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Abstract—An important cornerstone of data processing is the 
ability to efficiently capture structure in data. This entails 
treating the input space as a hyperplane that needs partitioning. 
We argue that several modern electronic systems can be 
understood as carrying out such partitionings: from standard 
logic gates to Artificial Neural Networks (ANNs). More recently, 
memristive technologies equipped such systems with the benefit 
of continuous tunability directly in hardware, thus rendering 
these reconfigurable in a power and space efficient manner. 
Here, we demonstrate several proof-of-concept examples where 
memristors enable circuits optimised to carry out different 
flavours of the fundamental task of splitting the hyperplane. 
These include threshold logic and receptive field based classifiers 
that are presented within the context of a unified perspective.  
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I. INTRODUCTION  
The world we live in is full of structure and regularity as 

dictated by the laws of physics. This structure is captured every 
day by biological neural networks and artificial computing 
machines that in their respective ways encode and exploit 
patterns. The neural network is a prime example demonstrating 
how regularities in some, typically high-dimensional, input 
space (e.g. the space defined by visual or auditory inputs) can 
be learned by an appropriate architecture underpinned by a 
suitable learning rule. Similarly, even in the realm of simple, 
multi-D binary spaces, patterns are regularly made use of as 
exemplified by logic gates and other combinatorial circuits. 

The ubiquity of pattern exploitation is illustrated in Fig. 1. 
Whether the input space is digitised, continuous, or fixed-
resolution quantised, many of the fundamental computational 
primitives used today essentially perform the same function: 
split their input space hyperplanes into different domains. 
Typically this involves two domains mapping for outputing = 0 
or 1 respectively. Computational elements as diverse as logic 
gates and McCulloch-Pitts neurons [1] (esp. if using a step 
activation function) fit this description. 

Countless implementations of computational elements have 
been proposed and used over time, ranging from the 
commercially used logic gates to artificial neurons employing 
Complementary Metal-Oxide Silicon (CMOS) technologies 
[2]. However, attempting to move from binary input spaces 
towards continuous ones typically involves heavy use of 
multiplication operations. This cannot be carried out efficiently 
under modern electronics constraints for power, area and 
accuracy efficiency, be that digital or analogue multiplication. 

Recently, emerging device technologies, such as RRAM 
(also known as memristor [3]), have garnered attention due to 
their unique properties, offering: continuously tuneable 
resistance[4], non-volatility [5] and fabrication in ultra-dense 
crossbar arrays [6]. In particular, their ability to assume and 
hold an analogue resistive state, i.e. act as ultra-compact 
analogue memory, renders them ideal candidates for the 
implementation of analogue weights. Input signal-weight 
multiplication can then be carried out effortlessly by applying a 
voltage across the device and measuring the resulting current. 
These properties have led to numerous proposals for using 
emerging devices of all flavours (PCM, RRAM etc.) in dot 
product multiplier blocks [7].  

In this work we present an array of proposed memristor-
based computational module implementations, and relate them 
to the general principle of ‘splitting a hyperplane’ efficiently. 
Specifically, in section II we detail the conceptual connection 
of logic gates and neurons of various types to the general 
framework of splitting hyperplanes. In section III we present 
memristor-based circuit implementations of the computational 
units examined in II and provide details on their functionality. 
Finally, in section IV, we discuss future prospects for 
applications in real-time big-data processing. 

II. THEORETICAL BACKGROUND 
Data classification is a fundamental processing operation 

that is the cornerstone of most machine learning applications. 
This may be implemented in a number of specific forms, but 
ultimately it involves the separation of an input space into sub-
domains. 

A. Linear separation 
The idea of splitting an input space hyperplane in different 

ways is shown in Fig. 1. In 1a an AND gate splits a 2D binary 
space consisting of four distinct points into a domain consisting 
of three points (00, 01, 10 mapping to output 0) and another 
domain containing the remaining point (11 mapping to output 
1). In 1d a typical 2-input neuron uses its weights and 
activation function threshold to separate its input space into 
two domains by means of a demarcating straight line. Notably, 
the AND gate can be interpreted as a special case of a neural 
network where an appropriate threshold line linearly separates 
the input space. The same applies for the OR gate, shown in 
1b. 

This fundamental concept generalises to higher 
dimensional input spaces, where the familiar 2-input gates 
become threshold logic gates (TLGs). TLGs have a discrete 
space to separate and act as majority gates able to perform 
linearly separable functions of quantized space. In practice this 



means that they split a hypercube along a hyperplane that cuts 
every facet of the hypercube at an angle of 45º, at locations 
determined by the value of the thresholds. Depending on the 
threshold level the TLG will toggle state when 1/N, 2/N, or in 
general M out of N inputs are concurrently active, without the 
ability to discriminate which particular inputs are active/ 
inactive. Notably, the operation of TLGs can be directly related 
to highly restricted neural networks, where all the input 
weights are the same and the designer retains control of the 
threshold level, as TLGs were indeed originally conceived [1]. 
The property of linear separability is maintained by TLGs. 

Introducing weights at the inputs of TLGs turns them into 
restricted ANNs by allowing the tilting of the TLG threshold 
plane much like the hyperplane separator in an ANN. The input 
space remains binary, but the contribution of each input is 
moderated by a weight. Unlocking further flexibility can 
essentially upgrade TLGs to full artificial neural networks 
(ANNs). Specifically, if the input space is now permitted to be 
continuous (or even above-binary fixed-resolution) we obtain a 
typical perceptron with a step activation function, as illustrated 
in 1d. Linear separability is thus maintained, and if the weights 
are constrained to positive values (e.g. within the typical 
interval [0,1]), the slope of the line can only take negative 
values as per 1d. 

 
Fig. 1. Examples of ways of splitting 2D input spaces into output 0 (green) 
and 1(orange). (a-c) Binary input space. (a) AND gate, (b) OR gate, (c) XOR 
gate. (d-f) Continuous input space. (d) Linear separation, (e) receptive field 
separation, (f) double-threshold separation, in this cse implementing the 
NAND equation𝐴𝐴 ∧ 𝐵𝐵�������. 

B. Beyond linear separation – receptive fields 
Computational units, in principle, need not separate their 

input spaces using hyperplanes. This is exemplified both in 
nature, through neurons featuring receptive fields, which might 
look as in Fig. 1e, and in digital logic by the use of the non-
linearly separable XOR gate (Fig. 1c) and its higher 
dimensional generalisations. 

The XOR gate (and its XNOR and higher dimensional 
‘exactly M out of N’ or ‘between K and M out of N’ 
counterparts) are not arbitrary look-up tables (LUTs), but 
rather exploit symmetries in the input space. Similar to TLGs, 

they cannot discriminate between individual inputs. 
Nonetheless, even if particular symmetries are not exploited, 
digital circuits, built to pick specific patterns in an arbitrary 
LUT manner, can also be conceived. They differ qualitatively 
from TLGs (and generalised XORs) in that they are neither 
constrained by linear separability, nor by symmetry. What is 
common to these approaches, however, is that specific areas of 
the input space are picked and mapped directly to the desired 
output (e.g. a digital 1), rather than splitting their input spaces 
with hyperplanes. 

Transitioning to a continuous input space, the same concept 
generalises quite naturally to receptive fields. They may be as 
simple as picking up a band of auditory frequencies (selecting 
a –weighted- range out of a 1D input space) or as complicated 
as Gabor filter-like patterns in retinal cells [8]. In principle, 
receptive fields in a continuous input space, just like LUTs in 
binary spaces, can, but need not necessarily exploit 
symmetries. They are there to scan for specific input patterns, 
i.e. essentially perform template matching, a form of 
clustering, much like may be found in the first layers of a 
typical convolutional neural network (CNN) [9]. 

Naturally, receptive field and hyperplane-based space 
partitioning are closely interrelated, it being possible to 
express one as a synthesis of elements of the other. In other 
words, a receptive field can be synthesized out of hyperplane 
separators and a hyperplane partition can be synthesized out of 
appropriate combinations of suitable receptive fields. This can 
be achieved within the context of multi-layered ANNs, or 
equivalently combinatorial circuits using cascades of multiple 
gates or LUTs for binary spaces. 

C. Between linear separation and receptive fields 
An important element of linear space separation, as 

implemented in ANNs, is dot product multiplication. Within 
the context of data classification as input space splitting, we 
propose an alternative to hyperplane-based partitioning that 
requires no explicit multiplication. This is illustrated in 1f, 
where two thresholds (one for each input dimension) combine 
in an OR fashion in order to split the space in a ‘L’ shape. In 
turn, classification into output 1 and 0 can be carried out by 
two thresholding/comparisons and a simple logical operation, 
thus obviating the need for multiplication that could be an 
inherently computationally intensive operation. 

This can be interpreted as a receptive field, or as an 
approximation of a linear, hyperplane cut. In that vein it can 
also be interpreted as sitting between traditional neurons 
(separation of a continuous input space using a simple shape – 
but not a single hyperplane) and logic gates (space splitting 
expressible as N thresholding plus one logic operations). 

III. IMPLEMENTATION EXAMPLES 
Countless approaches exist for implementing plane 

splitting in hardware. These range from gates and digital 
system (e.g. FPGA) approximations to such analogue blocks 
as transistor-based fuzzy gates [10]. In this work we focus on 
a set of approaches exploiting memristive technologies as 
developed in our group. Our purpose is to relate memristor-
based circuit design approaches to the quest for accelerator 
hardware specialized for AI-relevant computation. 



A. Threshold Logic Gates 
The introduction of traditional threshold logic gates (TLGs) 

was the result of continuous progress in the area of TL circuit 
implementations towards the development of a brain-like 
computer. Many different TLG circuit designs exist, with 
differential input current-mode TLGs as a front-running 
candidate due to their low power and high performance 
operation, as well as the compatibility with existing nanoscale 
conventional computing architectures [11], [12]. The circuit 
implementation of Current-Mode TLGs [13] consists of two 
parts: the differential and the sensor parts. The part 1 receives 
the input and threshold vectors at corresponding N-input 
differential pair networks. Part 2is the thresholding element of 
the circuit, which detects the difference in currents flowing 
through the input and threshold branches of part 1 and 
amplifies them to a digital answer indicating which is higher. 

Fig. 2a shows a memristor-enhanced current-mode TLG 
design. The differential branches consist of parallel 
memristively source-degenerated pMOS transistors (1T1M) 
[14].Memristors are employed as the analogue weights at the 
input/bias binary signals. Using memristors has the advantage 
of introducing highly localised, continuously tuneable, minimal 
front-end footprint and low-voltage operated memory into the 
TLG, thus providing a decisive advantage in the 
implementation of memory-heavy ANN accelerators [15]. 

 
Fig. 2. Circuit schematic (2a) and measured results of the sensor part outputs 
regarding the OR/NOR and AND/NAND functions (2b) for the upper and 
lower trace, respectively. The schematics in (2c) and (2d) showcase the 3D 
space split for the AND and OR threshold function, respectively.  

The measured results (Fig. 2b) are extracted from a 3-
element input vector and 1-element threshold setting TLG 
circuit, where discrete resistors were used to emulate 
appropriately programmed RRAM devices. The upper trace of 
Fig. 2b shows the response for the {IN1, IN2, IN3; TH} = 
{22kΩ, 22kΩ, 22kΩ; 22kΩ} weight configuration which 
functions as a 3-input OR. The blue waveform is the measured 
response for the canonical output (CA) while the red waveform 
is the naturally provided complementary output (CO) by the bi-
stable latching sensor part. Similarly the lower trace of the Fig. 
2b presents the results of a 3-input AND/NAND TLG resulting 
from changing the threshold weight (weight config.: {22kΩ, 
22kΩ, 22kΩ; 7kΩ}). 

B. The template pixel (texel) 
Whereas receptive fields tend to be implemented using 

computationally intensive and multiplication-heavy 
convolutional layers in ANNs, memristor-enhanced circuits 
can directly implement receptive fields in hardware. An 
example of such circuit is shown in Fig. 3a [16].The first 
inverter maps each input voltage VIN to some voltage VMID; a 
mapping influenced by the values of the memristors inside the 
inverter. The 2nd inverter, is essentially scanning for a 
particular VMID value for which its transistors M3 and M4 will 
be simultaneously maximally conductive. At that preferred 
voltage Vpk, the current through the output transistor M6 is also 
maximised. As a result, the whole circuit uses memristors to 
map specific, programmable values of VIN to a maximum 
current Iout. This is shown experimentally in Fig. 3b, where the 
input voltage is swept between the power supplies (blue) as 
VMID (red) and Iout (green) are monitored. We observe that 
values of VIN within a narrow band of Vpk will also lead to high 
Iout, therefore, the system implements a 1D receptive field with 
the selectivity profile shown in Fig 3b. The precise range of 
values falling within or outside the receptive field is also 
determined by the chosen Iout threshold level. 

 
Fig. 3. Receptive field-based input plane-splitting using memristive circuits. 
(a) Circuits schematic showing memristor enhanced inverter (stage 1) and 
read-out circuit (stage 2). In this case the output quantity is IOUT. (b) Measured 
input signals from circuit in (a). IOUT peaks in a narrow range of input voltages 
around 0.7V and is indirectly measured as voltage dropped across a 1MΩ 
resistor. (c) The result of linearly summing IOUT from two identical texels 
(equivalent voltage drop down 1MΩ resistor – simulated extrapolation of data 
from (b)). RUP=10.5kΩ, RDN=11.5kΩ. Adapted from [17]. 

 
Combining the outputs of multiple texels leads to higher 

dimensional receptive fields, the specific manner of interaction 
between texel outputs will determining the rules of 
composition. Summing Iout currents, for example, will lead to 
fields as shown in Fig. 3c. This is a straightforward current 
summation; easily implementable and avoiding any 
multiplication, which is another option for higher D receptive 
field composition. There is no reason why other designs 
featuring more complicated circuits cannot be used to 
implement more flexible or complex receptive fields. 



C. Fuzzy Gates 
The texel circuit is an enhancement of the classical 

inverter. Separation of an input plane in ‘L’ shapes as shown 
in Fig. 1f can be achieved in hardware using an equivalent 
memristor-based enhancement of higher level gates, such as 
the NAND, shown in Fig. 4a and explored in [17]. Observing 
how a memristor-enhanced NAND maps its 2D input space to 
analogue outputs (Fig. 4b) we note that: a) choosing a fixed 
voltage threshold will always cut the plane into a ‘L’ shape 
and b) the input/output relationship bears some resemblance to 
a fuzzy gate. Hence we dub the enhanced NAND as a ‘fuzzy 
NAND’ implementing a non-standard flavour of fuzzy logic 
determined by the electrical characteristics of the components 
involved. We note that once a threshold is introduced, the 
fuzzy gate implements the logic 
equation(𝐴𝐴 > 𝐴𝐴𝑡𝑡ℎ) ∧ (𝐵𝐵 > 𝐵𝐵𝑡𝑡ℎ)����������������������������� , where A, B are the inputs 
and 𝐴𝐴𝑡𝑡ℎ, 𝐵𝐵𝑡𝑡ℎ their respective thresholds. This is opposed to the 
corresponding McCulloch Pitts arithmetic equation 𝐴𝐴𝑤𝑤𝐴𝐴 +
𝐵𝐵𝑤𝑤𝐵𝐵 > 𝜃𝜃 , where 𝑤𝑤𝐴𝐴,𝑤𝑤𝐵𝐵  are the weights corresponding to 
inputs A and B and 𝜃𝜃 the threshold value separating an output 
0 from an output 1. 

 
Fig. 4. Double threshold-based plane-splitting using memristive soft gates. 
(a) Soft NAND circuit topology. (b) Measured soft NAND behaviour. Setting 
an output voltage threshold at an intermediate voltage level will split the plane 
according to the double-threshold methodology shown in Fig. 1f. Side note: 
The reduction of the NAND to soft inverters as marked on the figure are 
essentially activation functions along each dimension (outside scope of 
current paper). RA= 3.5kΩ, RB=0.5kΩ, RC=4kΩ. Figure modified from [17]. 

 
Reconfiguring a fuzzy gate mainly involves the 

appropriate tuning of memristors RA and RB,which 
independently control the shape of the fuzzy input/output 
mapping along each input space dimension respectively. 
Therefore, setting the precise thresholds 𝐴𝐴𝑡𝑡ℎ, 𝐵𝐵𝑡𝑡ℎ  is 
controllable in a straightforward manner that required no 
complicated calculations of any interaction effects between RA 
and RB. In principle, if the input signal ranges are mapped to a 
subset of the full power supply and the memristive devices are 
programmed appropriately, 𝐴𝐴𝑡𝑡ℎ and 𝐵𝐵𝑡𝑡ℎ  may move entirely 
outside the valid input space shown in Fig. 1f, thus reducing 
the system to a (vertical or horizontal) plane separator. In any 
other case, the inverter ‘L’ shape continues to enforce a 
fundamentally NAND structure, as recognised by the fact that 
the (0,1), (1,0) and (1,1) corners will always lead to output 1 
and corner (0,0) to output 0.Similar observations apply to the 
fuzzy NOR and the basic principle of enhancing gates with 
memristors generalises naturally to higher dimensionality 

gates (allocate 1 memristor to each fuzzy gate input, as was 
done with RA and RB in the 2-input case). 

Finally, a basic difference between the full texel circuit 
and the multiple input fuzzy gates is that the latter need no 
output stage and communicate directly in a voltage in/voltage 
out manner, thus allowing in principle for natural chaining of 
said gates. 

IV. DISCUSSION & CONCLUSIONS 
In this work we are discussing data classification within 

the context of splitting an input hyperplane space and relate 
some significant methods of plane splitting to corresponding 
memristor-based circuit implementations. The common aspect 
in all circuits presented, is the use of memristors as analogue 
tuning elements within what would in absentia of these 
devices be a purely digital, standard circuit. We thus 
exemplify how intimately intertwining memristors with 
existing electronic technologies can begin to transform a 
design strategy that has worked well for our fully digital 
world, into an approach more directly optimised for data 
classification (plane splitting). 

In this work, we have deliberately restricted ourselves to 
systems that split the input space via clear-cut binary 
decisions. Naturally, a new degree of freedom is unlocked if 
we move away from the simple McCulloch-Pitts-like step 
activation function and into different functions such as ReLU 
[18], sigmoids [19] etc. However, this would require the 
development of (ideally very simple) read-out structures that 
modularly attach to the output of the circuits shown in Figs. 2-
4 and transform it using the desired activation function. 
    Furthermore, we noted that in principle, given enough 
layers in the plane-splitting network, input space slicing can 
be achieved by using either traditional hyperplane, or 
receptive field or perhaps ‘L’-shaped splitting techniques (or 
even a combination of the above). The choice of splitting 
strategy has significant impact on the methodologies that must 
be used for successful learning of the structure of any given 
input space. Traditional neural networks make use of e.g. error 
gradients for powering back-propagation-based approaches 
[20] and hence the importance of activation functions. It is an 
interesting and complex subject of further work to see exactly 
how learning in receptive field/L-shape-based networks might 
function and how this might compare to traditional ANNs. 
   In summary, we envision this approach to be key in 
developing next-generation electronic platforms that can meet 
modern societal requirements and constraints. On one side, 
real-time clustering and classification becomes increasingly 
important across a wide spread of applications that have in 
common the generation of big-data from a variety of sensory 
nodes. On the other side, these “computation substrates” must 
be designed within stringent power/area budgets for meeting 
the demanding specifications of emerging applications, e.g. 
autonomous vehicles and/or embedded monitoring platforms.  

REFERENCES 
[1] W. S. McCulloch and W. Pitts, “A logical calculus of 

the ideas immanent in nervous activity,” Bull. Math. 
Biophys., vol. 5, no. 4, pp. 115–133, 1943. 



[2] C. Bartolozzi and G. Indiveri, “Synaptic Dynamics in 
Analog VLSI,” Neural Comput., vol. 19, no. 10, pp. 
2581–2603, 2007. 

[3] L. Chua, “If it’s pinched it’s a memristor,” Memristors 
Memristive Syst., vol. 9781461490, pp. 17–90, 2014. 

[4] S. Stathopoulos et al., “Multibit memory operation of 
metal-oxide bi-layer memristors.” 

[5] L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, 
X. Hui, and T. Prodromakis, “Memory Impedance in 
TiO2 based Metal-Insulator-Metal Devices,” Sci. Rep., 
vol. 4, no. 1, p. 4522, 2015. 

[6] A. Khiat, P. Ayliffe, and T. Prodromakis, “High 
Density Crossbar Arrays with Sub- 15 nm Single Cells 
via Liftoff Process Only,” Sci. Rep., vol. 6, no. 1, p. 
32614, 2016. 

[7] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and 
W. D. Lu, “Sparse coding with memristor networks,” 
Nat. Nanotechnol., no. May, 2017. 

[8] I. Hayashi and J. R. Williamson, “A Formulation of 
Receptive Field Type Input Layer for TAM Network 
Using Gabor Function,” 2004. 

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 
“ImageNet Classification with Deep Convolutional 
Neural Networks,” Adv. Neural Inf. Process. Syst., pp. 
1–9, 2012. 

[10] V. Catania and M. Russo, “Design of basic hardware 
gates for efficient fuzzy computing,” Proc. Fourth Int. 
Conf. Microelectron. Neural Networks Fuzzy Syst., pp. 
100–109, 1994. 

[11] C. B. Dara, T. Haniotakis, and S. Tragoudas, “Delay 
Analysis for Current Mode Threshold Logic Gate 
Designs,” vol. 25, no. 3, pp. 1063–1071, 2017. 

[12] S. Leshner, N. Kulkarni, S. Vrudhula, and K. 

Berezowski, “Design of a robust, high performance 
standard cell threshold logic family for DSM 
technology,” Proc. Int. Conf. Microelectron. ICM, no. 
Icm, pp. 52–55, 2010. 

[13] S. Bobba and N. Hajj, “Current-Mode Threshold 
Logic Gates,” pp. 4–9, 2000. 

[14] C. B. Dara, T. Haniotakis, and S. Tragoudas, “Low 
Power and High Speed Current-Mode Memristor-
Based TLGs,” IEEE, pp. 89–94, 2013. 

[15] A. Kumar Maan, D. Anirudhan Jayadevi, A. 
Pappachen James, and S. Member, “A Survey of 
Memristive Threshold Logic Circuits,” IEEE Trans. 
Neural Networks Learn. Syst., 2016. 

[16] A. Serb, C. Papavassiliou, and T. Prodromakis, “A 
memristor-CMOS hybrid architecture concept for on-
line template matching,” Proc. - IEEE Int. Symp. 
Circuits Syst., pp. 1–4, 2017. 

[17] A. Serb, A. Khiat, and T. Prodromakis, “Charge-based 
computing with analogue reconfigurable gates,” 2017. 

[18] K. Hara, D. Saito, and H. Shouno, “Analysis of 
function of rectified linear unit used in deep learning,” 
Proc. Int. Jt. Conf. Neural Networks, vol. 2015–Septe, 
2015. 

[19] C. H. Tsai, Y. T. Chih, W. H. Wong, and C. Y. Lee, 
“A Hardware-Efficient Sigmoid Function with 
Adjustable Precision for a Neural Network System,” 
IEEE Trans. Circuits Syst. II Express Briefs, vol. 62, 
no. 11, pp. 1073–1077, 2015. 

[20] R. Lister and J. V Stone, “Error functions, error 
signals, and conjugate gradient back propagation,” 
Artif. Neural Networks Conf., no. 409, pp. 26–28, 
1995. 

 
 


	I. Introduction
	II. Theoretical background
	A. Linear separation
	B. Beyond linear separation – receptive fields
	C. Between linear separation and receptive fields

	III. Implementation Examples
	A. Threshold Logic Gates
	B. The template pixel (texel)
	C. Fuzzy Gates

	IV. Discussion & Conclusions
	References


