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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF SOCIAL SCIENCE
Doctor of Philosophy
Knowledge Acquisition for Knowledge-Based Systems:
An Empirical Comparison of Two Methods

by Clive Norman Washington Nicholson

In the search for more efficient ways of developing accurate knowledge bases,
many methods have been used to acquire knowledge. Some writers have
conjectured about which methods are likely to be most successful for different
problem-solving tasks. But few studies have tried to predict, and then test
hypotheses about, the differential efficacies or efficiencies of the methods. This
research focused on the repertory grid technique and knowledge acquisition
from a minimal set of examples, compared their external features, then
examined their probable effects on the mind of the knowledge source. This
analysis allowed some hypotheses to be stated about the performance of the
two methods.

To test these hypotheses, a single-factor within-subject experiment was
designed, and the SCENIC knowledge-acquisition tool developed. Volunteers
used the tool to elicit, by both methods, their own knowledge of a domain. The
subjects also classified exemplars, which were then used to evaluate the
knowledge bases generated. A multivariate analysis of variance on the data
collected in the experiment supported some of the hypotheses. Those not
supported highlight opportunities for improving the efficiency of the repertory
grid technique; and some ideas are expressed as to how this improvement might

be achieved.
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But little do we perceive what solitude is
Or how far it extendeth.

For a crowd is not company;

And faces are but a gallery of pictures;
And talk a tinkling cymbal,

Where there is no love.

- Francis Bacon (On Friendship)
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Preface: what this thesis is about

When a knowledge-based system is delivered to its users and incorporated
successfully into their routine operations, it is generally the product of a
sequence of actions in which prospective users, knowledge engineers, and
domain experts participated. Such a system would normally be accepted for
routine use only when it has been shown to work with a high degree of
accuracy. Some of this accuracy can sometimes be achieved by refining the
knowledge base (Politakis, 1985; Ginsberg, 1988). But the size of the refinement
task, and even the necessity for refinement, can be reduced if the knowledge
acquisition process is itself capable of producing highly accurate knowledge
bases.

Knowledge acquisition can be a difficult problem; and several methods
have been used to try to solve it. Some of these methods are variations of other
methods; even some apparently new methods are simply variations of old ones.
Some of the methods have been implemented in knowledge-acquisition tools.
Chapter 1, “The Knowledge Acquisition Problem” on page 1 discusses these
issues to provide a background for the rest of the work.

The method used for knowledge acquisition can have profound effects
on the pace and outcome of the process. Indeed, when a domain expert agrees
to have his knowledge elicited by a knowledge engineer, it is crucial that this
elicitation be as effective and efficient as possible. Such efficacy and efficiency
are unlikely to be achieved unless the elicitation process closely matches the
cognitive processes of the domain expert. Few pointers exist for someone faced
with choosing among the tools or indeed among the methods. Boose (1989) has
tried to position several of these tools in a multi-dimensional space. However,
both the dimensions and the positions of individual tools on them partially

reflect Boose’s own biases.
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This research, however, is not concerned with selecting among all
possible techniques, but singles out two: the repertory grid technique and
knowledge acquisition from a minimal set of examples. When the repertory
grid technique (Kelly, 1955; Shaw, 1980) is used {or knowledge acquisition, the
process can be subdivided into six stages. Knowledge acquisition from a
minimal set of examples can also be subdivided into six stages, which are
parallel with those of the repertory grid technique. At the second of these
stages, the repertory grid technique elicits constructs while knowledge
acquisition from a minimal set of examples elicits attribute descriptors and
values. Chapter 2, “Learning Without Case Records: a mapping of the
repertory grid technique onto knowledge acquisition from examples” explores
the external differences and similarities of the two methods, and tries to
determine why using one might be more advantageous than using the other.

But it is difficult to explain why one knowledge-acquisition method
might be more eflicient or efficacious than another, without considering how
the knowledge underlying a cognitive skill is represented in the mind and how it
is retrieved. For example, in trying to retrieve an expert’s knowledge, the
repertory grid technique constrains the expert to generate constructs by
considering three elements at a time. In knowledge acquisition from a minimal
set of examples, the expert also follows the analogous process of generating
attribute descriptors and values by considering the classes. This method,
however, does not constrain the expert to consider any specific number of
classes at a time. Instead, the expert is given the freedom to consider classes in
any groupings that seem natural or expedient.

Some cognitive theorists assert that a domain expert cannot access the
compiled productions that govern his or her performance. What can be
retrieved is declarative knowledge, but that is generally sufficient to produce

accurate knowledge bases, if combined with appropriate meta-knowledge. In

f—id
-
b
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the same way as a novice can produce effective productions from declarative
knowledge, meta-knowledge embodied in a knowledge-acquisition tool can
operate on declarative knowledge to fashion productions that exhibit expert
performance. Such considerations give rise to hypotheses that can be tested
empirically. Chapter 3, “Some Implications of Cognitive Psychology for
Knowledge Acquisition” on page 57 discusses these issues. Here is the essence
of the questions raised by the hypotheses: Do experts find it easier to express
classification knowledge by describing examples or by making distinctions
between examples?

It is also difficult to compare the two methods and to articulate
objective theories without measures of the various variables of interest. How
have researchers defined and measured these variables? And how are they
correlated? Chapter 4, “Evaluation Measures” on page 85 surveys the
literature concerned with this.

Although researchers in this field are fond of case studies and
benchmarks; the controlled experiment appeared ideal for hypothesis testing: it
might be appropriate if sufficiently strong reasons could be found for using it.
This is not the usual method of doing research on knowledge acquisition, but a
few controlled experiments have been used, each having lessons for others to
learn. Chapter 5, “The Controlled Experiment in Knowledge-Acquisition
Research” on page 109 surveys the literature on using this approach for this
purpose.

Against this background, it was necessary to design an experiment that
would provide the data to test the stated hypotheses. Chapter 6, “Design of an
Experiment to Compare two Knowledge-Acquisition Techniques” on page 123
discusses the design of the experiment. To perform the experiment, it was also
necessary to design and build a vital piece of apparatus: a knowledge

acquisition tool embodying the two methods mentioned above. Chapter 7,
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“Design of SCENIC: a CAKE Tool for Empirical Work” on page 143 describes
the design of the tool. The act of proceeding with this design and development
helped to refine both the objectives of the experiment and the nature of the
tool.

With all the preparations completed, the time came when it was
appropriate to involve volunteer subjects in the experiment. The data collected
was subjected to a multivariate analysis of variance to identify significant effects
of independent variables. Chapter 8, “How Technique Affects Knowledge
Acquisition: a Controlled Experiment” on page 168 is an analysis of the data
collected.

The analysis shows that, whereas the two methods produce equally
accurate knowledge, the domain expert needs to expend more effort when the
repertory grid technique is used. This increased effort is at two stages of the
process. At one of these stages, shortcomings of the repertory grid technique
are evident, but are probably capable of being remedied so as to make the
technique more efficient.

Chapter 9, “Discussion of the Results” on page 190 is an extended
discussion of the results of the experiment. The thesis ends with Chapter 10,
“Qverall Conclusions” on page 201, which assesses the worth and significance

of the research, its shortcomings, and the further work that it invites.
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Chapter 1. The Knowledge Acquisition Problem

Abstract

This chapter develops the background for the rest of the work by looking at the
problem of knowledge acquisition and some of the approaches taken to its
solution. It argues that these approaches are aimed at making the process more
manageable, finding methods powerful enough to cope with the challenges, and
finding efficient ways of building systems. Interviews of various kinds, protocol
analysis, and ways of coping with the copious textual material they typically
generate, are discussed. Some other methods, e.g., the repertory grid technique
and knowledge acquisition {rom a minimal set of examples elicit rather less text
and more knowledge units that are directly usable in knowledge bases. In spite
of the range of approaches available, there is little evidence to inform the choice

among the methods and tools.

introduction

Computer programs have been developed to model various kinds of
decision-making activities. The simplest of these decisions involve considering a
number of factors in order to make a choice from a set of possible consequents.
Some kinds of diagnosis and classification tasks are like this. More complex
tasks involve a series of interrelated simple decisions, the outcomes of which are
used to assemble and tailor a plan or design (Garg-Janardan & Salvendy, 1988),
or a skeletal report (Klinker, Bentolila, Genetet, Grimes, & McDermott, 1987).
The potential of these models has been evident ever since a system to
infer the partial structure of substances from their mass spectra began to take
shape in 1965. Since then, numerous other knowledge-based systems have been
developed for a wide range of tasks. In recent years, the deployment of these
systems (KBSs) has progressed from primarily analysis to synthesis problems.

These systems have proved to be useful in a variety of applications from risk

Chapter 1. The Knowledge Acquisition Problem 1



classification (e.g., Shaw & Gentry, 1990) to process planning (e.g., Joseph &
Davies, 1990).

Diagnostic systems are also increasingly being based on models of the
physical system rather than merely models of the expert’s decisions.

Increasingly KBSs are being developed for imbedding in traditional
systems (see, e.g., Freundlich, 1990) rather than for stand-alone use. In such
situations, many of the questions from the KBS are addressed not to a user, but
to a database or to a program that seeks the judgement of the KBS. Often the
result of the inference is also not displayed for a person, but rather passed to
another program or used to initiate a process.

However, despite the growing range of their application, KBSs depend
for their development on eliciting knowledge from a source — often a difficult
task, which Feigenbaum (1977) described as the “critical bottleneck”. The
knowledge-acquisition bottleneck has become a cliche in the field of
knowledge-based systems development (see, e.g., Mitchell, 1983; Wielinga,
Bredeweg, & Breuker, 1988; McGraw, 1989; Rowley, 1990; Agarwal & Tanniru,
1990).

Three project-management factors, susceptible to managerial action,
appear to contribute to the existence of the bottleneck. Firstly, knowledge
acquisition often occupies a critical position in the sequence of tasks for
building a knowledge-based system. As Hart (1986) has noted, “all the
knowledge must be acquired before it can be represented”. Secondly, large
amounts of knowledge are usually required to build meaningful systems (see,
e.g., Jacobson & Frieling, 1988). And thirdly, the process of acquiring
knowledge is often slow (see, e.g., Smith, 1984; Shalin, Wisniewski, & Levi,
1988). These factors are discussed in the sections that follow.

Various approaches have been brought to a concerted assault on the

problem. A growing number of tools that have been called knowledge-support
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systems, knowledge-acquisition tools, knowledge-engineering workbenches, and
computer-assisted knowledge-engineering (CAKE) tools, have been developed.
Boose (1989) lists 65 ofithese tools; and several others have emerged since then.
These tools share the aim of solving some of the problems evident in
transferring knowledge from knowledge sources' to knowledge bases.

These tools attempt to provide computer support at various stages of
the knowledge acquisition process, and seek to make building a
knowledge-based system “a piece of cake”. Most of these tools are designed to
facilitate the acquisition of knowledge for what Kitto & Boose (1989) refer to as
“analysis tasks”, although a few of these tools, for example, SALT (Marcus,
1987; Stout, Caplain, Marcus, & McDermott, 1988; Marcus & McDermott,
1989) and CGEN (Birmingham, 1988), have tackled typically more complex
“synthesis tasks”.

A knowledge-acquisition tool generally models a particular style of
interaction between a knowledge engineer and a domain expert. Behind the
interaction, the tool organises and interrelates the information being obtained.

A systematic appraisal of the problem of transferring knowledge into a
knowledge base is an essential foundation for understanding the task faced by
knowledge-acquisition techniques and tools. This chapter therefore discusses
these difficulties, and offers a perspective from which they may be viewed.
Three reasons are suggested for the existence of the bottleneck, which is being

attacked by several techniques and tools.

! Throughout this thesis, the term “knowledge source” is used to mean the person or
artifact possessing the knowledge to be elicited. The term has been used in other senses

in the literature (see, e.g., Clancey, 1983; Wielinga, Schreiber, & Breuker, 1992).
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Critical Task

It has long been known (see, e.g., Koontz & O’Donnell, 1972) that certain
activities are difficult to control, because they tend to reach 85 or 90%
completion and stay there while time continues to elapse, and costs continue to
be incurred. One solution has been to subdivide such activities into smaller,
more manageable, units which can be monitored and perhaps even resequenced.
These task sequences also enable explicit consideration of choices between
reducing costs and shortening the schedule by selectively allocating additional
effort (see, e.g., Bufla, 1972).

Several writers have proposed normative sequences of tasks to perform
in building a knowledge-based system. Figure 1 on page 5 shows some
contrasting prescriptions for the process. It is evident that the approach which
Forsyth recommends is a casual one, perhaps suited to small systems in which
the builder is archiving his or her own knowledge with the aim of becoming
familiar with tools for developing knowledge-based systems. Weiss &
Kulikowski, on the other hand, propose a more structured process, while
Bowyer, Markowitz & Yusko recommend a process along the lines of some
system-development methodologies. Even so, there are clear similarities
between the different processes.

Where knowledge acquisition fits in the process depends to some extent
on how the former is defined; and there is some disagreement as to what
knowledge acquisition involves. While some writers (e.g., Buchanan, Barstow,
Bechtal, Bennett, Clancey, Kulikowski, Mitchell & Waterman, 1983) see
knowledge acquisition as the entire process of building a knowledge-based
system from scratch, others (e.g., Hart, 1986) define it simply as elicitation.

Waterman'’s (1985) definition of knowledge acquisition as “the process of

Chapter 1. The Knowledge Acquisition Problem 4



knowledge base

Forsyth Weiss & Bowyer, Markowitz Wielinga, Schreiber
(1984) Kulikowski (1984) |& Yusko (1987) & Breuker (1992)
1 Purchase |1 Define problem 1 Define system 1 Knowledge
a shell (constraints, objectives identification
goals, roles, 2 Define subsystems a) Collect data
participants, b) Identify tasks,
resources) concepts, and
relations
3 Create Cause Tables
4 Write knowledge- 2 Knowledge
2 Conceptualize engineering document| modelling
a) Interview an a) Collect data
2 Prototype expert 5 Pareto analysis
until you 6 Build control flow b) Select inter-
know what | b) Abstract mode] pretation model
you want character- 7 Verify knowledge- c) Define domain
istics engineering document schema
3 Write 8 Define skill d) Build domain
production parameters structures
version e) Assemble model
in another {3 Computer repres-| 9 Code knowledge base | f) Validate model
langquage entation g) Differentiate
mode]l
4 Build prototype h) Construct model
using a general bottom-up
purpose tool
5 Test, refine, 10 Establish test cases
specialize, &
generalize 11 Test & validate

Figure 1. Four normative processes for building a knowledge-based system

extracting, structuring, and organizing knowledge from some source, usually

human experts, so it can be used in a program” typifies this latter view.
p prog yp

From his perspective on medical diagnosis systems, Politakis (1985)

argues that they are developed in a process the first stage of which is

“specification of the diagnostic conclusions and the findings”, but that real
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knowledge acquisition “consists of formulating the rules that relate the findings
to the conclusions”.

The Yirst three processes shown in Figure 1 on page 5 assume the
acquisition of heuristic knowledge for analysis tasks. But some researchers, e.g.,
Breuker & Wielinga (1987) and Sykes (1987), argue that systems based on

heuristic knowledge have the following shortcomings in their operation:

* The explanations that they give of their reasoning are often shallow.
* They tend to arrive abruptly at the limits of their knowledge.
¢ The knowledge they contain is difficult to transfer to other problem-solving

tasks.

A growing number of researchers think that these difficulties can be resolved by
modelling the physical system to which the knowledge relates. The KADS
methodology assumes a model-based paradigm (see, e.g., Voss, 1990).
Knowledge-acquisition tools, e.g., CAUSA (Dilger & Moller, 1990), have also
been used to acquire knowledge for such systems.

Whether heuristic or model-based knowledge is used, it would clearly be
useful to have more flexible methodologies, allowing development to be
expedited by assigning increased resources, or allowing several tasks to proceed
in parallel. The value of prototypes has long been recognised as a means of
demonstrating design concepts and of visualising what an emerging product
looks like. Weiss & Kulikowski (1984) recommend building a “prototype as
soon as possible” because it provides something tangible around which
knowledge acquisition can progress. Forsyth (1984, p 17) also argued for using
an expert-system shell “as a prototyping tool till you know what you want”.

Rapid prototyping seems to have the potential for enabling builders of
knowledge-based systems to break free from the constraints imposed by a serial

methodology such as that of Buchanan et a/ (1983) or Weiss & Kulikowski
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(1984). Rapid prototyping effectively repositions knowledge acquisition in a
knowledge-based system building project, because stages after elicitation (i.e.,
representation and testing) can proceed apace in a cycle of elicit-build-test.
With the growing emphasis on integrating knowledge-based systems with
traditional systems (see, e.g., Freundlich, 1990), this approach is especially
important when the knowledge-based system being built is part of a larger
system. An early prototype of the knowledge-based system can be used to test
the rest of the system or even to refine its design.

Knowledge-acquisition tools can provide support for the rapid
prototyping approach (see, e.g., Gutwald & Wallace, 1987; Shaw, 1988a and b;
Boose, 1988; Gaines, 1988; Whipple, Davis, Kam, & Needham, 1989).
Moreover, a knowledge-based system can be prototyped in pieces, which are
later fitted together as a complex whole, thus allowing the possibility of
expedited completion by concurrent development. According to (Boose &
Bradshaw, 1987), the techniques embodied in AQUINAS “combine to make it a
powerful testbed for rapidly prototyping portions of many kinds of complex
knowledge bases”. One insight to emerge from this is that tools like AQUINAS
might not be very effective for tackling complex problems.

However, rapid prototyping is not without its detractors: Neale (1987, p
60) has cited criticisms by Breuker & Wielinga (1987 and 1983) that constantly
referring the “emerging system to the expert for comments” is a waste of “the

expert’s valuable time”.

Large Amounts of Knowledge

From as early as 1965, when DENDRAL was being developed, it had already
started to become evident that large amounts of knowledge were required to
build significant knowledge-based systems. According to Shirai & Tsujii (1985),

DENDRAL has “a large number of rules for inferring the partial structure of a
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substance” from the substance’s mass spectra. Weizenbaum (1976) similarly
describes MACSYMA as “an enormously large program for doing symbolic
mathematical manipulations”.

According to Partridge (1986), “intelligent behaviour within the
ill-defined empirical world ... is founded upon vast amounts of information”.
Future systems are expected to be even more knowledge-hungry than past and
present ones. As Wilkins (1987) has noted, “autonomous computer systems of
the future will need far more knowledge than humans can explicitly transfer”.
However, it is difficult to determine when the amount of knowledge in a
knowledge base is optimal for its intended purpose. Wilkins (1987) has asserted

that

extant techniques for reasoning under uncertainty for expert systems
lead to a sociopathic knowledge base ... [that is,] there exists a subset of
the knowledge base that gives better performance than the original

knowledge base.

But if data is collected in a form that can be fed into an inductive or other
learning process, a distillation can take place, thus reducing the sociopathy of
the knowledge base. This distillation is discussed in Chapter 2, “Learning
Without Case Records: a mapping of the repertory grid technique onto
knowledge acquisition from examples” on page 26: a mapping of the repertory
grid technique onto knowledge acquisition from examples”: a mapping of the
repertory grid technique onto knowledge acquisition {from examples” on
page 26. Indeed, some knowledge-acquisition methods seek to minimise the
input to the learning process. This is appropriate where the data is not already
available.

Another approach to the problem of large amounts of knowledge is to

avoid it if possible, by selecting appropriate domains that produce significant
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payback from small amounts of knowledge. The validity of this approach is
demonstrated by several small knowledge-based systems, built quickly, that
have provided their users with considerable payback (Nicholson, 1988;
Department of Trade and Industry, 1992a and 1992b). These small systems are
often well structured problems which are the best candidates for

knowledge-based systems, according to Partridge (1986), who asserts that

if we take most of the vagaries and ill-structure of everyday life out of
the picture we are left with realistic and serious potentially tractable ...

grist of the expert system mull.

Because large knowledge bases can be difficult to update, Hart (1986, p
26) advises against building systems containing knowledge that is likely to
change often. According to her, systems containing volatile knowledge “will
need updating if [they are] to retain [their] expertise”. Naylor (1983) argues
that if the task to be modelled “can be reduced to a series of judgements ... you
have a good chance of building an expert system to do it”.

Recognizing that the problem of knowledge acquisition becomes even
more daunting as the scope of a potential domain expands, Partridge (1986)
argues that “the success of expert systems rests largely on the very restricted

and specialised nature of the domains in which they operate”.

Slow Process

Knowledge acquisition is widely recognised to be an inherently slow process.
Buchanan et al (1983) assert that “manual methods for acquiring strategic
knowledge push the limits of human cognitive abilities”.

Some writers argue that the process is slow because it is not well

understood. For example, Smith (1984) asserts that
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while tools and methodologies have emerged to provide considerable aid
in this activity, the process of eliciting, representing, and refining the
knowledge utilized by the domain expert remains ill-defined and time

consuming.

Whether the remarks discussed above are valid or not, one reason that
the process is slow is (see, e.g., Johnson-Laird, 1983; Anderson, 1982) that, in
general, human experts are poor knowledge sources because they find it difficult
to explain how they make their decisions.

The difficulty in articulating the thought processes behind expert
performance is often attributed to tacit knowledge. Tacit, or implicit,
knowledge contrasts with explicit knowledge. Examples of explicit and tacit

knowledge given by Nickerson (1977) are:

Explicit Tacit
0 2+ 4 =6, o The Mississippi flows downhill.
o Whales are mammals. o Julius Caesar had a mother.

Tacit knowledge is not stored for the individual items to which it relates,
but can be inferred or computed. Retrieval of tacit knowledge takes more time
than that of explicit knowledge (Camp, Lachman, & Lachman, 1980), but, as
discussed in Chapter 3, both are subject to conscious control.

Anderson (1982) has offered a theory explaining why experts have
difficulty communicating their expert knowledge. Anderson’s ACT* (adaptive
control of thought) theory about memory and expertise asserts that there are
two forms in which people store knowledge: declarative and procedural. Both
explicit and implicit knowledge of facts is declarative. A person with an
understanding of a domain, but with no experience of applying the knowledge

to tasks, is armed with only declarative knowledge. As the knowledge is
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exercised repetitively in performing some task, a process of compilation takes
place, creating a second version of the knowledge in a procedural form, which
the expert cannot retrieve consciously. Findings of empirical studies (e.g.,
Lundell, 1988), are consistent with ACT* theory.

Some knowledge acquisition methods take knowledge compilation into
account by seeking to acquire the knowledge underlying expert performance
without asking directly for it. While experts may have difficulty explaining how
they perform their expert task, they are still good at actually performing the
task in new (or even hypothetical) situations. Protocol analysis, task
observations, and forward scenario simulation attempt to take advantage of
these abilities. Kolodner (1983) argues that experts are also good at recounting
previously handled cases. Both the repertory grid technique and knowledge
acquisition from examples draw on these abilities.

But according to Anjewierden (1987, p 29), “Al has very little to say
about methods or techniques that could be used to alleviate [the
knowledge-acquisition bottleneck].

Some writers (e.g., Neale, 1987) see this lack of effective techniques as
caused by the fact that people who build knowledge-based systems do not
spend enough time reflecting on their own methods, documenting these
methods, and generally trying to develop insights into which methods work well
under which circumstances. Neale has also indicted knowledge engineers for
being too ready to accept explicit knowledge while ignoring tacit knowledge,
which is difficult to access without the use of well developed techniques from
psychology. On the other hand Anderson (1982) argues that the expert does
not have conscious access to the knowledge that produces the skilled behaviour;
and attempts by knowledge engineers to access the inaccessible may also

explain the slowness of the process.

Chapter 1. The Knowledge Acquisition Problem 11



Other writers (e.g, Forsythe & Buchanan, 1989) argue that the process is
slow because of the techniques, the tools, and even the people involved in
knowledge acquisition. But knowledge-acquisition technology is still evolving;
and some researchers feel that the labour-intensive process of knowledge
engineering is unnatural and goes against the trends in computing (see, ¢.g.,
Shaw & Gaines, 1987b). They argue that the process can probably be made
more efficient by creating tools capable of organising and analysing the
information being obtained more efficiently than people can.

Even so, Forsythe and Buchanan (1989, p 435) have criticised the CAKE

approach as

glossing over detailed questions of how to gather the material [in favour
of a] focus on higher-level issues such as classifying information

collected from the expert or insuring that this information is complete.

Making Knowledge Acquisition Manageable

Reitman Olson & Rueter (1987) have described seven knowledge-acquisition
methods as direct and five as indirect (see Figure 2 on page 13). In general,
the direct methods are approaches for obtaining information from a knowledge
source whereas the indirect methods are techniques for analysing and organising
the data obtained into forms that reduce the “representational mismatch”

between knowledge source and knowledge base.

Interviewing

First among the direct methods listed by Reitman Olson are interviews.
Essentially, the different kinds of interview are all conversations in which a
knowledge engineer asks questions and a domain expert tries to answer them.
Neale (1987) has listed fourteen types of interviews used for knowledge

acquisition. As Figure 2 on page 13 also indicates, LaFrance (1987) has
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Reitman & al (1987)

Neale (1987)

LaFrance (1987)

DIRECT METHODS:

0 Questionnaires

o Task ohservation

o Protocol analysis

o Interruption analysis
o Drawing closed curves

INDIRECT METHODS:

Weighted networks

o O O

Repertory grid

0

O 0O O O O O

o O 0O O O

o Multidimensional scaling
o Hierarchical clustering

o Interviews———————Interview Types:

Question Types:

Ethnography
Teachbackw---*—-——J

»0 Grand tour

Goal distinction———»0 Cataloging
Reclassification— categories

Domain division

-

Laddered grid »
Case elicitation:
- Retrospective ca
- Critical inciden
- Forward scenario
simulation

Systematic linking
Structuring———]

se o Ascertaining 4
t*::]_> attributes

::}——uko Determining
A

interconnections

Focusing
Introspection

o Seeking advice
o Cross-checking

Twenty questions—~——[__*wj

o Inferential flow analysis

Ordered trees from recall

Figure 2. Three perspectives on knowledge acquisition methods

identified six types of questions that a knowledge engineer might ask, depending

on the “form of knowledge” being sought.

Although it might be expected that different types of questions would be

asked in a single interview, some of the interview types listed by Neale (1987)

can be shown to involve certain aims primarily and can therefore be linked to

certain question types. These links are also shown in Figure 2. It is also
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interesting to note that three of Neale’s interview types are aimed at eliciting
examples. These three interview types can all be used in knowledge acquisition
from a minimal set of examples (KAMSE, see page 29), one of the two methods
with which this research is chiefly concerned.

Three of LaFrance’s question types are involved in several
knowledge-acquisition methods, including the repertory grid technique (see page
32), the other method with which this research is mainly concerned. It should
also be noted that although Reitman Olson classifies the repertory grid
technique as an indirect method, it is a style of interviewing coupled with a
method of analysis.

Evidently, the developers of CAKE tools can choose from a wide range
of techniques for elicitation and analysis of domain knowledge. Typically, these
tools simply model the interaction used in a particular interview method
combined with one or more techniques for analysing and organising the
knowledge elicited.

So far, none of these tools is universally applicable to all knowledge
domains for which their use might be contemplated. As Clancey (1991) puts it,
there is no “big switch” tool, which is one reason that comparative evaluations
like Boose (1989) are useful. One of Boose’s primary objectives seems to be to
draw conclusions about which tools are suited to which application tasks.

Of all the dimensions on which Boose compares the tools, the one to
which he attaches foremost significance is the application task for which a tool
is suited. This is a pragmatic choice, since a tool user would be primarily
interested in finding a tool that can handle the problem for which its use is
being contemplated.

A prospective tool user will also want to know how easy a particular
tool is to learn and use, whether it runs on the equipment available, and

whether it delivers knowledge bases to an appropriate performance system.
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Boose used seventeen dimensions to compare the 26 tools, and he presents
scatter tables involving a few of these dimensions (domain dependence,
application task, degree of automation, training needed, and life cycle support).

Even so, Boose's primary concern seems to be classifying
knowledge-acquisition tools according to the application tasks for which they
are suited; and very few tools have been developed that are suitable for
applications that do both analysis and synthesis. For example, no
knowledge-acquisition tools for expert instruction systems have been reported
(see, e.g, Tompsett, 1989); but it is clear that such tools are more difficult to
build, because they have to handle a dimension of complexity not present in the
modelling of simple decisions. They may also have been slow to appear
because they have to embody two problem-solving methods: heuristic
classification and heuristic construction (Clancey, 1986).

One important test of any knowledge acquisition tool must be how well
it enables its user to capture, record, and exploit domain knowledge. Whether
one tool is more suitable than another for a given purpose has to be determined
empirically. But AQUINAS is primarily a knowledge acquisition tool; its
purpose is to elicit knowledge and create a knowledge base. If Boose’s
distinctions between the tools are accurate, the knowledge base generated might
be useful, during domain definition, in advising on a suitable tool for the
problem.

Builders of knowledge-acquisition tools are therefore beginning to
include components that assess the suitability of tool for domain. For instance,
Kitto & Boose (1989) have modified the “dialog manager” in AQUINAS: by
adding “the automated guidance facility [which] provides advice on strategies
and tools based on application characteristics” (p 149). Stout et al (1988) have
also changed SALT so that it now recognizes when a domain is not quite suited

to itself. A further step might be to generate a suitable tool, which can then be
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used to elicit the knowledge required. PROTEGE (Musen, 1989) uses this
approach. Yet another approach is taken by the ACKnowledge project (see,
e.g., Shadbolt, 1990), which tries to integrate a number of different tools within
the framework of a knowledge-based workbench.

It appears that, to be really effective, such front ends and generators of
knowledge-acquisition tools need to be based on the kind of information that
Boose (1989) presents. It is therefore quite useful to try and place tools within
some comparative framework that highlights their differences and similarities
and gives some indication of which approaches or tools are most likely to be

successful when applied to a given knowledge-acquisition situation.

A Deluge of Words

While using the methods discussed above may make the knowledge engineer

more confident, and the domain expert more talkative, some of these methods,
particularly protocol analysis and various types of interviewing, can generate a
surfeit of words. One research focus therefore centres on obtaining knowledge

from text. This section briefly reviews these methods.

Protocol Analysis
Verbal protocol analysis, or thinking aloud, (see, €.g., Ericsson & Simon, 1984;
Hart, 1986; Neale, 1988) is a method that produces at least a transcript of the
expert’s protocol (what s/he claims to be paying attention to while performing
the expert task). This protocol can be developed at the same time as the task is
performed, or later when the videotape recordings are being viewed. KRITON
(Diederich, Ruhmann & May, 1987), in addition to using other
knowledge-acquisition methods, analyses verbal protocol transcripts, as
discussed later in “Knowledge Acquisition from Text” on page 18.
Natural-language processing does not have to be automatic, it can be

done by careful analysis. But this analysis is likely to be more productive if the
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relationships being found can be represented in the text stored in the computer.
Hypertext has been used as a way of helping knowledge engineers analyse

textual information. According to Storrs (1989),

hypertext, in its simplest form, is a set of nodes connected together by
undifferentiated links. Each node is an unstructured piece of text or
graphics (or both) and each link is a uni-directional association between

two nodes.

These text nodes are viewed on a computer screen, and the reader can
request any of the other nodes linked to the one being viewed. The reader thus
makes his or her own non-linear path through the text. Use of hypertext to
analyse a verbal protocol is not an automatic process. The knowledge engincer
studies the protocol transcript, chunks it, and loads it into a hypertext system.
S/he then creates links between concepts thought to be related, and makes
annotations as s/he does the analysis. One of the KPT tools (Anjewierden,
1987), the Protocol Editor (PED), is a hypertext editor that enables a
knowledge engineer to analyse the transcripts of verbal protocol analysis
sessions.

Gaines & Linster (1990) used “the hypermedia tool HyperCard a general
purpose knowledge acquisition tool for unstructured material in the form of text
and diagrams”. According to them, “the annotation and explanation captured
in the hypermedia system were available as context sensitive help to the user of
the expert system”.

Some writers (e.g., Storrs, 1989) argue that the product of protocol
analysis in hypertext ought to be usable, not just as help text, but as a
knowledge base in its own right. According to Storrs, hypertext and semantic
networks resemble each other in important respects, with a richly

interconnected hypertext document being equivalent to a semantic network. It
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may therefore be possible to use hypertext in place of a semantic network,
which presumably could be used in a knowledge-based system if it were

surrounded by appropriate meta-knowledge.

Knowledge Acquisition from Text

Some knowledge-acquisition methods generate large amounts of textual
information. Even knowledge engineers who intend to use an interview method
are advised to read existing texts on the domain before seeing the experts. Both
kinds of text generally contain knowledge units which can be identified only by
careful time-consuming analysis. The need for this analysis highlights a
mismatch (identified by Buchanan et a/, 1983) between the form in which an
expert uses knowledge and the form in which it is required for building a
knowledge base. One facet of this mismatch is discussed in Chapter 3.
Another facet is that the expert may express domain knowledge in natural
language while the knowledge-based system requires it as rules, frames, or some
other formalism. This mismatch is seen by Gruber (1988) as “a fundamental
problem in knowledge acquisition”.

Natural-language understanding, which has long promised to enable
people to communicate with computers without using a formal language, is also
seen as a way to find meaning in large bodies of text. Both these goals, if they
can be achieved, would relieve much of the drudgery of acquiring knowledge
from interview transcripts, thinking-aloud protocols, and other textual sources.

Roskar (1988) argues that “the difficulty of transferring expert
knowledge to the computer ultimately depends ... on the way in which the
knowledge is represented within the computer”. Buchanan et al (1983) see the
“representation mismatch” as being overcome by two approaches: “learning by
being told”, and natural-language conversation with the expert combined with

an “English-like” representation. The second approach was used by Tanyi &
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Linkens (1989), who included in their expert-system shell “a module, KAM,
which allows rules to be constructed in a pseudo natural language, FKRL”.
However, this approach still requires either the expert to express knowledge in
this pseudo-English, or the knowledge engineer to translate the expert’s natural
language into the pseudo-English.

Even pseudo-English rules may have to be translated into a more
concise formalism (in the system described by Tanyi & Linkens, the rules
expressed in FKRL are translated into PROLOG). This translation involves
the same mechanisms used in natural-language processing (e.g., Sager’s, 1981,

“Linguistic String Project”), i.e., the following components:

* Rules of grammar for the language

* A parser to do syntactic analysis on sentences

* A lexicon containing words in the language

e “Procedures for transforming string parse trees” into a semantic

representation.

However, much of the work in this area seeks to determine the semantic
content of individual sentences, rather than paragraphs or larger chunks of text.
Various devices have been used to understand these larger chunks of specific
kinds of text (e.g., Schank, 1973, used scripts to guide story understanding).
Schank argued that humans reduce sentences heard or read into a
semantic representation, which has two ways of enriching what is being said.
One device involves making explicit the implicit concepts embodied in the words
and sentences. The other involves inferring what has not actually been said,
but what may have been hinted at in previous sentences or what would
normally be expected. The usefulness of Schank’s theory is in its potential for
converting one representation to another via the intermediate semantic

representation or semantic dependency graphs. Clearly, the target
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representation can be either another natural language or a
knowledge-representation formalism.

But even tools without strong semantic capabilities can generally acquire
some knowledge from text. Gettig (1989) describes a tool (KAM) that analyses
textual data and extracts rules and facts, some of which may be suitable for
direct use in knowledge bases. The text is scanned for certain words (e.g., if and
when), which act as cues for the presence of condition/action pairs. Text in the
vicinity of each cue is analysed more closely to try and isolate a rule. The
analysis and extraction are guided by heuristics which the user can specify.

This (and the fact that the system only partially generates some rules) means
that the system is not completely automatic.

Moreover, there is no guarantee that any rules will be extracted, those
extracted may not be relevant, and some of them may contain either ambiguous
pronouns, or nouns incorrectly inferred from pronouns. These problems,
according to Gettig (1989), are being addressed.

According to Rau, Jacobs, & Zernik (1989), storing text in a semantic
representation (or “conceptual format”) is unusual, but makes it easier to access
text via natural language. They also assert that lexicons are not rich enough,
i.e., “lack of extensive linguistic coverage is the major barrier to extracting
useful information from large bodies of text”. They therefore propose that
natural-language processing systems should be tolerant to unknown words, and
should “acquire lexical information automatically from the texts”. Their
SCISOR prototype information retrieval system, implements both
recommendations.

Channier & Fournier (1988) have pointed out problems with automatic

processing of technical texts:

* Scarcity of “general tools to recognize the constituents of the texts”
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» Representing their contents to enable users to “modify and check them for

consistency”.

The ACTES project of Channier & Fournier was aimed at extracting “rules for
an expert system simulating ... processors responsible for managing ... alarms”.
The project also aimed at finding a formalism to define grammars, and an
intermediate semantic representation of information gathered from processing
texts.

Reimer (1990) used a system called WIT, which does semantic analysis
on technical texts, and “builds up representations of the concepts described in
the text”. Introductory material and textbooks are not used, because, Reimer
argues, they are often out of date, and parsing mechanisms cannot yet cope
with them. Reimer’s system acquires knowledge of the terminology used in the
domain, and proposes a hierarchy of concepts. This hierarchy is then
restructured by “inductive generalization”. This approach does, however,
requires “small domain specific” knowledge before it can do any processing. If
this approach (which is not based on any deep understanding of the text)
works, it may speed text analysis in the early stages (domain orientation) of
knowledge acquisition.

Schmidt & Schmalhofer (1990) also point out that the rules found in
textbooks may be inaccurate, incomplete, conflicting, or open to interpretation.
They argue that these problems can be solved by “enriching” the knowledge

acquired from text, by eliciting “records of solved cases” from a domain expert.

Cognitive Mapping

The methods discussed in the preceding sections elicit text-rich information.
Some other methods elicit information rich in knowledge units rather than text;
the data they elicit are readily transformed into knowledge bases. One of these

methods is cognitive mapping, a by-product of the ideas of Kelly (1955). The
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technique is used in operations research by consultants (also called facilitators)
to help clients (also called problem owners) define their problem space (see, e.g.,
Klein & Cooper, 1982; Eden, Jones & Sims, 1984; Morecroft, 1988; Eden, 1988).

The problem space is represented by “word-and-picture maps, algebraic
‘sentences’, models and simulations” (Morecroft, 1988, p 316-317). These
representations are used to indicate “relationships that are perceived to exist
among attributes and/or concepts” in the problem space (Zhang, Chen &
Bezdek, 1989, p 31). Eden, Jones & Sims (1984) developed a tool called COPE
to store, manipulate, analyse, and display cognitive maps. COPE’s analysis of
the concepts and the relationships between them highlights clusters, hierarchies,
and loops. Facilitators focus on loops in particular, because loops indicate
“vicious circles” in the problem owner’s thinking, which must be resolved if
progress with the problem can be made.

Morecroft (1988) argues that the fields of knowledge acquisition and
cognitive mapping have enough in common to be able to influence each other’s
progress. In particular, knowledge acquisition may be able to contribute to
cognitive mapping a “better [understanding of] how to elicit and reconstruct
policymakers’ broad business knowledge”.

Improvements in the technology used for cognitive mapping may also
make it feasible to use the same maps and models, either as an operational or
an intermediate representation for knowledge bases. Zhang et al (1989) have
developed a tool called Pool2, which gathers knowledge of a problem space
from multiple experts. If developed further, Pool2 could, Zhang et al argue,
generate knowledge bases.

The repertory grid technique and knowledge acquisition from a minimal
set of examples are even more focused on knowledge units. These two methods

are discussed in Chapter 2.
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Escaping the Strait-Jacket

But some researchers feel that the techniques embodied in many CAKE tools
are too structured and therefore restrict the natural flow of ideas that can occur
during knowledge acquisition. One product of this view is “sloppy modelling”,
which allows the user to take the initiative sometimes, and to give it back to the

tool, when appropriate (Wrobel, 1988, p 461).

This means that the user is not required to develop a complete and
well-structured model beforehand in order to then transfer it into the
machine. Instead, the modeling activity itself becomes part of the

system-supported knowledge-acquisition process.

According to Wrobel (1988, p 461), sloppy modelling “differs from those
approaches [e.g. that of AQUINAS] in its emphasis on a cooperative
mixed-initiative modeling process”.

The sloppy modeling paradigm has objectives identical to those of other
knowledge-acquisition approaches. Indeed, a well designed (or really effective)
CAKE tool ought to coax the knowledge out of the expert while interacting

with him or her.

Conclusions

Building a knowledge-based system is constrained by the development cycle, the
large amount of knowledge that must typically be elicited, and the slow speed
inherent in the acquisition process itself. These three factors can probably be
addressed by fashioning methodologies that reposition acquisition relative to
other tasks, by trying to minimise the amount of knowledge needed to construct
useful systems, and by streamlining the acquisition process itself.

This may involve subdividing the task into manageable units, using an

iterative development cycle, and applying resources in parallel. In addition,
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problems have to be selected which can provide significant payback from small
amounts of knowledge. These systems should be developed with tools that can
recognise when enough knowledge has been obtained, thus minimising the
“sociopathy” problem. Where the methods used generate plenty of textual
material, it is useful to find efficient ways of processing the text. Another
approach is to use other methods that generate less text, and more knowledge
knowledge units that are directly usable in knowledge bases. Two such methods
are examined in Chapter 2, “Learning Without Case Records: a mapping of the
repertory grid technique onto knowledge acquisition from examples.”

Tools for knowledge acquisition facilitate these approaches by modelling
techniques for eliciting, analysing, and organising knowledge. These techniques
include different styles of interviews, knowledge acquisition from text, and
learning from examples. Few of these tools have actually reached the market,
so a person needing a knowledge-acquisition tool today may still have to build
one. What the existing tools do is to demonstrate a range of approaches to the
problem of knowledge acquisition in various domains. A more useful objective
than choosing among tools might therefore be simply choosing among
approaches, methods, and techniques.

With so many approaches to choose from, there appears to be a need
for information to enable intelligent choice among them for any given problem
domain. Because different techniques may be suited to different circumstances,
builders of knowledge-acquisition tools have begun to include in them front
ends that assess the suitability of the tool for the intended domain.

However, when there is a choice between two methods for a given
domain, little evidence exists to favour the choice of one approach over
another. It is evident that there is a need for the development of a sound
theoretical basis for matching methods to situations. Such a theory would have

to stand up to empirical testing; and the empirical data can help shape and
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refine the theory. There is little doubt that such a theory will develop over
time, as individual pieces of research fill in parts of the overall jigsaw.

One of the current limitations of most of these approaches is that they
can be used only to build systems for analysis tasks, while there are other types
of tasks for which the elicitation problem is no less significant. The knowledge
required for design and tutoring systems, for example, tends to be more
complex. But complex knowledge can often be subdivided into a set of related

simple decisions.
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Chapter 2. Learning Without Case Records: a
mapping of the repertory grid technique onto
knowledge acquisition from examples

Abstract

In contrast with the text-intensive methods discussed in Chapter 1, building a
knowledge-based system can sometimes be expedited by applying some machine
learning process to a set of historical cases. In some problem domains,
however, such cases may not be available. In addition, the classes, attribute
descriptors, and attribute values that comprise the partial domain model in
terms of which cases are expressed may also not be available explicitly. In
these circumstances, the repertory grid technique offers a single process for both
building a partial domain model and generating a set of training examples.
Alternatively, a minimal set of examples can be elicited directly. This chapter?
explores the relationship between knowledge acquisition from a minimal set of
examples and the repertory grid technique, and discusses their shared need for
machine learning. Fragments of business-strategy knowledge are used to

illustrate the discussion.

Introduction

The repertory grid technique and KAMSE both elicit information that is rich in
knowledge units rather than text. Knowledge units elicited by either method
can be used to build knowledge bases. The knowledge units elicited by one
method can also be mapped to those elicited by the other method. Moreover,

these knowledge units can be organised as input to different kinds of learning

2 A paper based on this chapter has been published as Nicholson (1992a).
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processes. These processes are discussed, with special emphasis on machine
induction, the usual learning method used with the repertory grid technique.
This chapter explores KAMSE and the repertory grid technique,
showing the similarities between the two approaches, the equivalence of the
information elicited, and the shared need to distill this information into a

representation to support inference.

Eliciting Examples

Consider the five examples shown in Figure 3 (the names of the organisations
are disguised) of cases in which a consultant in business strategy advised his
clients on the best way to implement their product or market development
strategy. These cases are expressed in terms of three attributes: cost of entry
(sometimes called startup cost), payback period (or the importance of early
return), and risk of failure. Three classes are present in the training set:

internal development, joint venture, and acquisition.

Entry | Payback Strategy
Set |Co. | Cost Period Risk | Implementation
1 Ace | Tow short Tow Internal development
BU Tow short high | Joint venture
Cha | high long high | Joint venture
Day | high short Tow Internal development
EZ Tow tong high | Acquisition

Figure 3. A training set (set 1) for machine learning.

The set of examples is therefore expressed in terms of a partial domain
model, as shown in Figure 4 on page 28. This model consists of familiar
entities (Clancey, 1986), but also relations which are usually assumed rather

than stated explicitly. Attributes describe an example, which belongs to a class.
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The examples help to establish a mapping between patterns of attribute values

on the one hand, and classes on the other.

Classes Attributes
Identifiers Values
Internal development
Joint venture Entry cost Low, High
Acquisition Payback period Short, Long
Risk Low, High
< Examples [+
beltong to are described by

Figure 4. The partial domain model implicit in the examples

It may be argued that the induction algorithms do not require the
partial domain model to be explicit; they require only that all cases be expressed
in terms of the same model. Where historical records of cases are available with
this information, it is simply a matter of distilling them into a knowledge
representation, as discussed in “Deriving Heuristic Knowledge” on page 40.

In situations where such records are not available, one possible
approach is to set up a mechanism for recording historical case data and then
wait for enough data to be collected. Roskar (1988) set up a database to collect
data about medical cases. According to him, this approach is “especially
suitable for a domain in which the relative power of different pieces of
diagnostic information has not yet been identified”. Although this approach
has the disadvantage of taking a long time, it has the advantage of capturing
information about the expected frequency of each class.

However, if time is of the essence, or collecting data in this way is

inconvenient or infeasible, retrospective case description, critical incident, and
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forward scenario simulation (all concisely described in Neale, 1988) are
interviewing techniques that can be used to elicit data in the form of examples.
Lundell (1988) lists two of the kinds of examples that can be elicited: prototypes
and exemplars. Exemplars, which can be elicited by forward scenario
simulation, are random examples. A large number of examples is not
necessarily required. For each class, a typical example (a prototype) and a few
atypical ones (exemplars) can provide a high degree of coverage. This view
underlies knowledge acquisition from a minimal set of examples (KAMSE),
which is described further on page 72. In the domain being discussed, an

exemplar might be elicited by the question:

Suppose a company was facing a high cost of entry into its intended
development area, and payback was expected to take a long time, but

the risk of failure was low, what would you advise?

Prototypes, which can be elicited by the retrospective case description
technique, are examples representative of a class — Lundell refers to them as

“the central tendency” of cases seen in the past. A prototype might be elicited

by the question:

Give an example of a situation in which you would advise internal

development.

But these methods all presuppose the existence of a partial domain
model. Gruber (1988, p 583) recognises the necessity for a partial domain

model, and asserts that

for any application of machine learning to knowledge acquisition, ...
somebody has to set up the learning problem for the induction

algorithm: designing a representation for examples and generalizations,
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defining all of the terms in those languages, encoding a set of training
examples in the representation, and providing background knowledge ...
that guides the induction algorithm to choose the right generalizations
from the potentially infinite set of possibilities. This can require a

significant knowledge engineering effort.

Morik (1987, p 93) also distinguishes between learning from cases and
the domain theory in terms of which the cases are expressed. She sees “the
construction of a domain theory as the first phase of the knowledge-acquisition
process”. Where this domain theory (or partial domain model) has not been
made explicit, it must be developed before any meaningful gathering of
examples can take place.

Of course, the attributes, their values, and the classes can be elicited as
by-products of the recall and description of cases, as the following example
illustrates. A knowledge engineer (KE) talks with an experienced business
strategy consultant (Expert) about the same decisions discussed above.

KE: “Can you remember an actual specific case you worked on involving
this decision? How did you decide which method of implementation to
recommend?”

Expert: “Yes. At Ace the cost of entering the proposed industry was
going to be low, and the payback period was quite short. So we advised them
to pursue their product development strategy by internal development.”

The expert has thus recounted a case in terms of two attributes and a
class. At this early stage, the model consists of a single class and two attributes
with two possible values each. The attribute “payback period”, for example,
can so far have a value of either “short” or “some other value”. This
information may be viewed as the beginnings of a domain model. But the

question arises as to what other values each of the two attributes can assume,
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because it is quite likely that the two attributes will not be sufficient to describe
all cases of interest.

The knowledge engineer tries to expand the model by eliciting an
exemplar.

KE: “Can you recall another case in which the cost of entry was low,
and the payback period was short, but you made a different recommendation?”

Expert: “In BU’s case, the cost of entry was also low and the payback
period was reasonably short, but we recommended a joint venture because the
risk of failure was quite high.”

This case introduces a third attribute and a second class to add to the
partial domain model.

The process discussed above is an unstructured one in which lists of
classes, attributes, attribute values, and cases are being built up. In a more
structured approach, the expert would be asked to list all the possible classes
s/he could think of. When this list is complete, the expert would be asked to
state the attributes or factors considered in making the decision and the possible
values of each attribute. With this partial domain model in place, the expert
can then be asked to recount cases that exemplify each class.

Any knowledge acquisition tool that uses this approach can probably
enhance its efficacy (see page 82) by checking for conflicts (two cases with
identical attribute values but different class) and for missing cases (classes for
which there are no cases).

Some people find it necessary to produce a case for every possible
combination of attribute values. Except where there are many classes, this kind
of case-based approach is tedious. According to McClanahan & Luce (1988, p
112),
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If there are many values for each factor [attribute], the system can
represent very fine distinctions. On the other hand, the number of
examples increases dramatically with the number of alternative values
per factor, as with the number of factors .... Even four factors, with

four alternatives each, will require 4x4x4x4 or 256 examples.

In practice, these numbers are likely to be reducible if don’t-care attribute
values are catered for.

While cases per se can be used as the basis for inference (see, e.g., Bain,
1986) in a knowledge-based system, they are usually distilled into a
representation (rules, a decision tree, or an artificial neural network) capable of
supporting inferences about new cases. Machine induction, which is a way of
distilling examples into rules, is discussed in “Deriving Heuristic Knowledge” on
page 40. When a sufficiently comprehensive set of cases has been recorded, it
can be processed by an induction algorithm or by any other process of learning
from examples (e.g., a neural network or a genetic algorithm). The resulting
knowledge can then be deployed in a performance system for validation,
refinement, and consultation.

Another method of acquiring the same knowledge is the repertory grid

technique described in the next section.

The Repertory Grid Technique

Although the repertory grid technique does not appear to be widely used by
knowledge engineers working without CAKE tools (see, e.g. Nicholson, 1988), it
has become a popular technique in the tools (see, e.g., Boose, 1985; Boose &
Bradshaw, 1987; Shaw & Gaines, 1987; Garg-Janardan & Salvendy, 1988).
Seven of the 26 tools compared in Boose (1989) use it.

The repertory grid technique, which was developed by Kelly (1955; see
also Shaw & Thomas, 1978; Bradshaw & Boose, 1990) can be used for eliciting

Chapter 2. Learning Without Case Records 32



the constructs that an expert uses in making decisions. Kelly (1955) used the
technique to access the inner worlds of his patients. These inner worlds are
modelled by multidimensional spaces in which each orthogonal axis represents a
personal construct of the patient. Concepts, things, and people important to
the patient are all located in that space, which is made explicit by the
interviewing strategy and the grid used to analyse and structure the information
being uncovered.

This same set of techniques has been employed in knowledge acquisition
for knowledge-based systems (see, e.g., Hart, 1986). In this context, Hart

describes the grid as

a representation of the expert’s view of a particular problem. A grid is
composed of ... elements [and] constructs ... bipolar characteristics

which each element has to some degree.

One early program to assist in repertory-grid analysis was Mildred
Shaw’s (1979) PEGASUS. She did not, however, use the elicited knowledge to
build knowledge-based systems. Instead she used the grids to study agreement
and understanding among individuals on a subject about which they shared
knowledge. Later she did become interested in using grid techniques to acquire
knowledge for knowledge-based systems (see, e.g., Shaw, 1981). As Boose
(1988) has explained, “distinctions captured in grids can be converted to other
representations such as production rules, fuzzy sets, or networks of frames”.

Another tool embodying the repertory grid technique is AQUINAS
(Boose & Bradshaw, 1987), which attempts to enable one or more domain
experts to bypass the knowledge engineer, and use the tool to elicit their own
knowledge. Using the repertory grid that it elicits, AQUINAS can generate
knowledge bases in different formats suitable for use in some expert-system

shells (e.g., S.1, KEE, EMYCIN).
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An element E; can be identical to a class from knowledge acquisition
from examples. Alternatively, it can be equivalent to an example, allowing the
possibility of multiple elements per class.

A construct C; can be equivalent to an attribute identifier in knowledge
acquisition from examples. Where constructs are grouped in named clusters,
the constructs are equivalent to attribute values.

A single construct is equivalent to a single attribute using the visible

pole as the descriptor, and yes and no as the values. For instance:

Construct Attribute
Green / Not green ===> Green

- yes

- no

A related set of constructs can often be equivalent to a single multivalued

attribute. For example:

Constructs Attribute

Green / Not green ===> Colour

Amber / Not amber - green

Red / Not red - amber
- red

A user of the repertory grid technique starts by listing all the elements as
in knowledge acquisition from examples. The user then employs a style of
questioning, which Kelly called “the repertory test”, and which is often referred
to nowadays as triadic elicitation. The repertory test involves repeatedly going
through the following steps (which can end when all elements are distinguished,

by their ratings, from all other elements):

+ Select three elements (perhaps, but not necessarily, at random).

* Ask which two are similar and different from the third.

* Ask for the construct C; that makes two elements similar while different
from the third.

* Ask for the opposite of C; that characterises the dissimilar element.
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* Ask for all other elements to be rated as fitting C;, its opposite, or neither.

While following this procedure, a knowledge engineer gradually builds
up a list of constructs and a set of ratings within a grid. But this grid can also
be viewed as a list of prototypes, one for each element.

When Kelly used the technique he allowed only for entirely bipolar
constructs. Every element E; was rated against every construct C; to assign in
effect a value of 0 or 1 to the rating R;;. More recently, people have used rating
scales with an odd number of points (e.g., 1 to 5, 1 to 3, or even -2 to +2) with
the central value indicating neither pole or either pole (or don’t care). The
rating scale is sometimes interpreted as a probability distribution. For instance,
on the 5-point rating scale that AQUINAS uses, Boose (1989) appears to
interpret ratings of 2 and 4 respectively as 40/60 and 60/40 distributions.

Under the repertory grid technique, the business-strategy expert might
be asked: “Which of the following three situations is different from the other
two — internal development is advised, joint venture is advised, and acquisition
is advised?”

The expert selects internal development, and is then asked:

What makes indications for joint venture similar to those for acquisition

and different from those for internal development?

The expert says: “low risk of failure”. This information is used to create
an attribute with two possible values: “yes” and “no”. Also created are three
cases expressed in terms of the only attribute elicited so far. But all classes are
not yet distinguishable from all others. Indeed, two of these cases conflict; so
the same questioning is repeated with the same triad (since there are only three

elements in this grid).
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Herein lies one weakness of the repertory grid technique. Where the
number of elements is small enough, triads cannot be found. Where there are
only three elements, some tools will simply not embark on the repertory test
(Garg-Janardan & Salvendy, 1988). Others use dyads to try and augment the
list of elements while eliciting constructs (Boose, 1985).

One reason for the small number of elements in the domain discussed
above is that classes are being used as elements. When this is done, only
knowledge about prototypes is elicited. It is therefore likely that only three
examples will be elicited, instead of the five shown in the previous section. A
safer approach is to use examples rather than classes as elements. Later the
elements can be clustered into class groupings. Applied in the domain being
discussed, this approach increases the number of elements from three to at least
five — and perhaps more, if the expert can think of other cases. Indeed, using
cases as elements helps handle awkward disjunctive relationships, because each
variation from the typical can be introduced as a separate element.

The repertory test asks for similarities and differences only to elicit
distinctions between the elements in the grid. Once enough of the problem
space has been captured to be able to distinguish every element from every
other, it is unnecessary to elicit any further constructs. Indeed, there is no need
to present any triad in which all three elements are already distinguished from
each other.

For this reason, the repertory test can be optimised if constant attention
is paid to these conditions. They will indicate which triads need not be
presented and when to end the repertory test. But restricting the composition
of triads could limit the knowledge acquired. This is because further
distinctions between already distinguished elements could lead to ratings that

distinguish between other elements not in the triad.
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The repertory grid technique, which has been the basis for several
knowledge-acquisition tools — e.g., AQUINAS, ETS, FMS-Aid, KITTEN,
KRITON, KSSO (Gaines, 1987), and PLANET (Gaines & Shaw, 1986) — does
not naturally accommodate disjunctive relationships between constructs. Yet
such relationships occur in some domains. For example, in one of the word
domains discussed on page 134, a compound verb may be formed by an AfV
(affix + verb) or a PV (preposition + verb) combination (Selkirk, 1983), but
not both at once. The kind of disjunctive relationship among constructs can be
handled by having multiple elements of the same class and by catering for
clusters of elements in the grid. So, in the example just given, we might be able
to say that xV is a compound verb, and further that x= Af is one type of
compound verb while x= P is another.

It is clear that the list of elements is crucial, and the questions asked to
elicit these should be designed carefully to obtain both elements that are typical
of a class, and those that are atypical. In addition to asking, as AQUINAS
might, “list all the strategy implementations you can think of, one to a line”,
further questions are necessary. AQUINAS’ question elicits the response “joint
venture, internal development, and acquisition” — classes as elements. It would
be useful to pose a further set of questions for each class so as to elicit the
name of a typical case, and the names of other cases that differ from the typical
one and from each other.

A repertory grid tool may also have facilities for displaying or printing
scatter tables, and presenting various relationships that exist in a grid. Such
facilities help to communicate the contents of a grid, and their implications.
Several of these facilities are demonstrated in Boose (1989), which uses them,
rather than statistical tables and graphs, to present the results of a comparative
evaluation of 26 knowledge-acquisition tools. Boose’s comparison conveys

much more information about AQUINAS itself than any of the other tools
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being compared, because AQUINAS is used as the vehicle for presenting the
data.

So many scatter tables are typically possible, that there is a danger of
presenting too much information, unless they are used selectively. AQUINAS
appears to have overwhelmed Boose with data, and he seems to feel compelled
to give his readers a glimpse of it without fully explaining or discussing what he
presents. These data include the grid itself, scatter tables of one construct
against another (a plane in the multi-dimensional space), and an implication
graph. These different presentations do not in themselves identify
inconsistencies in a grid, but may provide the information for the meticulous
analyst to find inconsistencies. Indeed, his early presentation (p 5) of KNACK,
OPAL, and SALT as using heuristic construction methods and being suited to
synthesis applications seems inconsistent with his later presentation of both
KNACK and OPAL under diagnosis tasks in a scatter table.

There are limitations in AQUINAS’ ability to present hierarchies of
constructs in scatter tables. For instance, the application tasks that Boose uses
may be viewed as the hierarchy shown in Figure 5. However, the AQUINAS

scatter table involving application tasks shows a flat scale with eight points.

Application task —[

Classification
Analysis ——[: Diagnosis

Synthesis Configuration
_“{EE Scheduling
Design

Figure 5. Boose's application tasks
AQUINAS thus gives no indication of the relationship between diagnosis and

analysis, or between design and synthesis. However, these shortcomings can

probably be overcome by users highly skilled in interpreting the tool’s output.
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But some writers question the worth of the repertory grid technique.
According to Anjewierden (1987, p 31), “the weakness of AQUINAS is the use
of [a] particular knowledge elicitation technique (‘rating grids’), which is

thought to be insufficient for general KBS development”.

Analysis of the grid

When the analysis of the grid is left to be done after the repertory test (rather
than during it), a batch job is in effect created for which the user must wait. In
addition, when two constructs are found to be parallel, it is difficult to decide
which one to delete at that late stage. It would be much more straightforward
to look for a parallel construct immediately after rating. If a parallel construct
is found, the similarity can simply be pointed out, and the user allowed to select

one of the following actions:

e Introduce a new (or existing) element that would be rated differently on the
two constructs.

* Rerate on one of the constructs.

» Leave the two constructs as they are.

 Discard one of the two constructs; one will be discarded later by machine

induction anyway.

Ongoing grid analysis to determine when to end the repertory test does
not always work well. One problem is that random triads may have a low
probability of containing the two elements that are still indistinguishable (what
Gammack, 1987, calls a “confused pair”). As discussed above, the triads can be
restricted so that they contain these interesting elements. Or the tool could
gauge when no further progress is being made by the repertory test. At that

point, the tool could enter dyadic elicitation and show the confused pairs.
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It is also during analysis of the grid that clusters of elements can be
proposed and confirmed. Constructs can be treated in a similar way.

Boose (1988) has explained that “distinctions captured in grids can be
converted to other representations such as production rules, fuzzy sets, or
networks of frames”. The next section discusses this conversion, which is in
many ways identical to the transformation from cases to a knowledge
representation.

The completed repertory grid is used to generate cases, which are then

fed through a learning process (usually machine induction).

Deriving Heuristic Knowledge

Whether knowledge acquisition from examples or the repertory grid technique
has been used to build up the partial domain model and gather a set of
examples, these examples need to be reduced to a decision model which can be
used for inference on new cases. This reduction is done by passing the
examples through a machine-learning process that detects regularities in the
data.

In general, machine learning starts out with a set of examples (the
training set) and seeks to distill them into knowledge that can be used to
diagnose cases outside the training set.

Machine learning, according to Mitchell, Carbonell & Michalski (1986),

involves the study and development of computational models of learning
processes. A major goal of research in this field is to build computers
capable of improving their performance with practice and of acquiring

knowledge on their own.

Research in machine learning has led to different approaches, including

incremental learning, explanation-based learning, inductive or similarity-based
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learning, neural networks, and genetic algorithms. These approaches are seen
as essential by some writers (e.g., Wilkins, 1987), who have argued that the
human-mediated methods described in Chapter 1 are not capable of generating
the kinds of large knowledge bases likely to be required in the future.

According to Wilkins, “this requires that computers learn independently”.

Incremental Learning

Crawford (1989) argues that when machine induction (see page 46) is used, new
examples are accommodated by the “brute force method” of adding them to the
existing training set, and rerunning the induction algorithm. Matwin &
Oppacher (1988) also argue that “relearning from scratch could be
cumbersome” where a large set of training examples is involved. This viewpoint
concludes that, while learning systems should “be able to learn from scratch”,
they should also be able to learn incrementally.

The solution provided by Crawford (1989) is to extend the CART
induction algorithm to include “incremental learning., in which newly acquired
examples can be used to update an existing tree”. The training set still has to
be retained, because a new example may cause a part of the existing tree to be
“pruned away and the cases ... repartitioned”.

Matwin’s solution involves a tool called LEW, which acquires
knowledge by parsing “cues” (question-solution pairs), and relating them to
previously stored generalisations. Negative cues are used to specialise the
knowledge, while positive ones are used to generalise. LEW, which uses
concept clustering to “combine aspects of learning from examples and learning
by analogy” (Matwin, Oppacher & Constant, 1989; Constant, Matwin, &
Oppacher, 1988), can also be used for planning problems. The tool breaks such
problems (e.g., the towers of Hanoi) into a set of simple problems each of

which can be concentrated on, in isolation from the remainder.
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Berwick’s (1985) system for the acquisition (from example sentences) of
knowledge about how to parse (syntactic knowledge) used an incremental
learning approach. Incremental learning is also used in the
knowledge-acquisition component of VIE LANG (a German-language dialogue
system). According to Buchberger, Zsolnai, & Trost (1989), the system

“incrementally augments its knowledge based on a sound basic repertoire”.

Explanation-Based Learning

Explanation-based learning (EBL, see Mitchell, Keller, & Kedar-Cabelli, 1986)
is a method of refining an existing knowledge base, rather than a way of
building one from scratch. An EBL system starts with a knowledge base, also
referred to as a complete domain theory. A single example is then presented to
the system, which uses a theorem prover to build a deductive proof tree for the
example. This proof tree shows why the “example is a member of a concept
class” (Whitehall, 1990). The EBL system then generalises the proof tree (e.g.,

by changing constants into variables).

Genetic Algorithms

Another approach to creating knowledge bases from examples is by using a set
of learning programs called genetic algorithms. Genetic algorithms, which use
processes analogous to those in Darwinian evolution, were developed by
Holland (1975, see also Smith, 1980).

The user first describes the form of the examples to be fed into the
process. This description specifies the target expression (or class field) and
where it is found in the examples. The attributes, and their position in the
examples, are also described. A set of examples is then fed into the process,
which uses them to generate (randomly, according to Forsyth, 1984b) a
tentative set of rules. These rules are all expressed as strings of equal length

(see, e.g., Yoneda, Minagawa, & Kakazu, 1992).
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The next step is the essence of genetic algorithms: the accuracy of each
rule is determined by applying it to the examples. Inaccurate rules are
discarded, and accurate ones survive but are changed by genetic operators.
These genetic operators change rules in three ways: crossover, mutation, and
inversion. Crossover opérates on two rules (character strings) at a time to
produce “descendants [from] a kind of mating”; mutation is “a random
transcription error”, and inversion is “an internal crossover with reordering”
(Forsyth, 1984b). In one iteration, or generation, all the rules are evaluated and
either discarded or modified. The process is repeated for a number of
generations specified by the user, or until convergence is achieved.

Typically, genetic algorithms require a large number of generations, and

hence computer time, to reach convergence.

Artificial Neural Networks

Rather than generating rules or decision trees, neural networks simulate the
physiology of arrays of nerve cells and thereby learning from examples.
Forsyth (1984b) has asserted that the early researchers in the field had the

dream of

building a richly interconnected system of simulated neurons [which]
could start off knowing nothing, be subjected to a training program ...

and end up doing whatever its inventor wanted.

Rosenblatt’s perceptron is only the best known of these early models of nerve

cells. Rosenblatt (1958, pp 387-405) describes the perceptron as:

a hypothetical nervous system, or machine, ... designed to illustrate some
of the fundamental properties of intelligent systems in general, without

becoming too deeply enmeshed in the special, and frequently unknown,
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conditions which hold for particular biological organisms .... [These

systems] can learn to associate specific responses to specific stimuli.

According to Bischel & Seitz (1989), “most applications of neural networks are
classification problems”. When classifying, a neural network takes as its input
a number of binary-valued features of the item to be classified. The binary
pattern is propagated through the network, and arrives transformed at the
output ports, which indicate the class of the item. The transformation that the
input undergoes as it passes through the network is brought about by the
attenuation characteristics developed during training.

Rosenblatt’s contemporaries (Farley & Clark, 1954) also built a model
that could store knowledge in the links between its nodes, and thus learn to
distinguish patterns of input. In the model of Farley and Clark, a neuron is
represented as a simple organism with certain properties discussed briefly below.

In the network, any neuron can be connected to any other neuron, but
in general is not connected to every other neuron. Farley & Clark define a
connectivity ratio, K, as the probability that any given node will be connected
to any other. With K =0.4, for example, any node may in the extremes be
connected either to all others or to no others, but on the average will be
connected at random to only 0.4 of the other nodes.

Normally, the weights connection start out with random values; but
Rada (1984) used a scheme based on the perceptron for refining knowledge.
The weights do not start at random values; instead they are specified (or
estimated) by domain experts). Refinement occurs as cases, whether for
training or validation, are fed through. During learning the neural net is given
feedback as to the correctness of its classifications. Where it finds that it has
classified an object incorrectly, it makes adjustments to its internal

characteristics so as to improve its performance.
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According to Forsyth (1984b), Minsky & Papert (1969) proved that
perceptrons “could be taught to recognise patterns, but only a limited class of
patterns”. After Minsky & Papert (1969) discredited the neural network
approach as having serious limitations, the ideas were abandoned for several
years until recently, when advances in computer technology have produced
processors capable of implementing larger and more complex neural networks.
But Minsky & Papert (1988) have reaffirmed their reservations about the entire
connectionist approach.

There are now several neural-network models, including single-layer and
multi-layer perceptrons (see, e.g., Lippmann, 1987). Several neural network
software packages are on the market and applications are being developed for
production use. Applications such as speech recognition, robot vision,
diagnosis of lower back pain, mortgage underwriting decisions, stock price
predictions, bond rating, signature verification, handwriting recognition for
input to computers, and the grading of plywood have been reported.

But there are still problems with neural networks. According to Bischel
& Seitz (1989), “an unfortunate property of most neural networks is the large
number of training patterns necessary for the teaching”. This does not
necessarily require that a large training set be available. A small training set
can be used repeatedly until the network stops learning anything new. But, as
Bischel & Seitz (1989) point out, “this implies that the training phase is very
computation-intensive”.

However, this may not be very important. Buchanan et al (1983, p 158)
have pointed out that intensive use of computation resources is often an
acceptable price to pay for reducing the amount of work that knowledge

engineers have to do.
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Machine Induction
Unlike EBL, similarity-based learning does not require the existence of a
knowledge base, rather it generates one by finding regularities in a set of
examples. Machine induction, which originated with the concept-learning
system of Hunt, Marin, & Stone (1966), is a form of similarity-based learning
which involves analysing a set of examples to discover relationships between
classes and patterns of attribute values. Like the direct process of interviewing,
machine induction is also widely used is used in CAKE tools. Sometimes it is
used to distill the knowledge obtained from an interview method into a
compact, efficient, representation to support inference (see Chapter 2).

Michalski & Chilausky (1980) used machine induction to generate a
knowledge base for diagnosing soybean diseases. According to Buchanan et al
(1983), the knowledge base’s diagnosis did not coincide with that of the expert
in 100% of cases. However, the knowledge base was much more accurate than
one made up of rules elicited directly from the expert.

But, as these and other writers (e.g., Gruber, 1988) have demonstrated,
before relationships can be induced, the classes and the attributes (often called a
partial domain model) have to be elicited. These attributes and classes must, in
general, first be elicited from the domain expert or from other sources. As
Buchanan et al (1983) put it, “finding meaningful, causal associations in a large
data base requires considerable basic knowledge of the domain”. Gruber (1988,
p 583) argues that creating a partial domain model “can require a significant
knowledge engineering effort when the task is more complicated than simple
classification”.

A few tools, e.g.,, KRITON (Diederich, Ruhmann & May, 1987),
therefore include both the repertory grid technique for eliciting the required
data, and an induction algorithm to distill the data into a compact, efficient, set

of rules.
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In addition to the carefully selected examples from which the rules are
induced, a separate set of examples is generally required to validate the induced
rules. Michalski and Chilausky (1980) used some three hundred examples for
induction and a similar number of other examples to validate their induced
knowledge base. Thus, gathering the examples, and expressing them in terms of
attribute values and classes, can be an onerous prerequisite to induction.

Some writers (e.g., McClanahan & Luce, 1988) argue that every possible
combination of attribute values should be present in the training set. Typically,
this involves using a large number of examples. Others (e.g., Quinlan, 1986)
argue that the induction process is more efficient if a small number of examples
is used. Even where numerous examples are available, a window of a few (fifty
or less) carefully chosen ones is actually used for induction. The remaining
examples are used for testing the coverage of the induced knowledge.

Politakis (1985) has referred to inductive methods as “black boxes”
which create rules that domain experts and humans in general sometimes have
difficulty making sense of. This is especially true if continuous-valued attributes
are involved, because induction typically subdivides them into ranges (Fayyad &
Irani, 1992), which are often quite meaningless to domain experts. But
Politakis points out that in some domains, such as medical diagnosis, domain
experts will not have confidence in a system unless they understand and agree
with the rules that it uses.

Generalising about the applicability of method to problem, Politakis
(1985) argues that approaches such as machine induction are better suited to
small problems, and not good enough for large or complex ones, which need
“better methods ... to reduce the dimensionality”. Quinlan (1991) has also
pointed out that, while the attribute/value approach may be adequate for simple

systems, many situations exist, e.g., engineering design, that involve hierarchies
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of objects. A new approach embodied in a tool called FOIL generates
PROLOG statements by detecting regularities in the structured examples.

The ultimate objective of machine induction is to break the training set
into several smaller sets, each containing cases of a single class. The distilled
knowledge is simply a trace of the sequence of decisions that brought about the
transformation from a single multi-class set to several single-class sets.

Consider again the set of cases presented in Figure 3 on page 27. A
visual inspection of the data reveals that there are three different ways of
subdividing this set. One way is to subdivide it into two sets based arbitrarily
on the risk of failure. (This division is not entirely arbitrary, because inspection
reveals that low risk selects a single-class set, i.e., internal development.) As
Figure 6 shows, Ace and Day fall into set 1.1 while BU, Cha and EZ fall into

set 1.2.

Entry | Payback Strategy
Set {Co. | Cost Period Risk | Implementation

1.1 JjAce | low short LOW Internal development
Day | high short LOW Internal development

1.2 |BU Tow short HIGH | Joint venture
Cha | high long HIGH | Joint venture
EZ Tow long HIGH | Acquisition

Figure 6. Sets 1.1 and 1.2

Because set 1.1 contains just one class, it needs no further subdivision
and can be left alone. But set 1.2 contains more than one class, so further
subdivision is necessary. Visual inspection of the three cases in set 1.2 reveals
that this set can be subdivided based on either entry cost or payback period.

Using payback period results in the three sets shown in Figure 7 on page 49.
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Entry | Payback Strategy
Set [Co. | Cost Period Risk | Implementation
1.1 |Ace | Tow short LOW Internal development
Day | high short LOW Internal development
1.2.1{BU Tow SHORT HIGH | Joint venture
1.2.2(Cha | high LONG HIGH | Joint venture
EZ Tow LONG HIGH | Acquisition

Figure 7. Sets 1.1, 1.2.1, and 1.2.3

It is evident that there are now two single-class sets and one two-class

set (1.2.2). Obviously, set 1.2.2 is further subdivided by a test on entry cost.

The distilled knowledge can be expressed as a decision tree. But this can

be converted (Quinlan, 1987) into a set of rules, as follows:

a)

b)

d)

IF risk of failure is low
THEN internal development is recommended.

IF risk of failure is high
AND payback period is short
THEN joint venture is recommended.

IF risk of failure is high

AND payback period is long

AND cost of entry is high

THEN joint venture is recommended.

IF risk of failure is high

AND payback period is Tong

AND cost of entry is low

THEN acquisition is recommended.

Of course, this bit of manual induction has been done in a somewhat

arbitrary manner. The rules arrived at are not the only ones possible. Indeed,

this consultant’s view of the problem space is not the only one possible

(Appendix A, “Entry strategy selection: a broader view” on page 212 provides
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a somewhat fuller discussion of the problem). In addition, the simplicity of the
problem allows an intuitive approach to be successful. But when the size of the
training set, the number of attributes, and the number of classes is increased,
more systematic methods are needed. Such methods are embodied in
algorithms for machine induction (Quinlan, 1986; Michalski & Larson, 1983,
Niblett, 1987; Clark & Niblett, 1987 & 1989; Cestnik, Kononenko & Bratko,
1987).

These algorithms all require as input a set of possible classes, a set of
attributes and their possible values, and a set of training cases.

The preceding discussion of manual induction illustrates the process that
machine induction follows. One difference is that machine induction does not
arbitrarily select attributes for splitting the training set. One approach is to
select the test that minimises entropy (Quinlan, 1986). Other approaches are
also used (see, e.g., Mingers, 1989; Buntine & Niblett, 1992).

It will be recalled that although all the cases were expressed in terms of
the same attributes, not all the attributes were required in determining some
classes. For example, the class “internal development” was determined by a
single attribute, viz., risk of failure. On the other hand the other two classes
could be distinguished from each other only by considering the other attributes
as well. So, the inductive process generalises from specific cases and eliminates
redundant or unnecessary tests. Clearly, some process of this kind is necessary
in producing an efficient knowledge base and eliminating what Wilkins (1987)
called “sociopathic” knowledge, discussed earlier on page 8.

The algorithms developed for finding regularities in examples include
Quinlan’s (1986) “iterative dichotomiser” (ID), which has gone through several
refinements. ID3 is the best known of these refinements. Michalski has been
associated with a series of algorithms called AQ (sce, e.g., Michalski & Larsen,

1983). AQI1, one refinement in this series, was used by Michalski & Chilausky
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(1980) to demonstrate the power of induction to distill effective and accurate
knowledge from a set of training cases.

The different algorithms have their weaknesses and strengths, (see, e.g.,
Roskar, 1988; Hart, 1986) and attempts continue to find better methods (see,
e.g., Fayyad & Irani, 1992). Clark & Niblett (1987) have tried to combine the
best features of the AQ series and the ID one and produce an algorithm that

has advantages over the two on which it is based.

Don’t-Cares

If elements are allowed to be given don’t-care (or not-applicable) ratings in the
repertory test, that creates the problem that the induction algorithm will have
to cater correctly for the don’t-care attribute value. Similarly, if prototypes are
used in knowledge acquisition from examples, it is quite likely that some cases
will have don’t-care attribute values. One approach is to expand each
don’t-care by generating several cases (one for each possible value of the
attribute). This approach, however, can run into a combinatorial explosion.

Another approach avoids this explosion by generating a random value in
place of each don’t-care, but this can result in an erroneous knowledge base.
Quinlan (1986) originally argued for replacing each don’t-care with the most
common (and, presumably, most likely) value of the attribute in question. Even
that is not guaranteed to be entirely satisfactory.

A more effective approach lies in the way the grid is analysed. The
distance between a don’t-care and any other rating should be taken as zero.
This encourages the knowledge source to distinguish adequately between what
could be identical ratings. Even so, some don’t-cares may still reach the
induction process. Here, a satisfactory way to process don’t-cares is to treat
them as being equivalent, during learning, to every possible value (see e.g.,

Gams & Lavrac, 1987; Quinlan, 1989).
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Inductive Tools
Learning from examples has been vaunted by many writers (e.g., Michalski &
Chilausky, 1980; Quinlan, 1986; Michie, 1991) as a key solution to the problem

of knowledge acquisition. Typical of these, Norris (1986) argues that

the usual approach based on informal interviews ... is time-consuming,
error-prone and often results in a knowledge base that is significantly

incomplete.
Michalski & Chilausky (1980, p 79), argue that

current computer induction techniques ... offer a viable knowledge

acquisition method if the problem is sufficiently simple and well defined.
But not everyone is convinced: according to Roskar (1988, p 81),

several limitations of the existing software for machine induction from
examples have to be solved before this method can become efficient

enough.

Roskar argues that logic-based induction is more suitable for
representing “general and specific knowledge, and is thus more suitable” for
medical diagnostic domains than similarity-based learning.

Tools discussed in learned journals — e.g, RL4 (Clearwater & Provost,
1990) and ITRULE (Goodman & Latin, 1991) — tend to be induction engines
without the user interfaces that would make them worthy of being called
knowledge-acquisition tools. But several commercially available tools (e.g,,
1st-Class, and Autolntelligence) for expert systems development incorporate
induction algorithms in knowledge acquisition from examples. These tools

allow users to input both a partial domain model and examples, which the tool
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then uses to induce rules. Such tools are often targeted at domain experts for

their direct use without the mediation of knowledge engineers.

Learning’s Promise

Machine-learning systems tend to be involved only during the
construction of a knowledge-based system. The learning tends to be abandoned
as soon as the system is judged good enough to be put into operation. Some
writers (e.g., Bain, 1986, Kolodner, 1983) think that this is unfortunate.

According to Bain:

people tend to improve their abilities to reason about situations by
amassing experiences in reasoning. The more situations which a person
knows about, the more able he is to account for feature differences
between new input and old knowledge .... The inability to save accounts
of previous experience for future application and modification represents

a serious shortcoming of most, if not all, rule-based systems.
Two aims of learning from experience involve refining

* Knowledge in the knowledge base

* Probabilities of different consequents.

The first aim requires a post-hoc analysis of each consultation to
determine whether the consequent proved accurate, and, if not, what the correct
consequent was, and how its antecedents differ from those that generated the
wrong consequent. This is a kind of failure-driven learning, but it is by no
means automatic.

The second aim does not necessarily require external confirmation, but
assumes that the knowledge in the system is accurate. An episodic memory can

be built up for future use in re-inducing the knowledge base (see, e.g., Kolodner,
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1983); or this learning can be done incrementally. If the episodic memory
shows that 90%, say, of all consultations result in a certain consequent, it may
be appropriate to reorder the consultation so as to rule out this commonest, or
most probable, consequent first.

Gaines (1989) has proposed an architecture for knowledge support
systems, which eliminates the false dichotomy between acquisition and

performance.

Conclusions

This chapter has explored two routes to the same objective. One route,
knowledge acquisition from examples, is direct and can be either structured,
unstructured, or a mixture of both. The other route, the repertory grid
technique, is somewhat indirect, but efficient in that a single procedure gathers
the partial domain model and a sufficiency of cases. Figure 8 on page 55
depicts the stages in knowledge acquisition from examples at the left, the
repertory grid stages at the right, and the shared stages down the centre. With
both approaches, machine induction or some other learning process can be used

to distill the knowledge into an efficient knowledge base.
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Knowledge Acquisition The Repertory

From Examples Grid Technique
Describe domain Describe domain
Elicit classes Elicit elements
Elicit ETlicit
attributes constructs
A 4 A 4
Elicit examples Elicit ratings
Learning Learning
Performance Performance

Figure 8. Two routes to a single objective

It has also been shown that the elements used in the repertory grid
technique should be examples rather than classes. Otherwise, the knowledge
acquired would not include important disjunctive relationships. The elicitation
of elements should therefore be modified to focus on examples.

Some writers (e.g., O'Leary & Watkins, 1990) argue that different

methods acquire different types of knowledge, and

individual task comparisons of different forms of knowledge acquisition
may understate or misstate the problems of interest to developers of

expert systems.

However, if two methods are shown to produce the same kind of knowledge,
then it is indeed useful to compare their relative efficacies and efficiencies. The
preceding discussion has shown that the repertory grid technique and
knowledge acquisition from examples do acquire the same kind of knowledge in

different ways.
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If, as in knowledge acquisition from examples, the domain expert has to
think of suitable distinguishing attributes without much prompting, it can be
fairly difficult. So any method that seeks (as the repertory grid technique does)
to make these attributes easier to access and articulate is likely to speed up this
part of the knowledge acquisition process. But there is little evidence to
support or refute this conjecture.

Moreover, if the problem space (or domain model) is viewed as
multi-dimensional, the attributes provide the dimensions of such a space. Each
domain object (or class, or element) is located in the space at a point that can
be expressed as Cartesian coordinates. The coordinates of all the classes can be
organised as a matrix (as in Figure 7 on page 49). Whereas this matrix is built
up one column at a time by the repertory grid technique, it is built up one row
at a time by knowledge acquisition from examples. But it is by no means clear
which way would be expected to be more efficient or effective.

Compilation of the expert’s knowledge (Anderson, 1982) into procedural
memory makes it futile to ask directly for rules; but examples can be
successfully elicited. It may well be that experts find it easier to compare cases
rather than to elaborate a partial domain model and describe individual cases.
But there is little evidence to support this conjecture.

It is evident that light needs to be shed on a number of questions.
Without answers to some of the questions raised above, it is difficult to plan
knowledge acquisition activities confidently. It is also difficult to select

knowledge acquisition methods intelligently.
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Chapter 3. Some Implications of Cognitive
Psychology for Knowledge Acquisition
Abstract

Explanations of why one knowledge acquisition method may be more
efficient or effective than another are likely to originate from consideration of
not just the knowledge engineer’s techniques but the expert’s mind as well. In
particular, it is enlightening to consider theories about how knowledge is stored
in the mind and how it is retrieved. This chapter discusses these notions and
some hypotheses implied by them. The hypotheses relate to two
knowledge-acquisition methods: the repertory grid technique and knowledge

acquisition from a minimal set of examples.

Introduction

A domain expert’s performance is a product of what s/he knows. This
knowledge is developed, stored, and retrieved in certain ways (Anderson, 1982,
Kolodner, 1983). Any attempt to elicit a domain expert’s knowledge is
therefore likely to trigger some amount of activity inside his or her mind. The
nature of this activity is influenced by several factors including the
knowledge-acquisition method used. Indeed, the pace with which knowledge is
elicited and the nature of the knowledge obtained appear to depend on the
extent to which the knowledge-acquisition method encourages appropriate
mental operations to take place.

An important part of any comparative analysis is to understand the two
methods being compared. The following two perspectives seem relevant to this

understanding:

» External processes, stages, and outcomes, e.g., how the methods can be

described, what they acquire, and what is done with the data obtained
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* Internal (cognitive) processes, i.e., how the knowledge sought is represented
in the expert’s mind, how it can be retrieved, and what happens when

particular techniques are used in trying to elicit it.

The two methods to be compared are the repertory grid technique and
knowledge acquisition from a minimal set of examples (KAMSE). The external
features of the two methods have already been compared in Chapter 2,
“Learning Without Case Records: a mapping of the repertory grid technique
onto knowledge acquisition from examples.” This chapter is about the internal
processes.

There are several levels of abstraction at which mental representation
and retrieval can be modelled and understood. One of the lower levels is the
neurophysiological; one of the higher ones is the cognitive. Although a
complete mapping between these two levels is yet to emerge, cognitive
psychology is concerned with modelling the mind and mental processes, without
detailed consideration of the brain and central nervous system (Johnson-Laird,
1983; Anderson, 1976). This high-level view focuses on cognitive structures
(e.g., memory) and processes (e.g., attention, learning, and recall).

But what is taking place in the mind cannot actually be observed. What
can be observed is behaviour and perhaps stimuli that affect this behaviour.

So, in some ways, the mind is a black box; and it is possible to propose
different models that produce identical input-output behaviour. Such models
are judged, not on how well they represent what is taking place inside a
person’s head, but on their predictive power; that is, how well their
input-output behaviour corresponds to that of the system they seek to model
and explain.

This chapter discusses the structure of human memory, and how

information is stored in and retrieved from that memory. These notions provide
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a framework for reasoning about what might be happening in the domain
expert’s mind while his or her knowledge is being elicited by either the repertory
grid technique or KAMSE. Assuming the validity of these conjectures, some

hypotheses are stated about the two techniques.

Divisions in Memory

Although questioned by a few cognitive psychologists (see, e.g., Morris,
1988, p 91), it is generally agreed that there are at least three kinds of memory:
long-term, short-term, and perceptual.

According to Gilmartin, Newell & Simon (1975), information from the
outside world enters the system through sensory organs (e.g., eyes and ears) and
into sensory-related buffers. There are “two buffers in series for each sensory
modality (a sensory store and an imagery store)”. When a person receives a
sensory input (whether visual, auditory, or other) from the external world, this
input is held very briefly in perceptual store, then transferred into short-term
mernory.

Short-term memory is a controversial concept. Baddeley (1976) refers to
studies of short-term memory as “concerned with short-term forgetting”. Some
writers (e.g., Baddeley, 1976; Posner, 1973; Anderson, 1983) use the expression
“short-term” or “working” memory to mean a limited-capacity input store.

Posner (1973, p 16) argues that short-term memory

provides a system within which incoming information can be related to
previously stored information ... providing a means of reorganizing and

updating long-term memory.

Others (e.g., Mandler, 1986) argue that there is no limit to the capacity
of short-term memory. Consciousness is the limited-capacity mechanism, while

short-term memory is those contents of long-term memory that are activated
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but not currently in consciousness. These writers also refer to short-term
memory as “active memory” (see, e.g., Shwartz & Kosslyn, 1982) and
“immediate memory” (see, e.g., Case, 1980).

The contents of short-term memory can be quickly replaced by
subsequent input, but can also be retained by recycling (e.g., repeating a name
just heard, over and over). Information can also be brought into short-term
memory from long-term memory (as when we recollect, reflect, or imagine).

In contrast, long-term memory is a very large-capacity, very low-loss,
store of information. Mandler (1986) sees long-term memory as the sum total
of a person’s life experience. He also argues that long-term memory is the
unactivated portion of these memories. Some psychologists further subdivide
Jong-term memory into different areas. For example, Tulving (1985) has
proposed a “tripartite system: episodic, semantic, and procedural memories”.
Although some writers (e.g., Snodgrass, 1989) approve of Tulving’s model,
others (e.g., Baddeley, 1976) argue that the episodic-semantic distinction is too
sharp. According to Claxton (1980, p 230), Tulving “makes the error of
assuming that, because people can make judgements about knowledge, these
judgements directly reflect basic principles of storage”. Mandler argues that
episodic memory is simply a subsystem of semantic memory, not a different
kind of memory.

In addition to the changes in long-term memory brought about by
information from short-term memory, access to some information in long-term
memory may be lost through forgetting. The more or less permanent

information stored in long-term memory includes:

* Events
* Schemata (or prototypes)

* Cultural values, attitudes and beliefs
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¢ Knowledge underlying cognitive skills.

But these items are thought to be stored at different levels in long-term
memory. Figure 9 shows the kind of information stored in short-term memory
and at Tulving’s three levels in long-term memory. Each kind of information is

described briefly below.

Short-term Long-term memory
memory
» Episodic
External & < Semantic
internal Events Procedural
input o Schemata
1 o Culture |Skills

A

Perceptual
stores

Figure 9. Memories, and types of information thought to be stored in them.

Episodic memory is described by Cohen (1989) as “memory for personal
experiences ... [consisting] of subjective specific facts”. According to Morris
(1988, p 105), “episodic entries retain information about their place and time of
occurrence”, which is really another way of stating Aristotle’s theory of
association: recalling one event can trigger the retrieval of other events
associated by contiguity, whether in space or time (see, e.g., Dalton, 1988).
Mandler (1986) contends that some episodic entries may be conceptually, rather
than temporally, organised. This might account for the fact that people
sometimes recall an incident, and then have difficulty remembering where or
when it happened. Kolodner (1983) argues that the richness of episodic

memory is one of the main factors distinguishing an expert from a novice.
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Schemata are knowledge structures that represent concepts or objects in
generalised, idealised, or stereotyped form. For example, a person’s schema for
an elastic band might include the following information: made of rubber, can
stretch, shaped like a flexible loop. This schema is generated from the person’s
experience of encountering elastic bands. It is a distillation of the essential
characteristics of every elastic band the person has ever seen. A person’s
schemata help him or her to understand the world (Bartlett, 1932; Rumelhart,
1975; Noble, 1989).

So, for example, the next elastic band a person sees will be recognised as
such, because it matches the person’s schema for elastic bands. Conversely,
items not matching this schema will be recognised as not being elastic bands.
But Bartlett also points out that schemata are “active developing patterns”; so,
although they shape a person’s interpretation of things seen and events
experienced, schemata are in turn generated and refined by a person’s
experiences.

Although Figure 9 on page 61 shows episodic memory as separate from
semantic memory, the latter appears to have some influence on what is stored
in and retrieved from the former. According to Bartlett (1932), people do not
remember episodes as a whole, but rather they have memories of the essence of
events based on their schemata. And when they recall past events, it is not so
much a retrieval as a reconstruction. This reconstruction involves retrieving
episodic memory of peculiarities about the specific event, and combining it with
a schema for the type of event being recalled (see Bower, Black & Turner,
1979). Baddeley (1990; see also Rumelhart & Norman, 1985), notes that frames
(Minsky, 1975), scripts (Schank, 1975, 1982), and schemata, although not
identical, are very similar concepts.

Cultural knowledge is deeply rooted and generally not available to

conscious retrieval, but it governs the way people think and act (see, e.g,
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Connerton, 1989; Hofstede, 1980). People’s minds can store these pieces of
information unconsciously, not just at an early age, but throughout adult life as
well. This ability is reflected in the phenomenon of corporate culture (see, e.g.,
Marshall & McLean, 1985), which is in many ways similar to national culture —
but rather than being characteristic of members of a society, typifies employees
in a company or members of a club.

Skill is the knowledge underlying many forms of expertise. This
knowledge 1s improved by experience or practice and manifests itself in
increased competence at performing a particular task. But although increased
skill is manifested in improved performance, it is also often accompanied by a
difficulty in explaining exactly how this performance is achieved.

Johnson-Laird (1983, p 465) is one of several psychologists to point this out:

You can never be completely conscious of how you exercise any mental
skill. Even in the most deliberate of tasks, such as the deduction of a
conclusion, you are not aware of how you carried out each step of the

process.

That is not to say that a person may not try to explain; but, if Johnson-Laird is
right, such “post-hoc rationalisations” (discussed on page 67) are not guaranteed

to be reliable.

Retrieval of Information

Information in long-term memory can also be classified according to the
means by which it can be retrieved. In particular, information can be at the
conscious or unconscious level. Anderson (1982), for example, has argued (but
he is by no means the only one; Posner, 1973; and Bainbridge, 1986, advance
similar arguments) that the knowledge related to a cognitive skill can also be

distributed between the conscious and the unconscious within long-term
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memory. Strictly, conscious and unconscious describe the way information can
be retrieved rather than anything about the information itself.

As shown in Figure 10, Posner (1973, p 43), distinguishes between
“effortless retrieval [which] occurs when the input contacts its address in

memory without any conscious search” and

effortful retrieval [which] occurs when the subject is forced to search the
items retrieved into active memory, or when he does not have sufficient

content to locate the items in long-term memory unambiguously.

Retrieval

Conscious Unconscious

Effortless Effortful

Figure 10. Modes of retrieval from long-term memory

But even “effortful” search can retrieve only information that is subject
to conscious retrieval. As mentioned on page 10, Anderson refers to the
consciously retrievable knowledge as “declarative” and to the unconscious
knowledge as “procedural”. According to Anderson (1982), the distribution of
knowledge underlying a skill shifts from the conscious to the unconscious as a
result of practising the skill. It is not that the declarative knowledge is lost; the
declarative knowledge remains subject to conscious retrieval, while the
productions underlying expert performance are developed beyond conscious
reach.

Anderson’s ACT* (adaptive control of thought) theory implies, for

example, that when a business administration student first learns about “cash
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A "cash cow":

o 1is the market leader

o is in a low-growth market
o can be "milked" for cash.

Figure 11. An example of declarative knowledge

cows” (see, e.g., Kotler, 1984), the knowledge is probably stored as the set of
facts shown in Figure 11 on page 65. This is not Anderson’s example, but it is
consistent with ACT* theory.

This is an example of declarative knowledge and is probably (as
discussed later) stored as a schema in semantic memory. Once this knowledge
is deployed in the performance of some act (e.g., analysis of a marketing
strategy case), it is used in the form of productions. ACT* theory implies, in

this instance, a set of productions of the form shown in Figure 12 on page 66.
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IF the goal is to classify a strategic business unit (SBU)
THEN a subgoal is to see what the SBU's competitive
position is like.

1F the goal is to classify an SBU
AND the SBU's competitive position is like that of a “"cash cow"
THEN a subgoal is to see what the SBU's market growth is 1like.

IF the goal is to classify an SBU
AND the SBU's competitive position is like that of a "cash cow"
AND the SBU's market growth is Tlike that of a "cash cow"
THEN the SBU is a "cash cow",
POP the goal.

IF the subgoal is to see what the SBU's competitive
position is like

AND the SBU is the Tleader in its market

THEN the SBU's competitive position is like a "cash cow's"
POP the subgoal.

IF the subgoal is to see what the SBU's market growth is like
AND the SBU's market growth is Tow
THEN the SBU's market growth is like a cash cow's,

POP the suhgoal.

Figure 12. Tentative productions constructed from declarative knowledge

Anderson (1983, p 30) asserts that in each production of this kind, the

condition portion

specifies some pattern that should be active in working memory, and the
action specifies some cognitive or external operation that will be

performed if the pattern is matched.

Repeated use, according to Anderson (1982), causes these tentative
productions to be unified, two at a time. So, eventually, after using the
knowledge a large number of times, a business strategist might end up with a

more compact production, as shown in Figure 13 on page 67.

Chapter 3. Some Implications of Cognitive Psychology for Knowledge Acquisition 66



IF the goal is to classify an SBU
AND the SBU is a market leader
AND the SBU is in a low-growth market
AND the SBU can be "milked" for cash
THEN the SBU is a “cash cow",

POP the goal.

Figure 13. Example of a compiled production

As this unification of productions (knowledge composition) takes place,
the productions are stored beyond the person’s conscious access. So, if asked
why s/he says that a particular SBU is a “cash cow”, a person might have
difficulty answering, or might rationalise by constructing an answer from
declarative knowledge. According to Anderson, compilation accounts for the
speedup phenomenon that accompanies repeated use of a skill. It should be
noted that this procedural knowledge, although shown as compiled productions,
is essentially a mapping between a set of attribute values and a class. The
productions provide a convenient and intelligible notation; but the essence of
ACT* theory remains intact even if this knowledge is represented in the model
as a neural network.,

One argument against Anderson’s procedural/declarative divide is that it
is too closely based on computer models, with declarative knowledge being
analogous to data, and procedural knowledge being analogous to programs.
But Cohen (1989) is among those who affirm that ACT* theory explains most
of the phenomena observed in expertise formation. However, she points out
that (Cohen, 1989, p 177) it does not explain “the effects of emotional and
attitudinal factors” (Morris, Tweedy & Gruneberg, 1985), or “the blurring of
conceptual boundaries” (Murphy & Wright, 1984). Anderson (1989) has
recently refined and updated ACT* theory. The new theory, embodied in a

model called PUPS, includes “analogy-based generalization, a discrimination
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mechanism, and principles of making causal inferences” among its induction
mechanisms.

It can also be argued that object identification (see, e.g., Marr, 1980;
Ellis & Young, 1988) is based on schemata. The first time a child sees an
elastic band and learns what it is, s/he might develop a schema for elastic bands
(see, e.g., Flavell, 1985, pp 48-54). This schema might include the size, shape,
texture, flexibility, material, elasticity, and perhaps even the colour of such an
object. When asked what elastic bands are like, s/he might say: “I’ve only ever
seen one, but I think they are stretchable, they are about this size, brown, and
made of rubber”. The next one the child sees might be very similar to the first
and would therefore reinforce the schema. Perhaps eventually the child will
encounter an elastic band very different in size from any s/he has experienced
before. The child might well be able to recognise the strange elastic band for
what it is; but the match with the schema will be imperfect. This experience
will cause the schema to be refined, perhaps to indicate that the size can be
within some range. There is, however, little justification for supposing that the
development of schema precludes that of productions, or vice versa.

The focus on conscious retrievability implies a model of long-term
memory as shown in Figure 14 on page 69. When viewed alongside this
model, Tulving’s (1985) semantic memory appears to be a half-way house
spanning the consciously and unconsciously retrievable contents of long-term

memory.
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Long-term memory

Conscious Unconscious

o Episodes o Automatic productions
o Declarative models

Figure 14. Retrievability of long-termn memory.

One of the explanations that Johnson-Laird offers for unconscious
retrieval of knowledge is that several strands of information are being used in

parallel. So, according to Johnson-Laird (1983, p 468),

any attempt to use introspection in order to become conscious of
something that is normally unconscious is unlikely to succeed. Not only
is the information inaccessible, but also an essentially parallel process
has to be grasped by the serial deliberations of [our introspection

mechanisms].

The discussion so far has focused on the possible structure of memory,
and on the kinds of information stored in short-term and long-term memory,
and split between conscious and unconscious retrieval. According to Posner
(1973), there are three codes (formats) in which information is represented in
these memories. First, there is an iconic code which represents images
perceived, whether visually, auditorily, or by other sensory means. Second,
there is a symbolic code that represents mainly words. And thirdly, there are
motor codes that represent skills in doing physical things (like balancing the end
of a broom in the palm of one’s hand, riding a bicycle, or serving a tennis ball).

It is also interesting to reflect on the similarity between knowledge
stored as motor codes and knowledge stored as compiled productions.

Productions behave very much like motor codes: in an intellectual skill,
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involving observation, discourse, and decision, a person may not be able to say
how s/he actually makes a decision — in the same way as it is almost impossible
to describe the procedure for riding a bicycle. Motor skills are similar to
intellectual skills in that a first attempt to ride a bicycle is likely to end in
failure. By continued practice (and what Schroder, Frank, Kohnert, Mobus, &
Rauterberg, 1990, refer to as “failure-driven learning”), a person can reach a
point where s/he has learnt how to succeed rather than fail. After that point,
practice increases proficiency and speeds up performance (in what Schroder et
al, 1990, call “success-driven training”); and the underlying knowledge is

retrieved only by performance of the skilled act.

Implications for Knowledge Acquisition

As noted above, ACT* theory asserts that knowledge compilation in
experts prevents their performance knowledge from being consciously retrieved.
The compiled automatic productions are retrievable only by performance of the
skilled act. But this performance knowledge is developed as a function of
declarative knowledge (and experience in applying it), as a person progresses
from being a novice to being an expert. Even after knowledge compilation, the
declarative knowledge is not forgotten, but remains in long-term memory, and
can be retrieved by appropriate cues. However, this declarative knowledge is
not what the expert uses in performing the skilled act.

Fortunately, declarative knowledge can be transformed into productions
that model expert performance. When eliciting knowledge from experts, it is
therefore worth encouraging them to retrieve and articulate the pieces of
declarative knowledge from which accurate productions can be generated. The
minimum knowledge needed to model a simple classification decision (see, e.g.,

van Melle, 1981) consists of the following kinds of knowledge units:
*» Classes (the possible outcomes of a classification decision in the domain)
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* Attributes (factors to be considered in making the expert decision between
possible classes), each in the form of
— An attribute descriptor
— Attribute values (the possible values that an attribute can assume).

* Information to link patterns of attributes to particular classes (for instance,
rules, decision trees, or an artificial neural network, which can all be
generated by detecting regularities in either of the following):

— Examples or cases (instances of the domain classes expressed in terms of
attribute values)
— Ratings (estimates of the degree to which particular attribute values

describe particular classes).

These are among the units processed by knowledge-acquisition tools
such as AQUINAS (Boose & Bradshaw, 1987), FMS-Aid (Garg-Janardan &
Salvendy, 1988), and KITTEN (Shaw & Gaines, 1987); and expert-system shells
like Ist-Class. Their successful use in these tools demonstrates their adequacy
for at least some kinds of analytic knowledge-based systems. The classes and
attributes comprise a partial domain model, while the linking information,
which is an important part of an expert’s compiled knowledge, enables a
representation to provide the basis for inference.

While these units are sufficient to model a simple decision, many
problems involve making several such interdependent decisions. For example,
MYCIN makes two: diagnosis and treatment. Some tasks (e.g., developing a
plan) require effortful solution by the expert. Even these tasks are likely to be
subdividable into several simple decisions, the results of which can be used to
tailor a skeletal plan into a specific plan.

As noted in Chapter 1, “The Knowledge Acquisition Problem,” several

methods have been used to elicit knowledge units from knowledge sources (for a
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list of methods, see, e.g., Neale, 1988; Foley & Lehto, 1989). The rest of this

chapter, however, concentrates on two methods: the repertory grid technique

and KAMSE. The two methods can be subdivided into five parallel stages as

shown in Figure 15. Although the stages are shown as having distinct

boundaries, they often overlap. For example, a list produced at stage 1 might

need to be augmented when subsequently elicited attributes and examples act as

cues to elicit further classes. Stages 4 and 6 are computer-intensive, while the

other stages demand mental activity from the expert.

Stage Repertory Grid

1

Listing all elements that
exemplify the domain
classes

Identifying constructs
that distinguish elements
from each other

Rating all elements on
each construct elicited

Using machine induction
to find regularities, and
distill the grid into a
knowledge base

Classifying a set of
exemplars and using these
to evaluate the knowledge
base produced in the
previous step.

KAMSE

Identifying the classes that
cases in the domain can belong
to

Identifying the attributes (e.g.,
supply voltage) considered in

deciding the class of a case, and
listing the values (e.g., 3V, 5V,
24V) that each attribute can have

Describing, without repetition,
examples of all classes in terms of
attribute descriptors and values

Using machine induction to find
reguiarities, and distill the
examples into a knowledge base

Classifying a set of exemplars,
and using these to evaluate the
knowledge base produced in the
previous step.

Figure 15. Stages in the repertory grid technique and KAMSE

An analysis of only the external features of the two methods (see

Chapter 2, “Learning Without Case Records: a mapping of the repertory grid
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technique onto knowledge acquisition from examples”) does not make clear
whether the repertory grid technique or KAMSE would be more efficient or
efficacious, although both methods are capable of producing identical results on
a given domain. But, from the standpoint of the expert’s mental activity,
several hypotheses can be stated. Five of these are discussed and presented in
the sections that follow. In these discussions, the expert’s mental activity is
often described in terms of a knowledge domain involving identification of

objects.

Eliciting Domain Elements

Gammack & Anderson (1990) stress the importance of context in
determining both the information elicited and the meaning to be given to it. In
two different contexts, the same expert might give different information. For
instance, Gammack & Anderson (1990, p 20) point out that “the similarity of
Pepsi-Cola to Coca-Cola depends on ... the third item in the comparison”. But
if two knowledge-acquisition methods contain a stage in which the interaction
with the knowledge source is the same, it is reasonable to expect that on the
same domain and in the same context, the shared stage of the two methods will
elicit identical knowledge and demand equal amounts of effort from the
knowledge source. Stage 1 of the two methods fits this description: the expert
identifies and lists all classes (in KAMSE) or elements (in the repertory grid
technique).

If the objects, or facsimiles, are present (e.g., specimens in object
identification, or historical records in some other domains), recognition (i.e.,
knowing that you have seen an object before) and then reminding (i.e.,
recognising the object activates the word that describes it) may occur. Such

retrievals are likely to be quick and effortless.
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If the objects are not present, but logically related to each other (e.g.,
things you would expect to find in an office, or in a desk drawer, or on the
menu in an Indian restaurant), their normal location in the world probably acts
as a cue for retrieval from episodic memory, and activation might spread to
other items seen in the same location. Some of the items might be retrieved
effortlessly; some might require effortful search, perhaps involving visualisation
of the item’s milieu (as when a person tries to recall all the windows in a
familiar room). Activation may also spread to items related temporally (e.g., all
the ailments diagnosed on a particular day).

Hypothesis 1: The elicitation of elements in the repertory grid technique
is very similar to the elicitation of classes in knowledge acquisition from
examples. When both prototypes and exemplars are used as elements, the
repertory grid will require the greater effort. In any event, eliciting classes is
not likely to ever require more effort than eliciting elements. If the elements
elicited are all prototypes, then the two methods are identical at this stage; and
no difference is expected, between methods, in the mental effort required of the

expert at this stage of the process.

Eliciting Attributes and Constructs

In the repertory grid technique, constructs (bipolar attributes) play an
important part. Both poles of a construct are vital because they delimit the
construct’s “range of convenience” (Ford, Petry, Adams-Webber & Chang,
1991). And a construct is valid only within its range of convenience. As
discussed in Chapter 2, “Learning Without Case Records: a mapping of the
repertory grid technique onto knowledge acquisition from examples,” across the
two methods, there is an analogy, or even equivalence, between attributes and
constructs. But the attribute values in terms of which examples are described

under KAMSE have a single pole.
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Eliciting Attributes

During stage 2 of KAMSE, the expert has to list a set of distinguishing
attributes (declarative knowledge) without conscious access to the automatic
productions that contain references to them. But s/he can see the list of classes
that s/he developed in stage 1. It is by considering the items in this list that the
expert is able to identify distinguishing attributes. The limited capacity of
working memory may not accommodate all the items along with any other
information. Subsets must therefore be focused on at any given instant. But,
because the list is there, schemata of all the items are probably activated in
long-term memory.

If the expert can look at only the list of classes, several strategies for
finding the distinguishing attributes might be used (focus on one, two, or some
other number of classes at a time to see how they can be described, then using
these attributes on some of the other classes to see if they are useful as
discriminators). The expert might observe: “These things are made of different
materials and have different shapes”. So s/he might decide that shape and
material are two of the important attributes.

If the expert can look at both the list of classes developed in stage 1,
and the items themselves, s/he can compare the actual items rather than merely
their schemata. This gives the expert more options than not having the items
present; and some people employ sorting (physically separating out the items
currently in consciousness) as a strategy to help them become aware of
distinguishing attributes.

Whether the items are present or not, the expert is free to choose how to
consider them, what groupings to make, in trying to become aware of the
distinguishing attributes. In forming these groups, the expert is trying to
interrelate different pieces of declarative knowledge. Although the attributes

that a person articulates might not be sufficient to make all the required
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distinctions, they do provide a language for starting to express the examples.
During stage 3, there may be occasions when the expert has to return to the
search for distinguishing attributes, but at such times, the search is aimed at
resolving confused pairs; so two items at a time are compared there. But the
attribute definition process depends on comparing the objects to find how they
differ, and on defining these differences as new attributes. Whether it takes
place all at once or as a consequence of describing examples, it is likely to
require comparable amounts of mental effort.

Having identified an attribute, the expert then has to develop a list of
values that are adequate for describing all the items. For instance, when a
person thinks of the attribute “material”, there are a vast number of materials
in the world: cloth, paper, brass, steel, different kinds of plastic, rubber, and
countless others. But not all of these are important in distinguishing among the
items in the domain. To articulate the values that are important, a person
actually considers the items in the list, thereby being reminded that some of the
items are made of metal, some of plastic, and some of rubber, and that these
three are sufficient values of the attribute “material” to distinguish among the
items.

Eliciting Constructs

In the repertory grid technique, the situation is a bit different when the
expert tries to identify constructs for distinguishing among the set of domain
elements.

If the elements are present, the expert may select the triad physically,
and look at its members for differences. Whether the elements are present or
not, s/he may compare the schemata of the items in consciousness, trying to
find constructs on which they differ. S/he focuses consciousness on the three

schemata, trying to find differences between them.
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The expert is not left to make her own choices about which items to
consider, and what groupings to put the elements into. Rather, s/he is
constrained to consider the elements in sets of three, and neither the
composition nor the size of the sets is of her choosing. Kelly (1955) prescribed
a set size of three elements for what appears to be as much a mathematical as a
psychological reason: three elements form the minimum set from which it is
possible to find two that are similar and one that is different. But it may or
may not be true that, being left to their own devices, subjects would actually
select items in threes to consider.

Kelly found that using the repertory grid technique enabled him to elicit
the inner worlds of his patients. However, it is not clear whether he could have
found an easier method, or whether the technique was easier on him but harder
on his patients. It is not clear whether he could have found a direct style of
questioning that would have requested the information he sought, in such a way
that the patients would have been able to provide it without much effort. Of
course, Kelly did not want them to employ defence mechanisms to cover up
how they actually felt, by giving answers that were not painful for them.

It is also not known whether domain experts have the same kinds of
inhibitions about stating what they think their knowledge consists of. Although
it is clear that the repertory grid technique is useful and effective, it is not clear
whether it is optimal or whether it restricts the domain expert. The repertory
grid technique is potentially inefficient in that it has no safeguards against the
repeated elicitation of parallel constructs. A few parallel constructs may be
useful in helping the expert clarify her thinking, but in general they are
redundant and therefore largely wasted. But it seems reasonable to assume that
the technique is more efficient than asking directly for attributes.

Hypothesis 2: A set of constructs (or attributes) adequate for

distinguishing among all the elements (or classes) in a domain can be elicited
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more easily with prompting, as provided in the repertory grid technique, than

without, as in KAMSE.

Traversing an Inference Matrix

If the classes in a domain (for example, classification of a strategic

business unit) form the set E = {question mark, star, cash cow, dog} and the

attributes form the set A = {growth less than 10%, relative market share less

than 1, a lot of cash required, highly profitable}, there is a kind of connection

matrix between the two sets. This matrix, which is shown in Figure 16, is what

is referred to as the inference matrix.

Relative | A Tot of
Growth mkt share{ Cash High
< 10% <1 required | Profits
Question mark No Yes Yes No
Star No No Yes No
Cash cow Yes No No Yes
Dog Yes Yes No No

Figure 16. An inference matrix for classification of a strategic business unit

In KAMSE, the range of applicability of the knowledge elicited is
enhanced if the minimal set of examples used includes both prototypes
(schemata) and exemplars (atypical examples). This is also true of elements in
the repertory grid; so the inference matrix is the same, whichever of the two
methods is being used. The repertory grid technique elicits the inference matrix
one column at a time, whereas KAMSE elicits the same matrix one row at a
time (see Chapter 2, “Learning Without Case Records: a mapping of the
repertory grid technique onto knowledge acquisition from examples”).

It is also interesting to consider the problem space as opposed to the
mental model. The repertory grid technique is based on the notion that a

person’s micro-world can be represented in a multidimensional space, with each
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dimension accommodating a construct. This space can map onto a
two-dimensional inference matrix.

However, Tulving’s (1962) theory of subjective organisation asserts that
people organise information to make its use easier, but this organisation bears
little relationship to the way the information is normally stored in the person’s
long-term memory. Gammack (1987) argues that the representation is simply a
metaphor to help people discuss and partially appreciate what is going on.
Whatever the mental representation, it is clear that classification knowledge can

be mapped onto this multidimensional space.

Eliciting Examples

An example, which might be reconstructed from semantic and episodic
memory, is described in terms of attribute values and a class. In describing an
example, the expert considers the domain object and focuses on the values that
it has for the various attributes. Having made the observations (or while
making them), s/he articulates the relevant values.

On the first object for which the expert describes an example, s/he will
simply consider the object and state the values that it has on the attributes.
However, when s/he focuses on a subsequent object, the attribute values that
s/he states may be identical to those for a previously stated example of some
other object. For instance, if s/he identified “material” and “shape” as the
attributes, as discussed in “Eliciting Attributes and Constructs” on page 74,
and s/he used a one-penny coin as the first example, then the attributes will be
sufficient to describe the penny (which has the values metal and round). The
adequacy of the two attributes is tested only when a similar object is focused
on. For instance, if the expert takes the one-cent coin as the second case, then

s/he will be stating “metal” and “round” again. And those attribute values will
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be identical to the ones for the penny in the previous example, creating a
confused pair.

The only satisfactory way of resolving this conflict is by finding a new
attribute on which the two objects differ. For example, “engraved figure” with
values of “woman’s head”, “man’s head”, and “other”. This process of new
examples taking the existing attribute set to its limits and exposing its
inadequacy is one that continues until examples of all the domain objects have
been described. So, there is first a process of considering the values that the
object has on existing attributes. There is sometimes the additional process of
comparing a confused pair of objects to identify an attribute on which they
differ, and then defining that attribute. Of course, it is possible for a sufficient
set of attributes to be identified during the initial definition of the attributes in
stage 2, so that subsequent expression of examples in stage 3 is smooth, without

any return to stage 2.

Eliciting Ratings

After a construct has been identified, the expert is asked to assign a
rating to each item to reflect the degree to which the item possesses the feature.
Because the construct is personal, whatever a domain expert states as a
constructs, it ought to be relatively simple to rate all the elements on it. That is
as long as the constructs are defined to be generally applicable to elements
outside of the triad.

It might be expected that people inexperienced in using the repertory
grid technique will sometimes articulate constructs that are not generally
applicable to elements outside of the triad. For example, if the triad consisted
of “penny”, “paper clip”, and “elastic band”, an inexperienced user of the

repertory grid technique might introduce a construct of “made of metal” as one

pole and “made of rubber” as the opposite pole. When faced with rating other
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elements, this person might have difficulty rating the plastic paper clip, because
it is made of neither metal nor rubber. A scale with a central point rescues
such persons, and allows them to rate the element as neither pole. Those with
more experience at using the technique might have decided to use the construct
“made of metal” / “not made of metal”. They would probably have found it
easier to rate all elements. Indeed they would have been able to assign extreme
ratings to all the elements.

Hypothesis 3: There is little reason to expect an expert to find it easier to
express cases in terms of attribute values than to identify similarities and

differences between examples of classes.

Efficacy of Method

Efficacy differs from efficiency (see page 82) in that, whereas the latter takes
account of effort for results, the former is concerned merely with results. So a
method is efficacious if it produces the desired results. Efficacy can therefore be
defined as the diagnostic accuracy of the knowledge acquired. So, one method
could be considered more efficacious if, regardless of how much effort it
required (within reason), using it resulted in more accurate knowledge.

A word about accuracy is appropriate here. Accuracy is a measure of
the ability of the knowledge base to arrive at decisions with which the
knowledge source (domain expert) agrees. If the expert’s decision is noted in n
cases, and these cases arc then presented to the knowledge-based system, the
KBS will in general arrive at the same decision as the expert in m cases (where
m< =n). The accuracy of the knowledge base is computed as m/n. This
measure has also been referred to in the literature as diagnostic, classification,
and predictive accuracy.

Adequate accuracy is normally a necessary (although not always

sufficient) quality that a knowledge base must have if it is to become

Chapter 3. Some Implications of Cognitive Psychology for Knowledge Acquisition 81



operational. But it is diflicult to find any reason why a knowledge base
developed from the repertory grid technique should be either less or more
accurate than one developed using KAMSE.

Another possible measure of eflicacy is the number of knowledge units
acquired. Knowledge units are the entities that can be observed as increasing in
number when a successful attempt is made to elicit an expert’s knowledge.
They are the entities acquired that are useful for building a knowledge base.
Among these are the kinds of units listed on page 70.

But it is difficult to say whether a larger number of knowledge units
(Burton et al, 1990) means that a method has more eflicacy. In some ways, it
depends on one’s point of view. Wilkins (1987) expresses the view that a
method that acquires all the required knowledge as a small number of units 1s
more efficacious than one that acquires all the knowledge as a large number of
units.

Hypothesis 4: Overall, for the entire knowledge acquisition cycle (stages
1 to 5 in Figure 15 on page 72), there is no efficacy difference between the two
methods; the knowledge base generated by induction will be equally accurate

between methods.

Efficiency of Method

Efficiency can be defined as effort per unit of knowledge acquired.

According to Dhaliwal & Benbasat (1990, p 149), it is

associated with the resources expended in the development of a
knowledge base. The effort, cost and time of the expert(s) and the

knowledge engineer(s) are the major determinants ...

Burton, Shadbolt, Rugg, & IHedgecock (1990) measure efficiency “in

terms of effort for gain”. The effort is measured in elapsed minutes, while the
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gain is in the number of clauses acquired. However, their misgivings about the
appropriateness of number of clauses as a measure of gain led them to perform
a further experiment in which the experts evaluated the acquired knowledge to
provide a more meaningful estimate of the gain.

One method would be said to be more efficient if using it resulted in
acquiring a given amount of knowledge with less effort. We have already
predicted, in the previous sections, that the two methods require the same
amount of effort at stages 1 and 3, but that at stage 2 the repertory grid
technique requires less effort than KAMSE. If this is true, and the differential
effort is large enough, it will be reflected as a difference in the overall process
(stages 1 to 5), unless there is a compensating difference at the evaluation stage.
The author was of the opinion that the differences in effort would cancel each
other out for the overall process.

Hypothesis 5: Overall, for the entire knowledge acquisition cycle (stages
1 to 5 in Figure 15 on page 72), there is no efficiency difference between the

two methods.

Conclusions

Anderson’s ACT* theory, because it accounts for most of the observed
phenomena relating to experience and performance, is useful for proposing
plausible accounts of what goes on in the domain expert’s mind. Firstly,
becoming an expert appears to be an iterative process of enriching episodic
memory, refining schemata and composing productions. Secondly, expert
performance is largely driven by these productions. But episodes, schemata,
and productions are not retrievable to the same extent, thus imposing limits on
knowledge acquisition for knowledge-based systems. Any attempt to capture a
person’s expertise must therefore contend with the retrievability constraints of

these knowledge structures.
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Although cognitive psychology does not allow many conclusions to be
drawn with certainty, it does provide some insight into the domain expert’s
mental activity during knowledge elicitation. It is useful to consider this
activity in trying to explain why one knowledge acquisition method might
perform with more efficacy or efficiency than another. Effective methods need
to facilitate those mental processes that result in the expert articulating the
knowledge units required to build an accurate knowledge base. These units can
be structured and processed to produce a useful knowledge base.

The repertory grid technique and KAMSE acquire knowledge, not only
of a very similar kind, but also in stages that are directly parallel and analogous.
At some stages, the activity taking place in the domain expert’s mind appears to
be similar between methods. Although the style of the two methods is different
at the attributes/constructs and examples/ratings stages, the expert’s mental
activity often appears to be quite similar. Even where the expert’s mental
activity appears to differ between methods, there is little reason for expecting
one method to demand of the expert a greater effort than the other method. It
is difficult to see why one method should acquire more accurate knowledge than
the other.

Several hypotheses have therefore been stated about the effect of
method on knowledge acquisition. For some of these hypotheses, an attempt
has been made to describe the mental processes that cognitive theory and
introspection would suggest are taking place. If the empirical data support
these hypotheses, these expectations will continue to appear justified. But if the
data contradict these hypotheses, it might be possible to make statements about
what mental processes appear not to be occurring. In addition, the empirical
data is likely to uncover reasons to use one knowledge acquisition method
rather than the other or to be indifferent between them. The data could also be

useful to those interested in developing new methods.
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Chapter 4. Evaluation Measures

Abstract

Any knowledge can be described in terms of its characteristics (e.g., its
accuracy). Comparing two knowledge bases involves contrasting their
descriptions. For example, one knowledge base may be said to be more
accurate, or larger than another. These characteristics can be influenced by
factors present while the knowledge base is being conceived or constructed.
This chapter discusses these characteristics, how they can be measured, and the

factors that can affect them.

introduction

People who develop knowledge bases tend to evaluate their performance as
well; that is a familiar problem (see, e.g., Weiss & Kulikowski, 1984; Ginsberg,
1988; Saito & Nakano, 1988). Typically they do what Cohen & Howe (1988)
refer to as a “comparison study”. But there are two kinds of reasons that
people have for evaluating knowledge-based systems: certification and research.
A growing number of researchers evaluate groups of related knowledge bases, in
search of the influence of knowledge-acquisition method and other factors (see,
e.g., Michalski & Chilausky, 1980; Burton & Shadbolt, 1988; Adelman, 1989).
To facilitate such evaluations and comparisons, some writers have called for
standard problems and measures (see, e.g., Cohen & Howe, 1988 and 1989;
Adelman, 1989; Hayes-Roth, 1989). The machine-learning community already
uses such problems, e.g, Fisher’s (1936) flower learning set or the
faulty-calculator data of Breiman, Friedman, Olshen, & Stone (1984), to
evaluate the efficiency and efficacy of different algorithms.

This chapter discusses key characteristics of knowledge bases, and
examines the measures used by some of those who have, for whatever reason,

evaluated knowledge bases. The chapter argues that there is a need to compare
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knowledge bases with each other (e.g., knowledge of a single domain elicited
with two methods, knowledge of two domains elicited with the same method, or
knowledge of one domain elicited from different sources). These comparisons
will help to develop a shared understanding of the issues involved in evaluation
of knowledge-based systems. They will also help provide the foundations upon
which hypotheses may be tested and theories may evolve.

The chapter also examines the factors, present in system-building

activities, that might influence the characteristics of knowledge bases.

Certification for Operation

Evaluation (sometimes called verification or validation, e.g., by Buntine &
Stirling, 1988; or quality analysis, e.g., by Collins, Ghosh, & Scofield, 1988) is
often a process of testing, faulting and refinement that attempts to transform a
knowledge-based system into usable software that performs at a level of
competence comparable to that of a human specialist in the domain.

Liebowitz (1986) distinguishes between validation (“whether the correct
problem was solved”) and evaluation (“the software’s accuracy and
usefulness”). Vinze (1992, p 312) defines verification as “a method of
evaluating the effectiveness of” a knowledge-based system. Lydiard (1992, p
102), who distinguishes between verification (“are we building the product
right”) and validation (“are we building the right product”), sees evaluation as
“a feature of both verification and validation”.

Evaluation is generally a prerequisite for placing a system into routine
operation. Indeed, Gaschnig, Klahr, Pople, Shortliffe & Terry (1983) refer to
evaluation as “certification for operation”. Two kinds of testing are necessary:
the first is to assess the system’s expertness or competence; the second is for

usability.
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Firstly, the builder of a knowledge-based system evaluates it because
s/he is interested in seeing what it does right and what it does incorrectly. It is
here that the program’s performance is measured and compared with that of
some standard. S/he is also interested in making corrections to the knowledge
base so as to increase the instances in which the system acts correctly and to
reduce those in which it is wrong (see, e.g., Ginsberg, 1988). The overall aim is
usually to have the system demonstrating a level of competence that both
domain expert and user alike will find at best impressive and at worst adequate.

But mere “expertness” may not be enough to satisfy potential users of a
knowledge-based system. So evaluation often also aims at finding out whether
the users are comfortable with the system’s style of interaction and speed of
response, and whether the advice given by the system is useful to them in the

functions that they have to perform (see also Waterman, 1985, p 199).

Evaluation for Research

A growing number of researchers are also evaluating knowledge bases to
investigate, for example, the effect of knowledge-acquisition method on the
development effort required (see, e.g., Michalski & Chilausky, 1980).
Increasingly, researchers (e.g., Adelman, 1989; Cohen & Howe, 1988 and 1989;
and Hayes-Roth, 1989) have also been recognising the need to compare
knowledge-based systems as a part of the process of developing theory and
testing hypotheses. The simplest comparison would be between two knowledge
bases developed separately for the same domain. As discussed in “Efficacy of
Method” on page 81, the accuracy and size of the two knowledge bases might
be important in such a comparison.

Not long ago, Hayes-Roth (1989) argued that knowledge engineering
was ripe for transformation from a largely practical discipline into one where

practice could begin to be viewed within the framework of coherent theory.
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But, according to Hayes-Roth (1989, p 101), “the field of knowledge engineering
... lacks meaningful measures of progress”. He argued that such measures

would enable the

design of knowledge system experiments that would address typical
categories of knowledge and key knowledge engineering costs and

performance parameters.

It is not clear whether a measure of progress is different from a measure of
knowledge-base quality. Nor is it clear whether he is asking for a vision of the
future, and progress reports on the current state of the journey towards that
vision. Perhaps both are interconnected, as in the progress from analysis to
synthesis systems, or improvements in the ratio of knowledge-base size or

accuracy to knowledge-acquisition effort.

Evaluation: What is Involved

Cohen & Howe describe the actions usually performed in evaluating a single

knowledge-based system. According to Cohen & Howe (1988, p 40),

in the basic form of a comparison study, we select one or more measures
of a program’s performance; then, both the program and a standard
solve a set of problems; and, finally, the solutions are compared on the

measures.

This section discusses the standards used for comparison, the
characteristics (e.g., performance) that are evaluated, and the measures that

have been used.
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Standards of Comparison

When a knowledge-based system is built, its performance is usually compared
with that of an appropriate standard. But writers (e.g., Stevens, 1984,
Hayes-Roth, 1989; Forsythe & Buchanan, 1989) disagree about which standard
should be used. The standards recommended include groups with known levels
of expertise, an independent expert, the knowledge source, and normative

theories.

Evaluation Panels

Cohen & Howe (1988, p 40) argue that the standard against which a
knowledge-based system is compared can be a group consisting mainly of
domain experts, but with a few novices included as “an interesting control
condition to ensure that successful performance requires expertise”. This view
is shared, at least partly, by Bratko & Kononenko (1989), who compared the
performance of some of their medical diagnostic systems to that of specialist as
well as non-specialist medical doctors. These approaches make it possible to
locate the performance of the system along a spectrum of expertise ranging
from novice, through semi-expert, to expert. As discussed in Chapter 3, “Some
Implications of Cognitive Psychology for Knowledge Acquisition,” expert
performance is generally distinguished from that of novices by accuracy, the
number of steps in the reasoning process, and speed of decision (Anderson,
1982).

If the group contains multiple experts, there may be differences of
opinion among them about what is correct, which can both enrich and
complicate the evaluation. It is often useful to seek consensus where a panel of
experts is used. Kors, Settig, & van Bemmel (1990) have reported satisfactory
resilts from using the Delphi method. However achieved, this consensus
becomes the standard against which the knowledge-based system’s performance

is judged (see e.g., Collins, Ghosh, & Scofield, 1988).
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Evaluation by an Independent Expert

On the other hand, if a “gold standard” is used (see, e.g., Burton & Shadbolt,
1988, p 11), then the performance of both the knowledge source and the expert
system may be compared with that of the standard. In such circumstances, it is
possible for both the artifact and the source to perform less than perfectly.
Adelman (1989) also used a gold standard, so did Berwick (1985). However,
there is often little justification for taking as gospel the views of a single expert.

Where a gold standard is used, its utility in comparing two knowledge
bases with each other is that it allows each to be measured in turn against a
common standard. This might be appropriate where knowledge for a single
domain is acquired, from different sources or by different methods, to build two
knowledge bases.

But the standard clearly cannot be universal. It is, in general, not
transferable between systems. For example, the standard against which a
rheumatology diagnosis system is compared is quite different from one for a
mortgage underwriting advisor. Less obvious is the fact that the knowledge
units in the knowledge base may not correspond to the ones obtained from the
gold standard. This is especially likely, according to Cohen & Howe (1988, p
40), “when test problems have so many acceptable solutions that a program

and a standard cannot be expected to generate the same ones”.

Evaluation by the Knowledge Source

Of course, the performance of the system can simply be compared to that of the

source from which the knowledge was acquired. This approach was used by

Yih (1988), who compared “the performance of the extracted rules ... with the

performance of the ‘expert schedulers’, from whom the rules were extracted”.
When the performance of a knowledge base is compared with that of its

knowledge source, what is being measured is how well the acquisition process

has created a model of the source’s expertise. This is so as long as the test
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cases fall within the limits of the domain, as a knowledge source (particularly a
human one) is not necessarily bounded in its domain of expertise in the same

way as a knowledge-based system is.

Evaluation against Normative Theories
In some problems, it is possible to use what Cohen & Howe (1988)
describe as “objective, recognized standards [e.g.,] normative theories”., For

instance, Yih (1988) compares

the performance of the optimal policy ... with that of the resulting rules
from trace-driven knowledge acquisition .... The results show that the
rules extracted from trace-driven knowledge acquisition ... yield near

optimal performance.

Clearly, not every domain is susceptible to this kind of analysis, but wherever
problems can be selected that have model answers, these answers will provide a
scoring key against which to assess the system’s performance. The question
arises, however, as to the reason for using a knowledge-based approach for a

problem that has a clear algorithmic solution.

Test Cases or Expert Assessment

Some builders of knowledge bases have found it convenient to compile a set of
test cases along with their solutions from the expert and to store these in a case
database. Such a database can be used for testing a knowledge base via a batch
process (that is, where the knowledge-based system is equipped to deal with
input in that form, see, e.g., Roskar, 1988). This is an approach commonly
used for inductively generated knowledge bases, but it also allows evaluation to
proceed rapidly even where induction is not used. It also has the advantage
that it can easily be an iterative process of evaluation and refinement until the

system performs as well as the knowledge sources.
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To be usable in this way, test cases must be expressed in terms of the
same domain model as the knowledge base to be evaluated. Or the latter must
be a subset of the former. For instance, if the knowledge base includes a test of
colour, the test cases must also be described in terms of colour.

If a knowledge base exists without compatible test cases, exemplars can
be generated for solution by the expert (Lundell, 1988). They can then be used
to evaluate the knowledge base. Refinements to the knowledge base may also
demand changes to the test cases.

It is possible, as Cohen & Howe (1988) have pointed out, that each test
case could have several correct solutions. To cater for such situations, the
representation used for each case should be flexible enough to accommodate
several classes. If this flexibility is not available, as Cohen & Howe (1988, p 40)
put it, “one cannot compare the program’s performance with the expert’s but
must instead rely on the expert’s direct assessment of the program”. This is
how Muggleton (1986) evaluated his chess end-game expert system, i.e., by
having a human expert assess the program’s play.

But Cohen & Howe have pointed out the tendency of experts to be
“overly generous to the program. Moreover, direct assessment does not tell us
whether the program is performing better than the expert.” Only an
independent expert can do this.

In systems for synthesis, evaluation by expert assessment is often the
most convenient method. Indeed, it is sometimes necessary (see, e.g.,
Birmingham, 1988) to go beyond the expert’s assessment and to build the object
designed by the knowledge-based system to see whether it works. This is costly
and can usually be done only for a small sample of cases. According to
Birmingham (1988), the knowledge captured by CGEN “was sufficient to build

an interesting set of designs, one of which was constructed and shown to work”.
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Nicholson (1988) also contains the following account given by a
knowledge engineer regarding the validation strategy for an expert design

system built by his organisation:

When [the knowledge-based system] comes out with a configuration,
the first level of validation was: ‘Is it a system that would be acceptable
to the experts?” The second level of validation was: ‘Can we build it;
and does it work when we build it?” So your only real validation is
experience ... that’s only a way of proving it’s wrong, but never a way of

proving it’s right.
Evaluation is not always easy. Davis & Lenat (1982, p 123) assert that

judging the performance of a system like AM ... is a very hard task,
since AM has no ‘goal’. Even using current mathematical standards,
should AM be judged on what it produced, or the quality of the path
which led to those results, or the difference between what it started with

and what it finally derived?

But AM is a special case: it is a program that discovers interesting

mathematical relationships by a kind of introspection.

Characteristics of Knowledge Bases

Knowledge bases have several characteristics; some appear to be only
describable while others are also measurable. Among the characteristics that
people have found interesting are performance, usability, cost, size, and
intelligibility. These are discussed in the rest of this section.

Performance

The term “performance” has already been used in discussing standards. But,

like several other writers, this author has done so without explaining or defining
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it. When you evaluate the performance® of a knowledge base, you are likely to
be interested in being able to say that the conclusion of the system coincides
with that of the standard in some percentage of cases.

Builders of knowledge-based systems often invest considerable effort in
satisfying themselves about their systems’ performance and in demonstrating to
prospective users that the systems are likely to perform well. It is often said,
for instance, that DENDRAL performs better than domain experts (see, e.g.,
Weizenbaum, 1976, p 230), although it is more usual to find that
knowledge-based programs perform somewhat less impressively.

Different writers have used their own expressions in referring to

performance:

e “Performance” {(e.g., Davis & Lenat, 1982)

e “Number of times correct” (Stevens, 1984)

o “Effectiveness of rules” (Buchanan et al, 1983)

* “% correct diagnosis” (Michalski & Chilausky, 1980)

e “True positives” (Politakis, 1985; Weiss & Kulikowski, 1984; and Ginsberg,
1988)

* “Hit rate” (Cohen & Howe, 1988 and 1989)

* “Appropriateness of choices” (Hayes-Roth, 1989)

* “Diagnostic accuracy” (Bratko & Kononenko, 1989).

As mentioned in “Efficacy of Method” on page 81, the computation of
this quantity appears to be widely agreed. When N cases with known solutions

are presented to the knowledge-based system, it produces M (less than or equal

3 Lydiard (1992, p 102) equates knowledge-base performance with efficiency of execution.
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to N) correct solutions. The diagnostic accuracy (or whatever you wish to call
it) is said to be M/N, often expressed as a percentage.

There are difficulties with this measure in domains where several correct
solutions to a given case may exist. The system’s solution may be correct but
different from that preferred by the standard. Michalski & Chilausky (1980)
used a supplementary measure (“% preferred diagnosis”) to indicate the number
of cases in which their expert system was not merely correct, but had produced
the solution preferred by the standard.

Moreover, such a bald statistic as diagnostic accuracy is likely to suffer
from the same weakness as any measure of central tendency: it says nothing
about the number of cases used to evaluate the system. Stevens (1984)
expresses a concern for the statistical significance of apparent differences in

performance:

if a modification to a system means that the number of times it is
correct increases from say 60% to 65% how can we know whether this
increase is significant? ... How can we exclude the possibility that an

improvement is the result of chance?

Perhaps the statistical F-test based on an analysis of variance for the
data is one way, in properly designed experiments, to alleviate such concerns
(see, e.g., Chapanis, 1959).

Equally important, diagnostic accuracy does not indicate how
representative these test cases are of the universe of cases that the system will
be required to handle over its lifetime (Gaschnig et a/, 1983). This concern is
shared by Lehner (1989, p 658), who recommends “the use of a representative
set of randomly selected test problems”.

Some researchers have also supplemented the diagnostic accuracy

measure with a measure of the number of times that the system fails to produce
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a correct solution. This has been called “% false positives” (see, e.g., Politakis,
1985; Weiss & Kulikowski, 1984) and “% not diagnosed” (see Michalski &
Chilausky, 1980). The less restricting latter measure is not strictly equivalent to
the former. They are subtly different because “% not diagnosed” allows for the
counting of those cases in which a knowledge-based system, unblinkered by the
closed-world assumption (see, e.g., Steels & Campbell, 1985), fails to offer a
solution.

The percentage of false positives is used in combination with % false
negatives to describe the performance of systems that make binary-valued
decisions, e.g., whether a thermostat is normal or faulty. In such systems, the
measures are related as follows:

diagnostic accuracy + % false positives + % false negatives +
% not diagnosed = 100%.

In situations where assessment by the expert is necessary, diagnostic
accuracy and the other performance measures may be difficult to interpret.

In contrast with the situation where two knowledge bases for the same
domain are compared, it is also useful to be able to compare two knowledge
bases for different domains. One dimension on which they can be compared is
how well they achieve their intended objectives. Buchanan & Feigenbaum
(1982) refer to this as “power ... to perform its task well”. Good measures, even
qualitative ones, of how well an expert system is achieving its objectives would
facilitate such comparisons. However, the measures discussed above appear
adequate. If two knowledge bases have diagnostic accuracy of 80%, it is safe
to conclude that they have both modelled their source’s expertise imperfectly to
the same extent, assuming the knowledge source is used as the standard in both
instances, and the test cases are obtained by the same method.

Performance is probably the most important attribute of a knowledge

base, because if the diagnostic accuracy is not acceptable, then other features of
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the knowledge base are hardly likely to persuade anyone to put the system into
routine operation.
Usability

Rasmussen (1980) has argued that software users appear to have
internal models (stored in long-term memory, and accessed subconsciously) of
familiar situations. These models respond to perceptual inputs and operate like
fast analogue computers. But in strange situations, outside the applicability of
their stored models, users reason at a conscious level. This conscious reasoning
uses cognitive processes that are slow and have low capacity. It is therefore
important that interactive computer systems harmonise appropriately with these
two distinct human information processing modes.

So some builders of knowledge-based systems also subject their systems
to some form of testing by users, mainly to assess how easy the systems are to
use, how appropriate their user interfaces are, and overall how useful thee
systems are. The importance of this characteristic is clear to Vinze (1992), who
treats usability and effectiveness of a knowledge-based system as synonymous,
measuring them by using a questionnaire that focuses on users’ satisfaction with
the system.

Measuring usability may also involve a pilot operation or the release of
a beta version to selected users (see Nicholson, 1988). Problems found here
may demand restructuring of the knowledge base to improve response time,
rewording of the system’s questions to eliminate ambiguity, or even a change of
the delivery platform. Where large knowledge bases are integrated into
database systems, this is especially vital (see, e.g., Mumford & MacDonald,
1989, pp 116-123).

One of the dimensions proposed by Davis & Lenat (1982) for evaluating
their AM system is “the character of the user-system interactions”. But while

some aspects of usability (e.g., the quality of the questions asked) may be
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characteristics of the knowledge base itself, others may be characteristics of the

user interface or the inference engine.

Cost

The cost of developing a system is a part of the history of that system.
It may not be readily observable after the system has been built, but it can be
especially useful if known before the system is developed. Both Gaschnig et al
(1983, p 247) and Hayes-Roth (1989, p 109) acknowledge the importance of this
characteristic, for which Hayes-Roth proposes “cost per knowledge unit” as a
measure.

After the system has been built, it carries with it a further intrinsic cost,
which, according to Gaschnig et al (1983, p 247), includes the expense of
“providing for its maintenance”. Hayes-Roth (1989, p 109) proposes “costs and
effects of knowledge incrementation”, and “ease of knowledge deletion” as
measures of this characteristic. Gaschnig et al (1983, p 247) argue that the cost
of “running it, interpreting the results” is important.

But Buchanan et al (1983, p 158) attempt to put costs in perspective by

distinguishing between computing costs and human costs:

the cost of computer resources is falling rapidly with recent progress in
hardware technology, while cost of human labor (especially of
knowledge engineers) is increasing. Thus the benefit of reducing human

resource costs far outweighs the cost in computer resources.

Cost is, of course, a relative concept: it might be sensible to incur great
costs if even greater returns are expected to result. Connell (1987) argues that,
whereas a proof-of-concept system may be appropriately judged by whether it
works, an operational system can be subject to more stringent measures, such

as return on investment.
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Size of Knowledge Base

Michalski & Chilausky (1980) describe the size of their soybean disease
diagnosis system in terms of the number of findings or attributes, the number of
conclusions or classes, and the number of rules. Both Politakis (1985) and
Ginsberg (1988) also describe the size of their rheumatology diagnosis system in
these terms. These measures (especially number of rules) are to be used with
caution because it is well known that the inclination of the knowledge engineer
and the restrictions of the formalism can both affect the number of rules in a
knowledge base.

It is not necessarily true, for example, that a knowledge base with 1000
rules is smaller than one with 2000 rules. However, the three quantities of
Michalski & Chilausky taken together give a good indication of relative sizes, if
the tool being used is also stated.

Another source of difficulty is that the size of knowledge bases
represented as frames or semantic networks is difficult to compare meaningfully
with that of those represented mainly as rules. Indeed, a system cam perform
the same task with either a rule-intensive or frame-intensive representation. So
some people reckon size by the number of bytes of storage occupied by the
knowledge base. Even that has its pitfalls, as verbose people may use long
character strings to express classes and attributes.

Intelligibility

Some writers insist that rules must make sense to the human expert. Politakis
(1985), for example, argues that this is vital in medical diagnosis systems, to
help the experts feel confident about the soundness of the systems’ underlying
knowledge (see also Spackman, 1991). Other writers (e.g., Hart, 1986) point
out that certain induction algorithms sometimes yield rules which, although

diagnostically accurate, are unintelligible.
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Szolovits (1986) has pointed out that although rules are more commonly
used to represent knowledge in expert systems, Lisp functions are sometimes
used. They achieve “efficiency and ease of initial construction at the expense of
making its knowledge inaccessible in an explicit form”. Hayes-Roth (1989)
proposes “accessibility of knowledge via queries” and “understandability of
results” as measures of intelligibility, while Sykes (1987) mentions “ability to
explain its reasoning”.

But intelligibility may sometimes be obtained at the expense of efficient
operation, or even of tractability (Michie, 1982).

Even so, it may be enlightening to evaluate expert systems on the
quality of their reasoning, not just the accuracy of their results.

Other Characteristics of Knowledge Bases

There are other dimensions beside those discussed above. Some
knowledge-based systems in current use are valued not only because they can
arrive at the same decision as an expert almost every time, but equally because
they are able to do so in a fraction of the time that the domain expert
traditionally took (see e.g., Nicholson, 1988). By using such a system, the
expert can perform more efficiently.

Sykes (1987) mentions brittleness (Cohen & Howe, 1988, p 40 refer to
the opposite pole of this as “robustness”), and depth of reasoning as important
attributes of a knowledge base. He sees shallow reasoning being characteristic
of knowledge bases that model experts’ heuristics, while deep reasoning is
characteristic of systems that model “the underlying physical mechanism” of the
domain. (The trend towards using the latter kind of architecture is mentioned

on page 6.)
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Possible Influences

A number of factors appear to be capable of influencing the outcome of a
knowledge acquisition project; five of these are listed by Adelman (1989): the
knowledge-acquisition method, the knowledge representation formalism, the
domain and the type of knowledge that characterises it, the knowledge source,
and the knowledge engincer.

To be able to analyse sensibly what is going on, it is necessary to
develop measures that can characterise each of these factors. With such
measures, it will begin to be possible to discover causal links or correlations
between the knowledge-base characteristics discussed in “Characteristics of
Knowledge Bases” on page 93 and other variables that may affect them.

This section examines some of the factors that writers have, whether

from experiment or experience, seen as influential.

Internal Influences
It is hardly fanciful to expect that some characteristics of a knowledge base will
be strongly correlated with others. For example, intelligibility may be
influenced by representation (see, e.g., Szolovits, 1986), and both intelligibility
and size of a knowledge base may affect the cost of maintenance. Size may also
affect speed, especially in backward-chaining systems (see, e.g., Davis & Lenat,
1982, pp 409-410). But while speed may degrade with increases in
knowledge-base size, speed can sometimes be increased by restructuring a large
knowledge base into a hierarchy of smaller ones.

Another assertion about the possible effect of knowledge-base
characteristics on each other was made by Feigenbaum & Buchanan (1982).

According to them,

as with all such insights, it appears in retrospect to be common sense:

that the power of an intelligent program to perform its task well depends

Chapter 4. Evaluation Measures 101



primarily on the quantity and quality of knowledge it has about the

task.

But researchers are not likely to find out how well, how much, and what kind
without effective measures of important characteristics of knowledge-based
systems. And without such measures, researchers are unlikely to be able to
transform this conjecture of Buchanan & Feigenbaum into more precise forms

such as those depicted in Figure 17 and Figure 18 on page 103.

Diagnostic Typical machine
accuracy 0 0 o o induction curve
oX X (see, e.g.,
0 X Pazzani & Kibler,
0 X X 1992)
X
0 X
X Effect of
) Possible "sociopathic"
ox interpretation knowledge (see
of Buchanan & Wilkins, 1987)
X Feigenbaum (1982)

Quantity of knowledge
about the task

Figure 17. Possible relationship between knowledge quantity and KB performance
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Diagnostic
accuracy X X
Possible X
interpretation
of Buchanan & X
Feigenbaum
(1982) Effects of
X refinement {see
X X Politakis, 1985;
Ginsberg, 1988)

Y

Quality of knowledge
about the task

Figure 18. Possible relationship belween knowledge quality and KB performance

Influence of Method

Quite apart from the effect that knowledge-base attributes may have on each
other, it is clear that factors external to the knowledge base also influence
knowledge-base characteristics. Arguments have clearly been forwarded in
Chapter 3, “Some Implications of Cognitive Psychology for Knowledge
Acquisition” about how the repertory grid technique and KAMSE might affect
the knowledge they are used to acquire. More generally, empirical work has
been done to demonstrate that these effects do exist. For instance, Michalski &
Chilausky (1980) showed that machine induction created a knowledge base with
higher diagnostic accuracy than “hand-crafted” rules.

But Michalski & Chilausky appear to have failed to determine how
much better machine induction was, because they set the inference threshold for
the inductively generated knowledge base at a higher level than that for the
hand-crafted system. Perhaps a richer experiment would have been to
determine the effect of threshold on diagnostic accuracy (Levi, 1989, also
discusses this connection) for the two methods. Had that been done, Michalski

& Chilausky would have been able to establish (subject admittedly to grave
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doubts about statistical significance) the sort of relationship depicted in

Iigure 19 on page 104. But there really is only a single point on each of those

two curves.

Diagnostic
accuracy

X X X X X X X X X X X Expert
+ Inductive

) Hand-crafted

i »

I I
T 1 T g

Inference threshold

Figure 19. A possible context for the two observations of Michalski & Chilausky

With a different experiment design, Michalski & Chilausky’s findings

would have enabled the knowledge-engineering community to say more than

Buchanan et al (1983) did in their assertion that

AQ11 has been used to formulate factual knowledge in the form of rules

for diagnosing plant diseases. These rules have proved more effective

than those generated by an expert (although the expert could still

analyse test cases more effectively than the program using its

automatically formulated rules).

In addition, Michalski & Chilausky’s failure to describe their

“hand-crafted” method more precisely than “conference with the experts”

deprives others of further valuable insights.

The other major finding of Michalski & Chilausky was that the effort

required to create an accurate knowledge base is much less when machine

Chapter 4. Evaluation Measures

104



induction is used than when rules are hand-crafted. However, Michalski &
Chilausky employ a crude measure of knowledge-acquisition effort:
“approximately 20 hours were required to [develop] the descriptions for the
above 15 diseases” (p 70). And other researchers are left to assume, for
example, the number of people and thence the effort in person-hours.
Researchers at Nottingham University, notably Mike Burton and Nigel
Shadbolt, have over several years done a series of experiments to discover
relationships between the knowledge-acquisition method used and “the time and
effort taken ..., the amount of information generated ..., and the amount of
genuine, usable knowledge generated” (Burton & Shadbolt, 1988, p 11).
Knowledge-acquisition method is also linked with effort by Muggleton

(1986, p 67), who asserts that whereas

designers using dialogue acquisition methodologies talk of constructing
prototype systems in terms of years, MUGOL-based applications have

been consistently prototyped in around six person months.

This comparison of his, however, lacks precision as it compares elapsed time
(years) with effort (person months). Yet it still indicates that both are possible
measures of the cost of building a knowledge-based system.

But how can knowledge acquisition methods be characterised, placed
along a continuum, in a plane or within a space? This is a difficult endeavour,
as is evident from Chapter 1. On one dimension they can be said to be either
interactive or inductive (Muggleton, 1986). But that is not enough. Other
writers have used other dimensions: Politakis (1985) classifies

knowledge-acquisition methods as direct and indirect. According to him,
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a direct approach has tried to find efficient techniques to extract
knowledge from the domain expert, while other research efforts have

sought ways of acquiring expert knowledge indirectly from sample cases.

Clearly, his direct / indirect construct is equivalent to Muggleton’s interactive /

inductive.

Influence of Domain
It would also be useful to have dimensions that characterise a domain
adequately. Some writers (e.g., Partridge, 1986) have classified domains
according to their degree of structure, with one extreme being highly structured
and its opposite pole being ill structured. Some (e.g., Boose, 1989) have classed
them as either analytic or for synthesis. And some (e.g., Muggleton, 1986) have
categorised them as either evaluative or controlling. In addition, some kinds of
expertise appear to be stored in different ways in people’s minds. For example,
knowledge of how to find one’s way around the campus might be stored
differently* from knowledge about correct spelling. Some writers (e.g., Burton &
Shadbolt, 1988) have also mentioned as well that a domain might be highly
procedural or it might be classificatory.

Politakis (1985, p 33) describes the kind of knowledge domain for which

learning from examples is unlikely to work well:

realistic and large-scale medical diagnostic applications where the
dimensionality is large both in numbers of findings and conclusions and

there is much uncertainty in diagnostic reasoning. In these applications,

4 Neuropsychological evidence of selective impairment of some types of knowledge (e.g.,

face recognition; see Ellis & Young, 1988) supports this.
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a set of cases rarely covers the range of possible ways of arriving at

diagnostic conclusions which an expert physician has experienced.

Influence of People

A domain expert can perhaps be characterised according to how much
expertise he or she has. Novice and expert would be represented by points on
this scale. A domain expert is simply a person, and could therefore be classified
like any other person, e.g, by psychometric testing. In a similar way, the
knowledge engineer might be tested. Some writers (e.g., Forsythe & Buchanan,
1989) have also mentioned power differences between the domain expert and
the knowledge engincer as being potentially significant. Perhaps some way
could be found of characterising the power of each one. Some writers have also
mentioned willingness, articulateness, and being busy as possible dimensions
(see, e.g., Bell, 1985).

Adelman (1989) used knowledge engineer (he had six of them
participating in his experiment) as an independent variable, but failed to
propose any meaningful dimensions on which these people could be
characterised or compared. The dimension he settled for was crude: he grouped

them by the institution in which they were trained.

Other Influences
Anjewierden (1987) briefly evaluates five knowledge-acquisition tools (ROGET,
KEATS, AQUINAS, ETS, and KREME) based on the “level of representation”
(see Brachman, 1987) that they support.

Several writers (e.g., Rasmussen, 1980; Arblaster, 1983; Waterman, 1985)
have indicated that the user interface is an important factor in the success of
their systems. If they are correct, a CAKE tool’s user interface may affect the

knowledge that it can acquire. The user interface also affects how easy a tool is
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to learn to use (Boose, 1989), and how much information the user has to enter
(Klinker et al, 1987).

Muggleton (1986) uses the concept of inductive efficiency to measure the
effort that an algorithm expends in transforming examples into formal

knowledge.

Conclusions

People evaluate knowledge bases to certify them for operation or to discover
interesting relationships through experimentation. Several characteristics of
knowledge bases can be measured, but the most commonly used is diagnostic
accuracy as an indication of performance. Few agreed quantitative measures
exist for describing the other attributes of knowledge bases.

Several measurable factors can influence the characteristics of a
knowledge base. With appropriate dimensions for each factor, and suitable
measures of knowledge-base characteristics, it is possible to investigate
relationships empirically, through well designed experiments. For not only must
knowledge-based systems be evaluated, but also the methods and tools used to
build them. It is evident that metrics are needed, although those adopted for
conventional software development (see, e.g., Grady & Caswell, 1987) appear
inappropriate for knowledge bases.

There is also a sense in which evaluation is a continuing process, and
that even in routine operation a system’s performance is under constant
scrutiny. Perhaps evaluation over time, or some time-changing factor, would be

appropriate (see, e.g., Cohen & Howe, 1989),
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Chapter 5. The Controlled Experiment in
Knowledge-Acquisition Research

Abstract

This chapter® is based on a review of the literature about controlled experiments
in research on knowledge acquisition. The review was carried out to help the
author make decisions about the design of his own experiment comparing two
knowledge-acquisition methods. The chapter looks critically at six experiments
reported in the literature, and proposes a framework within which such
empirical work can be viewed. It concludes that some of the apparent
difficulties can be resolved, and that controlled experiments can be a useful way

of discovering the relationships at work in a knowledge-acquisition project.

Introduction

Case studies and benchmarks have been used widely in research on
knowledge-based systems. For example, in a case study, Michalski & Chilausky
(1980) investigated the effect of the acquisition method in a single domain on
the effort needed to acquire the knowledge, and on the diagnostic accuracy of
the resulting knowledge bases. In a benchmark, Quinlan (1986) used several
case bases as input to different induction algorithms, and observed the effect of
these variables on the diagnostic accuracy of the induced knowledge bases.

But there appears to be a growing awareness (Adelman, 1989) that
controlled experiments can help advance understanding of how the knowledge
source, representation, acquisition method, domain, and engineer affect the

effort needed to build a knowledge base and the quality of its performance.

5 A paper based on this chapter is being published as Nicholson (1992b).
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Burton & Shadbolt (1988, p 11) argue strongly in favour of controlled

experimentation:

Although one can get useful practical information from case studies,
there will always be many factors unique to any particular knowledge

elicitation session. Hence the need for a formal experimental analysis.

Indeed, researchers such as Burton, Shadbolt, Hedgecock & Rugg (1987),
Lundell (1988), Stevenson, Manktelow, & Howard (1988), Deffner & Ahrens
(1989), Adelman (1989), and Agarwal & Tanniru (1990) have used methods
from experimental psychology to explore research questions in knowledge
acquisition.

The author’s interest in the subject arose {rom his own need to compare
two knowledge-acquisition methods in terms of the effort they demand from a
domain expert, and the accuracy of their outcomes. The controlled experiment
seemed the ideal way to do the investigation, so a search was made of previous
uses of this approach in the field of knowledge acquisition. It is evident that
not many researchers have used controlled experiments for this purpose.
However, the few that appear in the literature do contain lessons from which
the author’s own design was able to benefit. These lessons, and their influence

on the author’s design, are discussed in this chapter.

Experiments

This section discusses six experiments reported in the knowledge-acquisition

literature.
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Congruence of Representation

Proposing hypotheses based on Anderson’s (1982) theory of skill acquisition,
Lundell (1988) argues that while novices store their expertise in declarative
memory, or at the conscious level, experts do so in procedural memory, or at
the tacit level. Lundell further argues that it ought to be easier to elicit rules
from novices than from experts, and that it ought to be easier to obtain typical
examples (or what he calls “prototypes™) from experts than from novices.

In addition, Lundell conjectures that an artificial neural network (built
using prototypes and exemplars obtained from an expert) ought to have greater
diagnostic accuracy than a similar knowledge base derived from exemplars and
prototypes that have been elicited {rom novices. Conversely, a set of rules
elicited directly from a novice ought to have a higher diagnostic accuracy than a
set elicited directly from an expert.

Lundell’s “representational congruence” hypothesis asserts that if, for
example, a rule elicitation method is used, then it will elicit primarily knowledge
stored as rules in the mind of the expert. Lundell’s representational and
“elicitational congruence” hypotheses involve the following independent

variables:

* Elicitation method
* Expert’s level of expertise

* Knowledge representation in the knowledge base.

These variables are all controllable in an experiment. The dependent variable,
which, Lundell argues, is a function of the variables listed above, is the
diagnostic accuracy of the knowledge base built using the knowledge elicited
from a subject. To test his hypotheses, Lundell had to vary the controllable
variables in turn, and record the effects on diagnostic accuracy. Taking several

observations for each setting of each controllable variable allowed him to
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increase the reliability of his results. Of course, the subjects themselves are also
variable (see, e.g., Chapanis, 1959, and Adelman, 1989).

Lundell’s experiment is essentially a two-group design, in which each
subject fills in four different types of questionnaire. It used a random
presentation order in an attempt at eliminating sequence effects.

Two of Lundell’s questionnaires were aimed at eliciting rules directly.
One he called the “direct rule” questionnaire, and the other the “decomposed
rule” questionnaire. These two complemented each other in his subsequent
creation of rule bases.

The two other questionnaires were aimed at eliciting examples, from
which knowledge could be derived by some kind of machine learning. One of
these questionnaires elicited a set of typical examples or cases; this one he called
the “prototype elicitation” questionnaire. The fourth questionnaire, which he
called the “exemplar questionnaire”, consisted of a randomly generated set of
undiagnosed hypothetical cases for the subjects to diagnose.

Using these questionnaires for knowledge acquisition appears to impair
the external validity of Lundell’s experiment. The antecedents and the
consequents are given, whereas in practice it seems more usual for these to have
to be elicited from the knowledge source by various methods. The considerable
amount of knowledge acquisition which clearly went into the preparation of
these questionnaires deserves to be acknowledged openly. Moreover,
questionnaires are rarely used to acquire knowledge for knowledge-based
systems (see, e.g., Welbank, 1990).

Lundell used the completed questionnaires to build a number of expert
systems, but little is said, in his dissertation, about this proceés. And without
any assurance to the contrary, his readers are left wondering about the scope
for introduction of errors at this stage. Still, perhaps this criticism is a bit

unfair, because the graphical representation on his questionnaires seems capable
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of being easily transformed into production rules. In the case of his
connectionist networks, it appears obvious that the exemplar and prototype
data were simply coded as examples and used to train the networks in the
diagnostic task.

Lundell’s subjects emerged from his training with a range of levels of
expertise in the diagnostic task. Some had become good at it, and others had
learned to a lesser extent. Lundell classified his newly trained subjects as either
skilled or unskilled. He set his criterion at the median test score, so that half
the subjects were “unskilled” and the others “skilled”. It appears to be an
arbitrary distinction with little basis in theory and little rationale, save that of
balancing the sizes of the two groups.

After basing his initial arguments on the theory that experts’ skills reside
at a tacit level while novices’ skills are represented consciously, Lundell appears
to make little use of this representational differential that would be expected to
exist between his skilled group and his unskilled one.

Perhaps an improvement would have been to use an adaptive
questionnaire to gather the same type of data. Under this approach, subjects
would interact with a computer program that asks questions based on answers
already given. By doing this, he would have introduced some of the flexibility
characteristic of real-world knowledge acquisition, while providing systematic
and consistent recording of data.

By creating his own experts in a domain of his own making, Lundell
may have sacrificed external validity, but at the same time he gained a
ready-made set of test cases against which both the experts themselves and the
elicited knowledge bases could be evaluated. He also limited the scope of the

task to a size amenable to analysis and experimental control.
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Thinking Aloud

Stevenson et al (1988) also did an experiment to test a hypothesis implied by
Anderson’s (1982) ACT* theory. Their hypothesis was that their own method
of knowledge acquisition would be more effective than “traditional” methods.
They argue that it is wrong to assume that analysis of thinking-aloud protocols
accurately unearths the knowledge contained in an expert’s automatic
productions. What thinking aloud is more likely to do, they argue, is to slow
down and even distort the expert’s actions. They argue that it is more effective
to let the expert perform his task undisturbed except for the scrutiny of a
videotape camera and recorder. At some later time, the expert can explain his
actions while watching the videotape. These explanations can be used to
generate production rules. Stevenson et al call this method an “evaluation
technique”.

The experiment of Stevenson et al tested their hypothesis by varying the
acquisition-method treatments to which subjects were assigned. They used a
two-group repeated-measures design, although one group (the experts) was very
small (two subjects) compared with the other group (eight subjects). All
subjects received all treatments, but in the same order (there was no attempt to
correct for sequence effects by counterbalancing). But time (more than a day)
was allowed between treatments, perhaps to allow the attenuation of any
carry-over effects.

Stevenson et al appear not to have taken the analysis of the data as far
as Lundell did. They did not measure the diagnostic accuracy of derived
knowledge bases. They did, however, employ a more qualitative approach than
Lundell’s essentially statistical one. They examined the differences between the
kinds of constructs that the experts produced and those that the novices

produced.
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But although Stevenson et al assert that thinking aloud may be less
effective than their evaluation technique, they fail to support this empirically.
Or, more precisely, they appear not to have designed their experiment to test

this.

Computer-Assisted Knowledge Elicitation

Deffner & Ahrens (1989) were not comparing knowledge acquisition methods;
they were simply evaluating the single method embodied in a tool of theirs.
This method involves having a domain expert enter rules in a formal language
and, as a second stage, refine any ill-defined quantifiers used in the rules.
According to Dellner and Ahrens, deferring the refinement solves the problem
of experts “drying up” when they are interrupted and asked to be more precise
about quantifiers.

Like Lundell, Deffner and Ahrens used an artificial domain and created
experts in it by training their twenty-two subjects. The domain used was
nutritional prediction in a simulation of a person to be fed from a menu.
During training, the subjects were free to display their tendency to explore the
domain. This tendency was observed by tracing each subject’s interactions with
the training software.

Although apparently not so by design, Deflner and Ahrens’ experiment
is a two-group one. The groups were discovered by post-hoc cluster analysis of
some of the training interaction data. Both groups received the same treatment
(elicitation method), but they also had what DefTner and Ahrens assume to be
two different levels of expertise. One dependent variable is the accuracy of the
generated knowledge base, and this is measured by testing the rules against the
simulation. Other dependent variables are the number of rules elicited and the

average number of attributes per rule.
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Deffner & Ahrens do not say how many of their subjects fall into each
group. Nor do they say how they treat the two subjects who do not “fall
clearly into one of the two groups”.

DefIner & Ahrens (1989, p 359) concede that their tool “may at first
sight appear not to be very practical”. They try to remedy this lack of external
validity by suggesting where the use of the tool might fit in a series of

knowledge-acquisition stages.

Elicitation Efficacy

Whereas Lundell (1988) and Stevenson et a/ (1988) were testing hypotheses,
Burton et al (1987) wanted to determine the relative efficacies and efficiencies of
different knowledge-elicitation techniques. Burton et al wanted to be able to
predict which methods would be most appropriate for which circumstances, so
that builders of knowledge-based systems would have some empirical basis for
their choices.

Burton et al also stopped short of building knowledge bases, and
therefore did not reach as far as measuring diagnostic accuracy. However, they
did perform other kinds of evaluation on the elicited knowledge, which they
coded as “pseudo-English production rules”. In a subsequent experiment, these
rules were each rated by the experts on a four-point scale ranging from true to
false. Thus, Burton et al were able to compare (at least for some of their data)
the overall quality of rules resulting from each elicitation technique.

In their experiment, Burton ez a/ had as independent variables the
elicitation method and the expert’s personality type. They tried to keep the
knowledge representation constant. Their dependent variables were the amount
of knowledge elicited per unit time, and the quality of elicited rules.

They also made the distinction between procedural and declarative

knowledge. Indeed, they assert that two of their methods (protocol analysis
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and formal interview) are likely to elicit procedural knowledge while the others
(card sort and laddered grid) are likely to elicit declarative knowledge. But they
were forced to conclude that their results did not support this assertion.

Although, like Lundell, they used students as subjects, Burton er al did
not create instant experts. Thus, their claim of expertise is more credible,
especially in the light of Anderson’s (1982) assertion that it takes a long period
of practice to create an expert. On the other hand, Burton et al offer little
proof of the subjects’ expertise. Burton’s subjects were not tested for skill level
as Lundell’s subjects were.

There is usually some danger of impairing external validity when
university students are used as subjects in experiments (see, e.g., Jung, 1969).
To get some idea of the effect of using students, Burton ez al followed their
1987 experiment with another — this time using “real” experts. The earlier

results were vindicated (see Burton, Shadbolt, Rugg & Hedgecock, 1990).

Knowledge Engineer as a Variable

Adelman (1989) did not build expert systems with the knowledge elicited from
his 138 subjects. What he was trying to do was to determine the effect of two
variables (knowledge engineer and elicitation method) on the “predictive
accuracy” of the knowledge elicited.

He used two methods (“top-down” and “bottom-up”) and six knowledge
engineers in what he describes as a “2x6 factorial” design. However, he appears
to have had some difficulty in specifying exactly how the knowledge engineers
differed from each other. He finally decided to use the institution from which
the knowledge engineer had received his or her training as the dimension on
which to group them. With this grouping, he reduced his data to that of a 2x3

factorial design. Perhaps it would have been more meaningful to have used
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either the psychometric profiles of the knowledge engineers to find clusters (as
did Deffner & Ahrens, 1989), or some aspect of their experience.

One of Adelman’s chief concerns was with the quality of a domain
expert’s expertise. Adelman argues that the expert is a factor in the quality of
any elicited knowledge. But, as with his knowledge engineers, he appears not to
have decided what attribute of the expert is the variable of concern. Yet there
is a theoretical reason for focusing on skill level (see Anderson, 1982). In
addition, both Deffner & Ahrens and Burton e al have found the expert’s
personality to be important. Thus, Adelman might have tried to vary these

systematically. He did not.

Effects of Training

Agarwal & Tanniru (1990) used a completely randomised single-factor design to
compare unstructured interviewing with “a specific kind of structured
interview”. They did this to test four hypotheses about the relative efficacy and
efliciency of the two methods of knowledge acquisition.

They did well to find as subjects thirty “expert practitioners who were
responsible for [a capital budgeting / resource allocation] decision”. The
subjects were split into three groups of ten; and each group was given one of
the threc treatments. But there is some doubt about the consistency with which
the treatments were administered in the experiment.

The control group of experts had their knowledge elicited, via
unstructured interviews, by what Agarwal & Tanniru call “experienced
knowledge engineers”. However, only some of these “knowledge engineers” had
any experience at eliciting knowledge for expert systems. The others were
systems analysts who were experienced at interviewing. Agarwal & Tanniru do
not say how many of these interviewers were used, but do admit to having been

unable to find enough experienced knowledge engineers.
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Novice knowledge engineers, unlike experienced ones, were apparently
abundant. Agarwal & Tanniru were therefore able to take care to establish that
the novice knowledge engineers all started with comparable lack of experience
of the domain and the knowledge-acquisition methods to be used. However,
the novice knowledge engineers were given training in only one of the methods
(structured interviewing), and left to administer the other method (unstructured
interviewing) without the benefit of any training.

As a comparison of two methods, Agarwal & Tanniru’s experiment
appears therefore to have been biased toward one method. However, they did
succeed in showing that knowledge engineers who receive training in a
technique are likely to be more efficient and effective using it than those who

try to apply a technique in which they have not been trained.

Conclusions

Lessons from the Past

Building a knowledge base can be viewed as the process depicted in Figure 20
on page 120. As noted in Chapter 4, “Evaluation Measures,” there are several
inputs into knowledge acquisition; various characteristics of these inputs
interplay to produce some acquired knowledge in a representation formalism.
The knowledge and representation are clearly interrelated, with the latter being
the form in which the former can exist in a knowledge base. This knowledge

base itself exhibits qualities, such as diagnostic or predictive accuracy.
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Domain——» ——»Accuracy
—»Acquired
Source——»| Knowledge knowledge—»|Knowledge —»Size
acquisition hase
Engineeyr—» —»Represent- —Depth
ation———>»
Method——» —»0ther qualities

Figure 20. Factors and effects in building a knowledge base.

The qualities displayed by the resulting knowledge base are affected by
all the variables that provide input to the knowledge base. A major reason that
researchers do empirical investigations is to see how these potential independent
variables to the left affect the dependent variables to the right.

The understanding gained from experimenting with these variables is
likely to bring more predictability to building knowledge bases, and allow
knowledge engineers and planners to make choices based on more solid
foundations than are available at present. The researchers discussed in this
chapter have experimented for various purposes: testing hypotheses, evaluating
a method or a tool, and looking for correlations. The efforts of these
researchers have highlighted various challenges.

For example, because of difficulties in maintaining consistency, and the
constraints on time, it can be difficult to control the acquisition method. Some
researchers have had to use a restricted of form the method (as did Burton et al,
1987) or use artificial ones (as did Lundell, 1988). In addition, there are several
characteristics of both the knowledge source and the knowledge engineer that
deserve attention as variables in their own right (e.g., level of expertise, and
personality).

Being sure that subjects are experts (determining their level of expertise)

appears also to be a common problem in experiment design. The means used
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to solve this problem have not been entirely convincing. Some researchers have
selected people whose expertise they appear to think unquestionable (e.g.,
academics who specialise in the topic). They have also selected subjects whose
novice status they appear to think indisputable (e.g., first-year university
undergraduates). Others have trained and tested their own subjects; but these
researchers appear to have difficulty deciding on appropriate criteria for expert
and novice.

There are also problems with using accuracy as a measure of
expert-system performance or knowledge-base quality. Each researcher defines
accuracy in a different way, according to what is convenient for the experiment
design. Even with a consistent definition of accuracy, there is still likely to be a
problem. If the test cases are taken randomly from a very large set of historical
records, the frequency distribution of certain attributes and classes is likely to
have certain characteristics. However, if the test cases are exemplars, or even
cases that an expert thinks interesting, then the frequency distribution of
attributes and classes is likely to be quite different. Thus, diagnostic accuracies
cannot be meaningfully compared without an accompanying comparison of the

source of the test cases.

Effects on a New Experiment

The need for consistent application of a knowledge-acquisition method to all
subjects can be addressed by modelling the method in a tool, and eliminating
the knowledge engineer altogether. However, the use of knowledge-acquisition
tools to compare two methods can introduce a confounding variable: the user
interface. Even if all the problems identified in this chapter are not solved in
the author’s design (described in Chapter 6, “Design of an Experiment to
Compare two Knowledge-Acquisition Techniques” on page 123), being aware

of them helped make the design sounder than it would otherwise have been.
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The controlled experiment still appears to be a promising approach to
investigating the relationships at work in knowledge acquisition. As present
and future researchers respond to the challenges posed by their predecessors,
the quality of research design and the value of the findings are likely to be

enhanced.
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Chapter 6. Design of an Experiment to Compare
two Knowledge-Acquisition Techniques

Abstract

This chapter discusses the design of an experiment to test the hypotheses stated
earlier. The variables to be manipulated and measured are extracted from the
hypotheses. Decisions are made about the type of experiment and how the
knowledge-acquisition methods will be administered. The chapter also discusses
the type of subjects to be used, and estimates how many of them are required.
Some possible domains are explored, and the most appropriate one is selected.

The data to be collected and how it will be analysed are also discussed broadly.

introduction

Chapter 3 states a number of hypotheses about the relative efficacies and
efficiencies of the repertory grid technique and KAMSE. These hypotheses are
an elaboration of the research question: whether experts find it easier to express
their classification knowledge by describing examples or by making distinctions
between examples. However, the hypotheses are only conjectures which
cognitive psychology and other considerations suggest. These hypotheses have
to be tested empirically. As Rugg, Corbridge, Major, Burton, & Shadbolt
(1992) have argued, what is expected to happen with knowledge-acquisition
methods often has limited basis in reality; and controlled experiments are an
ideal way of testing how valid those expectations are.

But controlled experiments are not without their problems. As discussed
in Chapter 3, there is not a long history of using controlled experiments in
research on knowledge acquisition. The few that have been done suggest that
the approach can be productive, if potential pitfalls are anticipated in the

design.
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Clearly there is a need to design an experiment to test the hypotheses
about the repertory grid technique and KAMSE. The variables of interest need
to be identified. The type of experiment must be decided. Subjects need to be
targeted in numbers sufficient to provide the data with acceptable power. How
the variables will be measured and the treatments administered must also be
decided. This chapter therefore discusses all these matters, culminating in an
agenda for a session of the experiment, and a list of actions that still need to be
performed before the experiment can actually be done. This chapter is therefore

a blueprint for the rest of the investigation.

Hypotheses

For convenience, the five hypotheses to be tested, which all compare the
repertory grid technique with KAMSE, are restated here:

Hypothesis 1: The elicitation of elements in the repertory grid technique
is very similar to the elicitation of classes in knowledge acquisition from
examples. When both prototypes and exemplars are used as elements, the
repertory grid will require the greater effort. In any event, the elicitation of
classes will never require more effort than the elicitation of elements. If the
elements elicited are all prototypes, then the two methods are identical at this
stage; and no difference is expected, between methods, in the mental effort
required of the expert at this stage of the process.

Hypothesis 2: A set of constructs (or attributes) adequate for
distinguishing among all the elements (or classes) in a domain can be elicited
more easily with prompting, as provided in the repertory grid technique, than
without, as in KAMSE.

Hypothesis 3: There is little reason to expect an expert to find it easier
to express examples in terms of attribute values than to identify similarities and

differences between examples of classes.

Chapter 6. Design of an Experiment to Compare two Knowledge-Acquisition Techniques 124



Hypothesis 4: Overall, for the entire knowledge acquisition cycle (from
element / class elicitation to evaluation of the generated knowledge base), there
is no efficacy difference between the two methods; the knowledge base
generated by induction will be equally accurate between methods.

Hypothesis 5: Overall, as for hypothesis 4 above, there is no efficiency

difference between the two methods.

Variables

Figure 21 shows the independent variables, treatments, and dependent variables
involved in testing each hypothesis. The stages mentioned are those in

Figure 15 on page 72.

Independent Dependent
Hypothesis variables variables

1 Method Effort at stage 1

2 Method Effort at stage 2

3 Method Effort at stage 3

4 Method Classification accuracy

5 Method Total effort (stages 1 to 5)

Figure 21. Variables involved in the hypotheses

Figure 21 shows a single independent variable, which is
knowledge-acquisition method, and there are two treatments: the repertory grid
technique and KAMSE.

Another possible independent variable is the domain or problem, but
that can be fixed by using the same domain for all the subjects. There is little
point contrasting synthesis domains against analysis ones, because any results
obtained for analysis systems will have some applicability to synthesis systems.
This is so because the latter can usually be broken down into analysis

components (see, e.g., Hayes-Roth et al, 1983).
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The subjects themselves are also variable; and perhaps some sense of the
variations can be obtained by testing them as Lundell (1988) did, perhaps to
establish individual levels of expertise. Indeed, that is one of the things that can
be noted about Lundell’s subjects: that they were all novices in the sense that
they had just learnt the task. Their knowledge was probably entirely at the
conscious level because they had just been trained and tested. Perhaps that is
something else that affected the external validity of Lundell’s results. The
experiment carried out by Stevenson et al (1988) appears more credible in the
way experts and novices are selected. Indeed, Anderson (1982) himself appears
to discount the notion of instant creation of experts. (For a fuller discussion of
this, sece Chapter 5, “The Controlled Experiment in Knowledge-Acquisition
Research.”)

The dependent variables are classification accuracy and the mental effort
expended by subjects at each stage of the process. So the experiment will have
to measure these variables. How to measure accuracy was discussed in
“Performance” on page 93. Measuring mental effort involves a surrogate,
perhaps the number of key strokes that the expert uses, perhaps the amount of
time spent interacting with the expert, perhaps other measures.

The real effort, however, is not the physical energy expended in pressing
the keys, but the mental resources used to think of the knowledge units. Posner
(1973) is one of the writers who argue that mental effort can be measured by
the length of time a mental operation occupies. Anderson (1983) also presents
empirical evidence about the time taken by various mental operations. So
comparative mental effort can be measured by timing operations. One practical
implication of this is that mental operations that take smaller amounts of effort
enable people using them to be more productive. Other researchers (e.g., Klein

& Cooper, 1981; Posner & Klein, 1973; Welch, 1898) have tried to measure

Chapter 6. Design of an Experiment to Compare two Knowledge-Acquisition Techniques 126



mental effort in other ways. These other approaches are all variants of the

secondary task method:

¢ Welch measured physical force as an indication of mental effort. The
greater the effort being expended on a mental task, the smaller the physical

force the subject is able to exert concurrently on a hand dynamometer.

* Posner & Klein generated an “auditory probe tone” at random intervals
during a mental task. The subject must acknowledge this probe by pressing
a designated key. The amount of time taken to react to the probe “serves

as a measure of” mental effort.

* Klein & Cooper played a tape recording that called out a random digit every
five seconds. The subject was required to call out the sum of the latest digit
and the previous one. The error rate indicated the mental effort used on the

primary task.

These approaches all distract the subject by occupying some of the
limited capacity of his or her consciousness. This capacity would otherwise
have been devoted to the primary task. Measuring time is a much less

obtrusive approach.

Method

The hypotheses to be tested demand an empirical comparison between two
styles of knowledge acquisition: the repertory grid technique and KAMSE.

Let us look at exactly what would be done in an experiment like this.
At a high level, one treatment would consist of using KAMSE to elicit subjects’
knowledge about the domain — i.e., by having a program that would elicit
classes, attributes, and examples. The other treatment would consist of using

the repertory grid technique; and this would also require a program. It would

Chapter 6. Design of an Experiment to Compare two Knowledge-Acquisition Techniques 127



also be necessary to train the subjects in the use of the two
knowledge-acquisition tools first, to ensure that their degree of familiarity with
the software is not a confounding variable. Those who fail to complete the
training successfully would not be given the experimental treatment.

So, in each session, half the subjects will use KAMSE, and the other
half will use the repertory grid technique. And they will sit there quietly
interacting with the knowledge-acquisition tool. A two-group design (see, e.g.,
Matheson, Bruce & Beauchamp, 1978) could be used. One group would use the
repertory grid technique while the other would use KAMSE. Alternatively, a
one-group design could be used if each subject were given both treatments of
the acquisition-method variable. This would make more use of the available
subjects, reduce errors due to subject variability, and enable a within-subject
analysis of the data (see, e.g., Keppel, 1982, p 68). Whether this can be done
will also depend on the amount of time subjects have available and the amount
of time it takes to go through knowledge acquisition with each method.

Since each subject is to use both methods on a single domain, it is well
to bear in mind (see, e.g., Stevenson et al, 1988) that once they reconstruct
units of the automatic knowledge at a conscious level (which is what either
method of knowledge acquisition is likely to do), then subsequent efforts to
elicit the same knowledge may be somewhat easier. A reasonable period of
time will therefore be left between treatments so as to attenuate carry-over
effects. In addition, the treatments will be randomly assigned to subjects, which
will probably result in the treatment order being reversed for half the subjects.
This will tend to ensure that both methods benefit comparably from any
carry-over effects, and take care of sequence effects (which have been assumed
to be linear).

Some researchers have not necessarily compared like with like. Some of

them have observed a truncated part of knowledge acquisition from examples,
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and compared that with some other entire process (e.g., Michalski & Chilausky,
1980). But, as the preceding chapters have made clear, the complete process of
knowledge acquisition from examples involves more than just running examples
through an inductive program, although that is a vital part of it.

For the subjects using the repertory grid technique, the tool determines
when all the required distinctions have been made. Under both methods, the
13 algorithm will be used to generate knowledge bases for which the
classification accuracy would be assessed by running through a set of test cases.
These test cases can be exemplars, randomly generated from the attribute values

used in the knowledge base, and then classified by the subjects.

Subjects

One of the possible confounding variables is directly related to the subjects.
And that is the level of expertise of the subject. If subjects are not going to be
trained (if a domain can be found in which all the subjects are likely to be
expert), then other hypotheses about the level of expertise could also be tested.
However, this is just a second variable, and it would take the experiment out of
the realm of single-factor designs and put it into the realm of a two-variable
experiment, resulting in a need for more subjects or more treatments per
subject, to give the data the desired power.

So either a single level of expertise can be assumed, or the subjects could
be tested to verify their levels of expertise. An expert could be defined as
someone attaining over a certain grade in the test — and the others could be
discarded. But this would be wasteful. It should be possible to interest
university students, university staff, and even people outside that environment

to participate as subjects, and find a domain in which they are all expert.
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Number of Subjects Needed

In deciding on the sample size required to give the data the desired power, it is
necessary to look at the “critical effect size”, and the population mean and
standard deviation. According to Kraemer & Thiemann (1987), the critical
effect size is “a measure of how strong the theory must minimally be to be

193

‘important to society’”. Traces built up over six months of developing and
testing the SCENIC knowledge-acquisition tool (see Chapter 7, “Design of
SCENIC: a CAKE Tool for Empirical Work™) failed to show any consistent
difference in the amount of time taken by one method or the other. These
traces therefore provide little indication of what the treatment effect might be, if
indeed there is any.

But it is possible to argue, arbitrarily perhaps, that if employing one
method on a project would mean finishing the work earlier or using less

| resources, and if the findings of this experiment can give pointers that can be
put to this kind of use, then the community would be interested in the findings.
The time saved would be that of both knowledge engineers and domain experts;
and it is well known that the latter tend to be busy people typically able to
spend only measured amounts of time transferring their skills to a system. It
appears reasonable to presume that, if one method were shown to take about
one half less time than the other, developers of knowledge-based systems might
be interested, other things being equal, in using that method rather than the
other. From this viewpoint, an interesting difference might be arbitrarily set at

one half of the mean.

Kraemer’s Method

The critical effect size (A; see Kraemer & Thiemann, 1987, p 38) requires an
estimate of the population mean (1) and standard deviation (¢). According to
Burton, Shadbolt, Rugg & Hedgecock (1990), we can expect to acquire between

0.8 and 1.6 clauses per minute using the techniques of interviewing, protocol
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analysis, laddered grid, and card sorts. For this purpose, they define a clause as
one conditional statement in a pseudo-english production rule. But Burton et al
report only averages and no variances. It is therefore impossible to use their
data to estimate the mean and standard deviation in this experiment.

The most useful estimates came from the trace built up while developing
and testing SCENIC. Analysis of these data yields a somewhat crude mean of
9.3 minutes for stages 1 to 4 with standard deviation of 7.4 minutes. Even so,
using these estimates would yield a § (difference in the mean as a fraction of the
standard deviation; see Kraemer & Thiemann, 1987, p 38), defined as

0= (n-pp) /o
= (93x0.5)/74 = 0.63
Now, the critical effect size is
A= (e26-1)/(e? + 1)
= (.56.
Cohen (1977, pp 53-56) has argued in favour of designing for 80% power. The
power table (Kraemer & Thiemann, 1987, pp 105-112) for a 0.05 level of
significance (a) with a power of 80% and a critical effect size of 0.56 requires a
sample size of 21 for the two-tailed test (or about 11 subjects, each receiving
both treatments). Little guidance is given in the statistical literature about
estimating sample sizes for experiments with several dependent variables.
However, because five dependent variables are to be used, the Bonferroni
adjustment may have to be made. It is therefore appropriate to use the a =0.01
tables, which give 31 as the required sample size. For a repeated-measures
experiment, this means about 16 subjects. Even more subjects will enable a

smaller effect to be detected with no loss of power.
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Keppel’s Method
Keppel (1982, p 71) uses a different procedure to estimate sample size. Keppel’s
¢ A2 (the square of “a quantity [used] in consulting power charts”) can be
calculated as

a2 = s((93x.52/2)/ 742
where §” is the number of subjects. This yields

da2 = 0205
So ¢, = 0.44 5.

Different values of s” give different denominator degrees of freedom
(dfgenom = 2 (8" - 1)) and different values of ¢,. So several values of s” have to
be tried. Keppel's (1982, p 549) power curves for o =.05 and one numerator
degree of freedom indicate that a ¢, of between 20 and 25 subjects are required
for 80% power. This translates to between ten and thirteen subjects in a
repeated-measures design. The power curves for a=.01 and one numerator
degree of freedom indicate that between 30 and 35 subjects are needed, which
means fifteen to eighteen subjects in a repeated-measures design. As discussed
under Kraemer’s method, it is more appropriate to use the latter estimate.
Qualifying the Estimates
Two close estimates of the number of subjects required for 80% power — 16
and 18 — have been obtained. Indeed, if an even larger number of subjects
could be used without undue increase in cost, it would be sensible to go ahead
and use them. However, whereas the estimates obtained above are based on a
univariate experiment, there are five dependent variables in the experiment. To
cater for the additional variates, the estimates have been subjected to the more
stringent .01 « level. p. In addition, Stevens (1980) has noted that small effects
are difficult to detect with small samples. The calculations above have been
done for 80% power. Stevens argues that even 70% is adequate, but cautions

that estimates of mean and standard deviation have to be available for all the
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variates, to produce a rigorous estimate of sample size. So the estimates
calculated here are only a rough guide. Moreover, if the standard deviation
found in the empirical data is smaller than that used here, a correspondingly
smaller difference in the mean will be detectable with acceptable power.

Based on the foregoing, it would appear that, although a sample size of
about 18 would be adequate, thirty would be a safe number to use, bearing in
mind that some subjects might fail to complete the procedure and others might
generate unusable data. Even after such attrition, there would probably still be

enough usable cases to achieve the power sought.

Knowledge Domain

As discussed in “Method” on page 127, the comparison cannot be made
effectively unless one or more suitable domains are found. One of the problems
in doing a controlled experiment in knowledge acquisition is that experts are
typically scarce individuals. Where they are not scarce, they are busy. So their
time is at a premium. As discussed in Chapter 5, “The Controlled Experiment
in Knowledge-Acquisition Research,” researchers who have done controlled
experiments in knowledge acquisition have run into this problem and tried to
solve it in various ways — usually not entirely convincing or satisfactory.

An important criterion for an experimental domain is therefore that it
should be an area of knowledge in which experts are abundant. A more

complete list of criteria can be enumerated as follows:

* The domain should be one in which a sufficient number of experts can be
assembled without too much difficulty.

* The domain should involve analysis (classification or diagnosis) rather than
synthesis. Results obtained for the former may be applicable to the latter,
which are complex exploitations of the fundamental building block (Dechter

& Michie, 1984).
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* To ensure its suitability for the repertory grid technique, the domain should
embody a fair number (say, seven or more) of elements.

* The domain should also have features that make it suitable for KAMSE.
That is, it should be reasonably easy to find examples (or cases) that

instantiate different classes.

Spelling

At the outset, the author had imagined that it would have been fairly easy to
find a domain connected with spelling. It had been argued that skills connected
with spelling and the use of words and language are widespread in the society.
Domains of this kind include distinguishing a correctly spelled word from an
erroneously spelled one.

Judged by some of the criteria, this appeared to be a suitable domain
because it is evident that educated native speakers of English develop,
throughout their years of schooling, expertise in making this distinction.
Moreover, by the time they become undergraduate students, they have
developed long experience and a well established skill. Although the number of
classes appears to be small (correctly spelled, and incorrectly spelled), examples
would créate plenty of elements. But correct spelling is not necessarily a widely
held skill, even among educated Britons. Even a restricted set (e.g., three-letter

words) contains many words that people are not familiar with.

Words

Hall (1965) argues that writing is simply a way of representing speech and that
the primary purpose of letters is to represent the sounds of a language. This
idea generates the interesting question: what are the sounds of English, and how
are they represented in spelling? So it is conceivable that there is abundant

expertise on the relationship between writing and speech. For example, if a
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word is pronounced in a particular way, how is it spelled? Or, if a word is
spelled in a particular way, how is it pronounced?

This domain appears to have ample classes and attributes, but there is
one major difficulty: representation of phonemes (minimum significant units of
speech) in textual form is something that the average person knows very little
about.

There are other possibilities in the field of word formation. For
example, Selkirk (1983) has pointed out that there are rules governing the

formation of compound words:

* A compound noun may consist of a noun, adjective, preposition, or verb on
the left and a noun on the right.

* A compound adjective may consist of a noun, adjective, or preposition,
followed by an adjective.

* A compound verb may consist of a preposition followed by a verb.

But there is little evidence to suggest that native speakers of a language
engage in this business of forming compound words. For the most part,
speakers use compound words with which they are familiar - words that they
have read or heard previously. If this is so, the experts in this domain would

again be people who have more than a passing acquaintance with linguistics.

Grammar

Another possible domain might be identifying parts of speech. This is a more
promising domain than spelling, because it is possible to identify several parts
of speech (noun, pronoun, etc.). And it appears reasonable that many people
would be able to recognise several instances of words used in contexts that

cause them to be classified as one part of speech rather than another.
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It appears likely that, even in this domain, the expertise may not be as
widespread in the population as might at first be imagined. It would therefore
be necessary to screen the experimental subjects by having them do a test to
determine their level of expertise. Although those who pass such a test may be
classified as experts, those who fail it may not be classified as novices but rather
as non-experts. This is because novices are people who are learning the skill
and who have assimilated much of the declarative knowledge, but have not
accumulated enough experience for compiled productions to have been formed.

In grammar there are only about eight parts of speech, which (even if
only prototypes are used as elements) certainly makes triadic elicitation
possible. The domain also appears suitable for KAMSE, because people can
usually recognise examples of different uses of a word. A trial with two people

confirmed the unsuitability of this domain.

Conversation

One domain that appeared promising at first is described by Taylor & Cameron

(1987, p 45):

The illocutionary act... may be the primitive unit of conversation. A
description which takes this idea as its starting point is then committed
to the following three questions: first, what speech acts exist in a
language, second, what are the rules for producing and interpreting

them, and third, what are the rules for sequencing them coherently?

Unfortunately, Taylor & Cameron also argue that there is little evidence
to suggest that conversationalists have knowledge of these speech acts, and that
conversation analysts disagree on both the nature of the speech acts and any

rules for producing, interpreting, or sequencing them.
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Other Domains

Another possibility was to use, as Lundell (1988) did, the diagnosis of faults in
a hypothetical machine. But the authenticity of the expertise generated in this
type of domain is not altogether convincing. The same problem arises if, as
Deffner & Ahrens (1989) did, the experiment used the prediction of the effect of
some action on a simulation.

The mention by Blythe ez al (1990) of object recognition provides the
most suitable domain, of those considered. Each subject could be given a bag
of objects that people are familiar with (a pencil, a pen, a paper clip, a button,
and so on). This is certainly suitable for the repertory grid technique, and will
provide several examples for KAMSE.

Object identification is a domain in which experts are abundant. From
early in our cognitive development, we encounter new objects and learn their
identities (the words used to describe them). We encounter objects similar to
ones we have seen before, but subtly different, for example, a leopard after a
tiger, a cat after a dog, a motorcycle after a bicycle, a donkey after a horse, a
pen after a pencil, boots after shoes.

If Anderson (1982) is right, the more a person exercises this knowledge
and makes identifications involving these distinctions, the more this expertise
becomes compiled, automatic, and also difficult to articulate, indeed, the more
skilled a person becomes at identifying these objects. In western societies like
Britain, most people (by the time they become adults) have already exercised
the object identification skill often enough to have become good enough at it to
be worthy of the description “expert”. Indeed, it is difficult to find anyone
unfamiliar with common objects like pens, pencils, rubber bands, coins, and
erasers.

An experimental domain was created consisting of a domain package of

a small number of objects that any university student or office worker or
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academic living in Britain would be expected to be very familiar with. The
domain objects were therefore ones that these kinds of people would be able to
identify quite easily. Indeed, this object identification domain affords the
flexibility of designing various effects into the domain by carefully selecting
certain combinations of objects. Based on preliminary trials, the domain was
designed so that the acquisition of the knowledge could be completed within an

acceptable length of time.

Some Requirements for the Apparatus

It would be useful to have an interactive tool to support KAMSE. This
tool would essentially ask for examples of all classes, and then induce rules by
using, say, the ID3 algorithm on the data. Having done that, a further set of
examples would be needed for testing the diagnostic accuracy of the resulting
knowledge base. Exemplars could be used for this purpose.

On the other hand, if enough is known about the domain beforehand, a
“gold standard” set of test cases could be elicited {from a respected expert of
some sort. This gold standard could be built before the experiment, and would
contain sufficient examples to test the knowledge bases generated in the
experiment. However, it could also happen that having come up with a set of
test cases from an expert, the attributes that s/he used might not include some
of the attributes elicited from subjects during the experiment. Also the gold
standard could include attributes that fail to come from some of the subjects.
Such discrepancies would make the gold standard useless.

But the efficacy of a knowledge acquisition method is a measure of how
well the expertise of the knowledge source has been retrieved and modelled. It
is not an absolute measure of how good the elicited knowledge is; that is not
just a function of the method but of the expert as well. What is required is a

measure of how well the source’s knowledge has been captured. It is therefore
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more meaningful to have each expert diagnose randomly generated examplars,
which can then be used as test cases against the new knowledge base.

Having administered the treatments, a set of data would have been
collected in terms of treatment and dependent variables. As for KAMSE,
software is needed that will use the repertory grid technique and then transform
the grid into a rule base. As for KAMSE, software is needed that will elicit
examples, and use them as a set of test cases. Ideally, it should be possible to
batch-process the test cases, and automatically record the results. It may also
be necessary, as a preliminary to the experiments, to elicit the knowledge from
some acknowledged expert, not for the gold standard, but to test the software.

It is therefore necessary to design and build those bits of software and
an expert-system shell. This design is discussed in Chapter 7, “Design of

SCENIC: a CAKE Tool for Empirical Work.”

Data to be Collected

Performing the experiment discussed in the preceding sections of this chapter
would generate a set of results for the repertory grid technique and a set for
KAMSE. These data would enable the statement that, on the average, the
effort involved in eliciting knowledge under the repertory grid technique was so
much and under KAMSE so much. The significance of any main effects of
method could be evaluated by using statistical F-tests. In addition, differences
in the respective resulting diagnostic accuracies of knowledge bases generated
under each method would be found. The significance of these differences could
also be evaluated. Since several dependent variables are being affected by the
independent variables, the data will have to be subject to a multivariate analysis

of variance (MANOVA).
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Summary of the Experiment

I'ive hypotheses have been stated (see Chapter 3, “Some Implications of
Cognitive Psychology for Knowledge Acquisition” on page 57). Here is the
essence of the questions raised by these hypotheses: Do experts find it easier to
express classification knowledge by describing examples or by making
distinctions between examples?

For the purposes of the experiment, ease is defined as having two
components: efficiency, and efficacy. Efficiency can be measured in terms of
effort (time) per unit of knowledge (class, attribute, attribute value, example,
rating) acquired. Efficacy can be measured in terms of classification accuracy
of the acquired knowledge.

A single-factor repeated-measures (within-subjects) design will be used.
Each of about 30 volunteer subjects will be randomly assigned to one of the
two knowledge-acquisition methods. Each subject will be given a diskette and
the corresponding instruction sheet for the assigned method. Each subject will
be trained to use the relevant portion of a knowledge-acquisition tool
embodying the method assigned (for about 10 minutes). This training will
consist of using the tool to build a small knowledge base with the aid of some
written instructions.

When each subject completes the training exercise, s/he will be given a
domain package and asked to use the tool until sufficient knowledge has been
acquired to distinguish between all classes in the domain. (The domain package
is useful as a visible reminder of the limits of a domain, which, after all, is an
artificial subset of a real one.) The tool will create a knowledge base from this
knowledge. Then each subject will classify some exemplars (about 32), which
will be used as test cases to evaluate each knowledge base. Invite the subjects
who completed their first session to return a week later for the other method.

During knowledge elicitation, the tool will record:
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¢ Method
* Time spent on each stage

* Number of knowledge units elicited at each stage.
During evaluation, the tool will record:

* Method
* Number of cases processed

* Number of cases in which the inferred class matched the expected class.

Store the data for subsequent statistical analysis.

Agenda for the Experiment

* Administration (5 minutes)
— Get a list of subject’s names; number them and randomly assign to
method.
— Hand out appropriate diskettes & instructions.
* Briefing (10 minutes)
— Explain the task
— Self-training
— Hand out domain packages.
* Experiment (30-40 minutes estimated)
— Handle problems individually, log them, note time wasted.

— When someone finishes, collect his or her diskette.

Conclusions

It is possible to test the hypotheses by using a single-factor repeated-measures
(within-subject) design involving eighteen or more subjects. Object
identification is a viable domain, in which there is not likely to be a shortage of

experts.

Chapter 6. Design of an Experiment to Compare two Knowledge-Acquisition Techniques 141



If a tool is available, the appropriate data can easily be collected to do a
MANOVA and identify significant main effects of the knowledge-acquisition
method.

The variability of administration of knowledge-acquisition methods can
be minimised, and the appropriate generation and evaluation of knowledge
bases can be handled efficiently by using a tool embodying the repertory grid
technique and KAMSE. Chapter 7, “Design of SCENIC: a CAKE Tool for

Empirical Work” on page 143 describes the design of such a tool.
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Chapter 7. Design of SCENIC: a CAKE Tool for
Empirical Work

Abstract

Using a knowledge-acquisition tool in a controlled experiment can reduce the
potential for inconsistent administration of the method treatments. When more
than one method is involved, differences in the user interface may introduce a
confounding variable. A single tool with a consistent user interface throughout
can minimise that effect. A tool also facilitates collection of data, analysis and
processing of knowledge, and evaluation of knowledge bases.

This chapter describes the design of SCENIC, a tool embodying both
the repertory grid technique and KAMSE. SCENIC was built specifically for
the experiment designed in Chapter 6, “Design of an Experiment to Compare
two Knowledge-Acquisition Techniques.” SCENIC also includes features that
make it applicable outside the narrow confines of the research laboratory. A
second version, capable of handling more complex domains, is being designed to

take it further in that direction.

Introduction

The experiment design described in the previous chapter relies heavily on the
availability of a knowledge-acquisition tool embodying two methods: the
repertory grid technique and KAMSE. The tool, called SCENIC after its
author’s first initial and surname, will assume that an analysis domain has been
identified, and will acquire knowledge through all the subsequent stages,
including generation of a knowledge base and the evaluation of it through batch
consultation.

The stages followed by the two acquisition methods are shown in

Figure 22 on page 144 (for convenience, repeated here from page 72).
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Repertory Grid Minimal Set of

Stage Technique Examples

1 Elicit elements Elicit classes

2 Repertory test: ETicit attribute
elicit constructs descriptors and values

3 Repertory test: Elicit examples

elicit ratings

4 Induce rules Induce rules
5 o Classify evaluation o Classify evaluation
exemplars exemplars
o Evaluate knowledge o Evaluate knowledge
base base

Figure 22. The knowledge acquisition stages of the two methods implemented in SCENIC

The first stage is the elicitation of classes (for KAMSE) or elements (for
the repertory grid technique). Whereas this search for classes is seldom
highlighted in the literature on machine learning, it is openly discussed in
articles on the repertory grid technique (see, e.g., Boose & Bradshaw, 1987,
Garg-Janardan & Salvendy, 1988). Both methods use the same program; so
both the processing code and the user interface are identical. The only
discernible difference between the two methods at this stage is the panel
heading (see pages 154 and 159).

The second stage is different between methods. Having identified the
elements, the user of the repertory grid technique must also identify the
constructs that constitute the dimensions of the problem space. To elicit these
constructs, the tool administers a repertory test — presenting triads of elements
and asking for the odd one out to be selected. When this selection is made, the

tool asks for the trait that makes the two similar elements different from the
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other. Indeed, the essence of the repertory grid technique is the way that
constructs are elicited. For each construct entered, the tool goes into a rating
stage, which elicits a rating, on the particular construct, for all elements. It is
worth pointing out that there is another way that tools do the repertory test.
ETS (Boose, 1985) and AQUINAS (Boose & Bradshaw, 1987), for instance,
elicit all the domain constructs before entering the rating stage. However, this
approach is potentially inefficient, because it cannot assess when enough
constructs have been elicited. SCENIC’s interleaving of the rating and
construct elicitation stages allows the grid to be analysed continually, to
determine when constructs are parallel, rotated, potential cluster members, or
no more are needed. This enables the tool to complete the
knowledge-acquisition session quickly.

Under KAMSE, the parallel stage is the elicitation of attributes, which is
not subject to the degree of analysis and monitoring that accompanies the
elicitation of constructs. As with the identification of classes, the problem of
finding attributes is seldom acknowledged in the machine learning literature.
Perhaps this is because, in inductive knowledge acquisition, it is usually
assumed that classes, attributes, and cases are all given. But, as discussed in
Chapter 2, “Learning Without Case Records: a mapping of the repertory grid
technique onto knowledge acquisition from examples,” there are situations
where this assumption is not correct, and a domain theory must be developed
before any induction algorithm can be put to work.

In Chapter 2, it is argued that the repertory test has to be goal-oriented
to prevent it from going on for an unnecessarily long time, repeatedly eliciting
parallel constructs. So the repertory test has to guide the user toward
completion (that point at which all the elements are distinguishable on their
ratings from each other). Until that state is reached, the repertory test would

go on presenting random triads. One challenge for any repertory-grid
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knowledge acquisition tool is therefore to encourage the user not so much to
find new ways in which the same clements differ, but rather to find new pairs of
elements and the traits that they share. So SCENIC reduces the randomness as
the number of confused pairs of elements gets smaller, thus ensuring that a
triad is never presented unless it contains a confused pair.

When the tool has elicited distinctions between all the elements, and no
confused pairs remain, it goes into the next stage: the induction of rules from a
set of examples generated from the repertory grid.

With KAMSE, once the classes have been elicited, the tool then elicits
descriptors and values of all the attributes (that the user thinks have to be
considered in distinguishing the domain objects {rom each other).

After these attribute descriptors and values have been entered, the tool
elicits a number of examples. A number of checks are also built into KAMSE.
At least one example of each class must be entered, if the class is to be
represented in the eventual knowledge base. The tool reminds the user of
classes for which no cases have been entered. The tool also alerts the user
when clashing cases are entered (i.e., two cases with identical attribute values,
but different classes).

When the user is satisfied that enough examples have been entered to
adequately represent all the classes, s/he causes the tool to progress to the next
stage, inducing rules from the examples entered. A single program performs
this induction for both knowledge-acquisition methods.

The next stage for both methods is to generate a set of exemplars from
random attribute values. These exemplars have to be classified by the user.
Having decided on classes for all thirty-two exemplars, the user then enables the
tool to progress to the next stage — using the test cases for batch evaluation of

the knowledge base. This process counts and logs the number of test cases
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seen, and the number in which the tool’s diagnosis agrees with that of the
expert.

Throughout all these stages, for both methods, the tool collects and logs
data required for later statistical analysis. The data logged for each of the five

stages is:

* Number of keys pressed
* Start and end times
* Number of knowledge units (i.e., classes, attributes, values, and examples)

acquired.

Structure of the Tool

To provide the functions described in the previous section, a single
integrated system was designed and developed. As Figure 23 on page 148
shows, the tool includes four high-level functions: (RGT, which administers the
repertory grid technique), KAMSE, options (e.g., setting tracing on and off),
and a performance system (expert-system shell) through which the knowledge
may be consulted or evaluated.

For uniformity, it is important to have both the RGT and KAMSE
functions using similar user interfaces. Such uniformity helps eliminate the user
interface as a possible confounding variable, when the tool is used in an

experiment.
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CAKE Tool

RGT

KAMSE

Options

Performance
System

Figure 23. Functions of the SCENIC CAKE tool

The RGT Function

The RGT function interacts with the user, and elicits the elements, constructs
and ratings that make up a repertory grid for the domain of interest. Primarily
at stages 2 and 3, the function analyses the emerging grid for parallel
constructs, confused pairs of elements, and clusters of constructs. It then
generates an eflicient knowledge base by first transforming the repertory grid
into a set of examples, and then using the ID3 induction algorithm to distill
these into a heuristic knowledge base. It then generates some exemplars for the

user to classify. These exemplars are passed to the performance system for

evaluating the knowledge base.

Inputs and Outputs

* A repertory grid

Panels to user

Knowledge base

the knowledge base

* A trace file containing measures taken during the experiment.

Chapter 7. Design of SCENIC: a CAKE Tool for Empirical Work 148

A file containing test cases expressed in terms of the domain model used in




Subfunctions of RGT
The RGT function performs subfunctions which fit together in a hierarchy, as

shown in Figure 24 on page 149. Each of the subfunctions is described below.

RGT
Element Construct Test Case Grid to KB
Elicitor Elicitor Elicitor Transformer
Rating Grid 1D3
Elicitor Analyser Induction

Figure 24. Subfunctions of the RGT function

Elicitation of Elements: This subfunction asks the user to type in the names of
all the elements. These are stored in a list. When the user indicates that this
list is complete, the elicitation of constructs will begin.

Elicitation of Constructs: This subfunction selects at random three elements at
a time, and asks the standard questions about similarity and difference. Both
poles of each construct will be elicited, and then the rating subfunction will be
invoked. It is also possible for a single triad to be used in eliciting several
orthogonal distinctions, if it is “milked” (Gammack, 1987). A tool could
possibly gain efficiency by doing this. However, use of this device while the
tool was being tested evoked unfavourable responses from users, who found the

technique tedious.
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Because of the bipolar nature of constructs, the repertory grid technique,
in its simplest form, generates knowledge bases that ask questions with “yes”
and “no” (and perhaps “don’t know”) being the only possible answers.
Depending on the capabilities of the performance system’s inference engine,
some kind of certainty estimate may allow these sharp distinctions to be
blurred. KAMSE, however, allows multi-valued attributes and is therefore
capable of generating knowledge bases that ask multiple-choice questions.
Constructs can be clustered so as to become attribute values, as explained on
page 34.

The number of constructs generated by the repertory grid technique
depends on the number of triads of elements presented to the user. Some
systems therefore seek to limit this number. But some of these limits are crude:
Garg-Janardan & Salvendy (1988) limit the number of triads to one half the
number of elements in the grid. It may, however, be more effective to proceed
with triadic elicitation until enough constructs have been gathered to distinguish
every element from every other.

Rating of Elements: [For each construct, this subfunction asks the user to
enter ratings for all the elements stored in the grid. Proceeding in this sequence
implies that whenever additional elements are subsequently elicited, they will be
unrated in terms of previously elicited constructs. The user could be invited to
rate the new elements on these constructs, but that embellishment is not needed
in the experiment. The tool will assign the central rating value (don’t know) to
such elements.

Grid Analysis: This subfunction analyses the grid (see Shaw, 1981) to identify
confused pairs of elements, parallel constructs, rotated constructs, and clusters
of constructs. The user is notified of parallel and rotated constructs, and left to
do with the information whatever is appropriate. The user is also informed of

possible construct clusters, and invited to confirm and name them. The
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presence of confused pairs causes the tool to continue eliciting constructs (and
ratings). The grid is considered completed when it contains no confused pairs;
when this state is reached, the tool progresses to creating a knowledge base.
Transform Rep Grid into a Knowledge Base: Elements and clusters of
elements in the completed grid are used to create classes. Constructs are
converted to attributes, as discussed on page 34. Then one example is created
from each grid element. This involves converting ratings to attribute values: a
rating higher than 3 converts to “yes”; one lower than 3 becomes “no”; and a
rating of 3 becomes “don’t care”. The examples so created are processed by the
ID3 induction algorithm (described in “Induction by the ID3 Algorithm” on
page 160), which finds regularities in them; and creates a knowledge base
compatible with the performance system.

Eliciting Test Cases: Random values of the attributes used in the knowledge
base (as opposed to the redundant ones) are combined to form a set of
exemplars which need to be classified. The classes are elicited from the user.
When the exemplars have been classified, they are passed to the batch
evaluation subfunction.

Batch Evaluation: This subfunction evaluates the knowledge base by

consulting with the performance system on all the test cases available.

The KAMSE Function

The KAMSE function elicits the pieces of information necessary to generate a
knowledge base by machine induction. The function interacts with its user to
elicit classes, attribute descriptors and values, and examples, which can be
prototypes, exemplars, or historical cases. For each example, the tool asks for
the class and the value of each attribute. The examples are used by the 1D3
induction function to create a knowledge base, which is evaluated by the batch

evaluation subfunction.
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Inputs and Outputs

* A knowledge file storing the partial domain model and examples to be used

for induction.

Panels to user

Knowledge base

A file containing test cases expressed in terms of the domain model used in
the knowledge base

* A trace file containing measures taken during use of the tool.

Subfunctions of KAMSE
The KAMSE function is structured as a hierarchy of subfunctions, as shown in

Figure 25. Each subfunction is described below.

KAMSE
Class Attribute Example ID3 Batch
Elicitor Elicitor Elicitor Induction Evaluation

Figure 25. Subfunctions of the KAMSE function

Elicitation of Classes: This subfunction elicits classes, and is identical to the
element elicitation in the KAMSE function. When the user is finished, the tool
progresses to the elicitation of attributes.

Elicitation of Attributes: This subfunction will ask the user for the factors
considered in deciding among the classes. For each attribute, the values
relevant to the domain will also be asked for. When the user is finished, the

tool progresses to eliciting examples.
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Elicitation of Examples: At least one example of each class will be elicited.
This subfunction will alert the user about conflicting examples, whenever one is
entered. When the user indicates that all examples have been entered, the tool
will progress to the ID3 induction subfunction. At any time, the user can go
back to previous stages (e.g., elicitation of attributes) to modify the domain
model.

ID3 Induction: This subfunction will read through the examples, and find
regularities using the ID3 algorithm (as in Quinlan, 1979, p 171; Quinlan, 1986,
Hart, 1986, p 114).

Batch Evaluation: This subfunction is identical to that described under the

KAMSE function.

Data Elicited and Stored

¢ For each domain, a short name is elicited and stored.

* For each element, the following pieces of information are elicited and
stored:
— Name
— Ratings (one for each attribute)

* For each construct/attribute, the following pieces of information are elicited
and stored:
— Descriptor
— Opposite pole (only for constructs)

* For each case, a case identifier is generated, and the following pieces of
information are elicited and stored:
— Class identifier

— A value for each attribute,
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4 ™
SCENIC Repertory Grid Technique

Constructs  Ratings Induction _ Validation Quit

Enter all the types of objects you can think of - one to a line.

Types of objects

1 1-cent coin
2 Hair grip

3 Elastic band
4 1-penny coin
5 Washer

6 Button

/4 Paper . clip

8

g
10

Paper clip_

k‘Esc=Progress Fi=Help F3=Exit FlO=Actions

Figure 26. The panel used to elicit elements

Repertory Grid Panels

The panel shown in Figure 26 on page 154 is used to elicit elements under the
repertory grid technique. The user can move the pseudo-cursor up and down
the list, making changes to any of the elements. New elements are added at the
end of the list. As with all the panels used in SCENIC, the menu bar at the top
indicates the stage reached in the knowledge acquisition process. For each triad
of elements, the construct that distinguishes between them is elicited through a
set of three related panels, used at the construct elicitation stage. First the user
is asked to select the element that differs from the other two. This is done on
the panel shown in Figure 27 on page 155. The user positions the
pseudo-cursor on the element to be selected, and then presses the Enter key.

When the user has selected one of the three elements, the selected element is
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SCENIC Repertory Grid Technique
Elements Ratings Induction _ Validation Quit
Think of a way in which two of these three objects are similar.
Select the one that is different from the other two.

Types of objects
Elastic band
Hair grip

kE~.:,c=Progres.s Fl=Help F3=Exit FlO=Actions

Figure 27. One of the panels used to elicit constructs

moved away. It appears by itself at the bottom of the triad, separated from the
other two elements. The user is asked to input the construct on which the
selection was made. All this takes place on the panel shown in Figure 28 on
page 156. The questions asked by a repertory grid tool have to be carefully
chosen if the desired kind of information is to be successfully elicited from the
tool’s user. For instance, the question “What makes A similar to B and
different from C” elicits a construct that may be useful in classifying. However,
a different question must be found to elicit distinctions between circumstances
in which one would select A or B but not C. A more effective question for a
diagnostic domain might be: “Under what circumstances would you select A or
B but definitely not C?”.

Moreover, the question tends to elicit a noun construct when what is

required is an adjectival one. Even in a classificatory domain, the question still
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r ™
SCENIC Repertory Grid Technique

Elements Ratings Induction Validation _ Quit

What makes "Elastic band" similar to "Hair grip" and different from "Button"?

Elastic band
Hair grip

Button

bendable_

\Esc=Progress Fl=Help F3=Exit Fl6=Actions

Figure 28. The construct-elicitation panel with a separated triad

tends to elicit a comparative construct such as “much heavier” when what is
needed is a positive one such as “heavy”. The most appropriate wording for
the question can be determined by the tool based on a description of the goal of
the domain.

After the main pole of the construct has been entered, the panel shown
in Figure 29 on page 157 elicits the opposite pole. When both poles of the
construct have been entered, the user can press the Enter key to confirm that
they are correct. This causes the tool to progress to the rating stage. Here, the
user is asked to rate all elements on the construct. Three of the elements arrive
here pre-rated from the construct stage, but these ratings can be changed, if
desired. The panel shown in Figure 30 on page 158 is used for rating. One
question that arises is what kind of rating scale should be built into SCENIC.

Kelly (1955) insisted on a two-point rating scale on which every element should
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4 ™
SCENIC Repertory Grid Technique

Elements Ratings Induction _ Validation Quit

What is the opposite of "bendable" that characterises "Button"?

(11111} S—— > TRAIT--omemmommmm >
Elastic band bendable
Hair grip
[
unbendable_

\Esc=Progress Fi=Help F3=Exit Fl@=Actions

Figure 29. The panel that elicits the opposite pole of a construct

be rated. KITTEN uses a five-point scale for rating elements; and Shaw &
Gaines (1987, p 256) justify this by arguing that “The use of a multi-point scale
with an odd number of values allows for a central rating which does not force
the user to choose either pole.”

The commercial knowledge-acquisition tool NEXTRA uses the repertory
grid technique. Traits (called “qualities”) are bipolar with “neither being an
option”. This scheme is equivalent to a three-point rating scale on which 1 and

3 are the opposite poles of the construct, and 2 is neutral.

KAMSE Panels
Classes are elicited in exactly the same way as elements in the repertory grid
technique. The similarity between the panel used for the purpose, which is

shown in Figure 31 on page 159, and the corresponding one for the repertory
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L~
SCENIC Repertory Grid Technique h
Elements Constructs m Induction _ Validation _ Quit
Rate each object on a scale of 5 to 1.
bendable
Types of objects 5 4 3 2 14——unbendable
1 l-cent coin
2 Hair grip 4
3 Elastic band 5
4 1-penny coin 2
5 Washer 2
6 Button 1
7 Paper clip 4
8
9
10
1._
\Esc=Progress Fi=Help F3=Exit F1l0=Actions )

Figure 30. The rating panel

grid (in Figure 26 on page 154) is obvious. Attributes are elicited on the panel

shown in Figure 32 on page 160. The classes previously elicited are listed at

the left to remind the user of the scope of the domain. But this panel is used

for input of attribu

tes, each consisting of a descriptor and multiple values.

When a user lists attributes that distinguish between classes of objects,

s/he may not know whether all the attributes and their possible values are

essential to the analysis task. The machine induction process may reveal that

(based on the set of examples used) some of the given attributes or values are

redundant (or at least redundant for the training set provided). Alternatively,

the given attributes may not be sufficient to distinguish between all classes.

At the example elicitation stage, the user enters at least one example of

each class. Each example is described in terms of the attribute values
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r N
SCENIC Acquisition by Examples
Attributes Examples Induction Validation Quit

Enter all the types of objects you can think of - one to a line.

Types of objects
1-cent coin
Hair grip
Elastic bhand
1-penny coin
Washer

Button

Paper clip

© O W~ U WN =

—

Paper clip_

\\Esc=Progress Fl=Help F3=Exit F1O=Actions

Figure 31. The panel used to elicit classes

previously entered. Neither the attribute values nor the class are keyed in;
because they are already in the computer, the user simply selects them from the
lists in which they are stored. The panel shown in Figure 33 on page 161,
which facilitates all that, is used to elicit examples. Hart (1986, p 116) shows a
set of seven cases in which two have identical attributes but different classes.
One way of treating such conflicting cases in induction is simply to ignore them.
But when this is done, something is lost, because what is required is an
additional attribute to distinguish between the clashing cases. It could equally
be that one case is erroneous and needs to be corrected. Indeed, there appears
to be no reason why a tool eliciting examples could not check for such clashes
before applying the induction algorithm. In addition, the tool will also inform

the user of any classes for which no cases have been given.
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4 ™
SCENIC Acquisition by Examples
Classes Examples Induction Validation  Quit
Enter the attributes and their possible values that you need to consider
in identifying different kinds of objects.
ATTRIBUTES--=nmommcmememcme e >
Objects Shape Material Colour
1 l-cent coin disc metal red
2 Hair grip loop plastic
3 Elastic band u-shaped rubber
4 1-penny coin wood
5 Washer paper
6 Button
7 Paper clip
8
9
10
green_
\\Esc=Progress Fi=Help F3=Exit FlO=Actions ;

Figure 32. The panel used to elicit attributes

Induction by the ID3 Algorithm

Some writers see induction as an essential part of the analysis and organisation

performed on knowledge gathered by the repertory grid technique. Rappaport

& Gaines (1990), e.g., mention “topological induction” in discussing NEXTRA,

while Boose (1985) refers simply to “inductive generalization” in discussing

ETS. Boose goes even further, saying that the rating grid represents “training

examples” (p 501).

Shaw & Gaines (1987, p 258) also mention induction in their discussion

of the tool KITTEN:

The resultant grids are analyzed by ENTAIL which induces the

underlying knowledge structure as production rules that can be loaded

directly into an expert system shell.
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é ™

SCENIC Acquisition by Examples
Classes Attributes m Induction _ Validation  Quit
Enter examples of all kinds of objects - one to a line.
ATTRIBUTES-~=-=mommmmmcmmmmmmmee e >
Shape Material Colour Object
1 disc metal 1-penny coin
2 loop rubber Elastic band
3 u-shaped metal Hair clip
4 disc plastic
5
6
7
8
9
19
Button
\Esc=Progress Fl=Help F3=Exit Fl@=Actions

Figure 33. The panel used to elicit examples

Indeed, it is often useful to use an induction algorithm to transform a repertory
grid into a rule base. This transformation can have two stages: first a decision
tree is generated, then the tree is transformed into a set of simpler production
rules. The induction process acts to organise the attribute tests into an efficient
sequence and to prune redundant tests. Applying induction in this way makes
sense only when we view each element and its ratings as a case. And it is
hardly fanciful to argue that these cases could also be used to train a neural
network (by repeated presentation if necessary).

Let us look at a specific situation as a preliminary step to writing a
generalised algorithm. Assume a case base having five cases (Cl to C5), a
closed set of three classes (D1, D2, and D3), and seven attributes (Al to A7).

Assume further that each attribute has the same three possible values (“.”, “Y”,
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and “N”). The attributes have the following specific meanings: “Y” = yes,
“N” = no, and “.” = don’t care. In this situation, “.” is actually a superclass

of “N” and “Y”. Such a case base would look like this:

Case Attributes-==-=--mmmmmemme

Id Al A2 A3 A4 A5 A6 AY Class
C1 Y Y N . Y N . D1

c2 A S A . . D1

C3 N . N N .Y Y D2

C4 Y N . A A § D2

€5 . N Y . N . . D3

Quinlan (1986) suggests that the program find the test with the highest
“information gain”. For the time being, it is assumed that attribute A2 has the
highest information gain. Splitting this case base by the attribute values of A2

leads to the following sequence:

Case Attributege--mmeemem———————

Set Id Al A2 A3 A4 A5 A6 A7 Class Test

1 C3 N N N N . Y Y D2 A2="N"
1 ca Y N . N A ¢ D2 AZ2="N"
1 C5 NoY . N . . D3 A2="N"
2 C1 Y Yy N . Y N . D1 A2="y
2 c2 A T S . . D1 A2="Y"
2 C3 N oY N N . Y Y D2 A2="Y"

The case base has thus been divided into two sets of cases according to
the value of attribute A2. It will be noted that case C3 exists in both sets. This
is because of the way the don't-care value, which C3 has for attribute A2, is
treated. Because set 1 consists of cases of different classes (D2 and D3), we
nieed to find a further test to split it. This choice would again be based on

maximising information gain.
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To find the best test, the information gain or entropy is calculated for
every attribute not previously used (i.e., every attribute except A2). The
method used for this calculation is that given in Quinlan (1986, pp 89-90).
Assuming that using attribute A5 as the next test will result in the highest
information gain in set 1, splitting set 1 by value of AS results in a case base

subdivided as follows:

Case Attributes------wmrmwmwo—-

Set Id Al A2 A3 A4 A5 A6 AY Class Test

1.1 C3 N N N N Y Y XY D2 A2="N" &
C4 Y N . .Y LY D2 AB="Y"

1.2 (3 N N N N N Y Y D2 A2="N" &
C5 . N Y L. N . . D3 A5="N"

2 Cl Y Y N . Y N . D1 A2="Y"
ce A A A . . D1
C3 N Y N N . Y Y D2

Set 1.1 is a single-class set and therefore needs no further splitting. Let us focus
on set 1.2 and assume that attribute A3 has the highest information gain.

Splitting set 1.2 on the attribute A3 results in the following case base:
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Case Attributes--~crrommeemee

Set Id Al A2 A3 A4 A5 A6 A7 Class Test
1.1 C3 N N N N Y Y Y D2 A2="N" &
ca Y N . . Y . Y D2 AB="Y"
1.2.1 C3 N N N N N Y Y D2 A2="N" &
AB="N" &
A3="Nll
1.2.2 C5 . NOY . N . . D3 AZ2="N" &
A5="N" &
A3="y"
2 C1 Y Y N .Y N . D1 A2="Y"
c2 . Y . Y . . . D1
C3 N Y N N . Y Y D2

Fach time a split is done, the program stores information about the
composition of each set created, including the sequence of tests used. This
splitting process is continued until each set contains examples of a single class.
At that point, induction is complete. The series of tests that were used to
create a single-class set form a production rule. For example, set 1.2.1 was

created by the rule:

IF A2 = "N"
AND A5 = "N
AND A3 = "N

THEN Class = D2

The production rules are generated in a representation compatible with the

performance system.®

6 It is worth noting that SCENIC has the facility to export either frame-intensive or
rule-intensive knowledge bases into AD/Cycle The Integrated Reasoning Shell, a

commercial knowledge-engineering tool distributed by IBM.
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The Performance System

The performance system has two modes of operation. When it is given a file of
test cases, it uses them for batch consultation. When it is not given this file, it
does an interactive consultation. Only the batch consultation is required for the
experiment; but the interactive consultation aliowed the tool to be tested, and
makes it general enough to be used outside the experimental environment.

The performance system is similar to MYCIN, but more modest in that
it models a simple decision, not a complex one (ailment and treatment) as
MYCIN does. It is possible, when the user answers “don’t know” to some of
the questions, for the system to arrive at more than one conclusion. These are
all presented by the advice subfunction.

The performance system is an expert-system shell structured as shown in

Figure 34 on page 166.

Subfunctions of the Performance System

Batch Consult: This subfunction will browse a test case base, taking each case
as input to its inference engine. This function will determine whether the
output of the inference engine matches the expected outcome stored on the test
case file. The number of test cases processed and the number in which the
inference agrees with the expected result are counted and passed to the
elicitation tracer.

Interactive Consult: This subfunction asks the user a multiple-choice question
to obtain a value for an attribute. The choices consist of all the values of the
particular attribute, plus “don’t know”. The answer selected by the user is
passed to the inference engine. The questions asked depend on the rules being

evaluated. In general, not all questions are asked to arrive at a conclusion.
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Performance

system
KB Toad Question Advice
Interface Interface
Batch Interactive
Consult Consult

Figure 34. Structure of the performance systemn in SCENIC

Tracing

Throughout the elicitation process, the elicitation tracer will keep track

of information such as the following:

* Date and time of event
* User identifier

* Acquisition method

» Stage of the process

e Start and end times

* Measures relevant to the stage.

This information will be used later to analyse the progress of the user
through an elicitation session and to reflect the effort involved at each stage of
the elicitation process. Tracing will be applied to both repertory grid technique

and knowledge acquisition from examples.
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Conclusions

It is possible to build a tool that administers the two knowledge-acquisition
methods in the experiment, and collects the appropriate measures for later
statistical analysis. Such a tool, SCENIC, described in this chapter, was
constructed and tested to ensure that it functioned as intended.

Several people were asked to use SCENIC, and the comments they
provided sometimes pointed to the need for minor adjustments in the user
interface. All such adjustments were made. Much of the feedback was
encouraging. This process continued for several months, until no further
changes were being suggested.

During this testing period, the tool was used for several domains:
business strategy, object identification, tool selection, identifying animals, and
several small induction problems, e.g., the set of seven examples given in Hart
(1986) mentioned on page 159.

SCENIC has proved adequate for its primary purpose, and includes
general features (e.g., the ability to set the trace off, interactive consultation,
and the generation of knowledge bases for export to other environments) that
make it useful for eliciting knowledge and distilling efficient knowledge bases
outside the experimental context.

The architecture used for SCENIC has also been found to be capable of
extension to acquire knowledge for more complex analysis systems. This
redesign is being done with the object-oriented methodology of Wirfs-Brock
(1990). This approach should facilitate even further extensions, as they become
desirable. In the redesign, more emphasis is being placed on domain definition,
which the current version assumes complete. This will involve eliciting a
skeletal plan or some skeletal advice, which will indicate what further knowledge

needs to be elicited by the system.

Chapter 7. Design of SCENIC: a CAKE Tool for Empirical Work 167



Chapter 8. How Technique Affects Knowledge
Acquisition: a Controlled Experiment

Abstract

The repertory grid technique and KAMSE follow analogous stages, and elicit
essentially the same kind of knowledge. A comparison of the data elicited by
the two methods, and consideration of the cognitive processes probably at
work, gave rise to the expectations that neither of these two methods has more
efficacy than the other. The repertory grid technique was expected to be more
efficient at one stage of the knowledge-acquisition process, but it was thought
that this difference would probably not be large enough to be reflected
significantly in the efficiency of the entire process. This thesis has been
elaborated into five hypotheses, which were tested by a controlled experiment.
The two methods were shown to be equally effective ways of obtaining the
information needed to build a heuristic knowledge base for classification.
Differences in efficiency are attributed to possible mismatches between the
repertory grid technique and the domain expert’s cognitive system. These
differences also point to opportunities for improving the efficiency of the

repertory test.

Introduction

When a knowledge-based system (KBS) is delivered to its users and
incorporated successfully into their routine operation, the system is the result of
a sequence of actions in which prospective users, knowledge engineers, and
domain experts participated. Such a system would normally be accepted for
routine use only when it has been shown to act with a high degree of accuracy.
This accuracy can indeed be improved by refining the knowledge base

(Politakis, 1985; Ginsberg, 1988). But the size of the refinement task, and even
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the necessity for refinement, can be reduced if the knowledge-acquisition
process is itself capable of producing highly accurate knowledge bases.

Knowledge acquisition can be a difficult problem; and several methods
have been used to try to solve it. Typically, much of the knowledge has to be
elicited from a domain expert; and the choice of method can affect the pace and
outcome of the process. Indeed, when a domain expert agrees to have his
knowledge elicited, it is important, to maintain his or her enthusiasm, that this
elicitation be as efficient and effective as possible. Such efficiency and efficacy
are unlikely to be achieved unless the elicitation technique closely matches the
cognitive processes of the domain expert.

The experiment designed and described in Chapter 6, “Design of an
Experiment to Compare two Knowledge-Acquisition Techniques” was carried
out as planned. This chapter describes how the experiment was conducted, and
analyses the data collected.

The results indicate that, whereas the two methods produce equally
accurate knowledge, the domain expert needs to expend more effort when the
repertory grid technique is used. The increased effort is at two stages of the
process. One of these stages is the elicitation of attributes or constructs, where
shortcomings of the repertory grid technique are evident; but these are probably
capable of being remedied so as to make the technique more efficient.

The hypotheses to be tested are discussed at length in Chapter 3, “Some

Implications of Cognitive Psychology for Knowledge Acquisition.”
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Experiment Design

As discussed in Chapter 6, “Design of an Experiment to Compare two
Knowledge-Acquisition Techniques” on page 123, the single independent
variable in the hypotheses stated above is knowledge-acquisition method. Now,
to test the hypotheses, a single-factor within-subject (repeated measures) design
was used.

As has been argued in Chapter 5, “The Controlled Experiment in
Knowledge-Acquisition Research” (see also Dhaliwal & Benbasat, 1990), factors
other than method can affect the outcome of any knowledge-acquisition effort.
So this design attempted to control for these moderating variables by randomly
assigning the domain experts to method, eliminating knowledge engineers and
replacing them with a tool whose behaviour is consistent across subjects, and
using a single domain throughout to keep the domain characteristics constant.

One possible approach to testing the stated hypotheses was to use a
repertory-grid knowledge-acquisition tool (e.g., Boose’s AQUINAS) to acquire
knowledge under the repertory grid technique, and to use another tool
embodying KAMSE (e.g., 1st-Class, a commercially available expert-system
shell distributed by Programs in Motion). However, neither of these tools
measure and record the data needed to test the stated hypotheses. But perhaps
more crucially, 1st-Class runs under the Disk Operating System (DOS) on a
personal computer, while AQUINAS runs on the Xerox family of Lisp
machines (Boose & Bradshaw, 1987). (There is also a subset that runs on a
DEC Vax and a UNIX-based portable version.) So platform would have
become a factor if tools like these were used.

There are, of course, repertory-grid knowledge-acquisition tools that run
on personal computers (see, e.g., Garg-Janardan & Salvendy, 1988). But any

two tools are markedly dissimilar in the way they look and feel. It would be
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quite difficult to say whether any differences found in the dependent variables
were due to knowledge-acquisition method or to subjects’ differential reactions
to the two dissimilar user interfaces.

Being a dual-function tool, SCENIC represents an attempt to eliminate
platform as a factor. In addition, several routines are shared between the two
methods implemented within SCENIC. For example, the acquisition of
elements in the repertory grid uses the same routine as the acquisition of classes
in KAMSE. The induction routine is also shared between methods, as is the
routine for eliciting evaluation cases.

In both methods, similar keys are used for similar functions; and the
same keys are used for analogous functions throughout all stages of knowledge
acquisition. The same areas on the screen are used consistently for the same
purpose; and colours are used in the same way throughout all the stages of
knowledge acquisition, and therefore between methods. So considerable effort
was invested in eliminating the user interface as a factor in the experiment.
And although there has been no attempt to prove conclusively that interface is
indeed constant as a factor between methods, a test has been included that
gives some indication as to whether subjects found the two interfaces similar.

This test is implicit in hypothesis 1.

Knowledge Domain

An experimental domain was created consisting of a package of eight objects
that any university student or office worker or academic living in Britain would
be expected to be very familiar with and be able to identify quite easily. Based
on preliminary trials, the domain was designed so that the acquisition of the

knowledge could be completed within an acceptable length of time.
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Subjects
The experiment used 32 volunteer subjects (19 male and 13 female), who came

from the following backgrounds:

* 11 undergraduate third-year students
* 9 information developers from a large computer company
* 6 members of the academic staff of Southampton University

* 6 masters students studying management and accounting.

The normal activities of all the subjects involved using computer

terminals or personal computers routinely several times per week.

Experimental Method

Each subject was randomly assigned to both knowledge-acquisition methods
from a Latin square of treatment combinations. This ensured that an equal
number of subjects used each method at their first session. The design was an
attempt both to counterbalance for practice effects, to minimise errors due to
subject variability (Keppel, 1982), and to make as much use as possible of the
available subjects. To try and attenuate any carry-over effects, each subject was
allowed a period of at least one week (average 10 days) between the two
sessions.

The experiment was conducted in a computer laboratory at the
University of Southampton over a six-week period. The room was equipped
with IBM Personal System/2 Model 55 computers running the Disk Operating
System (DOS). Each subject was provided with a diskette and written
instructions for the knowledge-acquisition method to be used. The instructions,
which differ slightly between methods, are shown respectively in Appendix B,
“Instructions for KAMSE” on page 216 and Appendix C, “Instructions for the

Repertory Grid Technique” on page 220.
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An important ingredient in the experiment was the
knowledge-acquisition tool. The two methods have been implemented in the
SCENIC knowledge-acquisition tool, which elicits knowledge directly from a
domain expert. Most of the instructions were intended to help the subject
become familiar with using SCENIC for an entire knowledge-acquisition
process in a simple domain. The training was planned to take 10 to 15 minutes,
and the actual experiment was expected to take up to 40 minutes.

The diskette given to a subject contained those portions of the software
needed for the acquisition method to be used. After the training period, each
subject was given a package containing the objects in the experimental domain
and was asked to use the tool to elicit, record, analyse, and evaluate his or her
own knowledge of the domain. At the end of the experiment, each diskette
contained a representation of the knowledge acquired during the session and the
measurement data gathered by the tool. The knowledge units elicited from a

typical subject are shown in Appendix D.

Results

Although the experiment was designed to test the effect of knowledge
acquisition method, it was still conceivable that differences observed in the
dependent variables were affected by other factors as well. For the
within-subjects (repeated measures) design, which was used in this experiment,
Keppel (1982) argues that, with each subject receiving both treatments, it is
possible that there was some practice effect: that, in spite of the precautions
taken in the design, the position of a treatment (whether it was administered
first or second) could have influenced the differences between group means.
For example, the repertory grid technique might have a different effect when it

is the first treatment than when it is the second.
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In addition to these main effects, there could also be effects due to
interactions. (Keppel, 1982, p 178, defines interaction as being “present when
the effects of one independent variable on behavior change at different levels of
the second independent variable”. Keppel argues that, because the
within-subjects design attempts to counterbalance any practice effects by
randomly assigning treatment position to subject, it is possible to quantify the
effect due to treatment position, thereby reducing the size of the error term.

Because several dependent variables were measured in the experiment,
group means on all these variables had to be compared simultancously. A
multivariate analysis of variance (MANOVA) was therefore appropriate (Bray
& Maxwell, 1985).

Five of the 32 subjects failed to complete their first trial. These five
were all students who participated in the experiment between classes, and were
unable to complete the evaluation stage of the process in the time they had
available. Although all five did elicit enough knowledge to build a knowledge
base, they did not generate test cases against which to evaluate these knowledge
bases. None of these five subjects returned for a second trial. A further five
subjects failed to return after completing their first trial. Most of these were
students (3 out of 5); and it is not known why they did not come back.
However, both of the other absentees later explained that they had had urgent
business at the time arranged for their second trial.

Because of the missing cases mentioned above, the MANOVA lost some
power by having to exclude data provided by subjects who did not do both

trials.
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* * ANALYSIS OF VARIANCE * *

EFFECT of METHOD
Multivariate Tests of Significance (S =1, M=11/2, N=7)

Sig.
Test Value Approx. F Hyp. DF Err DF  of F
Pillais .48313 2.99117 5.00 16.00 .043
Hotellings .93474 2.99117 5.00 16.60  .043
Wilks .51687 2.99117 5.00 16.00 .043

Roys .48313

Figure 35. Omnibus MANOVA tests of knowledge-acquisition method

As shown in Figure 35, the omnibus MANOVA indicated an overall
significant effect of knowledge-acquisition method (p < 0.05) on the Pillai’s,
Hotelling’s, and Wilks’ tests. The significant overall MANOVA justifies a
closer examination of the effect of method on each of the five dependent
measures. Significant effects of method on some of these dependent variables
were indicated by the univariate F-tests, and are discussed in the following

sections.

Eliciting Elements and Classes

The mean number of minutes used to elicit elements under the repertory grid
technique, and classes under KAMSE is shown in Figure 36 on page 176.
Because these are means of the MANOVA cells, the measures from the ten
subjects who did only one test are not included. This is also true of the means

presented later for other dependent variables.
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Summaries of  Minutes to acquire elements / classes
By levels of KA method

----------- Mean ---ve-ma--
1st Test 2nd Test Overall  Std Dev Cases
Repertory grid 2.68 2.21 2.45 0.64 22
KAMSE 2.71 1.79 2.25 0.76 22
Total Cases = 32
Missing Cases = 10

Figure 36. Mean number of minutes to acquire elements and classes

The subjects who did both tests used a mean time of 2.45 minutes to

acquire elements, and 2.25 minutes to acquire classes. The univariate F-tests of

mean time to acquire elements / classes against method and treatment position

are shown in Figure 37. A practice effect, present in both methods, is also

evident.

** % UNIVARIATE F-TESTS **x

TIME1 Minutes to acquire elements / classes
BY METHOD KA method

POS Treatment position
Hyp. Hyp. Err. Signif
Source of Variation SS DF DF F of F
Main Effects:
METHOD 417 1 20 2.239 . 150
POS 5.239 1 20 28.128 .000
Constant 242.755 1 20 436.767 .000
Interactions:
POS X METHOD .557 1 20 1.002 .329

32 Cases were processed.
10 Cases were missing.

Figure 37. Univariate analysis of variance in time used to acquire elements or classes
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This analysis shows a strong constant effect (p < 0.001) over the
observed variations in time. There is also a strong main effect of treatment
position, as would be expected from the means shown in Figure 36.. However,
knowledge-acquisition method appears to have no significant effect on the
variations in time used to acquire elements or classes. The strong constant
effect reflects the fact that, whichever method is used, subjects use a certain
amount of time without having any knowledge elicited.

This result supports hypothesis 1, and confirms that the two
knowledge-acquisition method treatments cause subjects to respond in the same

way to essentially identical stimuli.

Eliciting Constructs and Attributes

As Figure 38 shows, eliciting constructs under the repertory grid technique
consumed more time (11.66 minutes) than eliciting attribute descriptors and
values under KAMSE (9.34 minutes). In spite of the time allowed between
treatments, differential carry-over effects seem to be present. The repertory grid
technique appears to be more difficult when used after KAMSE than when the

subject has no experience of knowledge acquisition.

Summaries of Minutes to acquire constructs / attributes
By levels of KA method

----------- Mean -~-memama-
lst Test 2nd Test Overall  Std Dev Cases
Repertory grid 10.53 12.79 11.66 3.55 22
KAMSE 16.93 7.74 9.34 3.24 22
Total Cases = 32
Missing Cases = 10

Figure 38. Mean number of minutes for each method to acquire constructs or attributes

Differences in the amount of time used at the attributes / constructs

stage were analysed to determine the significance of effects exerted by method
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and treatment position. A univariate analysis of variance on these variables
indicated significant effects of method at this stage, as Figure 39 on page 178

shows.

*x x UNIVARIATE F-TESTS **=x*

TIME2 Minutes to acquire constructs / attributes
BY METHOD KA method

POS Treatment position

Hyp. Hyp. Err. Signif

Source of Variation SS DF DF F of F
Main Effects:

METHOD 59.617 1 20 8.065 .010

POS 2.341 1 20 .317  .580

Constant 4850.651 1 20 382.403  .000
Interactions:

POS X METHOD 81.500 1 20 6.425  ,020

32 Cases were processed.
10 Cases were missing.

Figure 39. Analysis of variance of time used to acquire constructs and attributes

This univariate analysis of variance indicates that both the
knowledge-acquisition method and a constant affect time (and hence mental
effort) significantly (p < 0.05). These main effects remain significant even
when tempered by the Bonferroni procedure. The direction of the difference
observed has already been seen in Figure 38 on page 177, which indicates that
the repertory grid technique requires more effort than KAMSE at this stage.
This result does not support hypothesis 2.

There is also a significant (p < 0.05) interaction effect between
treatment position and method at this stage of the process, reflecting the
differential carry-over cffect mentioned earlier. Possible reasons are explored on

page 188.
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A feature of the repertory grid technique was its tendency to elicit
negative constructs, e.g., “non-metallic / metallic”. Whether a construct is
negative or positive can affect later use of the knowledge base in which it
appears. For instance, a person takes a finite amount of time to work out the
meaning of “not non-metallic” when consulting with the knowledge base or
classifying exemplars. Every such instance demands effortful thought (Cohen,
1989). The probable slowdown of the classification of exemplars would tend to
increase the overall time used for the repertory grid technique. However, only a
small, surprisingly negative, correlation (r = -.175) was found between the
number of negative constructs used in a knowledge base and the total time used

for knowledge acquisition.

Eliciting Ratings and Examples

As Figure 40 shows, subjects appeared to use less time to elicit ratings (7.54
minutes) than a minimal set of examples (8.29 minutes). A practice effect,
affecting both methods, appears to be present and greater for KAMSE than for

the repertory grid technique.

Summaries of  Minutes for ratings / examples
By levels of KA method

----------- Mean ------e---
1st Test 2nd Test Overall Std Dev Cases
Repertory grid 7.60 7.48 7.54 2.18 22
KAMSE 9.44 7.14 8.29 3.04 22
Total Cases = 32
Missing Cases = 10

Figure 40. Mean number of minutes to acquire ratings or examples under each method

As for the hypotheses discussed above, it is again necessary to identify
the main effects of method and treatment position, and any interaction between

the method and treatment position, on the effort needed (and hence time used)
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to elicit ratings or a minimal set of examples. These effects are shown in the

univariate analysis of variance in Figure 41 on page 180.

* ok x UNIVARIATE F-TESTS ***

TIME3 Minutes for ratings/examples
BY METHOD KA method

POS Treatment position
Sum of  Hyp. Err. Signif
Source of Variation Squares  DF DF F of F

Main Effects:

METHOD 6.150 1 20 1.514 .233

POS 16.061 1 20 3.954 .061

Constant 2756.320 1 20 300.732 .066
Interactions:

POS X METHOD 13.000 1 20 201.418 .248

32 Cases were processed.
10 Cases were missing.

Figure 41. Analysis of variance of time used to acquire ratings or examples

This analysis again indicates a strong constant effect (p < .001). There
is a hint of a main effect of treatment position, but this is outside the .05
significe level (p = 0.061). The effect is probably an indication of the practice
effect apparently present in the means. Although no systematic investigation of
this was done, a few subjects did remark that the second session seemed easier
than the first. However, knowledge acquisition method has no significant main

effect. These results support hypothesis 3.

Efficacy of the Methods

As mentioned on page 129, when machine induction was completed, a set of
exemplars was generated from random values of the attributes used in the
knowledge base (see “Eliciting Test Cases” on page 151). These exemplars are

descriptions of hypothetical objects, which the subject was asked to name. This
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approach is simple, and feasible within the time constraints of an experiment.
However, exemplars created in this way do not always describe real objects,
when the complete descriptions are considered. The subject therefore identifies
the object by considering one attribute at a time, in the same sequence as the
performance system would request the information. The subject does not have
to consider all the attributes, only enough of them to decide what the object is.
Accuracy, the main measure of efficacy, is computed as the number of
evaluation cases in which the expert’s classification was the same as that of the
generated knowledge base, divided by the total number of evaluation cases
processed. As Figure 42 indicates, the mean accuracy of the knowledge bases
generated was 72% for those from repertory grids, and 77% for those under

KAMSE. A practice effect again appears to be present.

Summaries of  Knowledge-base accuracy
By levels of KA method

----------- Mean --------w-
1st Test 2nd Test Overall Std Dev Cases
Repertory grid 0.67 0.78 0.723 0.23 22
KAMSE 0.76 0.78 0.774 0.17 22
Total Cases = 32
Missing Cases = 10

Figure 42. Mean accuracy of knowledge bases generated under each method

The significance of this difference and the presence of any main effects
of method and treatment position were tested by the univariate analysis of
variance of knowledge-base accuracy. This analysis is shown in Figure 43 on

page 182.
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*x*x UNIVARIATE F-TESTS **x*

ACCURACY Knowledge-base accuracy
BY  METHOD KA method

POS Treatment position
Sum of Hyp. Err. Signif
Source of Variation Squares DF DF F of F

Main Effects:

METHOD .029 1 20 .695 L414

POS .043 1 20 1.038 .320

Constant 24.656 1 20 606.594  .0060
Interactions:

POS X METHOD .020 1 20 .491 .491

Figure 43. Analysis of variance of knowledge-base accuracy

This analysis indicates a strong constant effect; but knowledge
acquisition method does not have a significant main effect on knowledge-base
accuracy. This result supports hypothesis 4: the knowledge bases generated by
induction are equally accurate for both the repertory grid technique and

KAMSE.

Efficiency of the Methods

The mental effort involved in the complete knowledge-acquisition process is
made up of four components. The first three have been discussed in preceding
sections. The fourth component is the effort used in classifying the evaluation
exemplars. The mean time used, under each method, for the entire knowledge
acquisition-process is shown in Figure 44 on page 183. A practice effect

appears to be present.
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Summaries of Minutes for entire KA process
By levels of KA method

----------- Mean -----cue--
Ist Test 2nd Test Overall Std Dev Cases
Repertory grid 36.69 35.52 36.11 7.17 22
KAMSE 35.57 26.69 31.13 8.89 22
Total Cases = 32
Missing Cases = 10

Figure 44. Mean number of minutes to classify evaluation exemplars

Subjects using the repertory grid technique spent more time classifying

evaluation exemplars. This contributed to the difference in total knowledge

acquisition time between methods. Whether this difference is significant, and

whether there are any significant main effects of method or treatment position,

were determined by the univariate analysis of variance in Figure 45.

*** UNIVARIATE F-TESTS **x

TTIME Minutes for entire KA process
BY  METHOD KA method

POS Treatment position

Hyp. Hyp. Err. Signif

Source of Variation SS DF DF F of F
Main Effects:

METHOD 272.422 1 20 5.871 .025

POS 278.260 1 20 5.997 .024

Constant 49729.138 1 20 727.4706  ,000
Interactions:

POS X METHOD 163.497 i 20 2.392  .138

32 Cases were processed.
10 Cases were missing.

Figure 45. Analysis of variance of time used to classify evaluation exemplars
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It is evident that there is a strong constant effect on the variations in
total time used. Knowledge-acquisition method also has a significant main
effect (p < 0.05). This result does not support hypothesis 5; the repertory grid
technique requires more effort overall (and is therefore less efficient) than
KAMSE.

There is also a significant main effect of treatment position. This
reflects the practice effect evident in the means.

Figure 46 brings together the mean times for the four stages requiring
mental effort, and one that does not. It is clear that, at the stages where
knowledge acquisition method has a significant main effect on the time used,

the repertory grid technique uses more time.

Rep grid KAMSE Method as
Mean SD Mean SD a Factor
Entire 36.1 7.2 31.1 8.9 Significant
Process 100% 106%
Elements/ 2.4 0.6 2.3 0.8 Not sig.
Classes 7% 7%
Constructs/ 11.7 3.6 9.3 3.2 Significant
Attributes 32% 30%
Ratings/ 7.5 2.2 8.3 3.0 Not sig.
Examplies 21% 27%
Induction .6 .2 5.3 -
2% 2%
Evaluation 13.9 4.6 160.7 4.5 Significant
39% 34%

Figure 46. Number of minutes used at different stages of each knowledge-acquisition method

Although time has generally been used as a proxy measure for mental

effort, the induction stage of the knowledge acquisition process uses time but
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demands no effort from the subject. Induction provides a short interval of
about half a minute for the subject to relax before starting to classify the
evaluation exemplars. This is not problematic because induction actually
occupies only a very tiny fraction of the time taken by the entire process (34
minutes overall mean).

The fact that induction accounts for such a tiny (though important)
portion of the time required to build a knowledge base from scratch casts fresh
light on the way that the demonstration of Michalski & Chilausky (1980)

should be interpreted. Induction is only the tip on an iceberg (see page 199).

Evaluation effort

The MANOVA is sensitive to the number of dependent variables, as this
number provides the hypothesis degrees of freedom used to determine whether
the omnibus test is significant (Bray & Maxwell, 1985). The experiment was
designed to provide five dependent variables for the MANOVA. Introducing a
sixth dependent variable could impair the significance of the omnibus
MANOVA. So, although it is tempting to examine the significant effects on
variables other than the five in the design, this can be done within the
MANOVA only if each such additional variable is used as a substitute for one
of the original five.

Evaluation time (TIMES) is an interesting variable, which was
measured, but which was never intended to be used in the MANOVA.
However, this variable is a genuine substitute for total knowledge-acquisition
time (TTIME) because TTIME - TIMES is equal to the total time used at the
first four stages of knowledge acquisition. Morcover, when evaluation time is
used instead of total time, the significance of the omnibus MANOVA and all

the effects discussed so far in this chapter remain unchanged. Thus, conclusions
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drawn from analysing TTIME could also be drawn indirectly from analysing
TIMES.
Classifying evaluation examplars is the same process for both methods.

Differences in the amount of time used might be due to one of two reasons:

* One method might tend to eclicit a larger number of attributes, thereby
giving the knowledge source more factors to consider in classifying an
exemplar.

* One method might tend to elicit attribute descriptors and values that are not
readily understood when combined (e.g., a negative descriptor such as

“non-metallic” combined with the value “no”).

The time used for classifying evaluation exemplars is interesting because
a significant learning effect on it would further support the notion that
knowledge sources can be primed.

The mean times used for classifying evaluation exemplars are shown in
Figure 47, which appears to indicate a learning effect for both methods. It also
appears that more time was used for the repertory grid technique than for

KAMSE.

Summaries of  Minutes for evaluation
By levels of KA method

----------- Mean -=ewmemama
Ist Test 2nd Test Overall Std Dev Cases
Repertory grid 15.36 12.47 13.91 4.56 22
KAMSE 12.09 9.44 10.76 4.49 22
Total Cases = 32
Missing Cases = 10

Figure 47. Mean number of minutes to classify evaluation exemplars
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The significance of any effects of method and treatment position were
determined by the univariate F-tests summarised in Figure 48 on page 187.
The analysis shows a strong constant effect (p < .001). Method also has a
significant main effect (p < .05): KAMSE demands less effort than the
repertory grid technique. However, the main effect of treatment position is

marginally outside the .05 significance level.

** % UNIVARIATE F-TESTS **x

TIMES Minutes for evaluation
BY METHOD KA method

POS Treatment position
Hyp. Hyp. Err. Signif
Source of Variation SS DF DF F of F
Main Effects:
METHOD 109.200 1 20 5.248 .033
POS 84.153 1 20 4.044 .058
Constant 6698.234 1 20 373.229 .000
Interactions:
POS X METHOD .148 1 20 .008 .929

32 Cases were processed.
10 Cases were missing.

Figure 48. Univariate analysis of variance in time to classify evaluation exemplars

Conclusions

As Figure 49 on page 188 shows, three of the five hypotheses are supported by
the data. The two knowledge-acquisition stages at which the hypotheses are
not supported require more effort to use the repertory grid technique than

KAMSE.
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Hypothesis  Supported? Contrary Finding

1 Yes -

2 No Repertory grid requires more
effort to acquire an adequate
domain model.

3 Yes -

4 Yes -

5 No Repertory grid requires more
effort for the complete KA
process.

Figure 49. Summary of support for the hypotheses

A feature of the repertory grid technique is its tendency to elicit negative
constructs. A tool could counter this tendency by switching poles, so that the
positive one is always primary. Alternatively, the question “what makes A
similar to B and different from C” could be turned around so that a positive
trait is always elicited first. Neither of these devices was used in SCENIC,
although the integrity of the repertory grid technique seems better preserved by
letting the tool detect negativity (i.e., it does not involve the subject, only the
method administrator).

Although the interaction effect of treatment position with method is
significant in only one of the dependent measures, there are significant main
effects of treatment position. These aflect the tests of hypotheses 1 and 5. A
practice effect is observable in all the means, with one exception.

Knowledge sources can be primed. Those who have their knowledge
elicited once tend to find a second experience of having the same knowledge
elicited less demanding, even if two different methods are used. All stages of

KAMSE appear to be affected by this practice effect when the knowledge
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source has previously had the same knowledge clicited by the repertory grid
technique.

However, knowledge sources can also be inhibited by a previous
experience of having their knowledge elicited. This appears to affect triadic
elicitation of constructs when the knowledge source has previously been asked
directly for attributes involved in the decision being modelled. The time taken
to elicit constructs is less when the repertory grid technique is used first (10.5
minutes) than when it is used second (12.8 minutes). This effect needs further
investigation if it is to be explained satisfactorily. However, two possible
reasons for it suggest themselves.

Subjects undergoing triadic elicitation may have been distracted by the
contrast between the freedom of attribute elicitation under KAMSE and the
restrictive nature of the triads. If this is so, then knowledge engineers may be
well advised to find out whether a prospective knowledge source has had
previous experience of knowledge elicitation. On the other hand, using the
repertory grid technique may be an effective way of preparing knowledge
sources to have their knowledge elicited by another method.

One criticism directed at the two methods discussed here is that they
work well for simple problems, but break down when the problem assumes
real-world complexity (see, e.g., Gammack, 1987; Quinlan, 1991). But the
simple classification problem can be a building block for more complex
problems such as planning (see, e.g., Dechter & Michie, 1984). Complex
problems often involve a series of such decisions, some depending on the results
of others. Garg-Janardan & Salvendy (1988) demonstrated that hierarchies of
classifiers can deal with some kinds of complexity, and the repertory grid
technique can be used to elicit the knowledge for each classifier.

The knowledge-acquisition methods used here can therefore be quite

powerful when used to develop parts of complex knowledge bases. In such
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environments, inefficiencies are multiplied; and the total effort to be saved in
developing a complex knowledge base could be considerable. The acquisition of
knowledge from multiple experts also involves multiplying inefficiencies; so the
same considerations apply. The findings of this experiment provide some
pointers to both improving and measuring the efficiency of knowledge

acquisition.

Chapter 8. The Experiment 190



Chapter 9. Discussion of the Results

Abstract

The data collected in the controlled experiment are reported and analysed in
Chapter 8. This current chapter discusses the theories underlying the research,
what is assumed to be true, and what was tested. The implications of the
results for each hypothesis are also discussed. These include the successful
control of the tool’s user interface as a factor, the efficacy of triadic elicitation,
and ways of improving its efficiency. Implications of the fact that the two
methods have equal efficacy are also discussed. Two of the dependent measures
are affected by the classifying of exemplars, which in turn seems capable of
being affected by knowledge-acquisition method. Factors affecting the internal

and external validity of the experiment are also discussed.

Introduction

In many advanced areas of science, a general theory combines with a specific
one to produce an explanation of observed reality Bunge (1973). For example,
the general theory of simple harmonic motion is applied to both the swinging of
a pendulum and the flow of current in an electric circuit. But the specific
theory in each case is different: in the case of the pendulum, the specific theory
has to do with the length of the string and the acceleration due to gravity,
whereas in the case of the electric circuit the specific theory has to do with the
voltage of the power supply and the impedances in the circuit. Bunge argues
strongly that specific theories can be tested, while general ones cannot, because
general theories are nothing more than pure mathematics; whereas specific ones
are expressed in terms of the reality that they are meant to model and explain.
Perhaps, then, it would be useful to identify specific and general theories
underlying the hypotheses tested in the experiment. One general theory, on

which hypothesis 3 is based, is mathematical in nature. The declarative
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knowledge underlying a cognitive skill may be thought of as being represented
by a matrix. One method traverses this matrix in one direction (horizontally by
rows), while the other traverses it vertically by columns. If it is the same matrix
that is being traversed in the two methods, then each would end up traversing
the same total distance, and hence taking the same amount of time.

Another general theory is that memory is divided up in a certain way:
long-term versus short-term, and that long-term memory has episodic, semantic,
and procedural elements that are differentially retrievable. Short-term memory
has a very restricted capacity. A related theory is that the knowledge
underlying a cognitive skill is represented as productions in procedural memory,
it is not amenable to conscious retrieval, but it is an experiential distillation of
declarative and episodic knowledge from semantic and episodic memory
respectively.

This last theory implies that, in knowledge acquisition, what is actually
accessed is not the irretrievable compiled productions, but the episodes and
schemata, which are retrievable. Processes are available to distill these and
generate productions, presumably no less powerful than those stored in the
expert’s procedural memory. Although the experiment might support it, no
attempt has been made to test this general theory. Testing it would probably
have required an experimental condition under which the experts stated explicit
rules. So the general theories have been assumed to be true. However, the
research does test aspects of a specific theory; that is about what happens when

the expert is:

» Asked to list elements
* Given the repertory test
* Asked to list attributes descriptors and values adequate for describing a set

of examples of all the domain classes
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* Asked to express a minimal set of examples in terms of attribute values

* Asked to provide evaluation cases by classifying exemplars.

Implications of the Results

This section discusses the findings related to each hypothesis, and what they
suggest for both using and further researching the two knowledge-acquisition

methods.

Regarding Hypothesis 1

In some ways, hypothesis 1 is a self-evident truth; but stating and testing it are
invaluable as a demonstration that what is expected to happen actually does.
Both methods were expected to demand the same amount of effort because the
method is merely a label; the process is exactly the same for both methods at
stage 1 of knowledge acquisition. Use of a dual-function tool like SCENIC is
an attempt to control for the interface between the tool and the user, i.e., to
keep it unchanged between methods. The fact that the data support this
hypothesis gives some indication that the attempt to control for user interface

was substantially successful.

Regarding Hypothesis 2

An adequate domain model is only part of what needs to be acquired in
knowledge acquisition. It comprises a list of elements (or classes), coupled with
a set of constructs (or attribute descriptors and values). The elements define
the limits of the domain and the constructs provide a language in terms of
which either the domain elements can be rated or a set of examples can be
expressed. The repertory grid technique includes a stage called the repertory
test, which goes to some lengths to discover constructs which the subject is

assumed to have difficulty identifying and articulating when asked directly.
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Perhaps that was true of Kelly’s patients, and of anyone being
psychoanalysed. Several researchers in knowledge acquisition have assumed’
that it is also true of domain experts. Kelly (1955) argued strongly and
persuasively in favour of the triad; and hypothesis 2 is stated on the strength of
this. However, the data do not confirm hypothesis 2. And although there is
fittle doubt (from hypothesis 4, discussed later) about the efficacy of the triad,
there is still some doubt about its efficiency. Even so, the experiment has not
proved that the triad is not optimal; it may or may not be. The experiment
does however, raise questions about the ability of the repertory grid technique
to come to a speedy completion. Future research will have to test refinements
to the mechanism used to elicit distinctions between confused pairs of elements
during the closing stages of a repertory test.

One shortcoming of the repertory grid technique is that the person being
interviewed does not always understand what the technique or the questions are
trying to get at. This is especially crucial in the later stages of the repertory test
(acquisition of constructs and ratings), when a small number of confused pairs
of elements remain. A “why” option could help the user understand what is
required. For example, the user’s “why” could evoke a response such as this:

“I already know the difference between (paper clip) and the other two elements.
What I really need to find out is how (cent coin) differs from (penny coin).”

Alternatively, the tool could make its own selection of the odd one out

in the triad in such a way that the user would have to supply the required

distinctions. Instead of using strategies of this kind, the classic repertory test

7 Latta & Swigger (1992) have tested whether the technique “accurately elicits and
represents commonality of understanding about communal knowledge”, and validated

this assumption.
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proceeds relentlessly, probably getting the naive user frustrated at being
repeatedly confronted with the same (or similar) triads. Other researchers (e.g,
Garg-Janardan & Salvendy, 1988) seem to have encountered this same problem.
Some tools therefore try to solve the problem by switching from triadic to
dyadic elicitation after a certain number of triads have been presented.

The word “dyadic” actually has three meanings when used with
reference to the repertory grid. Ryle & Lunghi (1970) argued that the standard
technique is insensitive to information about the constructs as applied to
relationships between individual elements; to remedy this, they used the
relationships as elements. Keen & Bell (1981) developed a dyadic method of
eliciting elements and constructs at the same time by considering two elements
at a time in a variant of the repertory test. Garg-Janardan & Salvendy (1988)
were mainly concerned with speeding the closure of the repertory test by using
two elements instead of three in the closing stages of the test.

Knowledge acquisition from a minimal set of examples has no way of
limiting the domain model to a sufficient one free of redundant attributes. But
then, neither does the repertory grid technique guard against this in a foolproof
way. The redundancies are removed from the generated knowledge base by
machine induction, but eliciting them in the first place is largely a wasted effort.
In addition, while the repertory grid technique is seeking specific types of
answers to specific types of questions, it may well, like a cross-examining
lawyer, be inhibiting the user’s freedom to express some of the relevant ideas
that it evokes. Knowledge acquisition from a minimal set of examples suffers
rather less from this.

It also appears that the kind of prompting provided by the repertory
grid technique does not always make the production of an adequate domain
model easier than when subjects are asked directly for the model components.

It is evident that, in some circumstances, a person can come up with an
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adequate domain model more easily if not constrained by the repertory grid
technique.

Further research could determine efficient alternatives to triadic
elicitation. It is quite likely that the repertory grid technique can be modified in
various ways to improve its efficiency. For example, in the later stages of a
repertory test, the tool could, as discussed above, construct triads and split
them itself in ways that would constrain users to provide the required
information. Experiments could determine whether any improvements in
efficiency are produced by the modified method.

Although subjects generally benefitted from having had their knowledge
elicited previously, the elicitation of constructs appeared to be more difficult
after exposure to attribute elicitation under KAMSE. There is some question
as to whether triadic elicitation inhibits the knowledge source (see page 77).
The differential carry-over effect at stage 2 indicates that this may be so when a
less restricting method has been used previously.

However, this eflect needs to be investigated further. This could be
done by comparing the efficiencies of a number of possible schemes to that of

standard triadic elicitation:

* Dyadic elicitation of constructs

* Triadic elicitation of constructs

* Tetradic elicitation of constructs

* Letting the knowledge source compose the triads

* Continuously showing the knowledge source a model of the knowledge so
far elicited

* Mixing the initiative by enabling the knowledge source to escape {rom the

triad, and express any other constructs that come to mind out of sequence.
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Regarding Hypothesis 3

The lack of a significant effect of method on the differences between the time
taken to elicit ratings in the repertory grid technique and that taken to elicit a
minimal set of examples indicates that the effort used in traversing an inference
matrix by rows is no different from that used in traversing it by columns. The
data therefore support hypothesis 3; but this does not mean that the knowledge
is indeed organised as a matrix in the expert’s mind, because the matrix is
simply a convenient mapping of a multi-dimensional problem or domain space.
All that can be said is that, however the knowledge is represented in the
expert’s mind, it can be mapped into a matrix. But this mapping is only an
approximation of the actual knowledge (Newell, 1982). Moreover, the
knowledge may be represented differently in the expert’s mind, depending on

the use to which it is being put (Tulving, 1962).

Regarding Hypothesis 4

The experiment set out to acquire declarative knowledge and to distill
that into accurate productions. The hypotheses predicted that these
productions would be equally accurate between the two methods used, because
they acquire very similar kinds of knowledge that are put through the same
process of distillation. And the empirical data support this prediction, which is
embodied in hypothesis 4.

But why should the two methods produce knowledge bases that are
equally accurate; is the similarity of the knowledge they elicit sufficient reason
for expecting them to have equal efficacy? If that reason is indeed sufficient,
then it is possible to make the general statement that any two methods that
elicit similar kinds of knowledge ought to have equal efficacy. And what is so

similar about the knowledge? It has been shown (in Chapter 2) that there is a

Chapter 9. Discussion of the Results 197



one-to-one mapping between the knowledge units elicited under the two
methods.

Perhaps, then, it 1s possible to generalise by saying that if there is a
one-to-one mapping between the knowledge units acquired by two methods,
then the two methods are likely to have equal efficacy provided that the
knowledge under each method is subject to the same distillation processes.
That seems reasonable, because what has actually been done with the repertory
grid is to use it to generate a minimal set of examples, which have then been
processed by machine induction to come up with a knowledge base in the same
way as under the KAMSE. However, this conjecture has not been proved; the
only assertion proved is that the two methods used in the experiment produce
knowledge bases that have equal efficacy. To prove the more general
statement, it would be necessary to experiment further with an adequate
random sample of all pairs of knowledge-acquisition methods related in this
way (Anderson, 1971).

On the basis of this result, we cannot advise anyone seeking differential

efficacy to choose either method in favour of the other.

Regarding Hypothesis 5

Although the repertory grid technique has been shown (by support for
hypothesis 4) to acquire equally accurate knowledge as KAMSE, the two
methods have also been shown to differ in efficiency. Two components of total
effort appear to be responsible for the repertory grid technique’s inferior
efficiency as revealed by the test of hypothesis 5. First, as discussed under
hypothesis 2, it is easier to propose attribute descriptors and values than to
think of constructs. Second, it appears to be casier to classify exemplars for

evaluation of knowledge induced from a minimal set of examples.
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Evaluation exemplars are more difficult to deal with under the repertory
grid technique because, in general, this technique yields more attributes than
KAMSE. In addition, negative constructs can slow down the recognition of an
exemplar’s description. These are not final flaws of the repertory grid
technique; it can probably be remedied by spending more time on the clustering
of constructs, and by inverting negative constructs.

Previous Results

Michalski & Chilausky (1980) demonstrated convincingly the superior efficiency
and efficacy of machine induction as compared to the “hand-crafting” of rules.
This research has not sought to test those findings, the essence of which is
supported by the author’s experience of acquiring knowledge and building
knowledge bases carly in this research. Both methods used in this experiment
have therefore included machine induction as a step in the process.

But it is clear that machine induction by itself cannot be said to be a
knowledge-acquisition method. A knowledge-acquisition method would involve
gathering case data by some means, coding these cases in terms of some domain
model, processing them by machine induction, and evaluating the resulting
rules. Indeed, one of the shortcomings of the work of Michalski & Chilausky is
that they compared the entire knowledge-acquisition effort in one method with
only a part of the effort in the other method. Even so, it is likely that this
weakness in internal validity affected the magnitude rather than direction of

their findings.

Internal Validity

Several factors can affect the outcome of any attempt to acquire knowledge.
This experiment controlled for knowledge engineer and domain by keeping them
constant, randomly assigned experts to method, and used method as the single

independent variable. As discussed above, it is also likely that two tools
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embodying the two methods would have very different user interfaces and
therefore different effects on the user’s ability to work with them. The single
tool used in the experiment had a consistent interface throughout, thereby
minimising the effect of user interface as a factor.

Originally, it was supposed that time used and number of keystrokes
would be alternative indicators of mental effort. Analysis of the keystrokes
data, which have not been included, threw considerable doubt on the validity of
this assumption. There is, for example, a significant main effect of method on
the number of keystrokes (but not the amount of time) used to acquire ratings
and examples. People appear to spend time thinking about what to key in
rather that pressing keys until they are satisfied with what they have put in.
What the number of keystrokes might more plausibly indicate is the keying
economy that the repertory grid technique has over KAMSE at the ratings /
examples stage of knowledge acquisition. It therefore seemed appropriate to
abandon the idea of using number of keystrokes as a measure of effort. This is
not problematic because there are strong arguments in favour of using time as a
measure of mental effort (see page 126).

It can be argued that the subjects were at a disadvantage in classifying
the evaluation exemplars. The exemplars were generated by combining random
values of the attributes. To make sense of these exemplars, the subjects had to
view them in a certain way. Other ways of looking at the examplars might
result in different classifications. The researcher’s ad-hoc conversations with the
subjects led him to believe that some of them had difficulty in adhering to the
prescribed strategy when deciding on classifications for the exemplars.

In addition, wide variations in the accuracy measured (lowest score
9.4%, highest score 100%) indicated that some subjects grasped more fully than
others how to consider the information present in an exemplar and decide on

the correct class. In some ways, deciding the exemplar classes was an exercise
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in predicting what the knowledge-based system would conclude if information
was presented to it in a given sequence. But there is no basis for supposing

that these difficulties affected one method differently from the other.

External Validity

It is possible to boost the external validity of an experiment by varying the
problem. Employing that approach in this experiment would have called for
using two domains rather than one, to answer the objections of critics who
might question whether similar results would be obtained for some domain
other than the experimental one. However, according to Keppel (1982, p 340),
“the resultant increase in external validity is really not very great in any
far-reaching sense”. It is a device which has not been adopted in this
experiment. This is mainly because, even with an extensive search, it was
difficult to find a second domain of comparable simplicity and size, in which the
same subjects could be expected to have the same degree of expertise. It would
be nice to test these hypotheses again with a different domain. But this is a
question of content versus structure; and there is no reason to think that
domains of similar structure will not yield the same results.

There may also be some question about the applicability of these results
to large-scale problems. It is difficult to make categorical predictions about
scaling-up, but it is worth pointing out that large-scale problems can often be
structured into hierarchies of small-scale ones (see page 189). Even under the
KADS methodology, there are phases (Wielinga, Schreiber, & Breuker, 1992) at
which using the repertory grid technique and inductive methods is
recommended. Whether these are the only stages where these techniques are
useful is open to question. However, the repertory grid technique and KAMSE
are evidently applicable to both the decision modelling paradigm and the

physical-system modelling one.
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Chapter 10. Overall Conclusions

Abstract

This chapter concludes the research by trying to assess its significance and
limitations. The first section summarises the lessons learned during the
research. The second section discusses the limitations of what was done, ways
in which the research could be improved or made more complete, and ideas
from related research that are not covered by this research. The final section
discusses the importance of this work to the development of the

knowledge-acquisition discipline.

Lessons from the Research

Knowledge acquisition is primarily a process of gathering, analysing, and
organising enough information about a given knowledge domain to build a
knowledge-based system that has accuracy adequate for its purpose. Of course,
the system developed will need to “speak the users’ language” and be able to
provide information of a quality and in a style that the users will find
acceptable and useful. But without sufficient coverage and adequate accuracy,
the system is unlikely to be useful enough to be unleashed on users.

If there is any reality in the knowledge-acquisition bottleneck which so
many writers mention, then it secems reasonable to expect a project-management
approach to yield useful results by clever sequencing of tasks and allocation of
resources. Three factors seem particularly amenable to this approach: the
position of knowledge acquisition in the network of tasks involved in building a
knowledge-based system, the large amount of knowledge typically required to
build a useful system, and the inherently slow nature of the
knowledge-acquistion process.

This research does not fundamentally alter these views. It still appears

that progress can be, and is being, made by repositioning knowledge acquisition
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within the development cycle. But if knowledge acquisition is the entire process
of building a knowledge-based system, as Buchanan et al (1983) define it, then
what else of significance is there against which to reposition in the development
cycle? One answer lies first of all in the fact that a growing number of
knowledge-based systems appear to derive much of their usefulness from the
fact that they do not stand alone, but interface with conventional software
systems.

In developing this kind of integrated system, it is possible for the
development of both the knowledge-based component and the conventional
component to proceed in parallel, if tasks are sequenced appropriately.
Another fruitful approach might be to subdivide knowledge-based systems into
hierarchies of smaller ones and assign these to increased knowledge-engineering
resources, which can proceed in parallel with different parts of the problem.
Still another approach is to use rapid prototyping in an iterative cycle of
elicit-build-test. Subsequent tasks can be driven by the evolving prototype.

Regarding the large amounts of knowledge typically required to build
useful systems, it still appears reasonable to think that a fruitful approach is to
select problem domains carefully (a view also expressed by Frederick
Hayes-Roth in an interview with Chandrasekaran, 1991). But although this
approach is likely to preserve the reputation of knowledge engineers adopting it,
it provides little comfort for owners of problems eschewed as too messy,
unwieldy, or unstructured. Wilkins’ (1987) notion of “sociopathic knowledge”
also appears reasonable; and the need for inductive distillation of knowledge, as
implemented in SCENIC and some other knowledge-acquisition tools, supports
this view. The challenge remains how to determine when enough knowledge
has been acquired; and the approach taken by SCENIC is clearly one of the

ways of doing this.
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A number of avenues still appear to be available for tackling the
inherently slow nature of the knowledge-acquisition process. Agarwal &
Tanniru (1990), {or example, have shown that training knowledge engineers in
the use of an effective technique can improve the productivity of even those
with little experience. More fundamentally, techniques are more likely to be
successful if they recognise the limitations of the domain expert’s cognitive
system, and seek to elicit and use knowledge that is indeed retrievable
(declarative knowledge) rather than try to tease out procedural knowledge
which is not amenable to conscious retrieval.

Moreover, knowledge-acquisition technology is still evolving; and some
builders of knowledge-acquisition tools argue that the labour-intensive process
of knowledge engineering is unnatural and goes against all the trends in
computing (see, e.g., Shaw & Gaines, 1987). One solution to speeding up the
process is to create tools capable of bringing about dramatic increases in
knowledge-acquisition productivity. As a by-product, this research has
demonstrated that people can walk up to a well designed knowledge-acquisition
tool, and with little training use it to elicit their own knowledge of a simple
domain. It has also shown that small knowledge-based systems can be built
and tested very quickly when some kinds of tools are used.

While the project-management approach is important, it is also evident
that, at a deeper level, explanations of why one knowledge-acquisition method
might perform differently from another lie in the ways knowledge is represented
in the human mind and the ways in which it can be retrieved. There are too
many knowledge-acquistion techniques for any research of this nature to cover
them all. So the work has concentrated on two techniques which have not been
compared in this way before.

In particular, this research has demonstrated that the two methods can

be subdivided into stages characterised by the type of knowledge unit being
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elicited. This is not an innovation; it is used in other tools. But little has been
written about the expert’s cognitive processes during these stages. It is evident
that different mental operations take place in the domain expert’s mind during
these different stages. But, at every stage, the limited capacity of short-term
memory restricts the number of elements or constructs that can be considered
simultaneously. Techniques that ignore these restrictions may demand more
effort from domain experts.

Knowledge acquisition is also the creation of a continuing problem,
because any knowledge-based system that is put into regular use will probably
need to have its knowledge base updated as time passes and domain knowledge
evolves. So knowledge acquisition should have an eye on maintenance (see,
e.g., Davis, 1990; Xiafeng, 1991). It seems reasonable to suppose that
knowledge-based systems will be easier to maintain if they can be modified at
the knowledge level rather than the symbol level (see Newell, 1982, for an
explanation of these levels).

A knowledge-acquisition tool like SCENIC appears to be a feasible way
of developing a maintainable knowledge base, because it converses with the
domain expert at the knowledge level. It generates a knowledge base, which
can be used directly by a performance system. One important feature of using a
tool like SCENIC is that subsequent changes to the knowledge can be made at
the knowledge level. A new knowledge base can be generated from the updated
knowledge. Careful design of the data interfaces between a knowledge-based
system and the traditional systems with which it is integrated is needed to
support this kind of maintainability.

But, beyond the question of maintainability, consideration of the domain
expert’s cognitive system gives rise to the kind of insights useful for refining
knowledge-acquisition methods. This research indicates that there is room for

refinement of the repertory test to increase its efficiency.
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It is also evident that there are grave obstacles facing any attempt to
access the compiled productions that govern a domain expert’s performance.
However, it is possible to retrieve declarative knowledge without undue
difficulty. This retrieved knowledge can then be subjected to processes that can
generate powerful, accurate productions. In the same way as a novice can
generate effective primitive productions from declarative knowledge,
meta-knowledge embodied in a knowledge-acquisition tool can operate on
declarative knowledge to fashion productions that exhibit expert performance.
If we cannot retrieve the compiled productions on which an expert’s
performance is based, then we have to settle for retrieving the episodic and
semantic declarative knowledge that generated the compiled productions.

Protocol analysis is one method that seeks to access the compiled
productions in the only way they are accessible (by performance of the skill),
and to accompany that performance with the expert’s account, or even post-hoc
justifications of what s/he is attending to. But protocol analysis has been
shown to be inefficient compared to other methods. And there is some doubt

about which memory the knowledge acquired by this method comes from.

Limitations of the Research

Although a very large portion of the knowledge-acquisition process is covered
by the experiment and the tool, there is a little more to the process than the
stages in SCENIC. When a user starts using the tool, it is assumed that s/he
has already thought out the objectives of the knowledge base s/he would like to
build. This process of domain definition is important because it is the first
hurdle. As discussed on page 167, future work on the tool will include
enhancements in this area. There is also room for acquiring explanations, and
the tool largely ignores this. It could be a subscquent stage after enough

information has been obtained to build an accurate knowledge-based system.
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The attribute values accepted by the tool are all qualitative. There is
room for quantitative attribute values, if the tool is to become applicable to a
wider range of problems. It is also unclear how the efficiency of the two
methods would be affected if they were applied to a domain involving
quantitative attribute values.

One limitation of the kind of distillation done by machine induction has
been mentioned in Chapter 2. It sheds attributes that are redundant when
deciding among the classes identified. But being redundant may not be
sufficient reason to discard an attribute totally. Whitehall (1990) point out that
the attribute shed might be more important than the parallel one used.
Buchanan er a/ (1983) also argue that redundancy should be built into
knowledge bases, so that they do not rely heavily on a single piece of evidence.
Because the ID3 algorithm ignores this advice, a user can obtain the desired
redundancy only by including training examples that have alternative patterns
of attribute values. The algorithm itself could probably save users this burden,
by finding disjunctive relationships and including them in the decision trees or
rules generated.

Discarding attributes is clearly a problem for both the repertory grid
technique and KAMSE. Until induction algorithms are improved, some expert
evaluation is appropriate, to determine when the knowledge base lacks sufficient
redundancy. Without such safeguards, the resulting knowledge base is most
usefully applied in a closed world, where it is known that the object to be
classified does indeed belong to one of the classes included in the knowledge

base.! In domains where this is not so, there is some chance of the knowledge

# Gammack (1987) has also criticised the repertory grid technique’s focus on distinctions

rather than similarities.
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base reaching erroneous conclusions (false positives). There are solutions to
this: one of them is to restrict the application of this kind of method to
closed-world domains, for example, selecting the advertising or promotion
medium for a product (Chadha, Mazlack, & Pick, 1991). Another approach
may be to augment the set of classes by including others outside the narrow
domain that the system is meant to cover. These outsider classes should have
some characteristics in common with the classes that properly belong in the
domain.

It is also evident that a kind of distillation similar to that performed by
machine induction can be achieved by an artificial neural network. One
obvious difference is that, whereas a neural network creates a mapping between
the inputs (attribute values) and outputs (classes), it is diflicult to derive
explanations from this mapping. That is not so when machine induction is
used.

There is a growing call for users to be involved during (rather than after)
the knowledge-acquisition process. This will allow them to keep an eye on the
objectives of the system and the words used to express the knowledge. There
are good reasons for adopting this approach aimed at increasing the chances of
a successful outcome to the process. The research being reported here has
thrown no light on whether user involvement affects the pace of knowledge
acquisition. There do appear to be stages at which users can be usefully
involved. If rapid prototyping is used, users can generate valuable feedback on
the emerging knowledge base.

In such situations, the knowledge engineer is a middleman between the
user and the knowledge source. But the primary difficulty in knowledge
acquisition is in obtaining enough (not too much, and not extraneous)
information from the knowledge source to build an accurate knowledge-based

system.
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Value of the Research

The contribution of this research to the discipline of knowledge acquisition is
summarised in Figure 50 on page 210.

The repertory grid technique and knowledge acquisition from a minimal
set of examples have been shown to be similar in many respects and to acquire
similar kinds of knowledge. Although these two methods were not expected to
be differentially efficacious or eflicient over the entire knowledge-acquisition
process, the repertory grid technique was expected to be more efficient at one
stage; but it was thought that this difference would probably not be large
enough to be reflected in the effort used for the complete process.

The five hypotheses into which this thesis has been elaborated have been
tested by a controlled experiment. The two methods were shown to be equally
effective ways of obtaining the information needed to build a knowledge-based
system for classification. Differences in efficiency suggest opportunities for
improving the repertory grid technique.

The focal theory behind this research includes the mapping between the
two knowledge acquisition methods. It also includes the set of hypotheses that
were tested empirically. The contribution of this research to the focal theory is
partly in demonstrating that it is, at least sometimes, easier for a domain expert
to articulate a partial domain model and a minimal set of examples than to
have his or her knowledge elicited by the repertory grid technique. The results
obtained have raised questions about the optimality of triadic elicitation,
especially in the closing stages of the repertory test.

This research has a bearing on Lundell’s (1988, p 27) principle of
“elicitational congruence”, which states that “the knowledge acquired from the
expert will be more accurate when the acquisition method is congruent with the

cognitive system of the expert”. While there is clearly a connection between the
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o Pioneering the use of controlled experiments with a
knowledge-acquisition tool (Shows some of the issues to
be faced, the measures that can be used, and ways of
recording them.)

o First controlled experiment to compare the repertory grid
technique and knowledge acquisition from a minimal set of
examples (Many methods need to be compared in the
future; this research shows one way of doing these
comparisons.)

o Identifies areas where the efficiency of the repertory
grid technique needs to be improved

o Makes explicit the role of machine induction in the
repertory grid technique

o Explores links between cognitive processes and knowledge
acquisition.

Figure 50. Contribution of the research

outcome of knowledge acquisition and the method used, it appears to be the
efficiency of the method, rather than the accuracy of the knowledge acquired,
that is affected — at least in the two methods used here. Based on the results of
this research, it is appropriate to modify the principle to state that the process
of knowledge acquisition will require less effort to acquire knowledge of a given
accuracy “when the method is congruent with the cognitive system of the
expert”.

Measuring the outcome of knowledge acquisition can be difficult,
especially when the acquisition is not carried through to completion (Burton et
al, 1990). This research demonstrates that knowledge bases can be generated
and tested as part of the experimental treatments, if an appropriate tool is used,

and exemplars can be used for evaluating a knowledge base.
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If knowledge acquisition is to be done in industrial settings, it must also
be a managed task. The resources to be used in it must be capable of being
estimated in advance: the domain expert’s time, the knowledge engineer’s time,
and the user’s time. As a by-product, the results of this research can help
provide pointers to selecting a technique and estimating the productivity of two
methods in one type of domain.

Results reported by other researchers (e.g., Burton, Shadbolt, Rugg, &
Hedgecock, 1990; Agarwal & Tanniru, 1990; Rugg et al, 1992) provide other
pointers to the effort involved in using various methods for knowledge
acquisition. These methods, which include protocol analysis, laddered grid, card
sorts, and structured interviews, use manual methods to transcribe and analyse
the information gathered. While it is not expected that these laboratory
settings will necessarily provide industry with accurate means of estimating and
planning, there are few other pointers available at the moment.

A growing number of tools have been built and reported on (see, e.g.,
Boose, 1989). The vast majority of them specialise in knowledge acquisition for
analysis applications. Both the tools themselves and the approaches that
underlie them are deserving of empirical comparison to identify how and why
they differ. One important contribution of this research is to point the way that
this kind of comparison can be done. Another is to demonstrate the differences
between the two techniques focused on.

Although the research reported here seeks to establish the relative
efficacies and efliciencies of two different methods, some writers argue that it is
not appropriate to hold up a single method as being superior to others. In this
view, it is more useful to cultivate a portfolio of methods, the different products
of which will presumably complement each other. The KADS methodology
suggests different methods at different stages of the process. Outside of a

methodology, using a mix of methods can be a shotgun approach containing
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appreciable redundancy and duplicated effort. At the same time, it seems quite
reasonable to argue that, if the use of one method does not successfully elicit
the desired knowledge, it might be appropriate to try other methods until one is
found to be successful. The portfolio approach is based on an analogy with
stock markets. The analogy is complete only if the relative efficacies and
efliciencies of different methods are known.

The use of controlled experiments in knowledge acquisition research is
not yet widespread. But the large number of approaches to knowledge
acquisition, coupled with the scarcity of evidence for choosing among them, are
an ideal situation for this kind of research. Research like that being reported
here helps to erect markers on a barren landscape. Future research can benefit
from either building upon these results or challenging them. Future researchers
can improve their own investigations by looking at both the weaknesses and

strengths of the approach taken here.
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Appendix A. Entry strategy selection: a broader
view

Clearly, business strategy involves much more than is discussed in
Chapter 2. Indeed, what is discussed there is a small, though vital, part of
strategic decision making. Strategic decision making involves essentially the
dual process of environmental scanning and organisational introspection. The
environment is monitored for opportunities and threats, while the organisation
itself is assessed to determine how well it can respond to the challenges and
pitfalls around it.

According to Johnson & Scholes (1984, p. 243)

strategic analysis and choice are of little value to an organisation unless
the proposals are capable of being implemented. Strategic change does
not take place simply because it is considered to be desirable, it takes

place if it can be made to work.

Thus, the strategy process typically involves deciding on the major
actions to be taken for organisational survival or growth — actions such as
market development, product development, and diversification of various kinds.
These strategies have to be pursued by one of several methods, which Roberts
& Berry (1985) call “entry strategies”. Roberts & Berry list seven entry

strategies:

-*

Acquisition

-*

Joint venture

-*

Internal development

-*

Internal venture

* Licensing
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* Nurturing / venture capital

¢ Educational acquisition.

Three of these entry strategies are included in the fragment of decision making
used as 1illustration in Chapter 2.

One effect of induction is to eliminate, from the decision, some of the
attributes that an expert might suggest. Some experts might be uneasy about
the small number of attributes that an induction algorithm typically singles out

for consideration. For example, Kononenko (1990, p. 193-194) noted

Although a decision tree outperformed the physicians ... with respect to
diagnostic accuracy the physicians were not prepared to use [it] in
practice. The rules ... were too short, containing only few, although
most informative, attributes .... The physicians typically use all available
information to make a decision and they are also able to estimate the
reliability of the diagnosis. If the reliability is not high enough then

additional examinations are needed.

In business strategy, the stakes are also high; and it is just as important
to avoid rash decisions. However, people do use redundant attributes in their
decisions. For instance, Ansoff (1968) offers the following factors in deciding

on the entry strategy:

¢ Start-up synergy

* Operating synergy

¢ Start-up cost

* Timing (product cycle and learning curve)
* Risk

¢ Price/earnings ratio in the new industry

* Availability of attractive acquisition opportunities.
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This list contains factors acknowledged as important by Roberts & Berry
(1985). However, Roberts & Berry argue strongly that the question of how to
enter cannot be divorced from that of which product markets to enter. On this
basis, they see familiarity with the market to which the development is to be
targeted, the technology of the product, and the level of involvement required
as factors that outweigh all others,

Even so, inspection of Ansoff’s table (Ansofl, 1968, p 169) reveals the
first two factors are suflicient for the decision. This conclusion is supported
when a case is generated from each row in Ansoff’s table. The effects of
start-up and operating synergy are so decisive that an (ID3-like) induction

algorithm drops all the other factors as redundant. Here are the rules induced:

a) If start-up synergy is ‘none’
then the best method is acquisition.

b) If start-up synergy is weak
and operating synergy is weak
then the best method is acquisition.

c) If start-up synergy is weak
and operating synergy is weak
then the best method is joint venture.

d) If start-up synergy is strong
then the best method is internal development.

If the other factors are desired in the induced rules, the first two factors
must be dropped. When the cases are expressed in terms of all factors except

start-up and operating synergy, the rules induced are as follows:
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a) If the kind of growth is conglomerate diversification
then the best method is acquisition.

b) If the kind of growth is concentric diversification
then the best method is acquisition.

c) If the kind of growth is unrelated
and timing is not of the essence
then the best method is internal development.

d) If the kind of growth is unrelated
and timing is of the essence
then the best method is joint venture.

e) If the kind of growth is market development
then the best method is internal development.

This confirms the redundancy in the original set of factors. It is, of
course, possible that in certain cases both start-up synergy and start-up cost,
say, affect the outcome of the decision. This might be so if high start-up
synergy is not always accompanied by low start-up cost. If the input to the
induction process includes examples in which the presence of one condition and
not the other changes the strategy decided, both factors will appear in the rules
generated. But such examples may be difficult to find if the two factors are

related in the way these two appear to be.
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Appendix B. Instructions for KAMSE

Instructions to Participants (B)
This session is divided into two parts. During the first part of the session, you
will learn how to use the knowledge acquisition software. In the second part,

you will be using the software to perform a predetermined task.

Practice
1. Make sure your computer is switched on, then continue reading this.

2. You have been given a diskette containing a knowledge acquisition
program. When your machine is ready, insert the diskette in the diskette

drive.

3. Now type a: to point your operating system to the diskette drive. You

should now see the a: command prompt. If you don’t, ask for help.

4. Type SCENIC and press the Enter key to start the program. You should now
see the SCENIC logo screen.

5. Press F10. The top line of the screen should now be displaying red

characters.

6. Type B

Your screen should now be displaying a file selection screen.

7. Select the file named FAUNA. You should now see the class entry screen

on which you will enter a list of animals.

8. Start the list by adding lizard. Here is how you do it:
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* Press the / key to open the field for data entry. You should now see a
small cursor appear about three quarters of the way down the left side

of the screen. This is where any information you type will appear.

* Type: Lizard

Then press the Enter key. The list should now include your lizard.
9. Now add lion and then elephant to the list.

10. Your list of animals should now be complete with the three types of animals

we are interested in. Press the Esc key to progress to the next stage.

11. You should now see the screen for entering attributes and their possible
values. You will need two attributes to describe the animals you just added.

Here is how you add an attribute:

+ Press the / key. You should see a small cursor appear about three
quarters of the way down the left side of the screen. This allows you to

enter information.

* Type: Body temperature
Press the Enter key. The new attribute should now appear in place of

the large cursor.

* Body temperature (for our purposes) can have two values. So add: warm

cold under the new attribute. (Remember the / key!)
12. Now move the block cursor to the next column and add the

» attribute: Trunk on face
+ with values: Yes

. and No

Appendix B. Instructions for KAMSE 218



13.

14.

15.

16.

Your list of attributes and their possible values should now be sufficient for
the three types of animals we are interested in. Press the Esc key to

progress to the next stage.

You should now be looking at a screen for entering examples of each type
of animal. Use the / key to open each column for data entry. Then use the
cursor arrow keys to select the attribute values and class {or each example.

Here are the three examples you should enter:

1 cold no Lizard
2 warm no Lion
3 warm yes Elephant

Your list of examples should now be complete with the three types of
animals we are interested in. Press the Esc key to progress to the next

stage.

Now watch the screen and wait for a moment while the program processes
the information you have put in so far. At the end of this processing, you
will see, near the bottom of the screen, a message should be telling you to

press the Enter key to continue. Go ahead, press the Enter key.

You should now see the validation screen. This is where you enter test
cases to validate the knowledge you have been transferring to the program.
The test cases have randomly generated values for each attribute. All you
have to do is to select the correct class for each case. Here is how you do

this for the first test case:

* With the large cursor in the class column, press the / key. Now use the
cursor arrow keys to find the appropriate class. Each time you press a
cursor arrow key, another class will be displayed on the data entry line.

* Enter the class for all the test cases displayed.
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* Now press Esc to progress to the next stage.

17. The test cases you have entered are now going through a validation process.
You should see the screen changing just too quickly for you to read what is
being displayed. When this ends, you will see a message telling you to press

the Enter key. Do as the message says.

18. The SCENIC logo should again be showing on the screen. This indicates
that your training is over. You are now ready to use SCENIC for the main
task.

Prescribed Task

Now that you are familiar with the software, you will be given a package
containing eight items. These items comprise a knowledge domain for object
identification. Handle the objects carefully as they will be collected at the end

of the session,

. Look at the items and identify them to yourself.

. As you did earlier, press FI10 and the B key.

. You should see the file selection screen. Move the block cursor below last
name in the list. Press the / key to open the field for data entry. Then type:
Objects and press Enter.

. Now use the software to gather information about the items and
distinctions between them. Your goal is to do for these items what you did
for the animals in the practice example.

. When you get to the validation screen, consider each of the 32 cases
carefully. For each case, look at the attribute values from left to right.
Consider only the evidence you think relevant in making your decision, and

ignore the other (sometimes conflicting) evidence.
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Appendix C. Instructions for the Repertory Grid
Technique

Instructions to Participants (R)
This session is divided into two parts. During the first part of the session, you
will learn how to use the knowledge acquisition software. In the second part,

you will be using the software to perform a predetermined task.

Practice
1. Make sure your computer is switched on, then continue reading this.

2. You have been given a diskette containing a knowledge acquisition
program. When your machine is ready, insert the diskette in the diskette

drive.

3. Now type a: to point your operating system to the diskette drive. You

should now see the a: command prompt. If you don’t, ask for help.

4. Type SCENIC and press the Enter key to start the program. You should

now see the SCENIC logo screen.

S. Press F10. The top line of the screen should now be displaying red

characters.

6. Type R.

Your screen should now be displaying a file selection screen.

7. Select the file named FAUNA. You should now see the class entry screen

on which you will enter a list of animals.

8. Start the list by adding lizard. Here is how you do it:
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10.

11.

12.

* Press the / key to open the field for data entry. You should now see a
small cursor appear about three quarters of the way down the left side

of the screen. This is where any information you type will appear.

* Type: Lizard

Then press the Enter key. The list should now include your lizard.

. Now add lion and then elephant to the list.

Your list of animals should now be complete with the three types of animals

we are interested in. Press the Esc key to progress to the next stage.

You should now see the list of three animals. Near the top of the screen is
a question for you. Two of the animals shown are warm-blooded and the
third is not. Position the block cursor on Lizard. Press the Enter key to

select Lizard.

The three animals should now be split into two groups. Now enter the trait

that the top two share. Here is how you do this:

* Press the / key to open the field for data entry.
Type: warm-blooded
Press the Enter key. The new trait should now appear to the right of
the top two animals. The block cursor should also have moved down to

the right of the bottom animal.

* Press the / key to open the field for data entry.
Type: cold-blooded
Press the Enter key. This opposite pole of the new trait should now

appear to the right of the bottom animal.
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* Check the display to ensure that you have not made any errors. Then

press Esc to progress to the next stage.

13. Your screen should now be displaying the rating screen. A rating of 5
means the animal is warm-blooded. A rating of 1 means that it isn’t. The
three animals are already rated correctly. For practice, rerate one of them

as follows:

* Move the block cursor to the line you want to change.
* Press/

* Type the appropriate rating (in this case, either 1 or 5).

14. Check quickly that all the animals have been rated correctly. When you are

satisfied, Press the Esc key to progress to the next stage.

15. You should again be presented with the three animals and asked which one
is different. This time, select the elephant and use the trait: untrunked.

When you are through, press Esc to progress to the next stage.

16. Now watch the screen and wait for a moment while the program processes
the information you have put in so far. At the end of this processing, you
will see, near the bottom of the screen, a message should be telling you to

press the Enter key to continue. Go ahead, press the Enter key.

17. You should now see the validation screen. This is where you enter test
cases to validate the knowledge you have been transferring to the program.
The test cases have randomly generated values for each attribute. All you
have to do is to select the correct class for each case. Here is how you do

this for the first test case:
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¢ With the block cursor in the class column, press the / key. Now use the
cursor arrow keys to find the appropriate class. Each time you press a
cursor arrow key, another class will be displayed on the data entry line.
* Enter the class for all the test cases displayed.

* Now press Esc to progress to the next stage.

18. The test cases you have entered are now going through a validation process.
You should see the screen changing just too quickly for you to read what is

being displayed.

When this ends, you will see a message telling you to press the Enter

key. Do as the message says.

19. The SCENIC logo should again be showing on the screen. This indicates
that your training is over. You are now ready to use SCENIC for the main
task.

Prescribed Task

Now that you are familiar with the software, you will be given a package
containing eight items. These items comprise a knowledge domain for object
identification. Handle the objects carefully as they will be collected at the end

of the session.

1. Look at the items and identify them to yourself.

2. As you did earlier, press F10 and the R key.

3. You should see the file selection screen. Move the block cursor below last
name in the list. Press the / key to open the ficld for data entry. Then type:
Objects and press Enter.

4. Now use the software to gather information about the items and
distinctions between them. Your goal is to do for these items what you did

for the animals in the practice example.
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5. When you get to the validation screen, consider each of the 32 cases
carefully. For each case, look at the attribute values from left to right.
Consider only the evidence you think relevant in making your decision, and

ignore the other (sometimes conflicting) evidence.
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Appendix D. Knowledge Units Elicited

This appendix shows the knowledge units elicited by each method. The two
sets of units, which were selected because they are representative of most

responses, were elicited from the same subject (number 8).

Knowledge from the Repertory Grid Technique

The repertory grid technique was this subject’s second treatment. It is
noticeable that, although elicited one week later, the constructs are remarkably
similar to the attributes elicited earlier. It is not known whether this is due to
carry-over effects or the persistence of the knowledge.

Domain : Objects

Elements : Washer
Metal paper clip
Plastic paper clip
Button
Hair clip
One-pence piece
One-cent coin
Elastic band

Constructs: Holes in / Solid ———-———! l

Circular / Rectangular
Metallic / Non-metallic
Rectangular / Non-defined shape
Dull / Shiny

T ks b N O WO B
=Y O U 2 Y O
0 s U D T U W
Tt o 1T N U b s e

Rules Induced

1. IF Metallic
AND Circular
AND Holes
Then Object is Washer

2. IF Metallic
AND Circular
AND Solid
AND Dull
THEN One-pence piece
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3. IF Metallic
AND Circular
AND Solid
AND Shiny
THEN One-cent coin

4. IF Metallic
AND Rectangular
AND Holes in
THEN Metal paper clip

5. [IF Metallic
AND Rectangular
AND Solid
THEN Hair clip

6. IF Non-metallic
AND Circular
AND Dull
Then Button

7. IF Non-metallic
AND Rectangular
AND Dull
THEN Elastic band

8. IF Non-metallic
AND Bright
THEN Plastic paper clip

Knowledge from KAMSE

The meaning of a few of the attributes is not readily evident. For example,
what the subject meant by solid is not the usual meaning of the word, because
all the metal objects would be solid, if the word was used in its usual sense.
Perhaps rigid would better describe the attribute, but the washer would have
been rigid, in the normal usage of rigid. The subject used the same word in the
“holes in / solid” construct in the repertory grid, which makes her meaning
clearer. Solid was used to mean having no holes. If the knowledge elicited
were to be put to any further use, it might be appropriate to clarify this kind of

issue with the domain expert.
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Domain : Objects

Classes : Metal paper clip
Hair grip
Plastic paper clip
Elastic band
Washer
Button
One-cent coin
One-pence piece

Attributes: Shape i Circle Rectangle Varied

Material i Metal Plastic Elastic

Sotid ¢ Yes No

Circular holes: 1 4 0

Edges ¢ Straight Wavy Round

Appearance ¢ Dull Bright
Examples

Circular Appear-

Shape Material Solid Holes  Edges ance Object
Circle Metal Yes ¢ Round Bright One-pence piece
Rectangle Plastic  No 0 Straight Bright Plastic paper clip
Rectangle Metal No 0 Straight Bright Metal paper clip
Circle Metal No 1 Round Bright Washer
Circle Metal Yes 0 Round Dull One-cent coin
Rectangle Metal No 0 Wavy Dutil Hair grip
Circle Plastic No 4 Round Bright Button
Varied Elastic No 0 Wavy Dull Elastic hand

Rules induced

1. IF Material = Metal
AND Shape = Circle
AND Rigid = Yes
AND Appearance = Dull
THEN Object is One-cent coin

2. IF Material = Metal
AND Shape = Circle
AND Rigid = Yes
AND Appearance = Bright
THEN Object is One-pence piece

3. IF Material = Metal
AND Shape = Circle
AND Rigid = No
THEN Object is Washer
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IF Material
AND Shape =
AND Edges =
THEN Object

IF Material
AND Shape =
AND Edges =
THEN Object

IF Material
AND Shape =
THEN Object

IF Material
AND Shape =
THEN Object

. IF Material =

= Metal

Rectangle

Straight

is Metal paper clip

= Metal

Rectangle

Wavy

is Metal hair grip

= Plastic
Circle
is Button

= Plastic
Rectangle
is Plastic paper clip

Elastic

THEN Object is Elastic band
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