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Abstract—A novel modularity-based user-centric (MUC) clus-
tering is conceived for resource allocation in ultra dense networks
(UDNs), in order to maximise the sum-rate per orthogonal
resource block (RB). The idea of MUC clustering is to decompose
the UDN into several sub-networks by exploiting the inherent
group structure of user equipments (UEs). In particular, we
propose a modified Louvain method for MUC clustering relying
on efficient resource allocation heuristics. Our numerical results
show the superiority of our MUC design.

Index Terms—Ultra dense networks, user-centric clustering,
resource allocation, unsupervised learning.

I. INTRODUCTION

To meet the ever-increasing high data-rate demands required
by each user equipment (UE), the user-centric (UC) clustering
of ultra dense networks (UDNs) [1]–[4] has been found very
promising. When jointly designing it with resource allocation,
the UE’s data-rate may be further enhanced [5] [6]. For
example, the authors of [7] and [8] focused their attention on
the UC clustering design and resource allocation. However,
given the large number of UEs in UDNs, the limited number
of orthogonal resource blocks (RBs) requires sophisticated
resource allocation algorithms to be carried out across all
access points (APs) based on the full channel state information
(CSI) of all UEs [9]. This approach is impractical and hence
efficient counter-measures have to be developed to improve
the exploitation of orthogonal RBs.

In this light, we propose to decompose the UDN into several
sub-networks. This arrangement will lead to less information
exchange and will support more efficient interference man-
agement. Explicitly, our idea is to strictly rely on orthogonal
RBs within the sub-networks, whilst loosening the requirement
of orthogonal RBs amongst sub-networks. Fundamentally, the
concept of deriving sub-networks from a large network by
discovering the inherent group structure has been widely
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Fig. 1: An example of the MUC clustering in UDNs.

studied in the sociology, biology and computer science com-
munities [10]–[12]. This concept has been recently adopted to
device to device communications [13] [14], where the network
is decomposed based on the UEs’ social behaviour, including
locations, interests, or background. However, to the best of
our knowledge, there has been no related work exploiting the
group structure in the design of UC clustering and resource
allocation for UDNs.

Against the above backdrop, we propose a novel modularity-
based user-centric (MUC) clustering relying on the modified
Louvain method and co-design it with the resource allocation,
for improving the exploitation of orthogonal RBs in UDNs.
To be specific, we first propose a novel MUC clustering
framework for UDNs, by taking the UEs’ group structure
into account specifically relying on their locations. Then, we
formulate the joint design problem of MUC clustering as well
as resource allocation and conceive a three-stage sequential
solution relying on the modularity of the network. We show
that the proposed design outperforms the state-of-the-art.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Notation

Matrices and column vectors are denoted by bold capital let-
ters and bold lower-case letters, respectively. Scalar variables
are denoted by italic symbols. |A| denotes the cardinality of a
set A. CN×M denotes the space of all N ×M matrices with
complex entries. Given a complex vector or matrix, (·)H and
|| · || denote the conjugate transpose and norm, respectively.

B. System Model

We consider a downlink UDN that consists of a dense set
of APs having the index set of L = {1, ..., L} and a dense set
of single-antenna UEs having the index set of K = {1, ...,K}.
All APs are equipped with MA ≥ 1 antennas and they
share the same spectrum, which is partitioned into multiple
orthogonal RBs hosted in the index set of N = {1, ..., N}.
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We assume that all APs and all UEs are uniformly distributed
in the UDN, and the density of APs is comparable to that
of the UEs. Let hhhj,k,n denote the downlink channel gain
spanning from AP j to UE k on RB n, including the path-
loss and small-scale fading. In this paper, we follow the prac-
tical two-piece path-loss model of [15] [16], which includes
the probabilistic combination of both line-of-sight (LoS) and
non-line-of-sight (NLoS) connections. Additionally, the small-
scale fading is modelled as identical independently distributed
(i.i.d.) Rayleigh fading on each RB. Considering that each AP
is capable of simultaneously serving several UEs, we assume
that the AP-UE association can only be established, if the UE
is within the AP’s coverage distance of dt. In our hypothesis,
both the locations of APs and UEs as well as the channel
characteristics are acquired. This process relies on the APs
exchanging this information with the macro base station that
manages the AP-UE association.

Let us first briefly review the concept of UC clustering. Each
UE can be served simultaneously by multiple APs relying on
joint transmission, where these APs constitute the UC cluster
supporting each UE. An example of the UC clustering in UDN
is illustrated in Fig. 1, where the UC clusters of UEs are
represented as {UC1, · · · , UC5}. Considering the fact that
in practical UDN the number of UEs is typically higher than
the number of orthogonal RBs in UDN (i.e. K > N ), we
assume that only one RB can be assigned to each UC cluster
and that the RB can be reused by several UC clusters. In order
to enhance the UE’s data-rate given the limited availability of
orthogonal RBs, we propose a novel MUC clustering concept
in UDN, by taking the UEs’ group structure into account
for decomposing a large number of UEs into groups. In this
way, each MUC cluster will include a number of UC clusters,
consisting of the union of the grouped UEs and their serving
AP set, exemplified by MUC1 = {UC1, UC2, UC3} and
MUC2 = {UC4, UC5} of Fig. 1. It is noteworthy that each
UE is involved in one and only one MUC cluster, whilst
each AP may simultaneously belong to multiple MUC clusters
as a result of overlapped UC clusters [9] [17]. Hence, the
interference will be stronger within the MUC clusters and
weaker amongst MUC clusters. As a benefit, the resource
allocation would be made more interference-conscious.

C. Problem Formulation

To formulate the problem, we define the serving AP set
in the UC cluster of UE k as Bk, the grouped UE set in
the MUC cluster c as Uc, and the group index that UE k
belongs to as ck, respectively. Then, we introduce XXX = [xj,k]
having (L×K) elements as the UC clustering matrix, where
xj,k = 1 if AP j ∈ Bk, otherwise xj,k = 0. Additionally,
let ααα = [αk,n] having (K × N) elements denote the RB
allocation matrix, where αk,n = 1 if RB n is allocated to
Bk, otherwise αk,n = 0. Furthermore, we define YYY = [yk,m]
having (K × K) elements as the common MUC cluster
indicator matrix. Explicitly, if ck = cm, then yk,m = 1, i.e.
UE k and UE m are in the same group, otherwise we have
yk,m = 0. Finally, we let pj denote the transmit power of
AP j and we assume that the total power transmitted from

each AP is shared equally amongst all of its associated UEs.
Hence, the power transmitted from AP j to its associated UE
k is pj,k = pj/

∑
κ∈K xj,κ.

Accordingly, the instantaneous signal-to-interference-plus-
noise ratio (SINR) of UE k on RB n is given by

γk,n =

∑
j∈L pj,kxj,kαk,n|hhhHj,k,nwwwj,k,n|2

σ2 + IFk,n
, (1)

where we have

IFk,n =
∑

m∈K\k

yk,mαm,n
∑
i∈L

pi,mxi,m|hhhHi,k,nwwwi,m,n|2

+
∑

m∈K\k

(1− yk,m)αm,n
∑
i∈L

pi,mxi,m|hhhHi,k,nwwwi,m,n|2. (2)

Herein, σ2 denotes the power of the additive white Gaussian
noise (AWGN) at each UE, and wwwj,k,n denotes the normal-
ized beamforming vector transmitted from AP j to UE k
on RB n. In this paper, we employ the classical Maximal
Ratio Transmission (MRT), which is formulated as wwwj,k,n =
hhhj,k,n/||hhhj,k,n||. Furthermore, we explicitly decompose (2)
into a pair of items, where the first item is the intra-MUC
cluster interference and the second item is the inter-MUC
cluster interference.

This paper aims for jointly designing the MUC clustering
and resource allocation for UDNs in order to maximise the
exploitation of orthogonal RBs quantified in terms of the sys-
tem’s sum-rate per RB. Accordingly, our optimization problem
may be formulated as

(P0): max
XXX,YYY ,ααα

∑K
k=1

∑N
n=1 log2 (1 + γk,n)∑N

n=1 sgn(
∑K
k=1 αk,n)

(3)

s.t. xj,k = {0, 1}, ∀j,∀k, (4)
yk,m = {0, 1}, ∀k,∀m, (5)
yk,m = ym,k, ∀k, ∀m, (6)
αk,n = {0, 1}, ∀k, ∀n, (7)
N∑
n=1

αk,n ≤ 1,∀k, (8)

yk,mαm,n = 0, if αk,n = 1, ∀k, ∀m,∀n, (9)

where the denominator item in (3) denotes the actual number
of RBs in use. Additionally, (4)-(6) indicate the MUC clus-
tering constraints, while (7)-(9) imply the resource allocation
constraints. Explicitly, (9) confines the strict use of orthogonal
RBs within MUC clusters, while no requirements are imposed
for the use of orthogonal RBs amongst MUC clusters.

It becomes clear now that the MUC clustering problem and
the resource allocation problem are coupled with each other in
problem (P0). Therefore, the feasible way is to decouple the
problem into a pair of independent sub-problems. To elaborate,
we first consider how to construct the MUC clusters relying
on the method of community detection [10] to determine YYY .
The aim of community detection is to identify the modules as
the gathering of vertices according to classic graph topology,
which results in a number of UE groups. Based upon the MUC
clustering results, we then proceed to design the associated
resource allocation schemes. Since γk,n relies on both XXX and
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the n-th column vector of ααα, (P0) is an integer non-linear
programming problem even if YYY is pre-determined. At the time
of writing, there have been no optimal algorithms to solve this
NP-hard problem, even if the discrete variables within XXX and
ααα were relaxed to be continuous values. In this context, we
will invoke heuristics to seek an efficient solution.

III. PROPOSED MUC CLUSTERING FRAMEWORK

In this section, we will introduce our proposed MUC clus-
tering method and resource allocation heuristics for solving
problem (P0). In terms of the MUC clustering, its formation
relies on both the UC clustering results, i.e. XXX , and on the
group formation results, i.e. YYY . As for the resource allocation,
i.e. ααα, the orthogonal RBs are allocated based on the MUC
clustering results. Motivated by this, we propose a sequential
operation as follows.

A. UC Cluster Construction

Since the objective function in problem (P0) is to maximise
the utilisation of orthogonal RBs measured by the system’s
sum-rate per RB, the UC clustering process becomes that of
maximising the benefits of AP cooperation. Since our focus is
on MUC clustering, we adopt the coverage distance as the
only criterion for creating the UC clusters, although other
factors may also be considered for determining the topology.
Hence, given the locations of all APs and all UEs, each UE
will construct its UC cluster according to

xj,k =

 1, if dj,k ≤ dt,

0, otherwise,
(10)

where dj,k is the coverage distance between AP j and UE k.

B. MUC Cluster Construction

Based upon the UC clustering results in XXX , our next goal is
to form UE groups and store them in YYY for constructing MUC
clusters. The first solution that springs to mind is the classic
K-means method. It discovers groups based on a pre-defined
desired number of groups, namely the pre-set number of MUC
clusters. However, the challenge is that the desired number
of MUC clusters was to be known, but given the randomly
evolving UE locations, it is generally unknown. Fortunately,
the modularity-based unsupervised learning method of [12]
is capable of appropriately constructing these groups, since
modularity is by far the most used and best known quality-
metric of group formation results. Hence, we treat the UE
group formation as a problem of maximising the modularity
of the network.

1) Graph Construction: In order to construct our MUC
clusters, we first have to build the network topology graph. To
this end, a graph model is constructed based on both the UE
and AP locations, as well as on the channel characteristics.
We define a graph consisting of the set of vertices K and
edges E , denoted by G = (K, E). More explicitly, the vertices
correspond to the UC clusters, whilst the edges represent
the interference amongst the UC clusters. Mathematically, an

Algorithm 1 Modified Louvain Based MUC Clustering and
Resource Allocation for UDNs

1: I. UC Cluster Construction
2: ∀k ∈ K, construct Bk according to (10).
3: II. MUC Cluster Construction
4: Construct G = (K, E) according to (11).
5: Initialize: ∀k ∈ K, ck = {k}.
6: Sub-stage 1: ∀v ∈ K, find k′ ∈ K where ek,k′ =

1 satisfies ck′ = argmax{∆Qck=ck′} and |Uk′ | < N . If
max ∆Q > 0, ck = ck′ , otherwise remain unchanged.

7: Repeat step 6 until max{Q} attained.
8: Sub-stage 2: Reconstruct G according to {ck}k∈K.

Repeat step 6 until max{Q} attained.
9: Repeat step 6 and 8 until max{Q} attained.

10: III. MUC RB Allocation
11: ∀c ∈ [1, C], sequentially assigning RBs from Nc =
{1, ..., |Uc|} to Uc.

edge between the UC cluster of UE k and that of UE m is
established, i.e. ek,m = 1, provided that we have:

min
n

∑
j∈L pj,kxj,k|hhhHj,k,nwwwj,k,n|2∑
i∈L pi,mxi,m|hhhHi,k,nwwwi,m,n|2

< δg, (11)

where δg is the threshold selected to reflect the severity
of the interference between two UC clusters. Formally, the
modularity quantifies the density of edges within groups as
compared to edges between groups, which is defined in [12]
as follows

Q =
1

2s

∑
k,m

[
ek,m −

qkqm
2s

]
yk,m, (12)

where ek,m indicates the weight between vertex k and vertex
m, while qk =

∑
m ek,m is the sum of the weights of the

edges incident to vertex k. Furthermore, s = 1
2

∑
k

∑
m ek,m

is the sum of the weights in the graph. Note that in this graph,
all the weights of the edges are set to unity.

2) Modified Louvain Method: We adopt the powerful Lou-
vain Method of [18] and modify it according to our problem,
since we have to restrict each group within the pre-set maxi-
mum size in order to obey the strict use of orthogonal RBs. As
a result, the size of the MUC clusters in our implementation
should not be set higher than the number of orthogonal
RBs. Our method is unsupervised, which only relies on the
constructed graph. Based upon the above graph G, we consider
the problem of maximising the modularity Q of the network
by iteratively evaluating the gain in modularity, denoted by
∆Q. The gain is obtained by moving an isolated node m into
the MUC cluster c, which is given by

∆Q =
qm,in
s
−

∑
t qm

2s2
, (13)

where
∑

t is the sum of the weights of the edges incident to
vertices in MUC cluster c, and qm,in is the sum of the weights
of the edges from vertex m to all vertices in MUC cluster c.

In our implementation, each vertex is initialized as a dif-
ferent MUC cluster based on G, and the solution consists of
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two sub-stages, where the iteration procedure of our modified
Louvain method is as follows:

1) for each vertex, we evaluate ∆Q when removing this
vertex from its present MUC cluster and adding it to the
neighbouring MUC cluster in sequence. Herein, in order
to satisfy (9), we judge the size of the neighbouring
MUC cluster before adding the new vertex to it, which
should be less than the number of RBs N . In this way,
each vertex is incorporated into the new MUC cluster
with the maximum value of ∆Q, while each MUC
cluster is restricted within the maximum size N , after a
number of iterations.

2) the MUC clusters found during the first sub-stage be-
come the new vertices in the network. To this end, the
weights of the edges between the new vertices are given
by the sum of the weights of the edges between the
old vertices in the corresponding two MUC clusters.
Notice that the edges between vertices of the same MUC
cluster lead to self-loops for this MUC cluster. Thus, it
is possible that the first sub-stage will be revisited in the
resultant weighted network and we continue to iterate.
The whole process is iterated until there is no further
improvement and a maximum value of Q is attained.

With regards to complexity, there is a paucity of accurate
complexity analysis for the Louvain method, but it was
shown empirically to be low when for millions of nodes and
links [18]. Additionally, this method is guaranteed to converge
as a result of having a finite number of vertices. Finally,
based on the above process, a total of C MUC clusters are
constructed, where each MUC cluster is a union of the UE
group, as well as their serving AP sets.

C. Resource Allocation

Having stored the MUC clustering results in YYY , the resource
allocation becomes vital in order to deal with both the intra-
MUC cluster interference and the inter-MUC cluster interfer-
ence. As a benefit of MUC clustering, the inter-MUC cluster
interference would tend to be weaker than the intra-MUC
cluster interference. Hence, we aim for mitigating the critical
interference by imposing zero intra-MUC cluster interference
as reflected in (9), while allowing different MUC clusters to
reuse the same RB set. To this end, below we design a heuristic
resource allocation solution. To be specific, by confining the
maximum size of the MUC clusters, i.e. |Uc| ≤ N, ∀c,
we sequentially assign orthogonal RBs to the UEs in Uc
from the RB set Nc = {1, ..., |Uc|}, and finally the actual
number of RBs in use becomes max{|Uc|},∀c ∈ [1, C]. In this
way, we can achieve a higher exploitation of the orthogonal
RBs to improve the system’s sum-rate per RB. Note that
more sophisticated resource allocation schemes may also be
designed, but we leave this issue for our future work by
focusing on MUC clustering.

IV. NUMERICAL PERFORMANCE

In this section, we provide numerical results for characteriz-
ing the proposed MUC clustering concept. For all simulations,
we consider a 200 m×200 m network plane, where each AP’s
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Fig. 2: The modularity value comparison.

coverage area is restricted within dt = 50 m. By default, we
set L = 80, K = 100, N = 50, MA = 8, δg = 5 dB
and pj = 30 dBm (∀j). The noise spectral density is −174
dBm/Hz with 5 dB noise figure and the RB bandwidth is
180kHz. The parameters of the path loss model are adopted
according to [9].

Fig. 2 compares the modularity value of both the modified
Louvain based and of the K-means based MUC clustering
solutions, which can be used for characterizing the partitioning
of a network into groups. Having a higher degree of modularity
is capable of supporting denser connections within the MUC
clusters, but sparser connections amongst the different MUC
clusters. Observe in Fig. 2 that in terms of the modularity,
the K-means based MUC clustering solution performs worse
than the modified Louvain based solution, regardless of the
pre-set number of MUC clusters, since the modified Louvain
based solution aims for directly maximizing the modularity.
Again, the K-means based solution requires the knowledge
of the pre-set number of MUC clusters, while the proposed
modified Louvain based solution creates the number of MUC
clusters adaptively based on the potential evolution of the
network topology. Additionally, the K-means based solution
fails to guarantee the strict use of orthogonal RBs within MUC
clusters. When comparing to K-means based MUC clustering,
we pre-set its number of MUC clusters to the highest possible
modularity by enumerating all possible settings. We refer to
this as modularity-optimal K-means based MUC clustering,
namely to the ‘MUC w KM’. This benchmark is particularly
biased for K-means, and we use it simply to demonstrate the
superiority of our modified Louvain based MUC clustering
solutions.

Let us now compare our proposed modified Louvain based
MUC clustering to the ‘MUC w KM’ solution as well as to the
UC clustering benchmarks (operating without UE grouping),
namely to the ‘UC w RA’ solution (i.e. the UC clustering with
random RB allocation) and the ‘UC w WP’ solution (i.e. the
UC clustering with Welsh-Powell graph colouring algorithm
[19]). Fig. 3 depicts the sum-rate per RB as a function of the
AP density for the above-mentioned solutions, characterizing
the orthogonal RBs. Firstly, we observe that there is an
increase in the sum-rate per RB as the AP density increases for
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all solutions with the RB allocation owing to the availability
of more spatial resources. Secondly, it can be seen that the pair
of MUC clustering solutions outperform the two conventional
UC clustering solutions. This is owing to the fact that the RB
allocation imposed for MUC clustering aims for mitigating the
interference, which is an explicit benefit of MUC clustering.
Finally, our proposed modified Louvain based MUC clustering
philosophy exhibits superior performance over the modularity-
optimal K-means based design alternative. This is a result of
the strict use of orthogonal RBs as well as of the scheme’s
agile adaptability to the network topology changes.

Another metric of quantifying the exploitation of orthogonal
RBs is further investigated in Fig. 4 as a function of the UE
density in terms of the average UE rate per RB, which is
defined as the sum-rate per RB normalized by the number of
UEs and formulated as∑K

k=1

∑N
n=1 log2 (1 + γk,n)

K ×
∑N
n=1 sgn(

∑K
k=1 αk,n)

. (14)

First of all, we observe that all the solutions exhibit a decaying
trend, when the UE density increases. This is because an
increased number of UEs share the fixed total transmit power
at the AP side, as well as the limited availability of spatial
resources. Additionally, we can see that the superiority of
our MUC clustering solution sustained over the other three
benchmarkers, regardless of the UE density.

V. CONCLUSIONS

In this paper, we proposed a novel MUC clustering tech-
nique for UDNs relying on a co-designed resource alloca-
tion scheme for maximising the RB exploitation. To solve
the problem efficiently, we proposed a three-stage sequential
solution relying on the proposed modified Louvain based
MUC clustering and an efficient heuristic resource allocation
solution. Explicitly, the proposed modified Louvain based
MUC clustering solution outperforms the conventional UC
clustering benchmarkers in terms of its sum-rate per RB.
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