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 19 

Introductory paragraph 20 

 21 

Retinal gene therapy is increasingly recognised as a novel molecular intervention that has huge 22 

potential in treating common causes of blindness, the majority of which have a genetic aetiology.1-5 23 

Choroideremia is a chronic X-linked retinal degeneration that was first described in 1872.6 It leads 24 

to progressive blindness due to deficiency of Rab-escort protein 1 (REP1). We designed an adeno-25 

associated viral vector to express REP1 and assessed it in a gene therapy clinical trial by subretinal 26 

injection in 14 patients with choroideremia. The primary endpoint was vision change in treated eyes 27 

two years after surgery compared to unoperated fellow eyes. Despite complications in two patients, 28 

visual acuity improved in the 14 treated eyes over controls (median 4.5 letter gain, vs 1.5 letter loss, 29 

p=0.04), with six treated eyes gaining more than one line of vision (>5 letters). The results suggest 30 

that retinal gene therapy can sustain and improve visual acuity in a cohort of predominantly late 31 

stage choroideremia patients in whom rapid visual acuity loss would ordinarily be predicted. 32 

 33 
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Introduction 34 

Choroideremia typically presents with night blindness and progressive visual field restriction in 35 

late childhood, leading to profound sight loss in young men beyond the fourth decade.7 The 36 

choroideremia gene (CHM) encodes Rab-escort protein-1 (REP1) which facilitates intracellular 37 

vesicular trafficking.8,9 Deficiency of REP1 leads to degeneration of the retinal pigment epithelium 38 

and photoreceptors in males,10 whereas female carriers generally have a mild disease phenotype due 39 

to random X-inactivation.11 The choroid degenerates secondary to loss of the pigmented epithelium, 40 

leading to exposure of the underlying white sclera and characteristic retinal appearance. The central 41 

cone photoreceptors are usually maintained until late stages, due to the centripetal nature of the 42 

degeneration.12 Hence long after visual field loss, there is a terminal period during which central 43 

visual acuity begins to decline as the underlying central retinal pigment epithelium becomes 44 

dysfunctional.10 There is therefore a potential window of opportunity for improvement in visual 45 

acuity if this dysfunction can be reversed by gene replacement therapy before these cells are 46 

irreversibly lost.13 47 

The adeno-associated virus serotype 2 (AAV2) vector has been used in a number of clinical trials 48 

and is particularly effective at targeting outer retinal layers, but only when injected under the retina 49 

correctly.14,15 Hence assessment of retinal gene therapy must include consideration of the surgical 50 

technique as well as the biological properties of the investigational medicinal product. We 51 

previously reported the early safety data of retinal gene therapy for choroideremia and visual acuity 52 

changes in the first 6 patients who received the low dose of an AAV2 vector carrying the human 53 

CHM transgene.16,17 Here we report the full results of the trial with all 14 participants in both low 54 

and high dose cohorts having reached the 2-year study endpoint. 55 

 56 

Results 57 

A total of 14 patients were recruited (Supplementary Table S1), 13 of whom received either ‘low 58 

dose’ 1x1010 genome particles (L1-5) or ‘high dose’ 1x1011 gp (C2 and H1-7) of AAV2.REP1 59 
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vector (Fig. 1), surgically delivered into the subretinal space via an iatrogenic retinal detachment. 60 

At the 2-year trial endpoint, the median visual acuity across all 14 treated eyes had improved by 4.5 61 

Early Treatment Diabetic Retinopathy Study (ETDRS) chart letters (IQR: -2.0 to 8.8) and in the 14 62 

untreated eyes had declined by -1.5 letters (IQR: -4.8 to 0.0), hence favouring the treated eyes 63 

overall (two-tailed Wilcoxon test: W=65, p=0.040) (Supplementary Table S2). The trial thus met 64 

its primary endpoint of improving vision following gene therapy compared to untreated fellow eyes, 65 

despite any potential adverse effects of retinal detachment. 66 

In 12 out of 14 patients, the retinal gene therapy was performed as per protocol, leading to 67 

recovery of visual acuity in all eyes and variable degrees of acuity gains which generally occurred 68 

within 6 months of treatment and were sustained up to 5 years (Fig. 2 and Supplementary Table 69 

S3). Significant adverse events (AEs) relating to vector administration occurred in 2 of the 14 70 

patients: C1 and C2 (Fig. 3). In C1, a surgical complication resulted in retinal thinning and the 71 

vector was under-dosed. In C2, there was significant retinal inflammation at 2 weeks post-72 

operatively that was most likely vector-related. The complications in C1 and C2 led to off protocol 73 

treatments and the ethics committee approved the recruitment of two further patients, thereby 74 

providing 12 patients treated as per protocol with 2-year follow-up. Considering only the 12 treated 75 

eyes which had gene therapy surgery as per protocol without complications, visual acuity improved 76 

by a median of 5.5 letters (IQR: 2.5 to 9.0) above baseline levels by 24 months (Wilcoxon test: 77 

W=60, p=0.016) (Supplementary Fig. S2). 78 

Microperimetry is a modified visual field test that assesses retinal sensitivity by determining the 79 

minimum threshold of a light stimulus that can be seen at various points across the macula. Hence 80 

in contrast to visual acuity which measures just one point (usually the fovea), microperimetry 81 

provides a mean value of retinal function across a larger area, although with greater test-retest 82 

variability.15 The mean retinal sensitivity of treated eyes was 4.0±0.7 dB at baseline and 3.3±0.6 at 83 

2 years, representing a small non-statistically significant decline of -0.7 dB (paired t-test: n=12, 84 

t=1.98, df=11, p=0.07). In contrast, the untreated eyes fell slightly more from 4.8±0.8 dB at baseline 85 
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to 3.3±0.7 dB, equivalent to a -1.5 dB loss at 2 years (paired t-test: n=12, t=3.62, df=11, p=0.004). 86 

Although this represented a relative gain favouring the treated eyes over the untreated eyes of 87 

0.8±0.53 dB (95% CI: -0.3 to 1.8 dB) at the 2-year study endpoint, the difference was not 88 

statistically significant (paired t-test: n=12, t=1.49, df=11, p=0.17) (Supplementary Fig. S3).  89 

Microperimetry however provides more useful information about fixation, that is, the retinal 90 

locus that has maximal sensitivity (usually the fovea). All patients except L1 still retained some 91 

degree of foveal or parafoveal fixation, consistent with the centripetal nature of visual field loss in 92 

this disease. In L1 however the fovea had already degenerated at baseline, leaving two peripheral 93 

islands of surviving retina; one of which was targeted with gene therapy (Fig. 4). It was previously 94 

noted that L1 changed his fixation (or preferred retinal locus) to use this treated island, whilst 95 

bypassing the untreated island of retina.16 A change in fixation provides good independent evidence 96 

of the therapeutic effects of retinal gene therapy and was maintained up to 5 years in this patient, 97 

consistent with the sustained improvement in visual acuity (Fig. 2).18 98 

Anatomical assessments included optical coherence tomography (OCT), which gives a cross-99 

sectional view and measurement of retinal thickness,19 and blue-light autofluorescence, which 100 

generates a map that can be used to estimate the surviving retinal area.20,21 It should however be 101 

noted that the eyes were not selected for anatomical symmetry and several eyes had residual retinal 102 

areas that had degenerated too much to be accurately measured. In choroideremia, the fovea is 103 

thickened early in the disease process before the onset of degeneration and it has been proposed that 104 

this is the result of glial cell activation resulting from retinal stress.22,23 A small reduction in retinal 105 

thickness, if associated with improved retinal function, might therefore be considered a therapeutic 106 

effect - as occurs in diabetic maculopathy.24 We have previously shown that retinal structural and 107 

functional recovery occurred in the 5 eyes (H3-H7) that received subretinal vector injection using 108 

the automated injection system by 1 month25. This would suggest that optimally performed surgery 109 

does not damage the retina significantly. Over the 2-year period and across the whole of 12 patients, 110 

the mean retinal thickness at the central point of fixation reduced by 17.1±4.0 μm in the treated eyes 111 
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and by 6.3±2.2 μm in the untreated eyes (paired t-test: t=2.40, df=11, p=0.04). The clinical 112 

significance of this marginal difference is unknown. Full plots of retinal thickness changes over 113 

time in individual participants are shown in Supplemental Fig. S4. 114 

The area of retinal autofluorescence is correlated to the area of surviving photoreceptors 115 

calculated from multiple slices through the ellipsoid zone.19,26 Across the whole group of 12 116 

patients who received gene therapy per protocol, similar areas of autofluorescence were preserved 117 

in treated and untreated eyes at two years (80.7±3.0% and 80.8±2.1%, respectively) 118 

(Supplementary Fig. S5 and Table S4). It should be noted however that shrinkage only occurs 119 

from the most peripheral retinal cells located at the leading edge of the degeneration, and 2 years 120 

may be an insufficient period of time to assess the long-term effects of retinal gene therapy on the 121 

healthier central zones which correspond to the retinal loci responsible for increased visual acuity. 122 

As part of the gene therapy safety assessment, vector shedding through body fluids and anti-123 

AAV2 neutralising antibody assays were also performed, which did not detect any signs of viral 124 

replication or systemic immune response (Supplementary Table S5 and S6). 125 

 126 
 127 

DISCUSSION 128 

Here we report the final outcomes of a 2-year study assessing retinal gene therapy for 129 

choroideremia in a Phase I/II clinical trial. Across the whole cohort of 14 participants, including the 130 

two patients in whom complications occurred, visual acuity in treated eyes improved relative to 131 

untreated eyes over the 2-year trial period. The clinical trial thus met its primary endpoint. 132 

Furthermore, three of the study eyes gained three lines or more of vision 12 months after gene 133 

therapy. Longer term follow-up with a mean of 3.6 years for the 12 protocol-treated participants 134 

confirmed that visual acuity gains were sustained.  135 

The visual acuity gains appeared similar in both low and high dose cohorts, but this was a small 136 

study group with only 5 patients treated at the lower (1x1010 gp) dose and generally the patients had 137 

only small fraction of the macula remaining, for which a lower dose of vector might be adequate. 138 
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Both doses are however within the ranges shown previously to be therapeutic in RPE65-related 139 

Leber congenital amaurosis. Moreover, the inclusion of the translational enhancer, Woodchuck 140 

hepatitis virus post-transcriptional regulatory element (WPRE) could potentially increase transgene 141 

expression when compared with other AAV constructs.27,28 Since the retinal pigment cells primarily 142 

affected in choroideremia have a key role in supporting the visual cycle of the overlying 143 

photoreceptors, their dysfunction prior to cell death is likely to have an adverse effect on visual 144 

acuity. Hence some improvement in visual acuity is a likely consequence of improving surviving 145 

cone function at the fovea following AAV2.REP1 gene therapy. Alongside visual acuity gains in 146 

some participants within 6 months, subjective improvements in colour perception were also 147 

described, however, colour vision assessment using the Farnsworth-Munsell 100 hue test was 148 

unreliable due to the constricted visual field (Supplementary Fig. S6). 149 

With regard to anatomical changes, it should be noted that advancement of this very slow 150 

degeneration measured over the 2-year timeframe was only at the peripheral retina, whereas visual 151 

acuity gains arose mainly centrally. The retina in choroideremia patients is difficult to detach 152 

peripherally and the biconvex shape of the subretinal space following detachment means that the 153 

height of the bleb is greatest centrally. The centripetal nature of fluid reabsorption may provide the 154 

central retina with several additional hours of exposure to the vector compared with more peripheral 155 

areas of the detachment.  156 

Whilst visual acuity was maintained or increased in all protocol-treated eyes throughout the 157 

duration of the study, this was not seen with retinal sensitivity. Although microperimetry is 158 

generally more variable,15 the tests do have subtle differences in what they measure. 159 

Microperimetry assesses retinal function from many points averaged over the central retina, 160 

whereas visual acuity is a measurement taken from a single point (usually the fovea) with maximal 161 

sensitivity.29 Maintaining retinal sensitivity therefore requires successful transduction of the entire 162 

area being measured, right up to the edges of the surviving tissue and may also be reduced due to 163 
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the development of cataract in treated eyes, which is known to impact on microperimetry more than 164 

visual acuity.30  165 

Among the adverse events (AE) encountered in the trial (Supplementary Table S7), one 166 

incident of retinal stretch (C1) was clearly related to surgery. The other significant adverse event of 167 

inflammation (C2) might equally be related to surgery if significant vector reflux into the vitreous 168 

cavity occurred, which is known to trigger inflammation (Supplementary Fig. S7). Following the 169 

protocol change midway through the trial, we developed an automated system for subretinal 170 

injection, which was further facilitated by intra-operative retinal scanning using OCT, which helped 171 

to identify the correct plane of the subretinal space in some of the more advanced patients. 172 

A recent Canadian Phase I gene therapy trial also showed a significant visual acuity gain in one 173 

of 6 patients using the same batch of vector. This was corroborated by an improvement in cone 174 

thresholds together with preservation of outer retinal structures measured with OCT in the same 175 

patient.31 Conversely one of their 6 patients had a surgical complication of subretinal air and 176 

haemorrhage during vector injection and developed inflammation at a later stage. Although their 177 

results were mixed, it should be noted that they did not use intraoperative OCT, which should 178 

improve the precision of subretinal vector delivery in future studies. Robot-assisted infusion of 179 

vector is also being developed to improve surgical consistency and safety.32  180 

Nevertheless, the results of this Phase I/II clinical trial show that gene therapy for choroideremia 181 

is generally safe. Small but sustained visual acuity gains were seen over a period of several years in 182 

end-stage eyes in which rapid visual acuity loss would ordinarily be expected, with several patients 183 

experiencing gains of three lines or more, an improvement widely accepted to be clinically 184 

significant. 185 

 186 

ONLINE METHODS 187 

Gene therapy vector design. The AAV serotype 2 vector comprised a chicken beta-actin (CBA) 188 

promoter with a cytomegalovirus (CMV) enhancer flanking a rabbit β-globulin intron/exon splice 189 
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site - collectively termed CAG promoter - driving the cDNA of the human CHM gene, which 190 

encodes the REP1 protein (Fig. 1a).9 The vector also included WPRE to enhance gene expression 191 

and a bovine polyA signal.28 192 

 193 

Validation of the AAV2.REP1 vector. During the trial period, the clinical-grade gene therapy 194 

vector was tested annually to confirm REP1 protein expression and prenylation activity using in 195 

vitro assays.33 Briefly, HEK293 cells were transduced with clinical-grade AAV2.REP1 vector at a 196 

multiplicity of infection (MOI) of 10,000 genome particles (gp) per cell (in triplicates). 197 

Untransduced control cells (in triplicate) were processed in parallel. Cells were harvested at 5 days 198 

post-transduction and prenylation reactions were prepared with 20 μg of total protein extract. The 199 

positive control consisted of untransduced cell lysate supplemented with recombinant fish REP1 200 

protein (25 nM). Western blot was used to detect any increase in incorporation of biotinylated 201 

prenyl groups into a RAB6A substrate, which would be proportional to the amount of vector-202 

derived REP1 prenylation activity. The immunostaining of mouse retina shown was performed 5 203 

weeks after subretinal injection of the AAV2.REP1 vector at 1x109 gp to confirm correct 204 

localisation of the REP1 protein. The animal work under the UK Home Office approved project 205 

licence (33/3363) complied with local and national regulations on the use of animals in scientific 206 

research (see Life Sciences Reporting Summary). After fixation in 4% paraformaldehyde, retinal 207 

sections were blocked and incubated overnight at 4°C with rabbit anti-human REP1 primary 208 

antibody (HPA003231, Sigma-Aldrich, Gillingham, UK) 1:1,000, and then for 1 hr at room 209 

temperature with donkey anti-rabbit Alexa Fluor 568 secondary antibody (A10042, Thermo-Fisher 210 

Scientific, Loughborough, UK) 1:500. All sections were counterstained with Hoechst 33342 and 211 

mounted with ProLong Gold for imaging. 212 

 213 

Gene therapy clinical trial design and summary. In this unmasked, non-randomised, prospective 214 

interventional gene therapy clinical trial, 14 participants were recruited with informed consent and 215 
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underwent gene therapy treatment to one eye using the AAV2.REP1 vector (ClinicalTrials.gov ref. 216 

NCT01461213).16 The clinical trial protocols were approved by the UK National Research Ethics 217 

Committee (London – West London; ref. GTAC171) and the study adhered to the Declaration of 218 

Helsinki 2013. Since choroideremia affects both eyes fairly symmetrically over the longer term,15 219 

the primary endpoint was defined in terms of vision change in the treated eyes compared to the 220 

untreated eyes in each patient. Eight of the 14 treated eyes had visual acuities greater than 70 letters 221 

(6/12) at baseline. In these eyes significant visual acuity gains would not be expected since a three-222 

line (15 letter) gain would require them to surpass 85 letters (6/6) after surgery. All participants 223 

were male ranging from 25 to 73 years of age with confirmed null mutations in the CHM gene 224 

(Supplementary Table S1). The primary objective of the trial was to assess safety in relation to 225 

maintaining vision by two years after surgery. Initially 12 patients were to be recruited into two 226 

dose cohorts of six patients, each of whom would be monitored for 24 months. Complications in 227 

two patients however led to a 24-month delay midway through the trial and a change in protocol 228 

relating to improved surgical technique and immune suppression regimen. The ethics committee 229 

approved an extension of the trial together with the recruitment of two further patients so that 12 230 

patients in total received the gene therapy treatment as per the protocol without complications. 231 

Consequently, all 14 patients have now reached the 2-year follow-up point that signifies the formal 232 

end of the trial. In addition, longer term data up to 5 years are also available for the patients 233 

recruited prior to the mid-way protocol amendment. 234 

 235 

Subretinal administration of AAV vector. Surgical delivery of the AAV2.REP1 vector into the 236 

subretinal space has previously been described in detail.16,34,35 In the first cohort of 6 patients, a 237 

subretinal injection of up to 1x1010 gp assayed using a supercoiled plasmid reference was performed 238 

as a two-step procedure. This comprised an initial detachment of the retina with balanced salt 239 

solution delivered through a 41 gauge Teflon cannula (DORC BV, Zuidland, Netherlands) and 240 

secondary injection of the AAV2.REP1 vector into the newly created subretinal space. In patient C1, 241 
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difficulties in detaching the retina and stretching of the papillomacular bundle resulted in a reduced 242 

gene therapy dose of ≤6×109 gp and subsequent retinal thinning, but all other patients received 243 

either the full low dose of 1x1010 gp (L1-5) or high dose of 1x1011 gp (C2 and H1-7), as per 244 

protocol. Initially oral prednisolone was administered at 1 mg/kg for 3 days before and 7 days after 245 

gene therapy, but following the development of visually significant vitritis and retinitis in C2 two 246 

weeks post-operatively, the protocol was amended so that H1-7 received an extension of the 247 

prednisolone regime: 0.5 mg/kg (days 8-14), 0.25 mg/kg (days 15-16), then 0.125 mg/kg (days 17-248 

18). Further details of the surgery and visual function tests can be found in the Supplementary 249 

methods. 250 

 251 

Statistical analysis. Due to the ceiling effects of including eyes with near maximal visual acuity in 252 

the study, the letter scores were found to be skewed (Shapiro-Wilk normality test at 0.05 alpha) and 253 

are therefore presented as median values with interquartile ranges (IQR).36 Changes between treated 254 

and control eyes were compared using two-tailed Wilcoxon signed-rank test. Microperimetry data 255 

and anatomical assessments were found to be normally distributed. These data are therefore 256 

presented as mean ± standard error of mean (SEM) and compared using two-tailed paired t-test. 257 

 258 
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FIGURES 417 

Figure 1. Validation of AAV2.REP1 gene therapy vector. (a) Schematic of the AAV2.REP1 418 
vector used for choroideremia gene therapy. Green, human CHM cDNA; yellow, Woodchuck 419 
hepatitis virus post-transcriptional regulatory element (WPRE); red, bovine growth hormone 420 
polyadenylation signal (bGH pA); ITR, inverted terminal repeat. (b) REP1 protein expression and 421 
prenylation activity following transduction of HEK293 cells using the clinical grade vector were 422 
tested annually (3 replicates within 1 experiment). Western blot showing increased human REP1 423 
protein expression in comparison to β–actin at day 5 in AAV-transduced HEK293 cells versus 424 
untransduced control (both in triplicates). REP1-mediated prenylation activity was assessed through 425 
in vitro biotinylation of RAB6A substrate using the cell lysates. Positive control represents 426 
untransduced cell lysate supplemented with recombinant fish REP1. Uncropped gel images shown 427 
in Supplementary Fig. S1. (c) Confocal stack prepared from histological sections of murine eyes 5 428 
weeks following subretinal inject with research-grade AAV2.REP1 vector at 1x109 gp 429 
(representative images from 3 animals). REP1 expression could be seen in the retinal pigment 430 
epithelium and photoreceptors. A matched uninjected area of the same eye was used as control. 431 
Human REP1 immunostaining (green) and nuclear labelling with Hoechst (blue) were overlaid with 432 
the differential interference contrast (DIC) image to demonstrate the retinal layers: GCL, ganglion 433 
cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer; IS/OS, 434 
inner segment/outer segment junction; RPE, retinal pigment epithelium. Scale bar, 25 μm. 435 
 436 
Figure 2. Visual acuity changes in the 12 patients who received retinal gene therapy for 437 
choroideremia without complications as per protocol. Individual plots of best-corrected visual 438 
acuity (BCVA) measured as number of letters read (out of 100) on the ETDRS chart at 4 m in the 439 
treated (blue) and control (red) eyes (dots represent each follow-up visit). Participants L1-5 received 440 
low dose (1x1010 gp) of the vector, while H1-7 received high-dose (1x1011 gp) of vector. Positive or 441 
negative numeric values at the end of each line indicate change from baseline visual acuity at the 442 
last follow-up (number of letters). Four patients (L2, L4, L5 and H2) had cataract surgery in the 443 
treated eye after the 2-year trial endpoint. One patient (H3) had cataract surgery during the trial 444 
period, but the visual acuity gain had already occurred by that point. H5 received gene therapy in a 445 
pseudophakic eye. L5 and H5 also received subsequent YAG laser capsulotomy for opacification of 446 
the posterior lens capsule, which is common after cataract surgery. In H6, the low visual acuity in 447 
the worse eye led to fluctuations in ETDRS readings. Following discussion with the patient, it was 448 
decided to treat the eye with better BCVA (60 letters) instead. Note that this made H6 449 
complementary to L1, as both had asymmetric visual acuities: in L1 the worse eye was treated, 450 
leading to a sustained visual acuity gain that eventually overtook the formerly better eye; whereas in 451 
H6 gene therapy was applied to the better eye, stabilizing the visual acuity whilst the untreated eye 452 
declined further. The pattern of a significant early acuity gain which is then sustained is also seen in 453 
L4 and H7. Each plot represents multiple test points to reduce variability – up to ten times over 5 454 
years in the first 5 patients. 455 
  456 
Figure 3. Retinal structural and visual acuity changes in participants C1 and C2. Subretinal 457 
delivery of gene therapy vector in participant C1 (a-d) was complicated by retinal stretch, 458 
resulting in a reduced vector dose: spectral-domain optical coherence tomography (OCT) cross-459 
section through the fovea of the treated (left) eye at (a) baseline, (b) 1 month and (c) 2 years. One 460 
month after surgery, a reduction in outer nuclear layer (ONL) thickness was noted nasal to the fovea 461 
(arrows), although the temporal half of the fovea and the maximal retinal thickness remain similar 462 
to baseline. By 2 years, retinal thinning had stabilised, but the best-corrected visual acuity (BCVA, 463 
number of ETDRS letters) has reduced consistent with the foveal collapse (d). CRT, central retinal 464 
thickness. (e-h) OCT cross-section through the fovea of the treated (left) eye at (e) baseline, (f) 2 465 
weeks (note visual acuity is from the 1 month visit) and (g) 2 years in participant C2, who 466 
experienced significant intraocular inflammation after gene therapy. This patient did not have a 467 
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clear ellipsoid zone layer before surgery and subtle cystic degenerative changes can be seen nasally. 468 
Two weeks after gene therapy, vitreous cells (f: short arrows), outer retinal opacities (f: long arrow) 469 
and choroidal thickening (f: bracket) could be seen around the fovea. This was associated with an 470 
acute drop in BCVA, which recovered partially after a prolonged course of oral corticosteroid (h). 471 
The clear laminated appearance of the ONL appears to have improved by 2 years (g). Scale bars 472 
represent 200 μm. 473 
 474 
Figure 4. Preferred retinal locus shift is maintained in the treated area after 5 years. (a) 475 
Colour retinal photograph of the treated (left) eye of participant L1. (b) Blue-light autofluorescence 476 
image of the retina at baseline in L1. There are two retinal islands remaining, one of which (T, 477 
outlined in blue) was treated with the vector bleb (dotted line) whilst the other (U, outlined in green) 478 
remained untreated. The position of the degenerate fovea is marked as a cross. The optic disc is 479 
indicated by a circle. (c) Microperimetry fixation chart at baseline before gene therapy shows a 480 
vague preferential retinal locus (yellow dots – fixation points during testing) in the inferior macula 481 
area (white arrow). (d) The fixation shift to the region treated (T) by gene therapy (white arrow) is 482 
maintained after 5 years, with no fixation on the untreated area of retina (U) below. This was 483 
associated with an improvement in best-corrected visual acuity (BCVA) from 6/96 to 6/30 Snellen 484 
equivalent. Scale bars represent 1.0 mm. 485 
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