
Processing big-data with Memristive Technologies:
Splitting the Hyperplane Efficiently

A. Serb, G. Papandroulidakis, A. Khiat, and T. Prodromakis
Nanoelectronics and Nanotechnology Research Group, Electronics and Computer Science Department,

University of Southampton, Southampton, SO17 1BJ, UK
a.serb@soton.ac.uk

Abstract—An important cornerstone of data processing is the
ability to efficiently capture structure in data. This entails
treating the input space as a hyperplane that needs partitioning.
We argue that several modern electronic systems can be
understood as carrying out such partitionings: from standard
logic gates to Artificial Neural Networks (ANNs). More recently,
memristive technologies equipped such systems with the benefit
of continuous tunability directly in hardware, thus rendering
these reconfigurable in a power and space efficient manner.
Here, we demonstrate several proof-of-concept examples where
memristors enable circuits optimised to carry out different
flavours of the fundamental task of splitting the hyperplane.
These include threshold logic and receptive field based classifiers
that are presented within the context of a unified perspective.

Keywords—memristor, Metal Oxide RRAM, Artificial Neural

Networks, Threshold Logic Gates, Template Pixel, texel, Clusterer,
Fuzzy Gate

I. INTRODUCTION
The world we live in is full of structure and regularity as

dictated by the laws of physics. This structure is captured every
day by biological neural networks and artificial computing
machines that in their respective ways encode and exploit
patterns. The neural network is a prime example demonstrating
how regularities in some, typically high-dimensional, input
space (e.g. the space defined by visual or auditory inputs) can
be learned by an appropriate architecture underpinned by a
suitable learning rule. Similarly, even in the realm of simple,
multi-D binary spaces, patterns are regularly made use of as
exemplified by logic gates and other combinatorial circuits.

The ubiquity of pattern exploitation is illustrated in Fig. 1.
Whether the input space is digitised, continuous, or fixed-
resolution quantised, many of the fundamental computational
primitives used today essentially perform the same function:
split their input space hyperplanes into different domains.
Typically this involves two domains mapping for outputing = 0
or 1 respectively. Computational elements as diverse as logic
gates and McCulloch-Pitts neurons [1] (esp. if using a step
activation function) fit this description.

Countless implementations of computational elements have
been proposed and used over time, ranging from the
commercially used logic gates to artificial neurons employing
Complementary Metal-Oxide Silicon (CMOS) technologies
[2]. However, attempting to move from binary input spaces
towards continuous ones typically involves heavy use of
multiplication operations. This cannot be carried out efficiently
under modern electronics constraints for power, area and
accuracy efficiency, be that digital or analogue multiplication.

Recently, emerging device technologies, such as RRAM
(also known as memristor [3]), have garnered attention due to
their unique properties, offering: continuously tuneable
resistance[4], non-volatility [5] and fabrication in ultra-dense
crossbar arrays [6]. In particular, their ability to assume and
hold an analogue resistive state, i.e. act as ultra-compact
analogue memory, renders them ideal candidates for the
implementation of analogue weights. Input signal-weight
multiplication can then be carried out effortlessly by applying a
voltage across the device and measuring the resulting current.
These properties have led to numerous proposals for using
emerging devices of all flavours (PCM, RRAM etc.) in dot
product multiplier blocks [7].

In this work we present an array of proposed memristor-
based computational module implementations, and relate them
to the general principle of ‘splitting a hyperplane’ efficiently.
Specifically, in section II we detail the conceptual connection
of logic gates and neurons of various types to the general
framework of splitting hyperplanes. In section III we present
memristor-based circuit implementations of the computational
units examined in II and provide details on their functionality.
Finally, in section IV, we discuss future prospects for
applications in real-time big-data processing.

II. THEORETICAL BACKGROUND
Data classification is a fundamental processing operation

that is the cornerstone of most machine learning applications.
This may be implemented in a number of specific forms, but
ultimately it involves the separation of an input space into sub-
domains.

A. Linear separation
The idea of splitting an input space hyperplane in different

ways is shown in Fig. 1. In 1a an AND gate splits a 2D binary
space consisting of four distinct points into a domain consisting
of three points (00, 01, 10 mapping to output 0) and another
domain containing the remaining point (11 mapping to output
1). In 1d a typical 2-input neuron uses its weights and
activation function threshold to separate its input space into
two domains by means of a demarcating straight line. Notably,
the AND gate can be interpreted as a special case of a neural
network where an appropriate threshold line linearly separates
the input space. The same applies for the OR gate, shown in
1b.

This fundamental concept generalises to higher
dimensional input spaces, where the familiar 2-input gates
become threshold logic gates (TLGs). TLGs have a discrete
space to separate and act as majority gates able to perform
linearly separable functions of quantized space. In practice this

means that they split a hypercube along a hyperplane that cuts
every facet of the hypercube at an angle of 45º, at locations
determined by the value of the thresholds. Depending on the
threshold level the TLG will toggle state when 1/N, 2/N, or in
general M out of N inputs are concurrently active, without the
ability to discriminate which particular inputs are active/
inactive. Notably, the operation of TLGs can be directly related
to highly restricted neural networks, where all the input
weights are the same and the designer retains control of the
threshold level, as TLGs were indeed originally conceived [1].
The property of linear separability is maintained by TLGs.

Introducing weights at the inputs of TLGs turns them into
restricted ANNs by allowing the tilting of the TLG threshold
plane much like the hyperplane separator in an ANN. The input
space remains binary, but the contribution of each input is
moderated by a weight. Unlocking further flexibility can
essentially upgrade TLGs to full artificial neural networks
(ANNs). Specifically, if the input space is now permitted to be
continuous (or even above-binary fixed-resolution) we obtain a
typical perceptron with a step activation function, as illustrated
in 1d. Linear separability is thus maintained, and if the weights
are constrained to positive values (e.g. within the typical
interval [0,1]), the slope of the line can only take negative
values as per 1d.

Fig. 1. Examples of ways of splitting 2D input spaces into output 0 (green)
and 1(orange). (a-c) Binary input space. (a) AND gate, (b) OR gate, (c) XOR
gate. (d-f) Continuous input space. (d) Linear separation, (e) receptive field
separation, (f) double-threshold separation, in this cse implementing the
NAND equation𝐴𝐴 ∧ 𝐵𝐵�������.

B. Beyond linear separation – receptive fields
Computational units, in principle, need not separate their

input spaces using hyperplanes. This is exemplified both in
nature, through neurons featuring receptive fields, which might
look as in Fig. 1e, and in digital logic by the use of the non-
linearly separable XOR gate (Fig. 1c) and its higher
dimensional generalisations.

The XOR gate (and its XNOR and higher dimensional
‘exactly M out of N’ or ‘between K and M out of N’
counterparts) are not arbitrary look-up tables (LUTs), but
rather exploit symmetries in the input space. Similar to TLGs,

they cannot discriminate between individual inputs.
Nonetheless, even if particular symmetries are not exploited,
digital circuits, built to pick specific patterns in an arbitrary
LUT manner, can also be conceived. They differ qualitatively
from TLGs (and generalised XORs) in that they are neither
constrained by linear separability, nor by symmetry. What is
common to these approaches, however, is that specific areas of
the input space are picked and mapped directly to the desired
output (e.g. a digital 1), rather than splitting their input spaces
with hyperplanes.

Transitioning to a continuous input space, the same concept
generalises quite naturally to receptive fields. They may be as
simple as picking up a band of auditory frequencies (selecting
a –weighted- range out of a 1D input space) or as complicated
as Gabor filter-like patterns in retinal cells [8]. In principle,
receptive fields in a continuous input space, just like LUTs in
binary spaces, can, but need not necessarily exploit
symmetries. They are there to scan for specific input patterns,
i.e. essentially perform template matching, a form of
clustering, much like may be found in the first layers of a
typical convolutional neural network (CNN) [9].

Naturally, receptive field and hyperplane-based space
partitioning are closely interrelated, it being possible to
express one as a synthesis of elements of the other. In other
words, a receptive field can be synthesized out of hyperplane
separators and a hyperplane partition can be synthesized out of
appropriate combinations of suitable receptive fields. This can
be achieved within the context of multi-layered ANNs, or
equivalently combinatorial circuits using cascades of multiple
gates or LUTs for binary spaces.

C. Between linear separation and receptive fields
An important element of linear space separation, as

implemented in ANNs, is dot product multiplication. Within
the context of data classification as input space splitting, we
propose an alternative to hyperplane-based partitioning that
requires no explicit multiplication. This is illustrated in 1f,
where two thresholds (one for each input dimension) combine
in an OR fashion in order to split the space in a ‘L’ shape. In
turn, classification into output 1 and 0 can be carried out by
two thresholding/comparisons and a simple logical operation,
thus obviating the need for multiplication that could be an
inherently computationally intensive operation.

This can be interpreted as a receptive field, or as an
approximation of a linear, hyperplane cut. In that vein it can
also be interpreted as sitting between traditional neurons
(separation of a continuous input space using a simple shape –
but not a single hyperplane) and logic gates (space splitting
expressible as N thresholding plus one logic operations).

III. IMPLEMENTATION EXAMPLES
Countless approaches exist for implementing plane

splitting in hardware. These range from gates and digital
system (e.g. FPGA) approximations to such analogue blocks
as transistor-based fuzzy gates [10]. In this work we focus on
a set of approaches exploiting memristive technologies as
developed in our group. Our purpose is to relate memristor-
based circuit design approaches to the quest for accelerator
hardware specialized for AI-relevant computation.

A. Threshold Logic Gates
The introduction of traditional threshold logic gates (TLGs)

was the result of continuous progress in the area of TL circuit
implementations towards the development of a brain-like
computer. Many different TLG circuit designs exist, with
differential input current-mode TLGs as a front-running
candidate due to their low power and high performance
operation, as well as the compatibility with existing nanoscale
conventional computing architectures [11], [12]. The circuit
implementation of Current-Mode TLGs [13] consists of two
parts: the differential and the sensor parts. The part 1 receives
the input and threshold vectors at corresponding N-input
differential pair networks. Part 2is the thresholding element of
the circuit, which detects the difference in currents flowing
through the input and threshold branches of part 1 and
amplifies them to a digital answer indicating which is higher.

Fig. 2a shows a memristor-enhanced current-mode TLG
design. The differential branches consist of parallel
memristively source-degenerated pMOS transistors (1T1M)
[14].Memristors are employed as the analogue weights at the
input/bias binary signals. Using memristors has the advantage
of introducing highly localised, continuously tuneable, minimal
front-end footprint and low-voltage operated memory into the
TLG, thus providing a decisive advantage in the
implementation of memory-heavy ANN accelerators [15].

Fig. 2. Circuit schematic (2a) and measured results of the sensor part outputs
regarding the OR/NOR and AND/NAND functions (2b) for the upper and
lower trace, respectively. The schematics in (2c) and (2d) showcase the 3D
space split for the AND and OR threshold function, respectively.

The measured results (Fig. 2b) are extracted from a 3-
element input vector and 1-element threshold setting TLG
circuit, where discrete resistors were used to emulate
appropriately programmed RRAM devices. The upper trace of
Fig. 2b shows the response for the {IN1, IN2, IN3; TH} =
{22kΩ, 22kΩ, 22kΩ; 22kΩ} weight configuration which
functions as a 3-input OR. The blue waveform is the measured
response for the canonical output (CA) while the red waveform
is the naturally provided complementary output (CO) by the bi-
stable latching sensor part. Similarly the lower trace of the Fig.
2b presents the results of a 3-input AND/NAND TLG resulting
from changing the threshold weight (weight config.: {22kΩ,
22kΩ, 22kΩ; 7kΩ}).

B. The template pixel (texel)
Whereas receptive fields tend to be implemented using

computationally intensive and multiplication-heavy
convolutional layers in ANNs, memristor-enhanced circuits
can directly implement receptive fields in hardware. An
example of such circuit is shown in Fig. 3a [16].The first
inverter maps each input voltage VIN to some voltage VMID; a
mapping influenced by the values of the memristors inside the
inverter. The 2nd inverter, is essentially scanning for a
particular VMID value for which its transistors M3 and M4 will
be simultaneously maximally conductive. At that preferred
voltage Vpk, the current through the output transistor M6 is also
maximised. As a result, the whole circuit uses memristors to
map specific, programmable values of VIN to a maximum
current Iout. This is shown experimentally in Fig. 3b, where the
input voltage is swept between the power supplies (blue) as
VMID (red) and Iout (green) are monitored. We observe that
values of VIN within a narrow band of Vpk will also lead to high
Iout, therefore, the system implements a 1D receptive field with
the selectivity profile shown in Fig 3b. The precise range of
values falling within or outside the receptive field is also
determined by the chosen Iout threshold level.

Fig. 3. Receptive field-based input plane-splitting using memristive circuits.
(a) Circuits schematic showing memristor enhanced inverter (stage 1) and
read-out circuit (stage 2). In this case the output quantity is IOUT. (b) Measured
input signals from circuit in (a). IOUT peaks in a narrow range of input voltages
around 0.7V and is indirectly measured as voltage dropped across a 1MΩ
resistor. (c) The result of linearly summing IOUT from two identical texels
(equivalent voltage drop down 1MΩ resistor – simulated extrapolation of data
from (b)). RUP=10.5kΩ, RDN=11.5kΩ. Adapted from [17].

Combining the outputs of multiple texels leads to higher

dimensional receptive fields, the specific manner of interaction
between texel outputs will determining the rules of
composition. Summing Iout currents, for example, will lead to
fields as shown in Fig. 3c. This is a straightforward current
summation; easily implementable and avoiding any
multiplication, which is another option for higher D receptive
field composition. There is no reason why other designs
featuring more complicated circuits cannot be used to
implement more flexible or complex receptive fields.

C. Fuzzy Gates
The texel circuit is an enhancement of the classical

inverter. Separation of an input plane in ‘L’ shapes as shown
in Fig. 1f can be achieved in hardware using an equivalent
memristor-based enhancement of higher level gates, such as
the NAND, shown in Fig. 4a and explored in [17]. Observing
how a memristor-enhanced NAND maps its 2D input space to
analogue outputs (Fig. 4b) we note that: a) choosing a fixed
voltage threshold will always cut the plane into a ‘L’ shape
and b) the input/output relationship bears some resemblance to
a fuzzy gate. Hence we dub the enhanced NAND as a ‘fuzzy
NAND’ implementing a non-standard flavour of fuzzy logic
determined by the electrical characteristics of the components
involved. We note that once a threshold is introduced, the
fuzzy gate implements the logic
equation(𝐴𝐴 > 𝐴𝐴𝑡𝑡ℎ) ∧ (𝐵𝐵 > 𝐵𝐵𝑡𝑡ℎ)����������������������������� , where A, B are the inputs
and 𝐴𝐴𝑡𝑡ℎ, 𝐵𝐵𝑡𝑡ℎ their respective thresholds. This is opposed to the
corresponding McCulloch Pitts arithmetic equation 𝐴𝐴𝑤𝑤𝐴𝐴 +
𝐵𝐵𝑤𝑤𝐵𝐵 > 𝜃𝜃 , where 𝑤𝑤𝐴𝐴,𝑤𝑤𝐵𝐵 are the weights corresponding to
inputs A and B and 𝜃𝜃 the threshold value separating an output
0 from an output 1.

Fig. 4. Double threshold-based plane-splitting using memristive soft gates.
(a) Soft NAND circuit topology. (b) Measured soft NAND behaviour. Setting
an output voltage threshold at an intermediate voltage level will split the plane
according to the double-threshold methodology shown in Fig. 1f. Side note:
The reduction of the NAND to soft inverters as marked on the figure are
essentially activation functions along each dimension (outside scope of
current paper). RA= 3.5kΩ, RB=0.5kΩ, RC=4kΩ. Figure modified from [17].

Reconfiguring a fuzzy gate mainly involves the

appropriate tuning of memristors RA and RB,which
independently control the shape of the fuzzy input/output
mapping along each input space dimension respectively.
Therefore, setting the precise thresholds 𝐴𝐴𝑡𝑡ℎ, 𝐵𝐵𝑡𝑡ℎ is
controllable in a straightforward manner that required no
complicated calculations of any interaction effects between RA
and RB. In principle, if the input signal ranges are mapped to a
subset of the full power supply and the memristive devices are
programmed appropriately, 𝐴𝐴𝑡𝑡ℎ and 𝐵𝐵𝑡𝑡ℎ may move entirely
outside the valid input space shown in Fig. 1f, thus reducing
the system to a (vertical or horizontal) plane separator. In any
other case, the inverter ‘L’ shape continues to enforce a
fundamentally NAND structure, as recognised by the fact that
the (0,1), (1,0) and (1,1) corners will always lead to output 1
and corner (0,0) to output 0.Similar observations apply to the
fuzzy NOR and the basic principle of enhancing gates with
memristors generalises naturally to higher dimensionality

gates (allocate 1 memristor to each fuzzy gate input, as was
done with RA and RB in the 2-input case).

Finally, a basic difference between the full texel circuit
and the multiple input fuzzy gates is that the latter need no
output stage and communicate directly in a voltage in/voltage
out manner, thus allowing in principle for natural chaining of
said gates.

IV. DISCUSSION & CONCLUSIONS
In this work we are discussing data classification within

the context of splitting an input hyperplane space and relate
some significant methods of plane splitting to corresponding
memristor-based circuit implementations. The common aspect
in all circuits presented, is the use of memristors as analogue
tuning elements within what would in absentia of these
devices be a purely digital, standard circuit. We thus
exemplify how intimately intertwining memristors with
existing electronic technologies can begin to transform a
design strategy that has worked well for our fully digital
world, into an approach more directly optimised for data
classification (plane splitting).

In this work, we have deliberately restricted ourselves to
systems that split the input space via clear-cut binary
decisions. Naturally, a new degree of freedom is unlocked if
we move away from the simple McCulloch-Pitts-like step
activation function and into different functions such as ReLU
[18], sigmoids [19] etc. However, this would require the
development of (ideally very simple) read-out structures that
modularly attach to the output of the circuits shown in Figs. 2-
4 and transform it using the desired activation function.
 Furthermore, we noted that in principle, given enough
layers in the plane-splitting network, input space slicing can
be achieved by using either traditional hyperplane, or
receptive field or perhaps ‘L’-shaped splitting techniques (or
even a combination of the above). The choice of splitting
strategy has significant impact on the methodologies that must
be used for successful learning of the structure of any given
input space. Traditional neural networks make use of e.g. error
gradients for powering back-propagation-based approaches
[20] and hence the importance of activation functions. It is an
interesting and complex subject of further work to see exactly
how learning in receptive field/L-shape-based networks might
function and how this might compare to traditional ANNs.
 In summary, we envision this approach to be key in
developing next-generation electronic platforms that can meet
modern societal requirements and constraints. On one side,
real-time clustering and classification becomes increasingly
important across a wide spread of applications that have in
common the generation of big-data from a variety of sensory
nodes. On the other side, these “computation substrates” must
be designed within stringent power/area budgets for meeting
the demanding specifications of emerging applications, e.g.
autonomous vehicles and/or embedded monitoring platforms.

REFERENCES
[1] W. S. McCulloch and W. Pitts, “A logical calculus of

the ideas immanent in nervous activity,” Bull. Math.
Biophys., vol. 5, no. 4, pp. 115–133, 1943.

[2] C. Bartolozzi and G. Indiveri, “Synaptic Dynamics in
Analog VLSI,” Neural Comput., vol. 19, no. 10, pp.
2581–2603, 2007.

[3] L. Chua, “If it’s pinched it’s a memristor,” Memristors
Memristive Syst., vol. 9781461490, pp. 17–90, 2014.

[4] S. Stathopoulos et al., “Multibit memory operation of
metal-oxide bi-layer memristors.”

[5] L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou,
X. Hui, and T. Prodromakis, “Memory Impedance in
TiO2 based Metal-Insulator-Metal Devices,” Sci. Rep.,
vol. 4, no. 1, p. 4522, 2015.

[6] A. Khiat, P. Ayliffe, and T. Prodromakis, “High
Density Crossbar Arrays with Sub- 15 nm Single Cells
via Liftoff Process Only,” Sci. Rep., vol. 6, no. 1, p.
32614, 2016.

[7] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and
W. D. Lu, “Sparse coding with memristor networks,”
Nat. Nanotechnol., no. May, 2017.

[8] I. Hayashi and J. R. Williamson, “A Formulation of
Receptive Field Type Input Layer for TAM Network
Using Gabor Function,” 2004.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet Classification with Deep Convolutional
Neural Networks,” Adv. Neural Inf. Process. Syst., pp.
1–9, 2012.

[10] V. Catania and M. Russo, “Design of basic hardware
gates for efficient fuzzy computing,” Proc. Fourth Int.
Conf. Microelectron. Neural Networks Fuzzy Syst., pp.
100–109, 1994.

[11] C. B. Dara, T. Haniotakis, and S. Tragoudas, “Delay
Analysis for Current Mode Threshold Logic Gate
Designs,” vol. 25, no. 3, pp. 1063–1071, 2017.

[12] S. Leshner, N. Kulkarni, S. Vrudhula, and K.

Berezowski, “Design of a robust, high performance
standard cell threshold logic family for DSM
technology,” Proc. Int. Conf. Microelectron. ICM, no.
Icm, pp. 52–55, 2010.

[13] S. Bobba and N. Hajj, “Current-Mode Threshold
Logic Gates,” pp. 4–9, 2000.

[14] C. B. Dara, T. Haniotakis, and S. Tragoudas, “Low
Power and High Speed Current-Mode Memristor-
Based TLGs,” IEEE, pp. 89–94, 2013.

[15] A. Kumar Maan, D. Anirudhan Jayadevi, A.
Pappachen James, and S. Member, “A Survey of
Memristive Threshold Logic Circuits,” IEEE Trans.
Neural Networks Learn. Syst., 2016.

[16] A. Serb, C. Papavassiliou, and T. Prodromakis, “A
memristor-CMOS hybrid architecture concept for on-
line template matching,” Proc. - IEEE Int. Symp.
Circuits Syst., pp. 1–4, 2017.

[17] A. Serb, A. Khiat, and T. Prodromakis, “Charge-based
computing with analogue reconfigurable gates,” 2017.

[18] K. Hara, D. Saito, and H. Shouno, “Analysis of
function of rectified linear unit used in deep learning,”
Proc. Int. Jt. Conf. Neural Networks, vol. 2015–Septe,
2015.

[19] C. H. Tsai, Y. T. Chih, W. H. Wong, and C. Y. Lee,
“A Hardware-Efficient Sigmoid Function with
Adjustable Precision for a Neural Network System,”
IEEE Trans. Circuits Syst. II Express Briefs, vol. 62,
no. 11, pp. 1073–1077, 2015.

[20] R. Lister and J. V Stone, “Error functions, error
signals, and conjugate gradient back propagation,”
Artif. Neural Networks Conf., no. 409, pp. 26–28,
1995.

	I. Introduction
	II. Theoretical background
	A. Linear separation
	B. Beyond linear separation – receptive fields
	C. Between linear separation and receptive fields

	III. Implementation Examples
	A. Threshold Logic Gates
	B. The template pixel (texel)
	C. Fuzzy Gates

	IV. Discussion & Conclusions
	References

