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Abstract 10 
Efficient buildings are an essential component of sustainability and energy transitions, 11 
which represent today a techno-economic and socio-economic problem. New paradigms 12 
are emerging both for new and existing buildings (e.g. NZEBs) and passive design 13 
strategies are becoming increasingly common. However, the adoption of these strategies 14 
in mild climates has to be carefully evaluated to prevent overheating in intermediate 15 
seasons and increasing cooling loads in summer, considering also climate change 16 
scenarios. Additionally, optimistic assumptions about building technology performance 17 
are often considered and the variability of occupant comfort preferences and behaviour 18 
is generally neglected in the design phase. The research presented aims at verifying the 19 
suitability of a simple, robust and scalable calibration approach (based on multivariate 20 
linear regression) to link design and operational performance analysis transparently, 21 
using a Passive House case study building. First, the original baseline design 22 
configuration is compared with a larger spectrum of data generated by means of 23 
parametric simulation, following a Design of Experiment (DOE) approach. After that, 24 
regression models are trained first on simulation data and then progressively calibrated 25 
on measured data during a three year monitoring period. The two fundamental 26 
objectives are evaluating the robustness of design phase performance analysis through 27 
parametric simulation (i.e. detecting potentially critical assumptions) and maintaining a 28 
continuity with operation phase performance analysis (i.e. exploiting the feed-back from 29 
measured data). 30 
 31 
Keywords: Parametric modelling; behavioural modelling; building performance 32 
simulation; Passive House; performance monitoring; multivariate regression. 33 
 34 
Highlights: 35 

 Buildings are a relevant element in sustainability transition policies. 36 
 Rigorous schemes for energy efficiency are important tools for designers. 37 
 Robustness of performance estimates has to be considered in design phase. 38 
 Design and operational performance analysis have to be linked transparently. 39 
 Automated model calibration is necessary to ensure long-term performance 40 

monitoring. 41 
 42 

43 
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 60 
1 Introduction 61 
Efficient buildings are an essential component of sustainability and energy transition 62 
policies today and represent a techno-economic and socio-economic problem. The 63 
decarbonisation of building stock is one of the most important goals of policies, 64 
considering the impact of buildings at the global scale [1] and, in particular, in highly 65 
developed countries [2]. Building stock decarbonisation process embodies the necessity 66 
of increasing energy efficiency in end-uses, reducing demand and providing a relevant 67 
quota of energy supply by renewable sources. Energy efficiency paradigms are 68 
emerging both for new and existing buildings (i.e. Nearly Zero Energy Buildings, or 69 
NZEBs) [3] and passive design strategies, exploiting solar and internal gains to balance 70 
heat losses due to transmission and ventilation (in heating mode), are becoming 71 
increasingly common. These strategies can be particularly effective where heating 72 
constitutes, in most of the cases, the predominant part of energy consumption. However, 73 
the adoption of these strategies in mild climates has to be carefully evaluated to prevent 74 
overheating [4, 5] in intermediate seasons and increasing cooling loads in summer, 75 
considering also climate change problem [6], as buildings are long-term assets. 76 
More in general, despite the great research effort put in design tools and technical 77 
standards in the last decades, both “re-bound” and “pre-bound” effect have been found 78 
empirically and, therefore, the gap between simulated and measured performance has 79 
been widely investigated in recent years [7, 8]. The “re-bound” effect [9] in efficient 80 
buildings is determined by inappropriate operation strategies, while the “pre-bound” 81 
effect [10] in inefficient buildings is determined by a more conscious consideration of 82 
the costs of energy services by occupants. Consequently, we have to acknowledge the 83 
fact that design phase assumptions and calculation methodologies can highly impact the 84 
reliability of our estimates of building performance, considering the essential problem 85 
of matching simulated and measured performance [11, 12] through calibration 86 
techniques. Additionally, in most of the cases the variability of the impact of occupants’ 87 
comfort preferences and behaviour on performance is generally neglected in the design 88 
phase [13-15]. Finally, we can identify also an increasing commitment towards resource 89 
efficiency [16] in the built environment and the need for a holistic view on the topic of 90 
building sustainability [17], considering the whole life cycle impact of technologies for 91 
the building sector in a more realistic and reliable way [18-20]. All these elements 92 
constitute the motivation for the research presented. 93 
As anticipated, model calibration is essential to link design and operational performance 94 
analysis under uncertainty [8] and the research is based on two fundamental tools: 95 
parametric simulation to produce a large spectrum of possible building energy 96 
performance outcomes (considering realistically the impact of the user behaviour and 97 
variable operating conditions from the very beginning), and model calibration 98 
employing a simple, robust and scalable technique (i.e. multivariate linear regression). 99 
A Passive House building is employed as case study to illustrate our approach. First, the 100 
original baseline design configuration is compared with a larger spectrum of data 101 
generated by means of parametric simulation, following a Design of Experiment (DOE) 102 
approach. After that, regression models are trained first on simulation data and then 103 
progressively calibrated during a three year monitoring period. In synthesis, the two 104 
fundamental research objectives are increasing the robustness of performance estimates 105 
in design phase, through parametric simulation, and maintaining, at the same time, a 106 
continuity with operational phase performance analysis, through model calibration. In 107 
this way, it is possible to detect first critical assumptions already in the design phase and 108 
then to derive critical insights as a feed-back from measured data, during operation 109 
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phase. The techniques used are chosen because of their simplicity, robustness and 110 
scalability. The latter is particularly important as shown in recent research on 111 
knowledge discovery in large scale building stock datasets [21, 22] and on Model 112 
Predictive Control for the integration of renewables in the built environment [23]. For 113 
these reasons, the chosen approach is potentially suitable for both individual buildings, 114 
which can have a minimal cost automated performance monitoring (to keep 115 
performance under control at a reasonable effort, in long-term monitoring), but also for 116 
large scale studies [24-26] aimed at energy planning and policy, using inexpensive data 117 
acquisition and processing procedures. 118 

 119 
Nomenclature 
 
Variables and parameters 
A average value 
a,b,c,d,e,f regression coefficients 
Cv(RMSE) coefficient of variation of RMSE 
D deviation, difference between measured and simulated data 
I solar radiation 
M measured/simulated data 
MAPE mean absolute percentage error 
NMBE normalized mean bias error 
q specific energy transfer rate (energy signature) 
P predicted data 
R2 determination coefficient 
RD relative deviation 
RMSE root mean square error 
S simulated 
SS sum of the squares 
y numeric value 
θ  temperature 
ε error term 
 
Subscripts and superscripts 
‒ average 
^ predicted value 
b baseline 
c cooling 
h heating 
i index 
n number of points 
res residual 
 120 
 121 
2 Research methodology 122 
The importance of parametric and probabilistic analysis of building performance is 123 
becoming evident [27-30], both in new construction and retrofit interventions [31, 32]. 124 
Cost-optimal [33] levels of investment have to be considered for the effective 125 
deployment of energy efficiency practices and, consequently, for the credibility and 126 
success of policies in this direction. However, occupants’ comfort preferences and 127 
behaviour [14, 15, 34] can lead to a relevant gap between simulated and measured 128 
performance [7], undermining the effectiveness of policies that have to confront with 129 
real behaviour [8, 9, 35].  130 
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In order to overcome this fundamental issue, a methodological continuity should be 131 
established between performance analysis practices across life cycle phases (i.e. model 132 
based analysis), using parametric simulation in design phase (generally only a limited 133 
amount of parameter configurations is considered for design phase simulations) and 134 
progressively calibrating building models to measured data (lo learn from feed-back). A 135 
great effort has been put in recent years on optimization [36] and simulation-based 136 
optimization [37] of building energy performance. Further, Design of Experiments 137 
(DOE) and parametric design have received also an increasing attention [27-30], 138 
together with Monte Carlo simulation to test the robustness of performance modelling 139 
[15, 28, 38]. 140 
Meta-models [39] (i.e. surrogate models, reduced-order models) are considered among 141 
the most promising techniques to overcome the limitations determined by the dimension 142 
of the optimization problems or parametric simulations. The choice of a specific 143 
technique can dependent on several factors [40]. Indeed, meta-models can be 144 
successfully used for different purposes, e.g. in design optimization, [37] calibration 145 
[39] and control [41]. In fact, they are very flexible and they can be employed to link 146 
design and operation phase performance analysis [42], considering, however, the trade-147 
offs between complexity, predictive ability and transparency (i.e. black-box Vs grey-148 
box models) [40]. In this research we propose piecewise linear multivariate regression 149 
models for calibration. This choice is motivated in detail in Section 2.1, considering 150 
both design and operational phase issues. 151 
 152 
2.1 Motivations for regression modelling approach 153 
Building performance can be studied by means of Key Performance Indicators (KPIs) 154 
[43-45], generally aimed at aggregating a larger set of data in a single representative 155 
quantity. Clearly, KPIs can be used to characterize both design and operational 156 
performance. This section presents the motivations for using a regression-based 157 
approach in this sense.  158 
As anticipated, meta-models are flexible techniques which can be used for multiple 159 
purposed during building life cycle phases. With respect design phase issues, we can 160 
find in recent literature several examples of multi-variate regression models to support 161 
design optimization [46-50], considering also topics such as robustness of energy 162 
performance contracting and cost-optimal analysis [38, 51]. Further, with respect to 163 
operation phase issues, models are acceptable for calibration if they are able to satisfy 164 
the thresholds of measurement and verification (M&V) protocols [52-54], which 165 
constitute the minimal requirements. The motivations for the choice of a regression 166 
modelling approach in this research are connected to previous research conducted in the 167 
field and future prospects, considering relevant topics such as: 168 

1. conceptual simplicity and ease of implementation compared to other meta-model 169 
based techniques for calibration [39]; 170 

2. automated or partially automated model selection capabilities [55, 56]; 171 
3. possibility to account for the impact of different operational strategies and 172 

conditions [13-15], considering different levels of thermal inertia [57]; 173 
4. scalability and applicability with respect to different types of end-uses [58] and 174 

multiple temporal [59, 60] and spatial scales [24, 26]; 175 
5. visualization of the impact of users’ behaviour [14]; 176 
6. model robustness testing, under different behavioural conditions, using Monte 177 

Carlo simulation [15]; 178 
7. use of Bayesian analysis [61, 62] as an extension of conventional regression; 179 

 180 
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Finally, the use of simplified but robust and scalable models could potentially open up 181 
new perspectives for the application of large scale optimization of distributed energy 182 
resource in the built environment [23, 63-68], considering the problem of updating 183 
model parameters through periodic recalibration in evolving conditions [6, 69]. In order 184 
to render these applications more transparent and automated, further research should be 185 
oriented towards the definition of multi-scale and multi-level performance metrics [58, 186 
70] and corresponding visualization techniques. 187 
 188 
2.2 Methodology for case study analysis 189 
The research presented is based on a case study analysis. In Section 3.1, the data from 190 
the original building design are used as baseline (initial design simulation) and then 191 
compared to parametric simulation runs obtained using Design of Experiment (DOE) 192 
approach. Therefore, parameters in DOE simulations have been varied with respect to 193 
the baseline configuration. Initial design involved the use of PHPP semi-stationary 194 
calculation methodology [71], specifically developed for Passive House buildings. In 195 
this research simulations are conducted using a validated grey-box dynamic model, 196 
suitable to perform multiple runs in a reduced time frame [72, 73], mantaining, at the 197 
same time, an acceptable level of reliability. Further, this choice corresponds to the 198 
necessity of enabling a future development of the research oriented to the non-intrusive 199 
identification of relevant physical parameters of the building [74]. In this research the 200 
grey-box lumped model parameters have been initially calibrated to the original 201 
baseline configuration in PHPP, to ensure comparability of results, and then varied 202 
following two-level full factorial design experiment plans [75], to compute every 203 
possible combination of factors and levels. Generally, a full factorial DOE cannot be 204 
used because of the computational effort: due to the exponential growth of experiments’ 205 
number, this is only feasible for a limited number of factors and levels (as in this case 206 
study). The alternative choice would be running different fractional designs, where a 207 
selection of factor combinations is identified to reduce the number of experiments while 208 
maintaining an appropriate exploration of the design space and supporting a faster 209 
design workflow. However, by reducing the number of experiments we could possibly 210 
neglect some configurations which could be important for the analysis. In principle, we 211 
could have looked for a fractional design for this case study, but it would have been 212 
specific for the case study itself [29]. In order to derive more general rules for DOE, it 213 
would be necessary to apply the regression based approach presented in this paper to 214 
groups or typologies of reference buildings [22, 33], but this goes beyond the scope of 215 
this research. However, this can constitute the basis for future research, considering 216 
previous multi-scale simulation experience [58, 76]. 217 
In this case study, multiple DOE runs are used to account for the performance 218 
variability determined by envelope components and by occupant’s comfort preferences 219 
and behaviour. Ideally, the parametric approach aims at understanding the impact of 220 
factors and to detect potentially critical assumptions already at the preliminary design 221 
level and to ensure the robustness of energy performance evaluation [28, 38]. In real 222 
building operation these variations can determine a very relevant gap between simulated 223 
and measured performance and, consequently, can compromise the cost-effectiveness of 224 
investments in energy efficiency, undermining the credibility of energy efficiency 225 
practices [33]. In other words, the objective of DOE simulation is that of addressing 226 
critically (i.e. with less optimistic assumptions) the effects of performance variability. 227 
After that, in Section 3.2 the result for baseline design configuration is described more 228 
in detail, highlighting visually the relevant components characterizing building energy 229 
balance. Further, Section 3.3 describes the necessary steps and tools (in the workflow) 230 
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to link design and operational phase performance analysis through model calibration, 231 
and to test the applicability of regression models for performance prediction, using 232 
energy signatures [77]. 233 
Parametric simulation data are used to train multiple piecewise linear multivariate 234 
regression models. Finally, models are used for progressive calibration on measured 235 
data over a three year time monitoring, described in Section 3.4. In model training and 236 
testing phases visualization techniques are used in combination with numeric ones to 237 
enable an intuitive interpretation of results and to ease human interaction in an 238 
automated (or partially automated) calibration process. 239 
 240 
 241 
3 Case study analysis 242 
The case study chosen is a Passive House standard residential building constructed at  243 
south border of the Province of Forlì-Cesena, near Rimini, in the Emilia Romagna 244 
Region in Northern Italy. The case study building is characterized by highly insulated 245 
envelope components, a mechanical ventilation system with heat recovery (all-air 246 
system), a ground-source reversible heat pump system (GSHP) serving the mechanical 247 
ventilation system for heating and cooling demands and the domestic hot water demand. 248 
Further, a photovoltaic system for on-site electricity production and a solar thermal 249 
system for domestic hot water production integration are present. In the parametric 250 
simulations heat recovery has been considered in winter mode operation, taking into 251 
account also the relevant impact of auxiliaries [78]. 252 
 253 
3.1 Parametric simulation using Design of Experiment approach 254 
As anticipated, the baseline configuration chosen for simulation is the one used 255 
originally for building design. The envelope parameters used in the grey-box model 256 
(lumped parameters) have been calibrated to reproduce the same heating demand of the 257 
original model in PHPP. Grey-box models are highly flexible, scalable and represent a 258 
good compromise between detail and accuracy when modelling building energy 259 
dynamics [79, 80]. These models have been used for yearly simulations, including all 260 
the energy demands from the building: 261 

1. heating;  262 
2. cooling; 263 
3. domestic hot water (DHW);  264 
4. lighting; 265 
5. appliances.  266 

 267 
Internal gains assumed in simulation and reported in Table 1 are averaged on a daily 268 
base and are very modest, considering the fact that the building, despite being very 269 
large, is actually used only by 4/5 people. It has to be underlined the fact that baseline 270 
configuration and DOE run 1 use constant operating schedules, as reported in Table 1, 271 
to maintain a comparability with the original PHPP model, but more realistic schedules 272 
are considered in the parametric simulation runs 2 (behaviour 1) and 3 (behaviour 2). In 273 
two-level DOE vary between two values, indicated with -1 and +1. The number of 274 
simulations depends on the amount of parameters chosen and on the combinatorial logic 275 
chosen. In this research we consider a full factorial DOE, for the reasons outlined in 276 
Section 2.1. The overall simulation data are summarized in Table 1. 277 

278 
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 279 
Table 1: Baseline and Two-level Design Of Experiment simulation data 280 

Group Type Unit Baseline Design of experiment 
    Levels 
    -1 +1 

Climate UNI 10349:2016 -    
Geometry Gross volume m³ 1557   

 Net volume m³ 1231   
 Heat loss surface area m² 847   
 Net floor area m² 444   
 Surface/volume ratio 1/m 0,54   

Envelope U value external walls W/(m2K) 0,18 0,23 0,27 
 U value roof W/(m2K) 0,17 0,21 0,26 
 U value transparent components W/(m2K) 0,83 1,04 1,25 

Activities Internal gains (lighting, 
appliances and occupancy, daily 

average) 
W/m2 1 1 1.5 

Control and 
operation 

Heating set-point temperature °C 20 20 22 

 Cooling set-point temperature °C 26 26 28 
 Air-change rate (infiltration and 

mechanical ventilation with heat 
recovery in heating mode) 

vol/h 0,2 0,2 0,4 

 Shading factor (solar control 
summer mode) 

- 0.5 0.5 0.7 

 Domestic hot water demand l/person/day 50 50 70 
 Schedules – DOE constant 

operation 
- 0.00-23.00 0.00-23.00 0.00-23.00 

 Schedules – DOE behaviour 1 - 7.00-22.00 7.00-22.00 7.00-22.00 
 

Schedules – DOE behaviour 2 - 
7.00-9.00, 

17.00-22.00 
7.00-9.00, 

17.00-22.00 
7.00-9.00, 

17.00-22.00 

 281 
In terms of temperature set-points, it has been considered an increase of two degrees in 282 
heating mode and an increase of two degrees also in cooling mode, to account 283 
respectively for an increased heating demand and for a reduced cooling demand. In 284 
terms of ventilation rate, infiltration and mechanical ventilation with heat recovery in 285 
heating mode have been considered. 286 
Technical systems consist of a GSHP system, providing heating, cooling and domestic 287 
hot water (DHW), a rooftop photovoltaic plant (BIPV) and a solar thermal system with 288 
storage to integrate DHW production. Relevant sizing data of technical systems are 289 
reported in Table 2. 290 
 291 

Table 2: Technical system sizing data 292 
Group Technology Type Unit Value 

Heating/Cooling 
system 

GSHP (Ground-
source heat pump) 

Brine/Water Heat Pump kW 8.4 

  Borehole heat exchanger (2 double 
U boreholes) 

m 100 

On-site energy 
production 

Building 
Integrated Photo-
Voltaic (BIPV) 

Polycrystalline silicon kWp 9.2 

 Solar thermal Glazed flat plate collector m2 4.32 
  Domestic hot water storage m3 0.74 

 293 
In order to simulate realistic operation conditions, coherent operating schedules have 294 
been created for heating, cooling, air-change rate (ventilation/infiltration) and internal 295 
gains (lighting, appliances, people). Schedules have been created using the methodology 296 
described in detail in previous research [14, 15] and the corresponding normative 297 
references [81]. As anticipated, the DOE simulation runs conducted are 3, one for each 298 
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set of operation schedules, simulating different behavioural patterns of people living in 299 
the building: 300 

1. operation is continuous as in baseline design configuration (constant operation 301 
profile); 302 

2. operation is concentrated between 7.00 and 22.00 (variable operation profile, 303 
behaviour 1); 304 

3. operation is concentrated between 7.00 and 9.00 and between 17.00 and 22.00 305 
(variable operation profile, behaviour 2). 306 

 307 
The indicators chosen for simulation output analysis are the following ones: 308 

1. thermal demand for heating and cooling; 309 
2. electricity demand for end-use (heating, cooling, DHW, appliances and 310 

lighting); 311 
3. self-consumption of on-site RES electricity production; 312 
4. renewable energy ratio (RER) [82]; 313 
5. load matching and grid interaction index [83, 84]; 314 
6. non-renewable primary energy demand; 315 
7. CO2 emission. 316 

 317 
Most of the performance indicators have been calculated according to the methodology 318 
proposed in the standard ISO 52000-1 [85], which will be adopted in the future energy 319 
efficiency legislation at the EU level (overarching framework for the Energy 320 
Performance of Buildings, or EPB). Further, it has to been underlined the fact the KPIs 321 
chosen are substantially scalable, up to neighbourhood/district [65] scale, city scale [86] 322 
and regional/national scale [87]. 323 
As introduced before, the whole building energy demand has been taken into account, 324 
weighting delivered and imported electricity asymmetrically. The primary energy and 325 
emission factors assumed for calculation are the ones contained in Italian legislation 326 
regarding energy efficiency in buildings. However, while the delivered energy weight 327 
assumed is 1, the exported energy weight assumed here is 0.4, differently from the 328 
current building performance rating scheme adopted at the national level, which gives a 329 
0 weight for exported energy. 330 
The results obtained from DOE simulations have been used to report KPIs on a yearly 331 
base, considering respectively lower bound (LB) and upper bound (UB) of values 332 
obtained. The data are reported in Table 3, showing values for: 333 

1. baseline design configuration; 334 
2. lower and upper bound of overall data (DOE run 1, 2, 3); 335 
3. constant operation data (DOE run 1); 336 
4. behaviour 1 data (DOE run 2); 337 
5. behaviour 2 data (DOE run 3). 338 

339 
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 340 
Table 3: Baseline and Two-Level Design Of Experiment simulation data comparison – 341 

lower bound and upper bound of KPI yearly values 342 
Balance 
level 

KPI Unit Baseline Design of Experiments 

    Overall Constant Behaviour 1 Behaviour 2 
    LB UB LB UB LB UB LB UB 
Zonal Heating 

demand 
kWh/m2 19.3 17.2 39.6 19.2 39.6 18.0 36.2 17.2 33.8 

 Cooling 
demand  

kWh/m2 10.8 0.8 12.6 0.8 12.3 1.2 12.6 1.1 11.2 

Meter Self-
consumption 

% 26.9 16.7 42.6 24.2 30.7 26.4 42.6 16.7 22.2 

 Renewable 
Energy 
Ratio  

% 91.7 75.8 97.3 81.3 94.6 79.4 97.3 75.8 93.2 

 Load 
matching 
index 

% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 Primary 
Energy 

kWh/m2 5.0 1.5 24.3 3.2 18.5 1.5 20.1 3.9 24.3 

 CO2 
Emission 

kg/m2 1.1 0.3 5.4 0.7 4.1 0.3 4.4 0.9 5.4 

 343 
3.2 Analysis of baseline design configuration 344 
Parametric simulation runs described in the previous Section are performed to create a 345 
possible spectrum of performance data, under uncertainty. On the other hand, baseline 346 
configuration represents simply the initial design hypothesis. In this Section baseline 347 
configuration is analysed to verify graphically, first of all, the suitability of a regression-348 
based approach. For this reason, we report monthly data of indicators, plotted against 349 
average monthly external air temperature [39, 55, 56, 58], to identify correlations. For 350 
energy quantities in particular, we transform monthly data to derive the average power 351 
calculated over a monthly operation period; this method is called energy signature [77]. 352 
The objective of energy signatures is deriving weather normalized visualizations, 353 
suitable for monitoring and calibration in different climate conditions. Monthly 354 
monitoring of energy performance is not data intensive and can be done both manually 355 
and automatically, by means of data acquisition systems from meters. Further, it can 356 
easily scale from single buildings to building stock [58] and cities [24]. 357 
Monthly electricity demand composition and related energy signatures are reported in 358 
Figure 1 for the baseline configuration, showing the proportion of the different 359 
components of electricity demand in the building. The shape of data in energy 360 
signatures indicates the possibility of fitting total electric energy demand with a 361 
piecewise-linear regression model, while heating and cooling demand can be fitted with 362 
two separate linear regression models, as reported in literature [58, 88], allowing a 363 
physical interpretation of regression coefficients. The electricity meter balance with 364 
respect to demand and on-site production is reported in Figure 2, while delivered and 365 
exported energy data are reported in Figure 3, together with the related signatures. In 366 
this case also the data patterns can be approximated by linear and piece-wise linear 367 
models. 368 



 11

 369 

Figure 1: Electricity demand composition – monthly data and signatures 370 
 371 

 372 

Figure 2: Electricity meter balance - on-site production and demand - monthly data and 373 
signatures 374 

 375 
The values represented in Figure 2 highlight the fact that the photovoltaic system is able 376 
to satisfy the total electricity demand of the building on a yearly base. Further, the 377 
values reported in Figure 3 show the interaction of the building with the grid, by means 378 
of the patterns of delivered and exported energy. The analysis of these patterns shows 379 
indirectly when (on a daily base) the activity at the building level is concentrated, 380 
because we can discriminate the quantity of energy self-consumed depending on the 381 
climatic variables (temperature and solar radiation). In this way, it is possible to test if 382 
the schedules assumed for dynamic simulation are approximately correct even with low 383 
resolution data (monthly in this case). Therefore, further research development in this 384 
direction is possible by introducing more information about user behaviour (e.g. 385 
integrating long-term monthly measurements with periodic short-term measurements at 386 
hourly/sub-hourly intervals [59, 60, 89]). 387 
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 388 

Figure 3: Electricity meter balance - delivered and exported energy - monthly data and 389 
signatures 390 

 391 
Another way of accounting for the variability of the building interaction with the grid 392 
are load matching and grid interaction indexes, which are reported in Figure 4. Load 393 
matching index assumes the maximum value of 100% by definition [83, 84]. 394 
 395 

 396 

Figure 4: Electricity meter balance – load matching and grid interaction indexes – 397 
monthly data and signatures 398 

 399 
3.3 Linking design and operational performance analysis 400 
The aim of this research was establishing a link between DOE simulation data and 401 
operational data, in order to calibrate progressively simple predictive models, 402 
maintaining at the same time a comparability with initial parametric estimates. 403 
Regression models are essential for two fundamental reasons: 404 

1. providing a simple but effective approach for performance monitoring, for the 405 
reasons outlined in Section 2; 406 

2. performing weather normalization of simulation results, generated with a 407 
standard climate data file, reported in Table 1. 408 
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 409 
The choice was adopting a piecewise linear multivariate regression approach, 410 
considering the general motivations reported in Section 2.1. Actually multiple types of 411 
meta-models can be considered for calibration purpose as described in Section 2, but we 412 
decided to use the simplest possible approach to ease model calibration and, 413 
consequently, performance monitoring, creating a procedure that could possibly scale 414 
with respect to temporal [59] and spatial resolution of data [24, 39], using multi-level 415 
analysis [70]. Further, among all the data presented in Sections 3.1 and 3.2, we decided 416 
to focus on the total aggregated electricity demand, plotted in Figure 2 for baseline 417 
design configuration, even though the model can be further decomposed with respect to 418 
zonal energy balance components [58], represented in Figure 1. 419 
The piecewise linear multivariate regression models proposed are reported in Table 4. 420 
The overall predictive model is the combination of three linear submodels, respectively 421 
for heating, cooling and baseline demand. Two types of models are considered: 422 

1. type 1, accounting only for external air temperature dependence; 423 
2. type 2, accounting for both external air temperature and solar radiation 424 

dependence. 425 
 426 

Table 4: Regression models for heating, cooling and baseline demand analysis 427 
Demand Model type 1 Model type 2 
Heating  

,1 0 1h eq a a     ,2 0 1 2h e solq b b b I      

Cooling 
c,1 0 1 eq c c     c,2 0 1 2e solq d d d I      

Baseline  
,1 0 1b eq e e     b,2 0 1 2e solq f f f I      

 428 
External temperature is the most important regressor for weather normalization [90]. 429 
However, we decided to include also solar radiation as a regressor, considering the fact 430 
that we are analysing a Passive House standard building, in which the impact of solar 431 
gains is relevant and a solar thermal system for the integration of DHW production is 432 
present as well. Nonetheless, similar approaches can be used for solar photo-voltaic [91] 433 
and solar thermal plants [92, 93]. 434 
In order to evaluate and compare properly simulation data in design phase and measured 435 
data in operation phase, we used a set of statistical indicators. We decided to train first 436 
the two different types of multivariate piecewise linear regression models on simulated 437 
data, in order to test them in the first year of operation with respect to measured data. 438 
Then, from the second year onward, models are directly trained on measured data. This 439 
part of the research is described in detail in Section 3.4. 440 
Going back to statistical indicators, the goodness of fit of a regression model can be 441 
expressed by the determination coefficient R2 that can assume values ranging from 0 to 442 
1 (or 0 to 100%, if expressed in percentual terms), where 1 means that the data fitting is 443 
perfect. The formula for R2 is the following one: 444 
 445 
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 446 
R2 is an important indicator of the goodness of fit, but it is not the only one to be 447 
considered. We decided to consider also MAPE (Mean Absolute Percentage Error), to 448 
account for the average absolute value of the difference among measured and predicted 449 
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data, normalized with respect to measured data themselves. MAPE is calculated as 450 
follows. 451 
 452 
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 453 
Further, in the state-of-the-art of model calibration procedures [11, 12, 52-54] other two 454 
metrics are employed, NMBE and Cv(RMSE). NMBE (Normalized Mean Bias Error) is 455 
the total sum of the differences between measured (or simulated, before operation) and 456 
predicted energy consumption at the calculation time intervals (e.g. monthly, hourly) of 457 
the considered period. The difference is then divided by the sum of the measured (or 458 
simulated) energy consumption. 459 
 460 
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A positive value of NMBE implies a model overestimation of energy consumption, 461 
viceversa a negative value implies an underestimation. 462 
The RMSE (Root Mean Squared Error) is a measure of the sample deviation of the 463 
differences between measured values and values predicted by the model. Cv(RMSE) is 464 
the Coefficient of Variation of RMSE and is calculated as the RMSE normalized to the 465 
mean of the measured values. Cv(RMSE) represents a normalized measure of the 466 
variability among measured (or simulated, before operation) and predicted data. It 467 
specifies the overall uncertainty in the prediction of the building energy consumption, 468 
reflecting the errors size and the amount of scatter. Lower Cv(RMSE) values indicate a 469 
better calibrated model. 470 
 471 
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 472 
The threshold limits considered at the state-of-the-art are reported in Table 5, 473 
considering the most relevant protocols for measurement and verification (M&V) 474 
existing today. 475 
 476 

Table 5: Threshold limits of metrics for model calibration with monthly data 477 
Metric  ASHRAE 

Guidelines 14 
IPMVP FEMP 

MBE % ± 5 ± 20 ± 5 
Cv(RMSE) % 15 - 15 

 478 
Simulated parametric data (DOE) are used as reference to link design (when no 479 
measured data are available) and operational performance analysis. As specified before, 480 
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we concentrated on the analysis on simulated total aggregated electric energy demand, 481 
training regression models respectively on: 482 

1. lower bound (LB) and upper bound (UB) data for the overall DOE runs dataset 483 
(runs 1, 2, 3); 484 

2. three subsets of data, corresponding to constant operation (DOE run 1), 485 
behaviour 1 (DOE run 2) and behaviour 2 (DOE run 3).  486 

 487 
The results obtained are reported in Table 6, showing the goodness of fit of piecewise 488 
linear regression models to simulated data in all the conditions. 489 
 490 

Table 6: Training of regression models on DOE simulation data  491 
Regression 
model 

Dataset  
Training - simulation data DOE 

   R2 MAPE NMBE Cv(RMSE) 
   % % % % 
Type 1 Overall LB 93.65 9.34 0.06 13.58 
  UB 96.64 7.33 0.02 9.01 
 Constant LB 93.97 9.66 0.07 14.22 
  UB 96.16 8.81 0.01 10.63 
 Behaviour 1 LB 93.44 9.38 0.07 13.19 
  UB 96.56 7.31 0.01 9.07 
 Behaviour 2 LB 93.43 9.33 0.06 12.79 
  UB 96.52 7.23 0.01 8.96 
Type 2 Overall LB 99.90 1.42 -0.02 1.65 
  UB 99.77 1.93 -0.01 2.36 
 Constant LB 99.86 3.77 4.82 8.33 
  UB 99.65 8.55 -3.57 5.89 
 Behaviour 1 LB 99.91 1.02 0.03 1.47 
  UB 99.77 1.88 0.00 2.32 
 Behaviour 2 LB 99.92 1.11 0.03 1.42 
  UB 99.69 2.17 0.00 2.67 

 492 
We can also represent easily the results of model training process graphically. In this 493 
research we decided to plot the distribution of simulated monthly data on a yearly base, 494 
together with the corresponding energy signatures (lower and upper bound of simulation 495 
data envelopment), compared with model type 1 and model type 2 regression results. 496 
The results are represented in Figure 5 for the overall dataset, and in Figures 6, 7 and 8, 497 
respectively for constant operation, behaviour 1 and behaviour 2. The use of interval 498 
data for parametric simulation is substantially comparable to an epistemic uncertainty 499 
assumption [94]. 500 
 501 
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 502 

Figure 5: Total simulated monthly electricity demand distribution (boxplot) and 503 
comparison between simulated and piecewise linear multivariate regression (energy 504 

signatures) – overall data 505 
 506 

 507 

Figure 6: Total simulated monthly electricity demand distribution (boxplot) and 508 
comparison between simulated and piecewise linear multivariate regression (energy 509 

signatures) – constant operation data 510 
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 511 

Figure 7: Total simulated monthly electricity demand distribution (boxplot) and 512 
comparison between simulated and piecewise linear multivariate regression (energy 513 

signatures) – behavior 1 data 514 
 515 

 516 
Figure 8: Total simulated monthly electricity demand distribution (boxplot) and 517 

comparison between simulated and piecewise linear multivariate regression (energy 518 
signatures) – behavior 2 data 519 

 520 
3.4 Monitoring and incremental model calibration 521 
We decided to use both model type 1 and type 2 for monitoring and incremental model 522 
calibration process. The analysis is concentrated on total aggregated electricity demand, 523 
as specified before. Models are initially trained respectively on the lower and upper 524 
bounds of overall DOE runs data, when measured data are not available (design phase). 525 
In this way, we consider the largest possible spectrum of data variability, given by the 526 
underlying assumptions for the generation of DOE cases, reported in Section 3.1. After 527 
the first year of operation, models are trained on measured data.  528 
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The results of model training and testing for the three years of monitoring period are 529 
plotted in Tables 7 and 8, respectively for model type 1 and type 2. The phases and 530 
subphases of the process are reported in Tables, considering: 531 

1. design phase, model training on DOE simulation data;  532 
2. operation phase, initial operation, uncalibrated model; 533 
3. operation phase, partial calibration, models don’t reach calibration thresholds 534 

reported in Table 5; 535 
4. operation phase, calibration, model reaches calibration thresholds reported in 536 

Table 5. 537 
 538 
In general, the results highlighted the necessity of considering multiple statistical 539 
indicators in the calibration process. In fact, R2 is highly dependent on the scatter of data 540 
and therefore cannot be considered as the only parameter for predictive model 541 
validation, because this could lead to misleading conclusions. In fact, model R2 can be 542 
high even if the model is uncalibrated, uncovering a systematic error. Therefore, the 543 
predictive model is acceptable only if its calibration indicators NMBE and Cv(RMSE) 544 
are within the limits reported in Table 5, according to calibration protocols in M&V. 545 
 546 

Table 7: Incremental calibration during three years of operation – Model type 1 547 
Phase Sub-phase Training dataset Testing dataset R2 MAPE NMBE Cv(RMSE) 
    % % % % 
Design Model 

training 
Simulated data 

DOE - Overall LB 
 93.65 9.34 0.06 13.58 

Design Model 
training 

Simulated data 
DOE - Overall UB 

 96.64 7.33 0.02 9.01 

Operation Initial 
operation 

 Measured data – 
Year 1 

76.88 35.51 -50.23 37.60 

Operation Initial 
operation 

 Measured data - 
Year 1 

73.08 33.35 20.59 44.39 

Operation Partial 
calibration 

Measured data – 
Year 1 

 81.33 12.03 0.02 14.60 

   Measured data – 
Year 2 

91.97 13.08 -13.82 16.12 

Operation Partial 
calibration 

Measured data – 
Year 1 and 2 

 82.64 11.44 0.04 13.44 

   Measured data – 
Year 3 

69.74 18.40 -6.95 19.75 

 548 
Table 8: Incremental calibration during three years of operation – Model type 2 549 

Phase Sub-phase Training dataset Testing dataset R2 MAPE NMBE Cv(RMSE) 
    % % % % 
Design Model 

training 
Simulated data 

DOE - Overall LB 
 99.90 1.42 -0.02 1.65 

Design Model 
training 

Simulated data 
DOE - Overall UB 

 99.78 1.93 -0.01 2.36 

Operation Initial 
operation 

 Measured data – 
Year 1 

69.91 38.80 -36.46 41.86 

Operation Initial 
operation 

 Measured data - 
Year 1 

75.99 28.16 21.33 40.64 

Operation Partial 
calibration 

Measured data – 
Year 1 

 85.93 8.05 0.04 12.76 

   Measured data – 
Year 2 

88.45 13.72 -13.75 17.07 

Operation Calibration Measured data – 
Year 1 and 2 

 86.07 9.97 0.05 12.02 

   Measured data – 
Year 3 

87.54 11.97 -2.21 12.50 

 550 
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As we can see from the data in Tables 7 and 8, model type 1 remains partially calibrated 551 
even in the third year of operation, while model type 2 reaches calibration. With low 552 
temporal resolution data (i.e. monthly data) we need at least two years of measured data 553 
to be able to calibrate a model. It is worth noting that two years of data are also 554 
generally considered as a minimal requirement in energy audits. The research highlights 555 
the fact the we can monitor easily and inexpensively long-term performance with a 556 
spatial scalability up to the utility level [21, 24, 25]. Additionally, models can scale in 557 
time up to daily and hourly data resolution [59, 60] to reach calibration within a more 558 
limited time-frame of operation, when more data are available. In any case, we consider 559 
periodic recalibration fundamental to monitor long-term performance evolution, as 560 
indicated also in other studies [89]. Beside statistical indicators used in the calibration 561 
process, it is important to provide simple visual analytical tools to render the process of 562 
calibration and long-term performance monitoring more intuitive and transparent. In 563 
this research we decided to use three visualization tools: 564 

1. time series of measured and predicted energy consumption data (electricity 565 
demand in this case), Figure 9; 566 

2. time series of model deviations among measurements and predictions, Figure 10; 567 
3. time series of cumulative sum of deviations (CUSUM) chart, Figure 11. 568 

 569 

 570 
Figure 9: Electricity demand monitoring – time series of monthly data measured and 571 

predicted by different models, three years monitoring period 572 
 573 

The time series in Figure 9 highlight the progressive calibration process, reached in the 574 
third year of operation as explained before, with the substantial alignment among 575 
measured and predicted data. The underlying model (a monthly model for the prediction 576 
of aggregated electricity consumption) is a “static” model (energy signature), as there is 577 
no explicit dependence on time but only on weather conditions and operating hours 578 
considered [77]. Subsequently, the deviations among measurements and predictions are 579 
calculated according to the following formula. 580 
 581 

i i iD M P    (7) 
 582 
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A positive deviation implies that the model is underestimating energy consumption at 583 
that point in time (i.e. the measured consumption is higher than predicted), while a 584 
negative deviation implies an overestimation of energy consumption (i.e. the measured 585 
consumption is lower than predicted). In this case study we can see how deviations in 586 
Figure 10 are progressively decreasing and how calibrated model deviations tend to 587 
oscillate around zero. 588 

 589 
Figure 10: Electricity demand monitoring – deviations among measured and predicted 590 

data, three years monitoring period 591 
 592 

Further, the cumulative sum of deviations is reported to ease the detection of model drift 593 
with respect to measured data. By using the incremental sum of deviation we can 594 
identify the cumulative difference between measured and predicted data at a point in 595 
time. A positive sum of deviations indicates that the actual energy demand is higher 596 
than predicted (i.e. model is underestimating consumption), while a negative sum of 597 
deviations indicates that actual energy demand is lower than predicted (i.e. model is 598 
overestimating consumption). In this research, the cumulative sum of deviations in the 599 
third year of operation for model type 2 is practically equal to zero, with a minimal 600 
difference between measurement and prediction (around 2%), confirming the reliability 601 
of the calibrated model. 602 
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 603 
Figure 11: Electricity demand monitoring – cumulative sum of deviations among 604 

measured and predicted data, three years monitoring period 605 
 606 
Finally, Figure 12 summarizes the whole procedure representing, on the left side, a 607 
priori parametric DOE estimates, reported previously in Figure 5, comparing them with 608 
measured data. On the right side of Figure 12, calibrated models (a posteriori) are 609 
reported. 610 
 611 

 612 
Figure 12: Electricity demand monitoring – overall analysis of a priori and a posteriori 613 

data, three years monitoring period 614 
 615 
It is worth noting that, even if model type 1 remains partially calibrated, it is still useful 616 
to get a simple visual representation of the relevant differences with respect to heating, 617 
cooling and baseline demand, by comparing positions and slopes of regression lines. A 618 
further analysis of the components of the energy balance can help detecting root causes 619 
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of anomalies in energy demand (i.e. considering a grey-box interpretation of regression 620 
coefficients) [88], and will be part of future research on this case study. 621 
 622 
4 Conclusion 623 
Design optimization in buildings has often been oriented towards specific paradigms 624 
without considering properly variability and uncertainty in design assumptions and 625 
without questioning relevant factors that could undermine the fundamental goals of 626 
paradigms themselves. Passive House standard is a rigorous voluntary scheme for high 627 
efficiency buildings, but the use of this standard in the Mediterranean area, 628 
characterized by a mild climate, can be debatable, considering climate change scenarios, 629 
and relevant uncertainties in performance simulation. For this reason, we selected a 630 
Passive House building in Italy as case study. The ability to monitor long-term 631 
performance inexpensively and to use easily accessible data is important for multiple 632 
stakeholders in the building sector. In fact, the analysis of building performance data 633 
using simple, robust and scalable techniques can provide relevant analytical insights 634 
improve design and operational practices, as well as to orient policies. In other words, 635 
our decisions can be based on feedbacks from the actual performance of building stock, 636 
rather than on (simulation-based) estimates that can be very far from reality in many 637 
cases, leading to a consistent performance gap. In this research we illustrated how 638 
parametric simulation (to test robustness of design configurations) can be combined 639 
with regression-based calibration approaches (state of the art of performance 640 
monitoring), establishing a continuity between design and operational phase analysis. In 641 
this way, we can assume a more critical perspective on building performance, necessary 642 
to ensure the credibility of energy efficiency practices, especially with respect to 643 
innovative business models where the analysis of cost-optimal levels of investment is a 644 
pre-requisite. In fact, risk analysis for efficiency investments is a particularly relevant 645 
problem today, embodying the necessity of evaluating performance variability in depth. 646 
Additionally, variability in performance outcomes determined by occupants’ 647 
preferences and behaviour have been often neglected in design but they are essential for 648 
the success of innovative practices and policies in buildings. While in the case study 649 
presented we concentrated on the analysis of aggregated electricity demand, there are 650 
other relevant quantities, such as delivered and exported energy or the percentage of 651 
self-consumption of RES production, which can change radically when realistic 652 
operation profiles are used instead of standardized assumptions. Even an analysis of low 653 
temporal resolution data (e.g. monthly automatically metered data) conducted in an 654 
appropriate way (i.e. when sufficient metadata are available) can help unconvering the 655 
impact of user behaviour. This impact can determine a large variation of performance 656 
both in economic terms, depending on the specific business model adopted, and in 657 
environmental terms, because of temporal variation of interaction with energy 658 
infrastructures (i.e. delivered and exported energy patterns). Finally, the approach can 659 
be developed further when thermal metering data are available, and this will be part of 660 
future research. 661 
As a conclusion, instead of simply evaluating the formal correctness of modelling 662 
approaches, it is necessary to introduce progressively parametric design in practice and 663 
in policy, considering, on the one hand, more realistic operation profiles for buildings 664 
and, on the other hand, more detailed and realistic data for grid interaction (energy 665 
conversion factors, tariffs, CO2 emission, etc.). In this way, design practices in the built 666 
environment could evolve coherently with energy infrastructures, exploiting sinergies in 667 
terms of technology and business models. However, in order to progressively overcome 668 
limitations, it is necessary to work coherently on modelling and on the availability of 669 
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relevant design and operational data, integrating efficiently long-term (low resolution) 670 
with short-term (high resolution) monitoring. 671 
 672 
 673 
Acknowledgments 674 
The authors would like to acknowledge Eng. Giuseppe Salvà Gagliolo for the initial 675 
data collection and analysis on the case study building. 676 
 677 
 678 
References 679 

[1] Berardi U. A cross-country comparison of the building energy consumptions and 680 
their trends. Resources, Conservation and Recycling. 2017;123:230-41. 681 
[2] BPIE. Europe’s buildings under the microscope. Buildings Performance Institute 682 
Europe (BPIE); 2011. 683 
[3] D'Agostino D, Zangheri P, Cuniberti B, Paci D, Bertoldi P. Synthesis Report on the 684 
National Plans for Nearly Zero Energy Buildings (NZEBs). JRC EU Commission; 685 
2016. 686 
[4] Porritt SM, Cropper PC, Shao L, Goodier CI. Ranking of interventions to reduce 687 
dwelling overheating during heat waves. Energy and Buildings. 2012;55:16-27. 688 
[5] Tabatabaei Sameni SM, Gaterell M, Montazami A, Ahmed A. Overheating 689 
investigation in UK social housing flats built to the Passivhaus standard. Building and 690 
Environment. 2015;92:222-35. 691 
[6] Jentsch MF, Bahaj AS, James PAB. Climate change future proofing of buildings—692 
Generation and assessment of building simulation weather files. Energy and Buildings. 693 
2008;40(12):2148-68. 694 
[7] de Wilde P. The gap between predicted and measured energy performance of 695 
buildings: A framework for investigation. Automation in Construction. 2014;41:40-9. 696 
[8] Imam S, Coley DA, Walker I. The building performance gap: Are modellers 697 
literate? Building Services Engineering Research and Technology. 2017;38(3):351-75. 698 
[9] Herring H, Roy R. Technological innovation, energy efficient design and the 699 
rebound effect. Technovation. 2007;27(4):194-203. 700 
[10] Rosenow J, Galvin R. Evaluating the evaluations: Evidence from energy efficiency 701 
programmes in Germany and the UK. Energy and Buildings. 2013;62(Supplement 702 
C):450-8. 703 
[11] Coakley D, Raftery P, Keane M. A review of methods to match building energy 704 
simulation models to measured data. Renewable and Sustainable Energy Reviews. 705 
2014;37:123-41. 706 
[12] Fabrizio E, Monetti V. Methodologies and Advancements in the Calibration of 707 
Building Energy Models. Energies. 2015;8(4):2548. 708 
[13] Tagliabue LC, Manfren M, De Angelis E. Energy efficiency assessment based on 709 
realistic occupancy patterns obtained through stochastic simulation.  Modelling 710 
Behaviour: Springer; 2015. p. 469-78. 711 
[14] Tagliabue LC, Manfren M, Ciribini ALC, De Angelis E. Probabilistic behavioural 712 
modeling in building performance simulation—The Brescia eLUX lab. Energy and 713 
Buildings. 2016;128:119-31. 714 
[15] Cecconi FR, Manfren M, Tagliabue LC, Ciribini ALC, De Angelis E. Probabilistic 715 
behavioral modeling in building performance simulation: A Monte Carlo approach. 716 
Energy and Buildings. 2017;148:128-41. 717 



 24

[16] Dodd N, Donatello S, Garbarino E, Gama-Caldas M. Identifying macro-objectives 718 
for the life cycle environmental performance and resource efficiency of EU buildings. 719 
JRC EU Commission; 2015. 720 
[17] CESBA. Common European Sustainable Building Assessment 721 
(http://wiki.cesba.eu/wiki/Main_Page), accessed 26/05/2017. 2017. 722 
[18] EUSSD. European Commission, Environment, Sustainable Buildings 723 
(http://ec.europa.eu/environment/eussd/buildings.htm), accessed 20/04/2017. 2017. 724 
[19] Kyriakidis A, Michael A, Illampas R, Charmpis DC, Ioannou I. Thermal 725 
performance and embodied energy of standard and retrofitted wall systems encountered 726 
in Southern Europe. Energy. 2018;161:1016-27. 727 
[20] Pomponi F, Moncaster A. Scrutinising embodied carbon in buildings: The next 728 
performance gap made manifest. Renewable and Sustainable Energy Reviews. 729 
2018;81:2431-42. 730 
[21] Acquaviva A, Apiletti D, Attanasio A, Baralis E, Bottaccioli L, Castagnetti FB, et 731 
al. Energy signature analysis: Knowledge at your fingertips. Conference Energy 732 
signature analysis: Knowledge at your fingertips. IEEE, p. 543-50. 733 
[22] Pistore L, Pernigotto G, Cappelletti F, Romagnoni P, Gasparella A. From energy 734 
signature to cluster analysis: an integrated approach.  IV High Performance Buildings 735 
Conference at Purdue: Purdue University; 2016. 736 
[23] Stadler P, Girardin L, Ashouri A, Maréchal F. Contribution of Model Predictive 737 
Control in the Integration of Renewable Energy Sources within the Built Environment. 738 
Frontiers in Energy Research. 2018;6(22). 739 
[24] Abdolhosseini Qomi MJ, Noshadravan A, Sobstyl JM, Toole J, Ferreira J, Pellenq 740 
RJ-M, et al. Data analytics for simplifying thermal efficiency planning in cities. Journal 741 
of The Royal Society Interface. 2016;13(117). 742 
[25] Meng Q, Mourshed M. Degree-day based non-domestic building energy analytics 743 
and modelling should use building and type specific base temperatures. Energy and 744 
Buildings. 2017;155(Supplement C):260-8. 745 
[26] Kohler M, Blond N, Clappier A. A city scale degree-day method to assess building 746 
space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy. 747 
2016;184(Supplement C):40-54. 748 
[27] Jaffal I, Inard C, Ghiaus C. Fast method to predict building heating demand based 749 
on the design of experiments. Energy and Buildings. 2009;41(6):669-77. 750 
[28] Kotireddy R, Hoes P-J, Hensen JLM. A methodology for performance robustness 751 
assessment of low-energy buildings using scenario analysis. Applied Energy. 752 
2018;212:428-42. 753 
[29] Schlueter A, Geyer P. Linking BIM and Design of Experiments to balance 754 
architectural and technical design factors for energy performance. Automation in 755 
Construction. 2018;86:33-43. 756 
[30] Shiel P, Tarantino S, Fischer M. Parametric analysis of design stage building 757 
energy performance simulation models. Energy and Buildings. 2018;172:78-93. 758 
[31] EEFIG. Energy Efficiency – the first fuel for the EU Economy, How to drive new 759 
finance for energy efficiency investments Energy Efficiency Financial Institutions 760 
Group; 2015. 761 
[32] Saheb Y, Bodis K, Szabo S, Ossenbrink H, Panev S. Energy Renovation: The 762 
Trump Card for the New Start for Europe. JRC EU Commission; 2015. 763 
[33] Aste N, Adhikari RS, Manfren M. Cost optimal analysis of heat pump technology 764 
adoption in residential reference buildings. Renewable Energy. 2013;60:615-24. 765 



 25

[34] Menezes AC, Cripps A, Bouchlaghem D, Buswell R. Predicted vs. actual energy 766 
performance of non-domestic buildings: Using post-occupancy evaluation data to 767 
reduce the performance gap. Applied Energy. 2012;97:355-64. 768 
[35] Sunikka-Blank M, Galvin R. Introducing the prebound effect: the gap between 769 
performance and actual energy consumption. Building Research & Information. 770 
2012;40(3):260-73. 771 
[36] Evins R. A review of computational optimisation methods applied to sustainable 772 
building design. Renewable and Sustainable Energy Reviews. 2013;22:230-45. 773 
[37] Nguyen A-T, Reiter S, Rigo P. A review on simulation-based optimization 774 
methods applied to building performance analysis. Applied Energy. 2014;113:1043-58. 775 
[38] Ligier S, Robillart M, Schalbart P, Peuportier B. Energy performance contracting 776 
methodology based upon simulation and measurement. Conference Energy performance 777 
contracting methodology based upon simulation and measurement. 778 
[39] Manfren M, Aste N, Moshksar R. Calibration and uncertainty analysis for 779 
computer models – A meta-model based approach for integrated building energy 780 
simulation. Applied Energy. 2013;103:627-41. 781 
[40] Koulamas C, Kalogeras AP, Pacheco-Torres R, Casillas J, Ferrarini L. Suitability 782 
analysis of modeling and assessment approaches in energy efficiency in buildings. 783 
Energy and Buildings. 2018;158:1662-82. 784 
[41] Aste N, Manfren M, Marenzi G. Building Automation and Control Systems and 785 
performance optimization: A framework for analysis. Renewable and Sustainable 786 
Energy Reviews. 2017;75:313-30. 787 
[42] Østergård T, Jensen RL, Maagaard SE. A comparison of six metamodeling 788 
techniques applied to building performance simulations. Applied Energy. 789 
2018;211(Supplement C):89-103. 790 
[43] Talele S, Traylor C, Arpan L, Curley C, Chen C-F, Day J, et al. Energy modeling 791 
and data structure framework for Sustainable Human-Building Ecosystems (SHBE) — 792 
a review. Frontiers in Energy. 2018. 793 
[44] Yoshino H, Hong T, Nord N. IEA EBC annex 53: Total energy use in buildings—794 
Analysis and evaluation methods. Energy and Buildings. 2017;152:124-36. 795 
[45] Kylili A, Fokaides PA, Lopez Jimenez PA. Key Performance Indicators (KPIs) 796 
approach in buildings renovation for the sustainability of the built environment: A 797 
review. Renewable and Sustainable Energy Reviews. 2016;56:906-15. 798 
[46] Al Gharably M, DeCarolis JF, Ranjithan SR. An enhanced linear regression-based 799 
building energy model (LRBEM+) for early design. Journal of Building Performance 800 
Simulation. 2016;9(2):115-33. 801 
[47] Asadi S, Amiri SS, Mottahedi M. On the development of multi-linear regression 802 
analysis to assess energy consumption in the early stages of building design. Energy and 803 
Buildings. 2014;85:246-55. 804 
[48] Ipbüker C, Valge M, Kalbe K, Mauring T, Tkaczyk AH. Case Study of Multiple 805 
Regression as Evaluation Tool for the Study of Relationships between Energy Demand, 806 
Air Tightness, and Associated Factors. Journal of Energy Engineering. 807 
2016;143(1):04016027. 808 
[49] Hygh JS, DeCarolis JF, Hill DB, Ranjithan SR. Multivariate regression as an 809 
energy assessment tool in early building design. Building and Environment. 810 
2012;57:165-75. 811 
[50] Catalina T, Virgone J, Blanco E. Development and validation of regression models 812 
to predict monthly heating demand for residential buildings. Energy and buildings. 813 
2008;40(10):1825-32. 814 



 26

[51] Kavousian A, Rajagopal R. Data-driven benchmarking of building energy 815 
efficiency utilizing statistical frontier models. Journal of Computing in Civil 816 
Engineering. 2013;28(1):79-88. 817 
[52] ASHRAE Guideline 14-2014: Measurement of Energy, Demand, and Water 818 
Savings; American Society of Heating, Refrigerating and Air-Conditioning Engineers: 819 
Atlanta, GA, USA, 2014. 820 
[53] IPMVP New Construction Subcommittee. International Performance Measurement 821 
& Verification Protocol: Concepts and Option for Determining Energy Savings in New 822 
Construction, Volume III; Efficiency Valuation Organization (EVO): Washington, DC, 823 
USA, 2003. 824 
[54] FEMP. Federal Energy Management Program, M&V Guidelines: Measurement 825 
and Verification for Federal Energy Projects Version 3.0, U.S. Department of Energy 826 
Federal Energy Management Program. Washington, DC, USA, 2008. 827 
[55] Masuda H, Claridge DE. Statistical modeling of the building energy balance 828 
variable for screening of metered energy use in large commercial buildings. Energy and 829 
Buildings. 2014;77:292-303. 830 
[56] Paulus MT, Claridge DE, Culp C. Algorithm for automating the selection of a 831 
temperature dependent change point model. Energy and Buildings. 2015;87:95-104. 832 
[57] Aste N, Leonforte F, Manfren M, Mazzon M. Thermal inertia and energy 833 
efficiency – Parametric simulation assessment on a calibrated case study. Applied 834 
Energy. 2015;145:111-23. 835 
[58] Tronchin L, Manfren M, Tagliabue LC. Optimization of building energy 836 
performance by means of multi-scale analysis – Lessons learned from case studies. 837 
Sustainable Cities and Society. 2016;27:296-306. 838 
[59] Jalori S, T Agami Reddy PhD P. A unified inverse modeling framework for whole-839 
building energy interval data: daily and hourly baseline modeling and short-term load 840 
forecasting. ASHRAE Transactions. 2015;121:156. 841 
[60] Jalori S, T Agami Reddy PhD P. A new clustering method to identify outliers and 842 
diurnal schedules from building energy interval data. ASHRAE Transactions. 843 
2015;121:33. 844 
[61] Li Q, Augenbroe G, Brown J. Assessment of linear emulators in lightweight 845 
Bayesian calibration of dynamic building energy models for parameter estimation and 846 
performance prediction. Energy and Buildings. 2016;124:194-202. 847 
[62] Booth A, Choudhary R, Spiegelhalter D. A hierarchical Bayesian framework for 848 
calibrating micro-level models with macro-level data. Journal of Building Performance 849 
Simulation. 2013;6(4):293-318. 850 
[63] Adhikari RS, Aste N, Manfren M. Multi-commodity network flow models for 851 
dynamic energy management – Smart Grid applications. Energy Procedia. 852 
2012;14:1374-9. 853 
[64] Manfren M. Multi-commodity network flow models for dynamic energy 854 
management – Mathematical formulation. Energy Procedia. 2012;14:1380-5. 855 
[65] Adhikari RS, Aste N, Manfren M. Optimization concepts in district energy design 856 
and management – A case study. Energy Procedia. 2012;14:1386-91. 857 
[66] Kraning M, Chu E, Lavaei J, Boyd S. Dynamic Network Energy Management via 858 
Proximal Message Passing. Found Trends Optim. 2014;1(2):73-126. 859 
[67] Orehounig K, Evins R, Dorer V. Integration of decentralized energy systems in 860 
neighbourhoods using the energy hub approach. Applied Energy. 2015;154:277-89. 861 
[68] Mancarella P. MES (multi-energy systems): An overview of concepts and 862 
evaluation models. Energy. 2014;65:1-17. 863 



 27

[69] Jentsch MF, James PAB, Bourikas L, Bahaj AS. Transforming existing weather 864 
data for worldwide locations to enable energy and building performance simulation 865 
under future climates. Renewable Energy. 2013;55(Supplement C):514-24. 866 
[70] Yang Z, Becerik-Gerber B. A model calibration framework for simultaneous multi-867 
level building energy simulation. Applied Energy. 2015;149:415-31. 868 
[71] PHPP. The energy balance and Passive House planning tool. 869 
[72] Lehmann B, Gyalistras D, Gwerder M, Wirth K, Carl S. Intermediate complexity 870 
model for Model Predictive Control of Integrated Room Automation. Energy and 871 
Buildings. 2013;58:250-62. 872 
[73] Buonomano A, Montanaro U, Palombo A, Santini S. Dynamic building energy 873 
performance analysis: A new adaptive control strategy for stringent thermohygrometric 874 
indoor air requirements. Applied Energy. 2016;163:361-86. 875 
[74] Strachan P, Svehla K, Heusler I, Kersken M. Whole model empirical validation on 876 
a full-scale building. Journal of Building Performance Simulation. 2016;9(4):331-50. 877 
[75] Antony J. Design of Experiments for Engineers and Scientists: Elsevier Science, 878 
2014. 879 
[76] Tronchin L, Manfren M. Multi-scale Analysis and Optimization of Building 880 
Energy Performance – Lessons Learned from Case Studies. Procedia Engineering. 881 
2015;118:563-72. 882 
[77] ISO 16346:2013, Energy performance of buildings — Assessment of overall 883 
energy performance. 2013. 884 
[78] Aste N, Pero CD, Fattore M, Mazzon M. Investigating on electric consumptions for 885 
residential buildings ventilation in different Italian climates. Conference Investigating 886 
on electric consumptions for residential buildings ventilation in different Italian 887 
climates. p. 305-10. 888 
[79] Baetens R, De Coninck R, Van Roy J, Verbruggen B, Driesen J, Helsen L, et al. 889 
Assessing electrical bottlenecks at feeder level for residential net zero-energy buildings 890 
by integrated system simulation. Applied Energy. 2012;96:74-83. 891 
[80] De Coninck R, Magnusson F, Åkesson J, Helsen L. Toolbox for development and 892 
validation of grey-box building models for forecasting and control. Journal of Building 893 
Performance Simulation. 2016;9(3):288-303. 894 
[81] ISO/DIS 18523-2:2018 Energy performance of buildings - Schedule and condition 895 
of building, zone and room usage for energy calculation--Part 2: Residential buildings. 896 
[82] Kurnitski J. Technical definition for nearly zero energy buildings. REHVA Journal, 897 
Technical (May). 2013:22-8. 898 
[83] Frontini F, Manfren M, Tagliabue LC. A Case Study of Solar Technologies 899 
Adoption: Criteria for BIPV Integration in Sensitive Built Environment. Energy 900 
Procedia. 2012;30:1006-15. 901 
[84] Voss K, Sartori I, Napolitano A, Geier S, Gonçalves H, Hall M, et al. Load 902 
matching and grid interaction of net zero energy buildings. Conference Load matching 903 
and grid interaction of net zero energy buildings. 904 
[85] ISO/DIS 52000-1:2017, Energy performance of buildings — Overarching EPB 905 
assessment – Part 1: General framework and procedures (draft). 2017. 906 
[86] Cipriano X, Gamboa G, Danov S, Mor G, Cipriano J. Developing indicators to 907 
improve energy action plans in municipalities: An accounting framework based on the 908 
fund-flow model. Sustainable Cities and Society. 2017;32:263-76. 909 
[87] Aste N, Buzzetti M, Caputo P, Manfren M. Local energy efficiency programs: A 910 
monitoring methodology for heating systems. Sustainable Cities and Society. 911 
2014;13:69-77. 912 



 28

[88] Server F, Kissock JK, Brown D, Mulqueen S. Estimating industrial building energy 913 
savings using inverse simulation. 2011. 914 
[89] Abushakra B, Reddy A, Singh V. ASHRAE Research Project Report 1404-RP, 915 
Measurement, Modeling, Analysis and Reporting Protocols for Short-term M&V of 916 
Whole Building Energy Performance, Arizona State University, USA. 2012. 917 
[90] Lin G, Claridge DE. A temperature-based approach to detect abnormal building 918 
energy consumption. Energy and Buildings. 2015;93:110-8. 919 
[91] Mantesi E, Hopfe CJ, Cook MJ, Glass J, Strachan P. The modelling gap: 920 
Quantifying the discrepancy in the representation of thermal mass in building 921 
simulation. Building and Environment. 2018;131:74-98. 922 
[92] Kicsiny R. Multiple linear regression based model for solar collectors. Solar 923 
Energy. 2014;110:496-506. 924 
[93] Kicsiny R. Improved multiple linear regression based models for solar collectors. 925 
Renewable Energy. 2016;91:224-32. 926 
[94] Oberkampf WL, Roy CJ. Verification and validation in scientific computing: 927 
Cambridge University Press, 2010. 928 
 929 


