values, 

but different classes). 

When the user is satisfied that enough examples have been entered to 

adequately represent all the classes, s/he causes the tool to progress to the next 

stage, inducing rules from the examples entered. A single program performs 

this induction for both knowledge-acquisition methods. 

The next stage for both methods is to generate a set of exemplars from 

random attribute values. These exemplars have to be classified by the user. 

Having decided on classes for all thirty-two exemplars, the user then enables the 

tool to progress to the next stage — using the test cases for batch evaluation of 

the knowledge base. This process counts and logs the number of test cases 
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seen, and the number in which the tool's diagnosis agrees with that of the 

expert. 

Throughout all these stages, for both methods, the tool collects and logs 

data required for later statistical analysis. The data logged for each of the five 

stages is: 

• Number of keys pressed 

• Start and end times 

• Number of knowledge units (i.e., classes, attributes, values, and examples) 

acquired. 

Structure of the Tool 

To provide the functions described in the previous section, a single 

integrated system was designed and developed. As Figure 23 on page 148 

shows, the tool includes four high-level functions: (RGT, which administers the 

repertory grid technique), KAMSE, options (e.g., setting tracing on and off), 

and a performance system (expert-system shell) through which the knowledge 

may be consulted or evaluated. 

For uniformity, it is important to have both the RGT and KAMSE 

functions using similar user interfaces. Such uniformity helps eliminate the user 

interface as a possible confounding variable, when the tool is used in an 

experiment. 
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CAKE Tool 

RGT KAMSE Options Performance 
System 

Figure 23. Functions of the SCENIC CAKE tool 

The RGT Function 

The RGT function interacts with the user, and elicits the elements, constructs 

and ratings that make up a repertory grid for the domain of interest. Primarily 

at stages 2 and 3, the function analyses the emerging grid for parallel 

constructs, confused pairs of elements, and clusters of constructs. It then 

generates an efficient knowledge base by first transforming the repertory grid 

into a set of examples, and then using the ID3 induction algorithm to distill 

these into a heuristic knowledge base. It then generates some exemplars for the 

user to classify. These exemplars are passed to the performance system for 

evaluating the knowledge base. 

Inputs and Outputs 

• A repertory grid 

• Panels to user 

• Knowledge base 

• A file containing test cases expressed in terms of the domain model used in 

the knowledge base 

• A trace file containing measures taken during the experiment. 
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Subfunct ions of RGT 

The RGT function performs subfunctions which fit together in a hierarchy, as 

shown in Figure 24 on page 149. Each of the subfunctions is described below. 

RGT 

Element 
E l i c i t o r 

Cons t ruc t 
E l i c i t o r 

Test Case 
E l i c i t o r 

Grid t o KB 
Transformer 

Rating 
E l i c i t o r 

Grid 
Analyser 

ID3 
Induct ion 

Figure 24. Subfunctions of the RGT function 

Elicitation of Elements: This subfunction asks the user to type in the names of 

all the elements. These are stored in a list. When the user indicates that this 

list is complete, the elicitation of constructs will begin. 

Elicitation of Constructs: This subfunction selects at random three elements at 

a time, and asks the standard questions about similarity and difference. Both 

poles of each construct will be elicited, and then the rating subfunction will be 

invoked. It is also possible for a single triad to be used in eliciting several 

orthogonal distinctions, if it is "milked" (Gammack, 1987). A tool could 

possibly gain efficiency by doing this. However, use of this device while the 

tool was being tested evoked unfavourable responses from users, who found the 

technique tedious. 
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Because of the bipolar nature of constructs, the repertory grid technique, 

in its simplest form, generates knowledge bases that ask questions with "yes" 

and "no" (and perhaps "don't know") being the only possible answers. 

Depending on the capabilities of the performance system's inference engine, 

some kind of certainty estimate may allow these sharp distinctions to be 

blurred. KAMSE, however, allows multi-valued attributes and is therefore 

capable of generating knowledge bases that ask multiple-choice questions. 

Constructs can be clustered so as to become attribute values, as explained on 

page 34. 

The number of constructs generated by the repertory grid technique 

depends on the number of triads of elements presented to the user. Some 

systems therefore seek to limit this number. But some of these limits are crude: 

Garg-Janardan & Salvendy (1988) limit the number of triads to one half the 

number of elements in the grid. It may, however, be more effective to proceed 

with triadic elicitation until enough constructs have been gathered to distinguish 

every element from every other. 

Rating of Elements: For each construct, this subfunction asks the user to 

enter ratings for all the elements stored in the grid. Proceeding in this sequence 

implies that whenever additional elements are subsequently elicited, they will be 

unrated in terms of previously elicited constructs. The user could be invited to 

rate the new elements on these constructs, but that embellishment is not needed 

in the experiment. The tool will assign the central rating value (don't know) to 

such elements. 

Grid Analysis: This subfunction analyses the grid (see Shaw, 1981) to identify 

confused pairs of elements, parallel constructs, rotated constructs, and clusters 

of constructs. The user is notified of parallel and rotated constructs, and left to 

do with the information whatever is appropriate. The user is also informed of 

possible construct clusters, and invited to confirm and name them. The 
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presence of confused pairs causes the tool to continue eliciting constructs (and 

ratings). The grid is considered completed when it contains no confused pairs; 

when this state is reached, the tool progresses to creating a knowledge base. 

Transform Rep Grid into a Knowledge Base: E lements and clusters of 

elements in the completed grid are used to create classes. Constructs are 

converted to attributes, as discussed on page 34. Then one example is created 

from each grid element. This involves converting ratings to attribute values: a 

rating higher than 3 converts to "yes"; one lower than 3 becomes "no"; and a 

rating of 3 becomes "don't care". The examples so created are processed by the 

ID3 induction algorithm (described in "Induction by the ID3 Algorithm" on 

page 160), which finds regularities in them; and creates a knowledge base 

compatible with the performance system. 

Eliciting Test Cases: Random values of the attributes used in the knowledge 

base (as opposed to the redundant ones) are combined to form a set of 

exemplars which need to be classified. The classes are elicited from the user. 

When the exemplars have been classified, they are passed to the batch 

evaluation subfunction. 

Batch Evaluation: This subfunction evaluates the knowledge base by 

consulting with the performance system on all the test cases available. 

The KAMSE Function 

The KAMSE function elicits the pieces of information necessary to generate a 

knowledge base by machine induction. The function interacts with its user to 

elicit classes, attribute descriptors and values, and examples, which can be 

prototypes, exemplars, or historical cases. For each example, the tool asks for 

the class and the value of each attribute. The examples are used by the ID3 

induction function to create a knowledge base, which is evaluated by the batch 

evaluation subfunction. 
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Inputs and Outputs 

• A knowledge file storing the partial domain model and examples to be used 

for induction. 

• Panels to user 

• Knowledge base 

• A file containing test cases expressed in terms of the domain model used in 

the knowledge base 

• A trace file containing measures taken during use of the tool. 

Subfunct ions of KAMSE 

The KAMSE function is structured as a hierarchy of subfunctions, as shown in 

Figure 25. Each subfunction is described below. 

KAMSE 

Example 
Elicltor 

Class 
E l i c i t o r 

A t t r i b u t e 
E l i c i t o r 

ID3 
Induct ion 

Batch 
Evalua t ion 

Figure 25. Subfunctions of the KAMSE function 

Elicitation of Classes: This subfunction elicits classes, and is identical to the 

element elicitation in the KAMSE function. When the user is finished, the tool 

progresses to the elicitation of attributes. 

Elicitation of Attributes: This subfunction will ask the user for the factors 

considered in deciding among the classes. For each attribute, the values 

relevant to the domain will also be asked for. When the user is finished, the 

tool progresses to eliciting examples. 
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Elicitation of Examples: At least one example of each class will be elicited. 

This subfunction will alert the user about conflicting examples, whenever one is 

entered. When the user indicates that all examples have been entered, the tool 

will progress to the ID3 induction subfunction. At any time, the user can go 

back to previous stages (e.g., elicitation of attributes) to modify the domain 

model. 

ID3 Induction: This subfunction will read through the examples, and find 

regularities using the ID3 algorithm (as in Quinlan, 1979, p 171; Quinlan, 1986; 

Hart, 1986, p 114). 

Batch Evaluation: This subfunction is identical to that described under the 

KAMSE function. 

Data Elicited and Stored 

• For each domain, a short name is elicited and stored. 

• For each element, the following pieces of information are elicited and 

stored: 

- Name 

- Ratings (one for each attribute) 

• For each construct/attribute, the following pieces of information are elicited 

and stored: 

- Descriptor 

- Opposite pole (only for constructs) 

• For each case, a case identifier is generated, and the following pieces of 

information are elicited and stored: 

- Class identifier 

- A value for each attribute. 
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SCENIC Repertory Grid Technique 
Constructs Ratings Induction Validation Quit Elements 

Enter all the types of objects you can think of - one to a l ine . 

Types of objects 
1 1-cent coin 
2 Hair grip 
3 Elastic band 
4 1-penny coin 
5 Washer 
6 Button 

9 
10 

Paper clip_ 

Esc=Progress Fl=Help F3=Exit F10=Actions 
v _ 

Figure 26. The panel used to elicit elements 

Repertory Grid Panels 

The panel shown in Figure 26 on page 154 is used to elicit elements under the 

repertory grid technique. The user can move the pseudo-cursor up and down 

the list, making changes to any of the elements. New elements are added at the 

end of the list. As with all the panels used in SCENIC, the menu bar at the top 

indicates the stage reached in the knowledge acquisition process. For each triad 

of elements, the construct that distinguishes between them is elicited through a 

set of three related panels, used at the construct elicitation stage. First the user 

is asked to select the element that differs from the other two. This is done on 

the panel shown in Figure 27 on page 155. The user positions the 

pseudo-cursor on the element to be selected, and then presses the Enter key. 

When the user has selected one of the three elements, the selected element is 
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Repertory Grid Technique 
Elements IBBTHBTBI Ratings Induction Validation Quit 
Think of a way in which two of these three objects are s imi lar . 
Select the one that is d i f fe rent from the other two. 

Types of objects 
Elast ic band 
Button 
Hair gr ip 

Esc=Progress Fl=Help F3=Exit F10=Actions 
V 

Figure 27. One of the panels used to elicit constructs 

moved away. It appears by itself at the bottom of the triad, separated from the 

other two elements. The user is asked to input the construct on which the 

selection was made. All this takes place on the panel shown in Figure 28 on 

page 156. The questions asked by a repertory grid tool have to be carefully 

chosen if the desired kind of information is to be successfully elicited from the 

tool's user. For instance, the question "What makes A similar to B and 

different from C" elicits a construct that may be useful in classifying. However, 

a different question must be found to elicit distinctions between circumstances 

in which one would select A or B but not C. A more effective question for a 

diagnostic domain might be: "Under what circumstances would you select A or 

B but definitely not C?". 

Moreover, the question tends to elicit a noun construct when what is 

required is an adjectival one. Even in a classificatory domain, the question still 
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Repertory Grid Technique 
Elements liW7ByilHt!l¥8 Ratings Induction Validation Quit 
What makes "Elast ic band" simi lar to "Hair gr ip" and d i f fe rent from "Button"? 

Object > Trait > 
Elast ic band 
Hair gr ip 

Button 

bendable 

Esc=Progress Fl=Help F3=Exit F10=Actions 

Figure 28. The conslruct-elicitation panel with a separated triad 

tends to elicit a comparative construct such as "much heavier" when what is 

needed is a positive one such as "heavy". The most appropriate wording for 

the question can be determined by the tool based on a description of the goal of 

the domain. 

After the main pole of the construct has been entered, the panel shown 

in Figure 29 on page 157 elicits the opposite pole. When both poles of the 

construct have been entered, the user can press the Enter key to confirm that 

they are correct. This causes the tool to progress to the rating stage. Here, the 

user is asked to rate all elements on the construct. Three of the elements arrive 

here pre-rated from the construct stage, but these ratings can be changed, if 

desired. The panel shown in Figure 30 on page 158 is used for rating. One 

question that arises is what kind of rating scale should be built into SCENIC. 

Kelly (1955) insisted on a two-point rating scale on which every element should 
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Repertory Grid Technique 
Elements IffTitlWWid Ratings Induction Validation Quit 
What is the opposite of "bendable" that characterises "Button"? 

ELEMENT > TRAIT > 
Elast ic band bendable 
Hair gr ip 

Button 

unbendable 

Esc=Progress Fl=Help F3=Exit F10=Actions 
V _ 

Figure 29. The panel that elicits the opposite pole of a construct 

be rated. KITTEN uses a five-point scale for rating elements; and Shaw & 

Gaines (1987, p 256) justify this by arguing that "The use of a multi-point scale 

with an odd number of values allows for a central rating which does not force 

the user to choose either pole." 

The commercial knowledge-acquisition tool NEXTRA uses the repertory 

grid technique. Traits (called "qualities") are bipolar with "neither being an 

option". This scheme is equivalent to a three-point rating scale on which 1 and 

3 are the opposite poles of the construct, and 2 is neutral. 

KAMSE Panels 

Classes are elicited in exactly the same way as elements in the repertory grid 

technique. The similarity between the panel used for the purpose, which is 

shown in Figure 31 on page 159, and the corresponding one for the repertory 
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SCENICRe^rtory Grid Technique 
Elements Constructs Induction Validation Quit 
Rate each object on a scale of 5 to 1. 

Types of objects 
1 1-cent coin 
2 Hair gr ip 
3 Elast ic band 
4 1-penny coin 
5 Washer 
6 Button 
7 g Paper c l i p 

9 
10 

-bendable 
L+5 4 3 2 M unbendable 

B 
4 

5 
2 
2 

1 

Esc=Progress Fl=Help F3=Exit F10=Actions 
\ 

Figure 30. The rating panel 

grid (in Figure 26 on page 154) is obvious. Attributes are elicited on the panel 

shown in Figure 32 on page 160. The classes previously elicited are listed at 

the left to remind the user of the scope of the domain. But this panel is used 

for input of attributes, each consisting of a descriptor and multiple values. 

When a user lists attributes that distinguish between classes of objects, 

s/he may not know whether all the attributes and their possible values are 

essential to the analysis task. The machine induction process may reveal that 

(based on the set of examples used) some of the given attributes or values are 

redundant (or at least redundant for the training set provided). Alternatively, 

the given attributes may not be sufficient to distinguish between all classes. 

At the example elicitation stage, the user enters at least one example of 

each class. Each example is described in terms of the attribute values 
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SCENIC Acquisition by Examples 
Attributes Examples Induction Validation Quit Classes 

Enter a l l the types of objects you can think of - one to a l ine . 

Types of objects 
1 1-cent coin 
2 Hair grip 
3 Elastic band 
4 1-penny coin 
5 Washer 
5 Button 
7 
8 
9 

10 

Paper clip_ 

Esc=Progress Fl=Help F3=Exit F10=Actions 
\ 

Figure 31. The panel used to elicit classes 

previously entered. Neither the attribute values nor the class are keyed in; 

because they are already in the computer, the user simply selects them from the 

lists in which they are stored. The panel shown in Figure 33 on page 161, 

which facilitates all that, is used to elicit examples. Hart (1986, p 116) shows a 

set of seven cases in which two have identical attributes but different classes. 

One way of treating such confUcting cases in induction is simply to ignore them. 

But when this is done, something is lost, because what is required is an 

additional attribute to distinguish between the clashing cases. It could equally 

be that one case is erroneous and needs to be corrected. Indeed, there appears 

to be no reason why a tool eliciting examples could not check for such clashes 

before applying the induction algorithm. In addition, the tool will also inform 

the user of any classes for which no cases have been given. 
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Classes Attributes 
SCENIC Acquisition by Examples 

Examples Induction Validation Quit 
Enter the at t r ibutes and the i r possible values that you need to consider 
in ident i fy ing d i f fe rent kinds of objects. 

Objects 
1 1-cent coin 
2 Hair gr ip 
3 Elast ic band 
4 1-penny coin 
5 Washer 
5 Button 
7 Paper c l i p 

9 
10 

green_ 

ATTRIBUTES-
Shape 
di sc 
loop 
U-shaped 

Material 
metal 
p last ic 
rubber 
wood 
paper 

Colour 
red 

Esc=Progress Fl=Help F3=Exit F10=Actions 

Figure 32. The panel used to elicit attributes 

Induct ion by the ID3 A lgor i thm 

Some writers see induction as an essential part of the analysis and organisation 

performed on knowledge gathered by the repertory grid technique. Rappaport 

& Gaines (1990), e.g., mention "topological induction" in discussing NEXTRA, 

while Boose (1985) refers simply to "inductive generalization" in discussing 

ETS. Boose goes even further, saying that the rating grid represents "training 

examples" (p 501). 

Shaw & Gaines (1987, p 258) also mention induction in their discussion 

of the tool KITTEN: 

The resultant grids are analyzed by ENTAIL which induces the 

underlying knowledge structure as production rules that can be loaded 

directly into an expert system shell. 
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SCEMI^Acquisltlon by Examples 
Classes Attributes ICFffiHFH Induction Validation Quit 
Enter examples of a l l kinds of objects - one to a l i ne . 

ATTRIBUTES 
Shape 

1 di sc 
2 loop 
3 U-shaped 
4 disc 
5 
6 
7 
8 
9 

10 

Button 

Material 
metal 
rubber 
metal 
p last ic 

Colour 

Esc=Progress Fl=Help F3=Exit F10=Actions 

Object 
1-penny coin 
Elast ic band 
Hair c l i p 
Button 

Figure 33. The panel used to elicit examples 

Indeed, it is often useful to use an induction algorithm to transform a repertory 

grid into a rule base. This transformation can have two stages: first a decision 

tree is generated, then the tree is transformed into a set of simpler production 

rules. The induction process acts to organise the attribute tests into an efficient 

sequence and to prune redundant tests. Applying induction in this way makes 

sense only when we view each element and its ratings as a case. And it is 

hardly fanciful to argue that these cases could also be used to train a neural 

network (by repeated presentation if necessary). 

Let us look at a specific situation as a preliminary step to writing a 

generalised algorithm. Assume a case base having five cases (CI to C5), a 

closed set of three classes (Dl , D2, and D3), and seven attributes (A I to A7). 

Assume further that each attribute has the same three possible values (".", "Y", 
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and "N"). The attributes have the following specific meanings: "Y" = yes, 

"N" = no, and = don't care. In this situation, is actually a superclass 

of "N" and "Y". Such a case base would look like this: 

Case A t t r i b u t e s 
Id A1 A2 A3 A4 A5 A6 A7 Class 

CI Y Y N . Y N . D1 
C2 . Y . Y . . . 01 
C3 N . N N . Y Y D2 
C4 Y N . . Y . Y 
C5 . N Y . N . . D3 

Quinlan (1986) suggests that the program find the test with the highest 

"information gain". For the time being, it is assumed that attribute A2 has the 

highest information gain. Splitting this case base by the attribute values of A2 

leads to the following sequence: 

Case At t r i bu tes -
Set Id A1 A2 A3 A4 A5 A6 A7 Class Test 

1 C3 N N N N Y Y 02 A2="N" 

1 C4 Y N Y Y D2 A2="N" 

1 C5 • N Y • N • • 
D3 A2="N" 

2 CI Y Y N Y N . 01 A2="Y" 
2 C2 Y Y . 01 A2="Y" 
2 C3 N Y N N Y Y D2 A2="Y" 

The case base has thus been divided into two sets of cases according to 

the value of attribute A2. It will be noted that case C3 exists in both sets. This 

is because of the way the don't-care value, which C3 has for attribute A2, is 

treated. Because set 1 consists of cases of different classes (D2 and D3), we 

need to find a further test to split it. This choice would again be based on 

maximising information gain. 
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To find the best test, the information gain or entropy is calculated for 

every attribute not previously used (i.e., every attribute except A2). The 

method used for this calculation is that given in Quinlan (1986, pp 89-90). 

Assuming that using attribute A5 as the next test will result in the highest 

information gain in set 1, splitting set 1 by value of A5 results in a case base 

subdivided as follows: 

Case A t t r i b u t e s -
Set Id A1 A2 A3 A4 A5 A6 A7 Class Test 

— — — — — — — — — — — — _ — - -

1.1 C3 N N N N Y Y Y D2 A2="N" 

C4 Y N • • Y • Y D2 A5="Y" 

1.2 C3 N N N N N Y Y 02 A2="N" 

C5 • 
N Y • N • • D3 A5="N" 

2 CI Y Y N Y N D1 A2="Y" 

C2 Y Y . . . D1 
C3 N Y N N . Y Y D2 

Set 1.1 is a single-class set and therefore needs no further splitting. Let us focus 

on set 1.2 and assume that attribute A3 has the highest information gain. 

Splitting set 1.2 on the attribute A3 results in the following case base: 

Chapter 7. Design of SCENIC: a CAKE Tool for Empirical Work 1 6 3 



Case A t t r i b u t e s 
Id A1 A2 A3 A4 A5 A6 A7 Te^: 

1.1 C3 N N N N Y Y Y D2 A2="N" & 
C4 Y N . . Y . Y D2 AS^'Y" 

1.2.1 C3 N N N N N Y Y D2 A 2 = " N " & 
A5="N" & 
A3="N" 

1.2.2 . N Y . N . . D3 A 2 = " N " & 
A5="N" & 
A3="Y" 

2 CI Y Y N . Y N . D1 A2="Y" 
C2 Y . Y . . . D1 
C3 N Y N N . Y Y D2 

Each time a split is done, the program stores information about the 

composition of each set created, including the sequence of tests used. This 

splitting process is continued until each set contains examples of a single class. 

At that point, induction is complete. The series of tests that were used to 

create a single-class set form a production rule. For example, set 1.2.1 was 

created by the rule: 

IF /W! = "N" 
AND A5 = "N" 
AND A3 = "N" 
THEN Class = D2 

The production rules are generated in a representation compatible with the 

performance system.® 

« It is worth noting that SCENIC has the facility to export either frame-intensive or 

rule-intensive knowledge bases into AD/Cycle The Integrated Reasoning Shell, a 

commercial knowledge-engineering tool distributed by IBM. 
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The Performance System 

The performance system has two modes of operation. When it is given a file of 

test cases, it uses them for batch consultation. When it is not given this file, it 

does an interactive consultation. Only the batch consultation is required for the 

experiment; but the interactive consultation allowed the tool to be tested, and 

makes it general enough to be used outside the experimental environment. 

The performance system is similar to MYCIN, but more modest in that 

it models a simple decision, not a complex one (ailment and treatment) as 

MYCIN does. It is possible, when the user answers "don't know" to some of 

the questions, for the system to arrive at more than one conclusion. These are 

all presented by the advice subfunction. 

The performance system is an expert-system shell structured as shown in 

Figure 34 on page 166. 

Subfunct ions of the Performance System 

Batch Consult: This subfunction will browse a test case base, taking each case 

as input to its inference engine. This function will determine whether the 

output of the inference engine matches the expected outcome stored on the test 

case file. The number of test cases processed and the number in which the 

inference agrees with the expected result are counted and passed to the 

elicitation tracer. 

Interactive Consult: This subfunction asks the user a multiple-choice question 

to obtain a value for an attribute. The choices consist of all the values of the 

particular attribute, plus "don't know". The answer selected by the user is 

passed to the inference engine. The questions asked depend on the rules being 

evaluated. In general, not all questions are asked to arrive at a conclusion. 
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Figure 34. Structure of the performance system in SCENIC 

Tracing 

Throughout the elicitation process, the elicitation tracer will keep track 

of information such as the following: 

• Date and time of event 

• User identifier 

• Acquisition method 

• Stage of the process 

• Start and end times 

• Measures relevant to the stage. 

This information will be used later to analyse the progress of the user 

through an elicitation session and to reflect the effort involved at each stage of 

the elicitation process. Tracing will be applied to both repertory grid technique 

and knowledge acquisition from examples. 
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Conclusions 

It is possible to build a tool that administers the two knowledge-acquisition 

methods in the experiment, and collects the appropriate measures for later 

statistical analysis. Such a tool, SCENIC, described in this chapter, was 

constructed and tested to ensure that it functioned as intended. 

Several people were asked to use SCENIC, and the comments they 

provided sometimes pointed to the need for minor adjustments in the user 

interface. All such adjustments were made. Much of the feedback was 

encouraging. This process continued for several months, until no further 

changes were being suggested. 

During this testing period, the tool was used for several domains: 

business strategy, object identification, tool selection, identifying animals, and 

several small induction problems, e.g., the set of seven examples given in Hart 

(1986) mentioned on page 159. 

SCENIC has proved adequate for its primary purpose, and includes 

general features (e.g., the ability to set the trace off, interactive consultation, 

and the generation of knowledge bases for export to other environments) that 

make it useful for eliciting knowledge and distilling efficient knowledge bases 

outside the experimental context. 

The architecture used for SCENIC has also been found to be capable of 

extension to acquire knowledge for more complex analysis systems. This 

redesign is being done with the object-oriented methodology of Wirfs-Brock 

(1990). This approach should facilitate even further extensions, as they become 

desirable. In the redesign, more emphasis is being placed on domain definition, 

which the current version assumes complete. This will involve eliciting a 

skeletal plan or some skeletal advice, which will indicate what further knowledge 

needs to be elicited by the system. 
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Chapter 8. How Technique Affects Knowledge 
Acquisition: a Controlled Experiment 

Abstract 

The repertory grid technique and KAMSE follow analogous stages, and elicit 

essentially the same kind of knowledge. A comparison of the data elicited by 

the two methods, and consideration of the cognitive processes probably at 

work, gave rise to the expectations that neither of these two methods has more 

efficacy than the other. The repertory grid technique was expected to be more 

efficient at one stage of the knowledge-acquisition process, but it was thought 

that this difference would probably not be large enough to be reflected 

significantly in the efficiency of the entire process. This thesis has been 

elaborated into five hypotheses, which were tested by a controlled experiment. 

The two methods were shown to be equally effective ways of obtaining the 

information needed to build a heuristic knowledge base for classification. 

Differences in efficiency are attributed to possible mismatches between the 

repertory grid technique and the domain expert's cognitive system. These 

differences also point to opportunities for improving the efficiency of the 

repertory test. 

Introduction 

When a knowledge-based system (KBS) is delivered to its users and 

incorporated successfully into their routine operation, the system is the result of 

a sequence of actions in which prospective users, knowledge engineers, and 

domain experts participated. Such a system would normally be accepted for 

routine use only when it has been shown to act with a high degree of accuracy. 

This accuracy can indeed be improved by refining the knowledge base 

(Politakis, 1985; Ginsberg, 1988). But the size of the refinement task, and even 

Chapter 8. The Experiment 1 6 8 



the necessity for refinement, can be reduced if the knowledge-acquisition 

process is itself capable of producing highly accurate knowledge bases. 

Knowledge acquisition can be a difficult problem; and several methods 

have been used to try to solve it. Typically, much of the knowledge has to be 

elicited from a domain expert; and the choice of method can affect the pace and 

outcome of the process. Indeed, when a domain expert agrees to have his 

knowledge elicited, it is important, to maintain his or her enthusiasm, that this 

elicitation be as efficient and effective as possible. Such efficiency and efficacy 

are unlikely to be achieved unless the elicitation technique closely matches the 

cognitive processes of the domain expert. 

The experiment designed and described in Chapter 6, "Design of an 

Experiment to Compare two Knowledge-Acquisition Techniques" was carried 

out as planned. This chapter describes how the experiment was conducted, and 

analyses the data collected. 

The results indicate that, whereas the two methods produce equally 

accurate knowledge, the domain expert needs to expend more effort when the 

repertory grid technique is used. The increased effort is at two stages of the 

process. One of these stages is the elicitation of attributes or constructs, where 

shortcomings of the repertory grid technique are evident; but these are probably 

capable of being remedied so as to make the technique more efficient. 

The hypotheses to be tested are discussed at length in Chapter 3, "Some 

Implications of Cognitive Psychology for Knowledge Acquisition." 
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Experiment Design 

As discussed in Chapter 6, "Design of an Experiment to Compare two 

Knowledge-Acquisition Techniques" on page 123, the single independent 

variable in the hypotheses stated above is knowledge-acquisition method. Now, 

to test the hypotheses, a single-factor within-subject (repeated measures) design 

was used. 

As has been argued in Chapter 5, "The Controlled Experiment in 

Knowledge-Acquisition Research" (see also Dhaliwal & Benbasat, 1990), factors 

other than method can affect the outcome of any knowledge-acquisition effort. 

So this design attempted to control for these moderating variables by randomly 

assigning the domain experts to method, eliminating knowledge engineers and 

replacing them with a tool whose behaviour is consistent across subjects, and 

using a single domain throughout to keep the domain characteristics constant. 

One possible approach to testing the stated hypotheses was to use a 

repertory-grid knowledge-acquisition tool (e.g., Boose's AQUINAS) to acquire 

knowledge under the repertory grid technique, and to use another tool 

embodying KAMSE (e.g., Ist-Class, a commercially available expert-system 

shell distributed by Programs in Motion). However, neither of these tools 

measure and record the data needed to test the stated hypotheses. But perhaps 

more crucially, Ist-Class runs under the Disk Operating System (DOS) on a 

personal computer, while AQUINAS runs on the Xerox family of Lisp 

machines (Boose & Bradshaw, 1987). (There is also a subset that runs on a 

DEC Vax and a UNIX-based portable version.) So platform would have 

become a factor if tools like these were used. 

There are, of course, repertory-grid knowledge-acquisition tools that run 

on personal computers (see, e.g., Garg-Janardan & Salvendy, 1988). But any 

two tools are markedly dissimilar in the way they look and feel. It would be 
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quite difficult to say whether any differences found in the dependent variables 

were due to knowledge-acquisition method or to subjects' differential reactions 

to the two dissimilar user interfaces. 

Being a dual-function tool, SCENIC represents an attempt to eliminate 

platform as a factor. In addition, several routines are shared between the two 

methods implemented within SCENIC. For example, the acquisition of 

elements in the repertory grid uses the same routine as the acquisition of classes 

in KAMSE. The induction routine is also shared between methods, as is the 

routine for eliciting evaluation cases. 

In both methods, similar keys are used for similar functions; and the 

same keys are used for analogous functions throughout all stages of knowledge 

acquisition. The same areas on the screen are used consistently for the same 

purpose; and colours are used in the same way throughout all the stages of 

knowledge acquisition, and therefore between methods. So considerable effort 

was invested in eliminating the user interface as a factor in the experiment. 

And although there has been no attempt to prove conclusively that interface is 

indeed constant as a factor between methods, a test has been included that 

gives some indication as to whether subjects found the two interfaces similar. 

This test is implicit in hypothesis 1. 

Knowledge Domain 

An experimental domain was created consisting of a package of eight objects 

that any university student or ofTlce worker or academic living in Britain would 

be expected to be very familiar with and be able to identify quite easily. Based 

on preliminary trials, the domain was designed so that the acquisition of the 

knowledge could be completed within an acceptable length of time. 
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Subjects 

The experiment used 32 volunteer subjects (19 male and 13 female), who came 

from the following backgrounds: 

• 11 undergraduate third-year students 

• 9 information developers from a large computer company 

• 6 members of the academic staff of Southampton University 

• 6 masters students studying management and accounting. 

The normal activities of all the subjects involved using computer 

terminals or personal computers routinely several times per week. 

Experimental Method 

Each subject was randomly assigned to both knowledge-acquisition methods 

from a Latin square of treatment combinations. This ensured that an equal 

number of subjects used each method at their first session. The design was an 

attempt both to counterbalance for practice effects, to minimise errors due to 

subject variability (Keppel, 1982), and to make as much use as possible of the 

available subjects. To try and attenuate any carry-over effects, each subject was 

allowed a period of at least one week (average 10 days) between the two 

sessions. 

The experiment was conducted in a computer laboratory at the 

University of Southampton over a six-week period. The room was equipped 

with IBM Personal System/2 Model 55 computers running the Disk Operating 

System (DOS). Each subject was provided with a diskette and written 

instructions for the knowledge-acquisition method to be used. The instructions, 

which differ slightly between methods, are shown respectively in Appendix B, 

"Instructions for KAMSE" on page 216 and Appendix C, "Instructions for the 

Repertory Grid Technique" on page 220. 
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An important ingredient in the experiment was the 

knowledge-acquisition tool. The two methods have been implemented in the 

SCENIC knowledge-acquisition tool, which elicits knowledge directly from a 

domain expert. Most of the instructions were intended to help the subject 

become familiar with using SCENIC for an entire knowledge-acquisition 

process in a simple domain. The training was planned to take 10 to 15 minutes, 

and the actual experiment was expected to take up to 40 minutes. 

The diskette given to a subject contained those portions of the software 

needed for the acquisition method to be used. After the training period, each 

subject was given a package containing the objects in the experimental domain 

and was asked to use the tool to elicit, record, analyse, and evaluate his or her 

own knowledge of the domain. At the end of the experiment, each diskette 

contained a representation of the knowledge acquired during the session and the 

measurement data gathered by the tool. The knowledge units elicited from a 

typical subject are shown in Appendix D. 

Results 

Although the experiment was designed to test the effect of knowledge 

acquisition method, it was still conceivable that differences observed in the 

dependent variables were affected by other factors as well. For the 

within-subjects (repeated measures) design, which was used in this experiment, 

Keppel (1982) argues that, with each subject receiving both treatments, it is 

possible that there was some practice effect: that, in spite of the precautions 

taken in the design, the position of a treatment (whether it was administered 

first or second) could have influenced the differences between group means. 

For example, the repertory grid technique might have a different effect when it 

is the first treatment than when it is the second. 
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In addition to these main effects, there could also be effects due to 

interactions. (Keppel, 1982, p 178, defines interaction as being "present when 

the effects of one independent variable on behavior change at different levels of 

the second independent variable". Keppel argues that, because the 

within-subjects design attempts to counterbalance any practice effects by 

randomly assigning treatment position to subject, it is possible to quantify the 

effect due to treatment position, thereby reducing the size of the error term. 

Because several dependent variables were measured in the experiment, 

group means on all these variables had to be compared simultaneously. A 

multivariate analysis of variance (MANOVA) was therefore appropriate (Bray 

& Maxwell, 1985). 

Five of the 32 subjects failed to complete their first trial. These five 

were all students who participated in the experiment between classes, and were 

unable to complete the evaluation stage of the process in the time they had 

available. Although all five did elicit enough knowledge to build a knowledge 

base, they did not generate test cases against which to evaluate these knowledge 

bases. None of these five subjects returned for a second trial. A further five 

subjects failed to return after completing their first trial. Most of these were 

students (3 out of 5); and it is not known why they did not come back. 

However, both of the other absentees later explained that they had had urgent 

business at the time arranged for their second trial. 

Because of the missing cases mentioned above, the MANOVA lost some 

power by having to exclude data provided by subjects who did not do both 

trials. 
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* * ANALYSIS OF VARIANCE * * 

EFFECT of METHOD 
M u l t i v a r i a t e Tests of S i g n i f i c a n c e (S = 1, M = 1 1 /2 , N = 7 ) 

Sig. 
Test Value Approx. F Hyp. OF Err DF of F 
P i l l a i s .48313 2.99117 5.00 16.88 .843 
Hote l l ings .93474 2.99117 5.88 16.88 .843 
Wilks .51687 2.99117 5.88 16.88 .843 
Roys .48313 

Figure 35. Omnibus MANOVA tests of knowledge-acquisition method 

As shown in Figure 35, the omnibus MANOVA indicated an overall 

significant effect of knowledge-acquisition method (p < 0.05) on the Pillai's, 

Hotelling's, and Wilks' tests. The significant overall MANOVA justifies a 

closer examination of the effect of method on each of the five dependent 

measures. Significant effects of method on some of these dependent variables 

were indicated by the univariate F-tests, and are discussed in the following 

sections. 

Eliciting Elements and Classes 

The mean number of minutes used to elicit elements under the repertory grid 

technique, and classes under KAMSE is shown in Figure 36 on page 176. 

Because these are means of the MANOVA cells, the measures from the ten 

subjects who did only one test are not included. This is also true of the means 

presented later for other dependent variables. 
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Summaries of Minutes to acqui re elements / c l a s s e s 
By l e v e l s of KA method 

w — — — "—""—"— — I— Mc fin 
Ist Test 2nd Test Overall Std Dev Cases 

Repertory grid 2.68 2.21 2.45 Q.64 22 
KAMSE 2.71 1.79 2.25 0.76 22 

Total Cases = 32 
Missing Cases = 18 

Figure 36. Mean number of minutes to acquire elements and classes 

The subjects who did both tests used a mean time of 2.45 minutes to 

acquire elements, and 2.25 minutes to acquire classes. The univariate F-tests of 

mean time to acquire elements / classes against method and treatment position 

are shown in Figure 37. A practice effect, present in both methods, is also 

evident. 

* * * U N I V A R I A T E F - T E S T S * * * 

TIMEl Minutes to acqui re elements / c l a s s e s 
BY METHOD KA method 

POS Treatment pos i t i on 

Hyp. Hyp. Err. Signif 
Source of Variation SS DF DF F of F 

Main E f f e c t s : 
METHOD .417 1 20 2. 239 .150 
POS 5.239 1 20 28. 128 .000 
Constant 242.755 1 20 436. 767 .000 

I n t e r a c t i o n s : 
POS X METHOD .557 1 20 1.002 .329 

32 Cases were processed. 
10 Cases were miss ing. 

Figure 37. Univariate analysis of variance in time used to acquire elements or classes 
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This analysis shows a strong constant effect (p < 0.001) over the 

observed variations in time. There is also a strong main effect of treatment 

position, as would be expected from the means shown in Figure 36.. However, 

knowledge-acquisition method appears to have no significant effect on the 

variations in time used to acquire elements or classes. The strong constant 

effect reflects the fact that, whichever method is used, subjects use a certain 

amount of time without having any knowledge elicited. 

This result supports hypothesis 1, and confirms that the two 

knowledge-acquisition method treatments cause subjects to respond in the same 

way to essentially identical stimuli. 

Elici t ing Constructs and Attr ibutes 

As Figure 38 shows, eliciting constructs under the repertory grid technique 

consumed more time (11.66 minutes) than eliciting attribute descriptors and 

values under KAMSE (9.34 minutes). In spite of the time allowed between 

treatments, differential carry-over effects seem to be present. The repertory grid 

technique appears to be more difficult when used after KAMSE than when the 

subject has no experience of knowledge acquisition. 

Summaries of Minutes to acqui re c o n s t r u c t s / a t t r i b u t e s 
By l e v e l s of KA method 

Mean 
1st Test 2nd Test Overall Std Dev Cases 

Repertory gr id 10.53 12.79 11.66 3.55 22 
KAMSE 18.93 7.74 9.34 3.24 22 

Total Cases = 32 
Missing Cases = 10 

Figure 38. Mean number of minutes for each method to acquire constructs or attributes 

Differences in the amount of time used at the attributes / constructs 

stage were analysed to determine the significance of effects exerted by method 
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and treatment position. A univariate analysis of variance on these variables 

indicated significant effects of method at this stage, as Figure 39 on page 178 

shows. 

U N I V A R I A T E F - T E S T S * * * 

TIME2 Minutes to acqui re c o n s t r u c t s / a t t r i b u t e s 
BY METHOD M method 

POS Treatment pos i t i on 

Hyp. Hyp. Err. Signif 
Source of Variation SS DF DF F of F 

Main E f f e c t s : 
METHOD 59.617 1 ^ 8.Q65 
POS 2.341 1 .317 .588 
Constant 4850.651 1 20 382.403 .000 

I n t e r a c t i o n s : 
POS X METHOD 81.500 1 20 6.425 .020 

32 Cases were processed. 
10 Cases were miss ing. 

Figure 39. Analysis of variance of time used to acquire constructs and attributes 

This univariate analysis of variance indicates that both the 

knowledge-acquisition method and a constant affect time (and hence mental 

effort) significantly (p < 0.05). These main effects remain significant even 

when tempered by the Bonferroni procedure. The direction of the difference 

observed has already been seen in Figure 38 on page 177, which indicates that 

the repertory grid technique requires more effort than KAMSE at this stage. 

This result does not support hypothesis 2. 

There is also a significant (p < 0.05) interaction effect between 

treatment position and method at this stage of the process, reflecting the 

differential carry-over effect mentioned earlier. Possible reasons are explored on 

page 188. 
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A feature of the repertory grid technique was its tendency to elicit 

negative constructs, e.g., "non-metallic / metallic". Whether a construct is 

negative or positive can affect later use of the knowledge base in which it 

appears. For instance, a person takes a finite amount of time to work out the 

meaning of "not non-metallic" when consulting with the knowledge base or 

classifying exemplars. Every such instance demands effortful thought (Cohen, 

1989). The probable slowdown of the classification of exemplars would tend to 

increase the overall time used for the repertory grid technique. However, only a 

small, surprisingly negative, correlation (r = -.175) was found between the 

number of negative constructs used in a knowledge base and the total time used 

for knowledge acquisition. 

Elici t ing Rat ings and Examples 

As Figure 40 shows, subjects appeared to use less time to elicit ratings (7.54 

minutes) than a minimal set of examples (8.29 minutes). A practice effect, 

affecting both methods, appears to be present and greater for KAMSE than for 

the repertory grid technique. 

Summaries of Minutes f o r r a t i n g s / examples 
By levels of KA method 

MSAM — — — —— — — — — — 
Ist Test 2nd Test Overall Std Dev Cases 

Repertory grid 7.6Q 7.48 7.54 2.18 22 
9.44 7.14 8.29 3.84 22 

Total Cases = 32 
Missing Cases = 10 

Figure 40. Mean number of minutes to acquire ratings or examples under each method 

As for the hypotheses discussed above, it is again necessary to identify 

the main effects of method and treatment position, and any interaction between 

the method and treatment position, on the effort needed (and hence time used) 
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to elicit ratings or a minimal set of examples. These effects are shown in the 

univariate analysis of variance in Figure 41 on page 180. 

* * * U N I V A R I A T E F - T E S T S * * * 

TIMES Minutes f o r ra t ings /examples 
BY METHOD KA method 

POS Treatment pos i t i on 

Sum of Hyp. Err. Signif 
Source of Variation Squares DF DF F of F 

Main E f f e c t s : 
METHOD 6.150 1 20 1.514 .233 
POS 16.G61 1 20 3.954 .(Ml 
Constant 2756.320 1 20 380.732 . W W 

I n t e r a c t i o n s : 
POS X METHOD 13.000 1 20 201.418 .248 

32 Cases were processed. 
10 Cases were miss ing. 

Figure 41. Analysis of variance of lime used to acquire ratings or examples 

This analysis again indicates a strong constant effect (p < .001). There 

is a hint of a main effect of treatment position, but this is outside the .05 

significe level (p = 0.061). The effect is probably an indication of the practice 

effect apparently present in the means. Although no systematic investigation of 

this was done, a few subjects did remark that the second session seemed easier 

than the first. However, knowledge acquisition method has no significant main 

effect. These results support hypothesis 3. 

Efficacy of the Methods 

As mentioned on page 129, when machine induction was completed, a set of 

exemplars was generated from random values of the attributes used in the 

knowledge base (see "Eliciting Test Cases" on page 151). These exemplars are 

descriptions of hypothetical objects, which the subject was asked to name. This 
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approach is simple, and feasible within the time constraints of an experiment. 

However, exemplars created in this way do not always describe real objects, 

when the complete descriptions are considered. The subject therefore identifies 

the object by considering one attribute at a time, in the same sequence as the 

performance system would request the information. The subject does not have 

to consider all the attributes, only enough of them to decide what the object is. 

Accuracy, the main measure of efficacy, is computed as the number of 

evaluation cases in which the expert's classification was the same as that of the 

generated knowledge base, divided by the total number of evaluation cases 

processed. As Figure 42 indicates, the mean accuracy of the knowledge bases 

generated was 72% for those from repertory grids, and 77% for those under 

KAMSE. A practice effect again appears to be present. 

Summaries of Knowledge-base accuracy 
By l e v e l s of KA method 

— — — — — — — — — — — — — — — 

1st Test 2nd Test Overall Std Dev Cases 
Repertory grid G.67 Q.78 0.723 8.23 22 
KAMSE 8.76 8.78 8.774 8.17 22 

Total Cases = 32 
Missing Cases = 10 

Figure 42. Mean accuracy of knowledge bases generated under each method 

The significance of this difference and the presence of any main effects 

of method and treatment position were tested by the univariate analysis of 

variance of knowledge-base accuracy. This analysis is shown in Figure 43 on 

page 182. 
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* * * U N I V A R I A T E F - T E S T S * * * 

ACCURACY Knowledge-base accuracy 
BY METHOD KA method 

POS Treatment pos i t i on 

Sum of Hyp. Err. Signif 
Source of Variation Squares OF DF F of F 

Main Effects : 
METHOD .029 1 28 .695 .414 
POS .043 1 28 1.038 .328 
Constant 24.656 1 28 686.594 .000 

I n t e r a c t i o n s : 
POS X METHOD .828 1 28 .491 .491 

Figure 43. Analysis of variance of knowledge-base accuracy 

This analysis indicates a strong constant effect; but knowledge 

acquisition method does not have a significant main effect on knowledge-base 

accuracy. This result supports hypothesis 4: the knowledge bases generated by 

induction are equally accurate for both the repertory grid technique and 

KAMSE. 

Efficiency of the Methods 

The mental effort involved in the complete knowledge-acquisition process is 

made up of four components. The first three have been discussed in preceding 

sections. The fourth component is the effort used in classifying the evaluation 

exemplars. The mean time used, under each method, for the entire knowledge 

acquisition-process is shown in Figure 44 on page 183. A practice effect 

appears to be present. 
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Summaries of Minutes f o r e n t i r e KA process 
By levels of KA method 

1st Test 2nd Test Overall Std Dev Cases 
Repertory grid 36.69 35.52 36.11 7.17 22 
KAMSE 35.57 26.69 31.13 22 

Total Cases = 32 
Missing Cases = 10 

Figure 44. Mean number of minutes to classify evaluation exemplars 

Subjects using the repertory grid technique spent more time classifying 

evaluation exemplars. This contributed to the difference in total knowledge 

acquisition time between methods. Whether this difference is significant, and 

whether there are any significant main effects of method or treatment position, 

were determined by the univariate analysis of variance in Figure 45. 

* * * U N I V A R I A T E F - T E S T S * * * 

TTIME Minutes f o r e n t i r e KA process 
BY METHOD KA method 

POS Treatment pos i t i on 

Hyp. Hyp. Err. Signi 
Source of Variation SS DF DF F of F 

Main E f f e c t s : 
METHOD 272.422 1 28 5.871 .825 
POS 278.268 1 28 5.997 .824 
Constant 49729.138 1 28 727.478 .888 

I n t e r a c t i o n s : 
POS X METHOD 163.497 1 28 2.392 .138 

32 Cases were processed. 
10 Cases were miss ing. 

Figure 45. Analysis of variance of time used to classify evaluation exemplars 
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It is evident that there is a strong constant effect on the variations in 

total time used. Knowledge-acquisition method also has a significant main 

effect (p < 0.05). This result does not support hypothesis 5; the repertory grid 

technique requires more effort overall (and is therefore less efficient) than 

KAMSE. 

There is also a significant main effect of treatment position. This 

reflects the practice effect evident in the means. 

Figure 46 brings together the mean times for the four stages requiring 

mental effort, and one that does not. It is clear that, at the stages where 

knowledge acquisition method has a significant main effect on the time used, 

the repertory grid technique uses more time. 

Rep grid 
Mean SD 

KAMSE 
Mean SD 

Method as 
a Factor 

Entire 
Process 

36.1 
1GQ% 

7.2 31.1 
1Q8% 

8.9 Significant 

Elements/ 
Classes 

2.4 
7% 

Q.6 2.3 
7% 

8.8 Not s i g . 

Cons t ruc t s / 
A t t r i butes 

11.7 
32% 

3.6 9.3 
38% 

3.2 S i g n i f i c a n t 

Rat ings / 
Examples 

7 .5 
21% 

2.2 8.3 
27% 

3.8 Not s i g . 

Induction .6 
2% 

.2 .5 
2% 

.3 -

Evaluation 13.9 
39% 

4.6 18.7 
34% 

4.5 Signi f i c a n t 

Figure 46. Number of minutes used at different stages of each knowledge-acquisition method 

Although time has generally been used as a proxy measure for mental 

effort, the induction stage of the knowledge acquisition process uses time but 
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demands no effort from the subject. Induction provides a short interval of 

about half a minute for the subject to relax before starting to classify the 

evaluation exemplars. This is not problematic because induction actually 

occupies only a very tiny fraction of the time taken by the entire process (34 

minutes overall mean). 

The fact that induction accounts for such a tiny (though important) 

portion of the time required to build a knowledge base from scratch casts fresh 

light on the way that the demonstration of Michalski & Chilausky (1980) 

should be interpreted. Induction is only the tip on an iceberg (see page 199). 

Evaluat ion effort 

The MANOVA is sensitive to the number of dependent variables, as this 

number provides the hypothesis degrees of freedom used to determine whether 

the omnibus test is significant (Bray & Maxwell, 1985). The experiment was 

designed to provide five dependent variables for the MANOVA. Introducing a 

sixth dependent variable could impair the significance of the omnibus 

MANOVA. So, although it is tempting to examine the significant effects on 

variables other than the five in the design, this can be done within the 

MANOVA only if each such additional variable is used as a substitute for one 

of the original five. 

Evaluation time (TIMES) is an interesting variable, which was 

measured, but which was never intended to be used in the MANOVA. 

However, this variable is a genuine substitute for total knowledge-acquisition 

time (TTIME) because TTIME - TIMES is equal to the total time used at the 

first four stages of knowledge acquisition. Moreover, when evaluation time is 

used instead of total time, the significance of the omnibus MANOVA and all 

the effects discussed so far in this chapter remain unchanged. Thus, conclusions 
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drawn from analysing TTIME could also be drawn indirectly from analysing 

TIME5. 

Classifying evaluation examplars is the same process for both methods. 

Differences in the amount of time used might be due to one of two reasons: 

• One method might tend to elicit a larger number of attributes, thereby 

giving the knowledge source more factors to consider in classifying an 

exemplar. 

• One method might tend to elicit attribute descriptors and values that are not 

readily understood when combined (e.g., a negative descriptor such as 

"non-metallic" combined with the value "no"). 

The time used for classifying evaluation exemplars is interesting because 

a significant learning effect on it would further support the notion that 

knowledge sources can be primed. 

The mean times used for classifying evaluation exemplars are shown in 

Figure 47, which appears to indicate a learning effect for both methods. It also 

appears that more time was used for the repertory grid technique than for 

KAMSE. 

Summaries of Minutes f o r eva lua t ion 
By l e v e l s of KA method 

Ist Test 2nd Test Overall Std Dev Cases 
Repertory grid 15.36 12.47 13.91 4.56 22 
KAMSE 12.89 9.44 18.76 4.49 22 

Total Cases = 32 
Missing Cases = 10 

Figure 47. Mean number of minutes to classify evaluation exemplars 

Chapter 8. The Experiment 1 8 6 



The significance of any effects of method and treatment position were 

determined by the univariate F-tests summarised in Figure 48 on page 187. 

The analysis shows a strong constant effect (p < .001). Method also has a 

significant main effect (p < .05): KAMSE demands less effort than the 

repertory grid technique. However, the main effect of treatment position is 

marginally outside the .05 significance level. 

* * * U N I V A R I A T E F - T E S T S * * * 

TIMES Minutes f o r eva lua t ion 
BY METHOD KA method 

POS Treatment pos i t i on 

Hyp. Hyp. Err. Signi 
Source of Variation ss DF DF F of F 

Main E f f e c t s : 
METHOD 109.200 1 20 5.248 .833 
POS 84.153 1 20 4.044 .858 
Constant 6698.234 1 20 373.229 .808 

I n t e r a c t i o n s : 
POS X METHOD .148 1 20 .808 .929 

32 Cases were processed. 
10 Cases were miss ing. 

Figure 48. Univariate analysis of variance in time to classify evaluation exemplars 

Conclusions 

As Figure 49 on page 188 shows, three of the five hypotheses are supported by 

the data. The two knowledge-acquisition stages at which the hypotheses are 

not supported require more effort to use the repertory grid technique than 

KAMSE. 
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Hypothesis Supported? Contrary Finding 

1 

2 No Repertory gr id r equ i r e s more 
e f f o r t t o acqui re an adequate 
domain model, 

3 

4 Yes 

5 No Repertory gr id r equ i r e s more 
e f f o r t f o r the complete KA 
process . 

Figure 49. Summary of support for tJie hypotheses 

A feature of the repertory grid technique is its tendency to elicit negative 

constructs. A tool could counter this tendency by switching poles, so that the 

positive one is always primary. Alternatively, the question "what makes A 

similar to B and different from C" could be turned around so that a positive 

trait is always elicited first. Neither of these devices was used in SCENIC, 

although the integrity of the repertory grid technique seems better preserved by 

letting the tool detect negativity (i.e., it does not involve the subject, only the 

method administrator). 

Although the interaction effect of treatment position with method is 

significant in only one of the dependent measures, there are significant main 

effects of treatment position. These affect the tests of hypotheses 1 and 5. A 

practice effect is observable in all the means, with one exception. 

Knowledge sources can be primed. Those who have their knowledge 

elicited once tend to find a second experience of having the same knowledge 

elicited less demanding, even if two different methods are used. All stages of 

KAMSE appear to be affected by this practice effect when the knowledge 
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source has previously had the same knowledge elicited by the repertory grid 

technique. 

However, knowledge sources can also be inhibited by a previous 

experience of having their knowledge elicited. This appears to affect triadic 

elicitation of constructs when the knowledge source has previously been asked 

directly for attributes involved in the decision being modelled. The time taken 

to elicit constructs is less when the repertory grid technique is used first (10.5 

minutes) than when it is used second (12.8 minutes). This eOect needs further 

investigation if it is to be explained satisfactorily. However, two possible 

reasons for it suggest themselves. 

Subjects undergoing triadic elicitation may have been distracted by the 

contrast between the freedom of attribute elicitation under KAMSE and the 

restrictive nature of the triads. If this is so, then knowledge engineers may be 

well advised to find out whether a prospective knowledge source has had 

previous experience of knowledge elicitation. On the other hand, using the 

repertory grid technique may be an effective way of preparing knowledge 

sources to have their knowledge elicited by another method. 

One criticism directed at the two methods discussed here is that they 

work well for simple problems, but break down when the problem assumes 

real-world complexity (see, e.g., Gammack, 1987; Quinlan, 1991). But the 

simple classification problem can be a building block for more complex 

problems such as planning (see, e.g., Dechter & Michie, 1984). Complex 

problems often involve a series of such decisions, some depending on the results 

of others. Garg-Janardan & Salvendy (1988) demonstrated that hierarchies of 

classifiers can deal with some kinds of complexity, and the repertory grid 

technique can be used to elicit the knowledge for each classifier. 

The knowledge-acquisition methods used here can therefore be quite 

powerful when used to develop parts of complex knowledge bases. In such 
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environments, inefficiencies are multiplied; and the total effort to be saved in 

developing a complex knowledge base could be considerable. The acquisition of 

knowledge from multiple experts also involves multiplying inefficiencies; so the 

same considerations apply. The findings of this experiment provide some 

pointers to both improving and measuring the efficiency of knowledge 

acquisition. 
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Chapter 9. Discussion of the Results 

Abstract 

The data collected in the controlled experiment are reported and analysed in 

Chapter 8. This current chapter discusses the theories underlying the research, 

what is assumed to be true, and what was tested. The implications of the 

results for each hypothesis are also discussed. These include the successful 

control of the tool's user interface as a factor, the efficacy of triadic elicitation, 

and ways of improving its efficiency. Implications of the fact that the two 

methods have equal efficacy are also discussed. Two of the dependent measures 

are affected by the classifying of exemplars, which in turn seems capable of 

being affected by knowledge-acquisition method. Factors affecting the internal 

and external validity of the experiment are also discussed. 

Introduction 

In many advanced areas of science, a general theory combines with a specific 

one to produce an explanation of observed reality Bunge (1973). For example, 

the general theory of simple harmonic motion is applied to both the swinging of 

a pendulum and the flow of current in an electric circuit. But the specific 

theory in each case is different: in the case of the pendulum, the specific theory 

has to do with the length of the string and the acceleration due to gravity, 

whereas in the case of the electric circuit the specific theory has to do with the 

voltage of the power supply and the impedances in the circuit. Bunge argues 

strongly that specific theories can be tested, while general ones cannot, because 

general theories are nothing more than pure mathematics; whereas specific ones 

are expressed in terms of the reality that they are meant to model and explain. 

Perhaps, then, it would be useful to identify specific and general theories 

underlying the hypotheses tested in the experiment. One general theory, on 

which hypothesis 3 is based, is mathematical in nature. The declarative 
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knowledge underlying a cognitive skill may be thought of as being represented 

by a matrix. One method traverses this matrix in one direction (horizontally by 

rows), while the other traverses it vertically by columns. If it is the same matrix 

that is being traversed in the two methods, then each would end up traversing 

the same total distance, and hence taking the same amount of time. 

Another general theory is that memory is divided up in a certain way: 

long-term versus short-term, and that long-term memory has episodic, semantic, 

and procedural elements that are differentially retrievable. Short-term memory 

has a very restricted capacity. A related theory is that the knowledge 

underlying a cognitive skill is represented as productions in procedural memory, 

it is not amenable to conscious retrieval, but it is an experiential distillation of 

declarative and episodic knowledge from semantic and episodic memory 

respectively. 

This last theory implies that, in knowledge acquisition, what is actually 

accessed is not the irretrievable compiled productions, but the episodes and 

schemata, which are retrievable. Processes are available to distill these and 

generate productions, presumably no less powerful than those stored in the 

expert's procedural memory. Although the experiment might support it, no 

attempt has been made to test this general theory. Testing it would probably 

have required an experimental condition under which the experts stated explicit 

rules. So the general theories have been assumed to be true. However, the 

research does test aspects of a specific theory; that is about what happens when 

the expert is: 

• Asked to list elements 

• Given the repertory test 

• Asked to list attributes descriptors and values adequate for describing a set 

of examples of all the domain classes 
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« Asked to express a minimal set of examples in terms of attribute values 

• Asked to provide evaluation cases by classifying exemplars. 

Implications of the Results 

This section discusses the findings related to each hypothesis, and what they 

suggest for both using and further researching the two knowledge-acquisition 

methods. 

Regard ing Hypothesis 1 

In some ways, hypothesis 1 is a self-evident truth; but stating and testing it are 

invaluable as a demonstration that what is expected to happen actually does. 

Both methods were expected to demand the same amount of effort because the 

method is merely a label; the process is exactly the same for both methods at 

stage 1 of knowledge acquisition. Use of a dual-function tool like SCENIC is 

an attempt to control for the interface between the tool and the user, i.e., to 

keep it unchanged between methods. The fact that the data support this 

hypothesis gives some indication that the attempt to control for user interface 

was substantially successful. 

Regard ing Hypothesis 2 

An adequate domain model is only part of what needs to be acquired in 

knowledge acquisition. It comprises a list of elements (or classes), coupled with 

a set of constructs (or attribute descriptors and values). The elements define 

the limits of the domain and the constructs provide a language in terms of 

which either the domain elements can be rated or a set of examples can be 

expressed. The repertory grid technique includes a stage called the repertory 

test, which goes to some lengths to discover constructs which the subject is 

assumed to have difficulty identifying and articulating when asked directly. 
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Perhaps that was true of Kelly's patients, and of anyone being 

psychoanalysed. Several researchers in knowledge acquisition have assumed^ 

that it is also true of domain experts. Kelly (1955) argued strongly and 

persuasively in favour of the triad; and hypothesis 2 is stated on the strength of 

this. However, the data do not confirm hypothesis 2. And although there is 

little doubt (from hypothesis 4, discussed later) about the eflicacy of the triad, 

there is still some doubt about its efficiency. Even so, the experiment has not 

proved that the triad is not optimal; it may or may not be. The experiment 

does however, raise questions about the ability of the repertory grid technique 

to come to a speedy completion. Future research will have to test refinements 

to the mechanism used to elicit distinctions between confused pairs of elements 

during the closing stages of a repertory test. 

One shortcoming of the repertory grid technique is that the person being 

interviewed does not always understand what the technique or the questions are 

trying to get at. This is especially crucial in the later stages of the repertory test 

(acquisition of constructs and ratings), when a small number of confused pairs 

of elements remain. A "why" option could help the user understand what is 

required. For example, the user's "why" could evoke a response such as this: 

"I already know the difference between (paper clip) and the other two elements. 

What I really need to find out is how (cent coin) differs from (penny coin)." 

Alternatively, the tool could make its own selection of the odd one out 

in the triad in such a way that the user would have to supply the required 

distinctions. Instead of using strategies of this kind, the classic repertory test 

7 Latta & Swigger (1992) have tested whether the technique "accurately elicits and 

represents commonality of understanding about communal knowledge", and validated 

this assumption. 
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proceeds relentlessly, probably getting the naive user frustrated at being 

repeatedly confronted with the same (or similar) triads. Other researchers (e.g, 

Garg-Janardan & Salvendy, 1988) seem to have encountered this same problem. 

Some tools therefore try to solve the problem by switching from triadic to 

dyadic ehcitation after a certain number of triads have been presented. 

The word "dyadic" actually has three meanings when used with 

reference to the repertory grid. Ryle & Lunghi (1970) argued that the standard 

technique is insensitive to information about the constructs as applied to 

relationships between individual elements; to remedy this, they used the 

relationships as elements. Keen & Bell (1981) developed a dyadic method of 

eliciting elements and constructs at the same time by considering two elements 

at a time in a variant of the repertory test. Garg-Janardan & Salvendy (1988) 

were mainly concerned with speeding the closure of the repertory test by using 

two elements instead of three in the closing stages of the test. 

Knowledge acquisition from a minimal set of examples has no way of 

limiting the domain model to a sufficient one free of redundant attributes. But 

then, neither does the repertory grid technique guard against this in a foolproof 

way. The redundancies are removed from the generated knowledge base by 

machine induction, but eliciting them in the first place is largely a wasted effort. 

In addition, while the repertory grid technique is seeking specific types of 

answers to specific types of questions, it may well, like a cross-examining 

lawyer, be inhibiting the user's freedom to express some of the relevant ideas 

that it evokes. Knowledge acquisition from a minimal set of examples suffers 

rather less from this. 

It also appears that the kind of prompting provided by the repertory 

grid technique does not always make the production of an adequate domain 

model easier than when subjects are asked directly for the model components. 

It is evident that, in some circumstances, a person can come up with an 
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adequate domain model more easily if not constrained by the repertory grid 

technique. 

Further research could determine efficient alternatives to triadic 

elicitation. It is quite likely that the repertory grid technique can be modified in 

various ways to improve its efficiency. For example, in the later stages of a 

repertory test, the tool could, as discussed above, construct triads and split 

them itself in ways that would constrain users to provide the required 

information. Experiments could determine whether any improvements in 

efficiency are produced by the modified method. 

Although subjects generally benefitted from having had their knowledge 

elicited previously, the elicitation of constructs appeared to be more difficult 

after exposure to attribute elicitation under KAMSE. There is some question 

as to whether triadic elicitation inhibits the knowledge source (see page 77). 

The differential carry-over effect at stage 2 indicates that this may be so when a 

less restricting method has been used previously. 

However, this effect needs to be investigated further. This could be 

done by comparing the efficiencies of a number of possible schemes to that of 

standard triadic elicitation: 

• Dyadic elicitation of constructs 

» Triadic elicitation of constructs 

• Tetradic elicitation of constructs 

• Letting the knowledge source compose the triads 

• Continuously showing the knowledge source a model of the knowledge so 

far elicited 

• Mixing the initiative by enabling the knowledge source to escape from the 

triad, and express any other constructs that come to mind out of sequence. 
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Regarding Hypothesis 3 

The lack of a significant effect of method on the differences between the time 

taken to elicit ratings in the repertory grid technique and that taken to elicit a 

minimal set of examples indicates that the effort used in traversing an inference 

matrix by rows is no different from that used in traversing it by columns. The 

data therefore support hypothesis 3; but this does not mean that the knowledge 

is indeed organised as a matrix in the expert's mind, because the matrix is 

simply a convenient mapping of a multi-dimensional problem or domain space. 

All that can be said is that, however the knowledge is represented in the 

expert's mind, it can be mapped into a matrix. But this mapping is only an 

approximation of the actual knowledge (Newell, 1982). Moreover, the 

knowledge may be represented differently in the expert's mind, depending on 

the use to which it is being put (Tulving, 1962). 

Regarding Hypothesis 4 

The experiment set out to acquire declarative knowledge and to distill 

that into accurate productions. The hypotheses predicted that these 

productions would be equally accurate between the two methods used, because 

they acquire very similar kinds of knowledge that are put through the same 

process of distillation. And the empirical data support this prediction, which is 

embodied in hypothesis 4. 

But why should the two methods produce knowledge bases that are 

equally accurate; is the similarity of the knowledge they elicit sufficient reason 

for expecting them to have equal efficacy? If that reason is indeed sufficient, 

then it is possible to make the general statement that any two methods that 

elicit similar kinds of knowledge ought to have equal efficacy. And what is so 

similar about the knowledge? It has been shown (in Chapter 2) that there is a 

Chapter 9. Discussion of the Results 197 



one-to-one mapping between the knowledge units elicited under the two 

methods. 

Perhaps, then, it is possible to generalise by saying that if there is a 

one-to-one mapping between the knowledge units acquired by two methods, 

then the two methods are likely to have equal efficacy provided that the 

knowledge under each method is subject to the same distillation processes. 

That seems reasonable, because what has actually been done with the repertory 

grid is to use it to generate a minimal set of examples, which have then been 

processed by machine induction to come up with a knowledge base in the same 

way as under the KAMSE. However, this conjecture has not been proved; the 

only assertion proved is that the two methods used in the experiment produce 

knowledge bases that have equal efficacy. To prove the more general 

statement, it would be necessary to experiment further with an adequate 

random sample of all pairs of knowledge-acquisition methods related in this 

way (Anderson, 1971). 

On the basis of this result, we cannot advise anyone seeking differential 

efficacy to choose either method in favour of the other. 

Regarding Hypothesis 5 

Although the repertory grid technique has been shown (by support for 

hypothesis 4) to acquire equally accurate knowledge as KAMSE, the two 

methods have also been shown to differ in efficiency. Two components of total 

effort appear to be responsible for the repertory grid technique's inferior 

efficiency as revealed by the test of hypothesis 5. First, as discussed under 

hypothesis 2, it is easier to propose attribute descriptors and values than to 

think of constructs. Second, it appears to be easier to classify exemplars for 

evaluation of knowledge induced from a minimal set of examples. 
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Evaluation exemplars are more difficult to deal with under the repertory 

grid technique because, in general, this technique yields more attributes than 

KAMSE. In addition, negative constructs can slow down the recognition of an 

exemplar's description. These are not final flaws of the repertory grid 

technique; it can probably be remedied by spending more time on the clustering 

of constructs, and by inverting negative constructs. 

Previous Results 

Michalski & Chilausky (1980) demonstrated convincingly the superior efficiency 

and efficacy of machine induction as compared to the "hand-crafting" of rules. 

This research has not sought to test those findings, the essence of which is 

supported by the author's experience of acquiring knowledge and building 

knowledge bases early in this research. Both methods used in this experiment 

have therefore included machine induction as a step in the process. 

But it is clear that machine induction by itself cannot be said to be a 

knowledge-acquisition method. A knowledge-acquisition method would involve 

gathering case data by some means, coding these cases in terms of some domain 

model, processing them by machine induction, and evaluating the resulting 

rules. Indeed, one of the shortcomings of the work of Michalski & Chilausky is 

that they compared the entire knowledge-acquisition effort in one method with 

only a part of the effort in the other method. Even so, it is likely that this 

weakness in internal validity affected the magnitude rather than direction of 

their findings. 

Internal Validity 

Several factors can affect the outcome of any attempt to acquire knowledge. 

This experiment controlled for knowledge engineer and domain by keeping them 

constant, randomly assigned experts to method, and used method as the single 

independent variable. As discussed above, it is also likely that two tools 
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embodying the two methods would have very different user interfaces and 

therefore different effects on the user's ability to work with them. The single 

tool used in the experiment had a consistent interface throughout, thereby 

minimising the effect of user interface as a factor. 

Originally, it was supposed that time used and number of keystrokes 

would be alternative indicators of mental effort. Analysis of the keystrokes 

data, which have not been included, threw considerable doubt on the validity of 

this assumption. There is, for example, a significant main effect of method on 

the number of keystrokes (but not the amount of time) used to acquire ratings 

and examples. People appear to spend time thinking about what to key in 

rather that pressing keys until they are satisfied with what they have put in. 

What the number of keystrokes might more plausibly indicate is the keying 

economy that the repertory grid technique has over KAMSE at the ratings / 

examples stage of knowledge acquisition. It therefore seemed appropriate to 

abandon the idea of using number of keystrokes as a measure of effort. This is 

not problematic because there are strong arguments in favour of using time as a 

measure of mental effort (see page 126). 

It can be argued that the subjects were at a disadvantage in classifying 

the evaluation exemplars. The exemplars were generated by combining random 

values of the attributes. To make sense of these exemplars, the subjects had to 

view them in a certain way. Other ways of looking at the examplars might 

result in different classifications. The researcher's ad-hoc conversations with the 

subjects led him to believe that some of them had difficulty in adhering to the 

prescribed strategy when deciding on classifications for the exemplars. 

In addition, wide variations in the accuracy measured (lowest score 

9.4%, highest score 100%) indicated that some subjects grasped more fully than 

others how to consider the information present in an exemplar and decide on 

the correct class. In some ways, deciding the exemplar classes was an exercise 
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in predicting what the knowledge-based system would conclude if information 

was presented to it in a given sequence. But there is no basis for supposing 

that these difficulties affected one method differently from the other. 

External Validity 

It is possible to boost the external validity of an experiment by varying the 

problem. Employing that approach in this experiment would have called for 

using two domains rather than one, to answer the objections of critics who 

might question whether similar results would be obtained for some domain 

other than the experimental one. However, according to Keppel (1982, p 340), 

"the resultant increase in external validity is really not very great in any 

far-reaching sense". It is a device which has not been adopted in this 

experiment. This is mainly because, even with an extensive search, it was 

difficult to find a second domain of comparable simplicity and size, in which the 

same subjects could be expected to have the same degree of expertise. It would 

be nice to test these hypotheses again with a different domain. But this is a 

question of content versus structure; and there is no reason to think that 

domains of similar structure will not yield the same results. 

There may also be some question about the applicability of these results 

to large-scale problems. It is difficult to make categorical predictions about 

scaling-up, but it is worth pointing out that large-scale problems can often be 

structured into hierarchies of small-scale ones (see page 189). Even under the 

KADS methodology, there are phases (Wielinga, Schreiber, & Breuker, 1992) at 

which using the repertory grid technique and inductive methods is 

recommended. Whether these are the only stages where these techniques are 

useful is open to question. However, the repertory grid technique and KAMSE 

are evidently applicable to both the decision modelling paradigm and the 

physical-system modelling one. 
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Chapter 10. Overall Conclusions 

Abstract 

This chapter concludes the research by trying to assess its significance and 

limitations. The first section summarises the lessons learned during the 

research. The second section discusses the limitations of what was done, ways 

in which the research could be improved or made more complete, and ideas 

from related research that are not covered by this research. The final section 

discusses the importance of this work to the development of the 

knowledge-acquisition discipline. 

Lessons from the Research 

Knowledge acquisition is primarily a process of gathering, analysing, and 

organising enough information about a given knowledge domain to build a 

knowledge-based system that has accuracy adequate for its purpose. Of course, 

the system developed will need to "speak the users' language" and be able to 

provide information of a quality and in a style that the users will find 

acceptable and useful. But without sufficient coverage and adequate accuracy, 

the system is unlikely to be useful enough to be unleashed on users. 

If there is any reality in the knowledge-acquisition bottleneck which so 

many writers mention, then it seems reasonable to expect a project-management 

approach to yield useful results by clever sequencing of tasks and allocation of 

resources. Three factors seem particularly amenable to this approach: the 

position of knowledge acquisition in the network of tasks involved in building a 

knowledge-based system, the large amount of knowledge typically required to 

build a useful system, and the inherently slow nature of the 

knowledge-acquistion process. 

This research does not fundamentally alter these views. It still appears 

that progress can be, and is being, made by repositioning knowledge acquisition 
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within the development cycle. But if knowledge acquisition is the entire process 

of building a knowledge-based system, as Buchanan et al (1983) define it, then 

what else of significance is there against which to reposition in the development 

cycle? One answer lies first of all in the fact that a growing number of 

knowledge-based systems appear to derive much of their usefulness from the 

fact that they do not stand alone, but interface with conventional software 

systems. 

In developing this kind of integrated system, it is possible for the 

development of both the knowledge-based component and the conventional 

component to proceed in parallel, if tasks are sequenced appropriately. 

Another fruitful approach might be to subdivide knowledge-based systems into 

hierarchies of smaller ones and assign these to increased knowledge-engineering 

resources, which can proceed in parallel with different parts of the problem. 

Still another approach is to use rapid prototyping in an iterative cycle of 

elicit-build-test. Subsequent tasks can be driven by the evolving prototype. 

Regarding the large amounts of knowledge typically required to build 

useful systems, it still appears reasonable to think that a fruitful approach is to 

select problem domains carefully (a view also expressed by Frederick 

Hayes-Roth in an interview with Chandrasekaran, 1991). But although this 

approach is likely to preserve the reputation of knowledge engineers adopting it, 

it provides little comfort for owners of problems eschewed as too messy, 

unwieldy, or unstructured. Wilkins' (1987) notion of "sociopathic knowledge" 

also appears reasonable; and the need for inductive distillation of knowledge, as 

implemented in SCENIC and some other knowledge-acquisition tools, supports 

this view. The challenge remains how to determine when enough knowledge 

has been acquired; and the approach taken by SCENIC is clearly one of the 

ways of doing this. 
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A number of avenues still appear to be available for tackling the 

inherently slow nature of the knowledge-acquisition process. Agarwal & 

Tanniru (1990), for example, have shown that training knowledge engineers in 

the use of an effective technique can improve the productivity of even those 

with little experience. More fundamentally, techniques are more likely to be 

successful if they recognise the limitations of the domain expert's cognitive 

system, and seek to elicit and use knowledge that is indeed retrievable 

(declarative knowledge) rather than try to tease out procedural knowledge 

which is not amenable to conscious retrieval. 

Moreover, knowledge-acquisition technology is still evolving; and some 

builders of knowledge-acquisition tools argue that the labour-intensive process 

of knowledge engineering is unnatural and goes against all the trends in 

computing (see, e.g., Shaw & Gaines, 1987). One solution to speeding up the 

process is to create tools capable of bringing about dramatic increases in 

knowledge-acquisition productivity. As a by-product, this research has 

demonstrated that people can walk up to a well designed knowledge-acquisition 

tool, and with little training use it to elicit their own knowledge of a simple 

domain. It has also shown that small knowledge-based systems can be built 

and tested very quickly when some kinds of tools are used. 

While the project-management approach is important, it is also evident 

that, at a deeper level, explanations of why one knowledge-acquisition method 

might perform differently from another lie in the ways knowledge is represented 

in the human mind and the ways in which it can be retrieved. There are too 

many knowledge-acquistion techniques for any research of this nature to cover 

them all. So the work has concentrated on two techniques which have not been 

compared in this way before. 

In particular, this research has demonstrated that the two methods can 

be subdivided into stages characterised by the type of knowledge unit being 
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elicited. This is not an innovation; it is used in other tools. But little has been 

written about the expert's cognitive processes during these stages. It is evident 

that different mental operations take place in the domain expert's mind during 

these different stages. But, at every stage, the limited capacity of short-term 

memory restricts the number of elements or constructs that can be considered 

simultaneously. Techniques that ignore these restrictions may demand more 

effort from domain experts. 

Knowledge acquisition is also the creation of a continuing problem, 

because any knowledge-based system that is put into regular use will probably 

need to have its knowledge base updated as time passes and domain knowledge 

evolves. So knowledge acquisition should have an eye on maintenance (see, 

e.g., Davis, 1990; Xiafeng, 1991). It seems reasonable to suppose that 

knowledge-based systems will be easier to maintain if they can be modified at 

the knowledge level rather than the symbol level (see Newell, 1982, for an 

explanation of these levels). 

A knowledge-acquisition tool like SCENIC appears to be a feasible way 

of developing a maintainable knowledge base, because it converses with the 

domain expert at the knowledge level. It generates a knowledge base, which 

can be used directly by a performance system. One important feature of using a 

tool like SCENIC is that subsequent changes to the knowledge can be made at 

the knowledge level. A new knowledge base can be generated from the updated 

knowledge. Careful design of the data interfaces between a knowledge-based 

system and the traditional systems with which it is integrated is needed to 

support this kind of maintainability. 

But, beyond the question of maintainability, consideration of the domain 

expert's cognitive system gives rise to the kind of insights useful for refining 

knowledge-acquisition methods. This research indicates that there is room for 

refinement of the repertory test to increase its efficiency. 
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It is also evident that there are grave obstacles facing any attempt to 

access the compiled productions that govern a domain expert's performance. 

However, it is possible to retrieve declarative knowledge without undue 

difficulty. This retrieved knowledge can then be subjected to processes that can 

generate powerful, accurate productions. In the same way as a novice can 

generate effective primitive productions from declarative knowledge, 

meta-knowledge embodied in a knowledge-acquisition tool can operate on 

declarative knowledge to fashion productions that exhibit expert performance. 

If we cannot retrieve the compiled productions on which an expert's 

performance is based, then we have to settle for retrieving the episodic and 

semantic declarative knowledge that generated the compiled productions. 

Protocol analysis is one method that seeks to access the compiled 

productions in the only way they are accessible (by performance of the skill), 

and to accompany that performance with the expert's account, or even post-hoc 

justifications of what s/he is attending to. But protocol analysis has been 

shown to be inefficient compared to other methods. And there is some doubt 

about which memory the knowledge acquired by this method comes from. 

Limitations of the Research 

Although a very large portion of the knowledge-acquisition process is covered 

by the experiment and the tool, there is a little more to the process than the 

stages in SCENIC. When a user starts using the tool, it is assumed that s/he 

has already thought out the objectives of the knowledge base s/he would like to 

build. This process of domain definition is important because it is the first 

hurdle. As discussed on page 167, future work on the tool will include 

enhancements in this area. There is also room for acquiring explanations, and 

the tool largely ignores this. It could be a subsequent stage after enough 

information has been obtained to build an accurate knowledge-based system. 
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The attribute values accepted by the tool are all qualitative. There is 

room for quantitative attribute values, if the tool is to become applicable to a 

wider range of problems. It is also unclear how the efficiency of the two 

methods would be affected if they were applied to a domain involving 

quantitative attribute values. 

One limitation of the kind of distillation done by machine induction has 

been mentioned in Chapter 2. It sheds attributes that are redundant when 

deciding among the classes identified. But being redundant may not be 

sufficient reason to discard an attribute totally. Whitehall (1990) point out that 

the attribute shed might be more important than the parallel one used. 

Buchanan et al (1983) also argue that redundancy should be built into 

knowledge bases, so that they do not rely heavily on a single piece of evidence. 

Because the ID3 algorithm ignores this advice, a user can obtain the desired 

redundancy only by including training examples that have alternative patterns 

of attribute values. The algorithm itself could probably save users this burden, 

by finding disjunctive relationships and including them in the decision trees or 

rules generated. 

Discarding attributes is clearly a problem for both the repertory grid 

technique and KAMSE. Until induction algorithms are improved, some expert 

evaluation is appropriate, to determine when the knowledge base lacks sufficient 

redundancy. Without such safeguards, the resulting knowledge base is most 

usefully applied in a closed world, where it is known that the object to be 

classified does indeed belong to one of the classes included in the knowledge 

base." In domains where this is not so, there is some chance of the knowledge 

" Gammack (1987) has also criticised the repertory grid technique's focus on distinctions 

rather than similarities. 
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base reaching erroneous conclusions (false positives). There are solutions to 

this: one of them is to restrict the application of this kind of method to 

closed-world domains, for example, selecting the advertising or promotion 

medium for a product (Chadha, Mazlack, & Pick, 1991). Another approach 

may be to augment the set of classes by including others outside the narrow 

domain that the system is meant to cover. These outsider classes should have 

some characteristics in common with the classes that properly belong in the 

domain. 

It is also evident that a kind of distillation similar to that performed by 

machine induction can be achieved by an artificial neural network. One 

obvious difference is that, whereas a neural network creates a mapping between 

the inputs (attribute values) and outputs (classes), it is difficult to derive 

explanations from this mapping. That is not so when machine induction is 

used. 

There is a growing call for users to be involved during (rather than after) 

the knowledge-acquisition process. This will allow them to keep an eye on the 

objectives of the system and the words used to express the knowledge. There 

are good reasons for adopting this approach aimed at increasing the chances of 

a successful outcome to the process. The research being reported here has 

thrown no light on whether user involvement affects the pace of knowledge 

acquisition. There do appear to be stages at which users can be usefully 

involved. If rapid prototyping is used, users can generate valuable feedback on 

the emerging knowledge base. 

In such situations, the knowledge engineer is a middleman between the 

user and the knowledge source. But the primary difficulty in knowledge 

acquisition is in obtaining enough (not too much, and not extraneous) 

information from the knowledge source to build an accurate knowledge-based 

system. 
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Value of the Research 

The contribution of this research to the discipline of knowledge acquisition is 

summarised in Figure 50 on page 210. 

The repertory grid technique and knowledge acquisition from a minimal 

set of examples have been shown to be similar in many respects and to acquire 

similar kinds of knowledge. Although these two methods were not expected to 

be differentially efficacious or efficient over the entire knowledge-acquisition 

process, the repertory grid technique was expected to be more efficient at one 

stage; but it was thought that this difference would probably not be large 

enough to be reflected in the effort used for the complete process. 

The five hypotheses into which this thesis has been elaborated have been 

tested by a controlled experiment. The two methods were shown to be equally 

effective ways of obtaining the information needed to build a knowledge-based 

system for classification. Differences in efficiency suggest opportunities for 

improving the repertory grid technique. 

The focal theory behind this research includes the mapping between the 

two knowledge acquisition methods. It also includes the set of hypotheses that 

were tested empirically. The contribution of this research to the focal theory is 

partly in demonstrating that it is, at least sometimes, easier for a domain expert 

to articulate a partial domain model and a minimal set of examples than to 

have his or her knowledge elicited by the repertory grid technique. The results 

obtained have raised questions about the optimality of triadic elicitation, 

especially in the closing stages of the repertory test. 

This research has a bearing on Lundell's (1988, p 27) principle of 

"ehcitational congruence", which states that "the knowledge acquired from the 

expert will be more accurate when the acquisition method is congruent with the 

cognitive system of the expert". While there is clearly a connection between the 
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0 Pioneering the use of con t ro l l ed experiments with a 
knowledge-acquis i t ion tool (Shows some of the i s sues to 
be f aced , the measures t h a t can be used, and ways of 
recording them.) 

0 F i r s t con t ro l l ed experiment to compare the r epe r to ry gr id 
technique and knowledge a c q u i s i t i o n from a minimal se t of 
examples (Many methods need to be compared in the 
f u t u r e ; t h i s research shows one way of doing these 
comparisons.) 

0 I d e n t i f i e s a reas where the e f f i c i e n c y of the r epe r to ry 
gr id technique needs to be improved 

0 Makes e x p l i c i t the ro l e of machine induct ion in the 
r epe r to ry gr id technique 

0 Explores l i n k s between cogn i t ive processes and knowledge 
a c q u i s i t i o n . 

Figure 50. Contribution of the research 

outcome of knowledge acquisition and the method used, it appears to be the 

efficiency of the method, rather than the accuracy of the knowledge acquired, 

that is affected — at least in the two methods used here. Based on the results of 

this research, it is appropriate to modify the principle to state that the process 

of knowledge acquisition will require less effort to acquire knowledge of a given 

accuracy "when the method is congruent with the cognitive system of the 

expert". 

Measuring the outcome of knowledge acquisition can be difficult, 

especially when the acquisition is not carried through to completion (Burton et 

al, 1990). This research demonstrates that knowledge bases can be generated 

and tested as part of the experimental treatments, if an appropriate tool is used, 

and exemplars can be used for evaluating a knowledge base. 

Chapter 10. Overall Conclusions 2 1 0 



If knowledge acquisition is to be done in industrial settings, it must also 

be a managed task. The resources to be used in it must be capable of being 

estimated in advance: the domain expert's time, the knowledge engineer's time, 

and the user's time. As a by-product, the results of this research can help 

provide pointers to selecting a technique and estimating the productivity of two 

methods in one type of domain. 

Results reported by other researchers (e.g., Burton, Shadbolt, Rugg, & 

Hedgecock, 1990; Agarwal & Tanniru, 1990; Rugg et al, 1992) provide other 

pointers to the effort involved in using various methods for knowledge 

acquisition. These methods, which include protocol analysis, laddered grid, card 

sorts, and structured interviews, use manual methods to transcribe and analyse 

the information gathered. While it is not expected that these laboratory 

settings will necessarily provide industry with accurate means of estimating and 

planning, there are few other pointers available at the moment. 

A growing number of tools have been built and reported on (see, e.g.. 

Boose, 1989). The vast majority of them specialise in knowledge acquisition for 

analysis applications. Both the tools themselves and the approaches that 

underlie them are deserving of empirical comparison to identify how and why 

they differ. One important contribution of this research is to point the way that 

this kind of comparison can be done. Another is to demonstrate the differences 

between the two techniques focused on. 

Although the research reported here seeks to establish the relative 

efTicacies and efficiencies of two different methods, some writers argue that it is 

not appropriate to hold up a single method as being superior to others. In this 

view, it is more useful to cultivate a portfolio of methods, the different products 

of which will presumably complement each other. The KADS methodology 

suggests different methods at different stages of the process. Outside of a 

methodology, using a mix of methods can be a shotgun approach containing 
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appreciable redundancy and duplicated effort. At the same time, it seems quite 

reasonable to argue that, if the use of one method does not successfully elicit 

the desired knowledge, it might be appropriate to try other methods until one is 

found to be successful. The portfolio approach is based on an analogy with 

stock markets. The analogy is complete only if the relative efficacies and 

efficiencies of different methods are known. 

The use of controlled experiments in knowledge acquisition research is 

not yet widespread. But the large number of approaches to knowledge 

acquisition, coupled with the scarcity of evidence for choosing among them, are 

an ideal situation for this kind of research. Research like that being reported 

here helps to erect markers on a barren landscape. Future research can benefit 

from either building upon these results or challenging them. Future researchers 

can improve their own investigations by looking at both the weaknesses and 

strengths of the approach taken here. 
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Appendix A. Entry strategy selection: a broader 
view 

Clearly, business strategy involves much more than is discussed in 

Chapter 2. Indeed, what is discussed there is a small, though vital, part of 

strategic decision making. Strategic decision making involves essentially the 

dual process of environmental scanning and organisational introspection. The 

environment is monitored for opportunities and threats, while the organisation 

itself is assessed to determine how well it can respond to the challenges and 

pitfalls around it. 

According to Johnson & Scholes (1984, p. 243) 

strategic analysis and choice are of little value to an organisation unless 

the proposals are capable of being implemented. Strategic change does 

not take place simply because it is considered to be desirable, it takes 

place if it can be made to work. 

Thus, the strategy process typically involves deciding on the major 

actions to be taken for organisational survival or growth — actions such as 

market development, product development, and diversification of various kinds. 

These strategies have to be pursued by one of several methods, which Roberts 

& Berry (1985) call "entry strategies". Roberts & Berry list seven entry 

strategies: 

• Acquisition 

• Joint venture 

• Internal development 

• Internal venture 

• Licensing 
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• Nurturing / venture capital 

• Educational acquisition. 

Three of these entry strategies are included in the fragment of decision making 

used as illustration in Chapter 2. 

One effect of induction is to eliminate, from the decision, some of the 

attributes that an expert might suggest. Some experts might be uneasy about 

the small number of attributes that an induction algorithm typically singles out 

for consideration. For example, Kononenko (1990, p. 193-194) noted 

Although a decision tree outperformed the physicians ... with respect to 

diagnostic accuracy the physicians were not prepared to use [it] in 

practice. The rules ... were too short, containing only few, although 

most informative, attributes .... The physicians typically use all available 

information to make a decision and they are also able to estimate the 

reliability of the diagnosis. If the reliability is not high enough then 

additional examinations are needed. 

In business strategy, the stakes are also high; and it is just as important 

to avoid rash decisions. However, people do use redundant attributes in their 

decisions. For instance, Ansoff (1968) offers the following factors in deciding 

on the entry strategy: 

• Start-up synergy 

• Operating synergy 

• Start-up cost 

• Timing (product cycle and learning curve) 

' FUsk 

• Price/earnings ratio in the new industry 

• Availability of attractive acquisition opportunities. 
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This list contains factors acknowledged as important by Roberts & Berry 

(1985). However, Roberts & Berry argue strongly that the question of how to 

enter cannot be divorced from that of which product markets to enter. On this 

basis, they see familiarity with the market to which the development is to be 

targeted, the technology of the product, and the level of involvement required 

as factors that outweigh all others. 

Even so, inspection of AnsoiTs table (Ansoff, 1968, p 169) reveals the 

first two factors are sufficient for the decision. This conclusion is supported 

when a case is generated from each row in AnsofFs table. The effects of 

start-up and operating synergy are so decisive that an (ID3-like) induction 

algorithm drops all the other factors as redundant. Here are the rules induced: 

a) If s t a r t - u p synergy i s 'none' 
then the bes t method i s a c q u i s i t i o n . 

b) If s t a r t - u p synergy i s weak 
and opera t ing synergy i s weak 
then the best method i s a c q u i s i t i o n . 

c) If s t a r t - u p synergy i s weak 
and opera t ing synergy i s weak 
then the best method i s j o i n t ven ture . 

d) If s t a r t - u p synergy i s s t rong 
then the best method i s i n t e rna l development. 

If the other factors are desired in the induced rules, the first two factors 

must be dropped. When the cases are expressed in terms of all factors except 

start-up and operating synergy, the rules induced are as follows: 
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a) If the kind of growth i s conglomerate d i v e r s i f i c a t i o n 
then the bes t method i s a c q u i s i t i o n . 

b) If the kind of growth i s concen t r i c d i v e r s i f i c a t i o n 
then the best method i s a c q u i s i t i o n . 

c) If the kind of growth i s unre la ted 
and timing i s not of the essence 
then the bes t method i s i n t e rna l development. 

d) If the kind of growth i s unre la ted 
and t iming i s of the essence 
then the bes t method i s j o i n t ven tu re . 

e) If the kind of growth i s market development 
then the best method i s i n t e rna l development. 

This confirms the redundancy in the original set of factors. It is, of 

course, possible that in certain cases both start-up synergy and start-up cost, 

say, affect the outcome of the decision. This might be so if high start-up 

synergy is not always accompanied by low start-up cost. If the input to the 

induction process includes examples in which the presence of one condition and 

not the other changes the strategy decided, both factors will appear in the rules 

generated. But such examples may be difficult to find if the two factors are 

related in the way these two appear to be. 
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Appendix B. Instructions for KAMSE 

Instruct ions to Part ic ipants (B) 

This session is divided into two parts. During the first part of the session, you 

will learn how to use the knowledge acquisition software. In the second part, 

you will be using the software to perform a predetermined task. 

Practice 

1. Make sure your computer is switched on, then continue reading this. 

2. You have been given a diskette containing a knowledge acquisition 

program. When your machine is ready, insert the diskette in the diskette 

drive. 

3. Now type a: to point your operating system to the diskette drive. You 

should now see the a: command prompt. If you don't, ask for help. 

4. Type SCENIC and press the Enter key to start the program. You should now 

see the SCENIC logo screen. 

5. Press FIO. The top line of the screen should now be displaying red 

characters. 

6. Type B 

Your screen should now be displaying a file selection screen. 

7. Select the file named FAUNA. You should now see the class entry screen 

on which you will enter a list of animals. 

8. Start the list by adding lizard. Here is how you do it: 
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• Press the / key to open the field for data entry. You should now see a 

small cursor appear about three quarters of the way down the left side 

of the screen. This is where any information you type will appear. 

• Type; Lizard 

Then press the Enter key. The list should now include your lizard. 

9. Now add lion and then elephant to the list. 

10. Your list of animals should now be complete with the three types of animals 

we are interested in. Press the Esc key to progress to the next stage. 

11. You should now see the screen for entering attributes and their possible 

values. You will need two attributes to describe the animals you just added. 

Here is how you add an attribute: 

• Press the / key. You should see a small cursor appear about three 

quarters of the way down the left side of the screen. This allows you to 

enter information. 

• Type: Body temperature 

Press the Enter key. The new attribute should now appear in place of 

the large cursor. 

• Body temperature (for our purposes) can have two values. So add: warm 

cold under the new attribute. (Remember the / key!) 

12. Now move the block cursor to the next column and add the 

• attribute: Trunk on face 

• with values: Yes 

• and No 
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Your list of attributes and their possible values should now be sufficient for 

the three types of animals we are interested in. Press the Esc key to 

progress to the next stage. 

13. You should now be looking at a screen for entering examples of each type 

of animal. Use the / key to open each column for data entry. Then use the 

cursor arrow keys to select the attribute values and class for each example. 

Here are the three examples you should enter: 

1 cold no Lizard 
2 warm no Lion 
3 warm yes Elephant 

14. Your list of examples should now be complete with the three types of 

animals we are interested in. Press the Esc key to progress to the next 

stage. 

15. Now watch the screen and wait for a moment while the program processes 

the information you have put in so far. At the end of this processing, you 

will see, near the bottom of the screen, a message should be telling you to 

press the Enter key to continue. Go ahead, press the Enter key. 

16. You should now see the validation screen. This is where you enter test 

cases to validate the knowledge you have been transferring to the program. 

The test cases have randomly generated values for each attribute. All you 

have to do is to select the correct class for each case. Here is how you do 

this for the first test case: 

• With the large cursor in the class column, press the / key. Now use the 

cursor arrow keys to find the appropriate class. Each time you press a 

cursor arrow key, another class will be displayed on the data entry line. 

• Enter the class for all the test cases displayed. 
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• Now press Esc to progress to the next stage. 

17. The test cases you have entered are now going through a validation process. 

You should see the screen changing just too quickly for you to read what is 

being displayed. When this ends, you will see a message telling you to press 

the Enter key. Do as the message says. 

18. The SCENIC logo should again be showing on the screen. This indicates 

that your training is over. You are now ready to use SCENIC for the main 

task. 

Prescribed Task 

Now that you are familiar with the software, you will be given a package 

containing eight items. These items comprise a knowledge domain for object 

identification. Handle the objects carefully as they will be collected at the end 

of the session. 

1. Look at the items and identify them to yourself 

2. As you did earlier, press FIO and the B key. 

3. You should see the file selection screen. Move the block cursor below last 

name in the list. Press the / key to open the field for data entry. Then type: 

Objects and press Enter. 

4. Now use the software to gather information about the items and 

distinctions between them. Your goal is to do for these items what you did 

for the animals in the practice example. 

5. When you get to the validation screen, consider each of the 32 cases 

carefully. For each case, look at the attribute values from left to right. 

Consider only the evidence you think relevant in making your decision, and 

ignore the other (sometimes conflicting) evidence. 
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Appendix C. instructions for the Repertory Grid 
Technique 

Instruct ions to Part ic ipants (R) 

This session is divided into two parts. During the first part of the session, you 

will learn how to use the knowledge acquisition software. In the second part, 

you will be using the software to perform a predetermined task. 

Practice 

1. Make sure your computer is switched on, then continue reading this. 

2. You have been given a diskette containing a knowledge acquisition 

program. When your machine is ready, insert the diskette in the diskette 

drive. 

3. Now type a: to point your operating system to the diskette drive. You 

should now see the a: command prompt. If you don't, ask for help. 

4. Type SCENIC and press the Enter key to start the program. You should 

now see the SCENIC logo screen. 

5. Press FIO. The top line of the screen should now be displaying red 

characters. 

6. Type R 

Your screen should now be displaying a file selection screen. 

7. Select the file named FAUNA. You should now see the class entry screen 

on which you will enter a Ust of animals. 

8. Start the list by adding lizard. Here is how you do it: 
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• Press the / key to open the field for data entry. You should now see a 

small cursor appear about three quarters of the way down the left side 

of the screen. This is where any information you type will appear. 

• Type: Lizard 

Then press the Enter key. The list should now include your lizard. 

9. Now add lion and then elephant to the list. 

10. Your list of animals should now be complete with the three types of animals 

we are interested in. Press the Esc key to progress to the next stage. 

11. You should now see the list of three animals. Near the top of the screen is 

a question for you. Two of the animals shown are warm-blooded and the 

third is not. Position the block cursor on Lizard. Press the Enter key to 

select Lizard. 

12. The three animals should now be split into two groups. Now enter the trait 

that the top two share. Here is how you do this: 

• Press the / key to open the field for data entry. 

Type: warm-blooded 

Press the Enter key. The new trait should now appear to the right of 

the top two animals. The block cursor should also have moved down to 

the right of the bottom animal. 

• Press the / key to open the field for data entry. 

Type: cold-blooded 

Press the Enter key. This opposite pole of the new trait should now 

appear to the right of the bottom animal. 
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" Check the display to ensure that you have not made any errors. Then 

press Esc to progress to the next stage. 

13. Your screen should now be displaying the rating screen. A rating of 5 

means the animal is warm-blooded. A rating of 1 means that it isn't. The 

three animals are already rated correctly. For practice, rerate one of them 

as follows: 

• Move the block cursor to the line you want to change. 

• Press / 

• Type the appropriate rating (in this case, either 1 or 5). 

14. Check quickly that all the animals have been rated correctly. When you are 

satisfied, Press the Esc key to progress to the next stage. 

15. You should again be presented with the three animals and asked which one 

is different. This time, select the elephant and use the trait: untrunked. 

When you are through, press Esc to progress to the next stage. 

16. Now watch the screen and wait for a moment while the program processes 

the information you have put in so far. At the end of this processing, you 

will see, near the bottom of the screen, a message should be telling you to 

press the Enter key to continue. Go ahead, press the Enter key. 

17. You should now see the validation screen. This is where you enter test 

cases to validate the knowledge you have been transferring to the program. 

The test cases have randomly generated values for each attribute. All you 

have to do is to select the correct class for each case. Here is how you do 

this for the first test case: 
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• With the block cursor in the class column, press the / key. Now use the 

cursor arrow keys to find the appropriate class. Each time you press a 

cursor arrow key, another class will be displayed on the data entry line. 

• Enter the class for all the test cases displayed. 

• Now press Esc to progress to the next stage. 

18. The test cases you have entered are now going through a validation process. 

You should see the screen changing just too quickly for you to read what is 

being displayed. 

When this ends, you will see a message telling you to press the Enter 

key. Do as the message says. 

19. The SCENIC logo should again be showing on the screen. This indicates 

that your training is over. You are now ready to use SCENIC for the main 

task. 

Prescribed Task 

Now that you are familiar with the software, you will be given a package 

containing eight items, These items comprise a knowledge domain for object 

identification. Handle the objects carefully as they will be collected at the end 

of the session. 

1. Look at the items and identify them to yourself 

2. As you did earlier, press FIO and the R key. 

3. You should see the file selection screen. Move the block cursor below last 

name in the list. Press the / key to open the field for data entry. Then type: 

Objects and press Enter. 

4. Now use the software to gather information about the items and 

distinctions between them. Your goal is to do for these items what you did 

for the animals in the practice example. 
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5. When you get to the validation screen, consider each of the 32 cases 

carefully. For each case, look at the attribute values from left to right. 

Consider only the evidence you think relevant in making your decision, and 

ignore the other (sometimes conflicting) evidence. 
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Appendix D. Knowledge Units Elicited 

This appendix shows the knowledge units elicited by each method. The two 

sets of units, which were selected because they are representative of most 

responses, were elicited from the same subject (number 8). 

Knowledge from the Repertory Grid Technique 

The repertory grid technique was this subject's second treatment. It is 

noticeable that, although elicited one week later, the constructs are remarkably 

similar to the attributes elicited earlier. It is not known whether this is due to 

carry-over effects or the persistence of the knowledge. 

Domain : Objects 

Elements : Washer 
Metal paper clip 
P l a s t i c paper c l i p 
Button 
Hair c l i p 
One-pence piece 
One-cent coin 
E l a s t i c band 

Cons t ruc t s : Holes in / Solid — 

Ratings 
4 5 

C i r cu l a r / Rectangular 
Meta l l i c / Non-metall ic 
Rectangular / Non-defined shape 
Dull / Shiny 

3 
5 
5 
3 
5 
3 
3 

Rules Induced 
1. IF Meta l l i c 

AND Ci r cu l a r 
AND Holes 
Then Object i s Washer 

2. IF Meta l l i c 
AND Ci rcu la r 
AND Solid 
AND Dull 
THEN One-pence piece 
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3. IF Metallic 
AND Ci rcu la r 
AND Solid 
AND Shiny 
THEN One-cent coin 

4. IF Metal 1ic 
AND Rectangular 
AND Holes in 
THEN Metal paper c l i p 

5. IF Metal 1ic 
AND Rectangular 
AND Solid 
THEN Hair c l i p 

6. IF Non-metal 1ic 
AND Ci rcu la r 
AND Dull 
Then Button 

7. IF Non-metal l i e 
AND Rectangular 
AND Dull 
THEN E l a s t i c band 

8. IF Non-metal 1ic 
AND Bright 
THEN P l a s t i c paper c l i p 

Knowledge from KAMSE 

The meaning of a few of the attributes is not readily evident. For example, 

what the subject meant by solid is not the usual meaning of the word, because 

all the metal objects would be solid, if the word was used in its usual sense. 

Perhaps rigid would better describe the attribute, but the washer would have 

been rigid, in the normal usage of rigid. The subject used the same word in the 

"holes in / solid" construct in the repertory grid, which makes her meaning 

clearer. Solid was used to mean having no holes. If the knowledge elicited 

were to be put to any further use, it might be appropriate to clarify this kind of 

issue with the domain expert. 
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Domain : Objects 

Classes : Metal paper c l i p 
Hair g r ip 
P l a s t i c paper c l i p 
E l a s t i c band 
Washer 
Button 
One-cent coin 
One-pence piece 

A t t r i b u t e s : Shape : C i r c l e 
Material : Metal 
Solid : Yes 
C i rcu la r ho les : 1 
Edges : S t r a i g h t 
Appearance : Dull 

Rectangle 
P l a s t i c 
No 
4 
Wavy 
Bright 

Varied 
E l a s t i c 

0 
Round 

Examples 
Circular Appear-

Shape Material Solid Holes Edges ance Object 
Ci rc l e Metal Yes 0 Round Bright One-pence piece 
Rectangle P l a s t i c No 0 S t r a i g h t Bright P l a s t i c paper c l i p 
Rectangle Metal No 0 S t r a i g h t Bright Metal paper c l i p 
C i r c l e Metal No 1 Round Bright Washer 
C i r c l e Metal Yes 0 Round Dull One-cent coin 
Rectangle Metal No 0 Wavy Dull Hair g r ip 
C i r c l e P l a s t i c No 4 Round Bright Button 
Varied E l a s t i c No 0 Wavy Dun E l a s t i c band 

Rules induced 
1. IF Material = Metal 

AND Shape = C i r c l e 
AND Rigid = Yes 
AND Appearance = Dull 
THEN Object i s One-cent coin 

2. IF Material = Metal 
AND Shape = C i r c l e 
AND Rigid = Yes 
AND Appearance = Bright 
THEN Object i s One-pence piece 

3. IF Material = Metal 
AND Shape = C i r c l e 
AND Rigid = No 
THEN Object i s Washer 
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4. IF Material = Metal 
AND Shape = Rectangle 
AND Edges = S t r a i g h t 
THEN Object i s Metal paper c l i p 

5. IF Material = Metal 
AND Shape = Rectangle 
AND Edges = Wavy 
THEN Object i s Metal h a i r g r ip 

6. IF Material = P l a s t i c 
AND Shape = C i r c l e 
THEN Object i s Button 

7. IF Material = P l a s t i c 
AND Shape = Rectangle 
THEN Object i s P l a s t i c paper c l i p 

8. IF Material = E l a s t i c 
THEN Object i s E l a s t i c band 
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