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Abstract—The ability to identify (detect) and categorise (sort)
neural spikes in real-time and under highly restrictive power/area
budgets is a major enabling technology towards the development
of intelligent implantable systems. In this work we propose a
memristor-CMOS hybrid architecture concept that relies on a
‘template pixel’ (texel) circuit combining CMOS and memristive
devices to perform on-line spike sorting through template match-
ing. We show through simulation how the texel is capable of
comparing an input voltage against a stored (in the memristors)
value and converting the degree of matching between input
and stored pattern into a current. We further illustrate the
fundamental texel design space that includes tuning it to a
different preferred input voltage and controlling the sharpness
of the tuning. Finally, we estimate that even in an unoptimised
technology and design a texel array capable of recognising
three different 10-point patterns will consume a very promising
maximum of 3.15µW for a footprint of approx. 500µm2.

Index Terms—CMOS, memristors, spike sorting

I. INTRODUCTION

A key component of the global effort to understand the
functioning of the human brain pertains to the development
of brain-machine interfaces capable of recording neuronal
activity in-vivo; itself a whole research area progressing under
its own version of Moore’s law [1]. Typically, large-scale
neural activity monitoring is achieved through implantable
systems that consist of three broad blocks: a) an electrode array
[2], b) an Analogue Front-End (AFE) block usually consisting
of amplification, filtering and digitisation [3], c) a signal
processing block (Back-End) that may either concentrate on
performing single-neuron activity detection (spike detection
[4] or sorting [5]) or include Local Field Potential (LFP)
extraction [6] and d) telemetry for transmitting the extracted
data to the external receiver (Fig. 1).

In this work we concentrate on the back-end block and
specifically single-neuron activity detection. At the algorith-
mic level this is currently achieved through a multitude of
approaches such as threshold detection [7], non-linear energy
operator [8], template matching [9] and others; each offering
a different solution on the implementation complexity vs.
accuracy trade-off space [10]. What all these methods share in
common, however, is the objective of compressing a high data-
rate voltage-time series signal arriving from the AFE block
into a low data-rate/high-information output signal encoding
the timing of neuronal action potentials (spikes) only, while
suppressing noise (fig. 1).

Fig. 1. Processing neural data. (a) Typical example of single-unit neural
activity monitoring system channel architecture. Shown are: (i) the electrodes,
(ii) the analogue front end, (iii) the signal processing (back-end) block, (iv)
the telemetry and antenna module. Below, the progressive transformation of
the raw waveform into a low bandwidth raster plot is shown as the signal
propagates through the system. (b) Template matching basics: The noisy action
potentials identified as originating from the same neuron are aligned (e.g.
peak-aligned) and aggregated (gray shade), an average waveform is extracted
(black trace - left panel) and the corresponding template is built from its
samples (right panel). Notably, the template may not last exactly as long as
the stereotyped action potential waveform.

At the implementation level on-chip spike detectors and
sorters have to: a) operate using minimal area and power bud-
gets, b) achieve maximum data compression to ease the power
budget of the telemetry block and c) avoid placing excessively
area/power expensive signal preconditioning requirements on
the AFE block. Whilst architectures utilising fully digital
[11] and mainly analogue [5] techniques seeking to address
these requirements have already been proposed, more recently
we have demonstrated a memristor-based methodology for
spike detection and rudimentary sorting [12]. Memristors are
electronic components that change their resistive state when
appropriate voltages are applied across their terminals and can
be practically implemented using a variety of technologies
[13]. This fundamental property allows memristors to act as
thresholded integrators, an ability that the proposed memristor-
based system exploits in order to perform threshold detection
of action potentials in a single component.

In this work we build on [12] by presenting a memristor-
CMOS hybrid circuit for performing non-rudimentary on-line



spike sorting via template matching. The CMOS component
performs the template matching in the analogue domain whilst
the memristors are used to store the template library in an area-
efficient way (leveraging their back-end-of-line integrability).
The rest of the paper is organised as follows: In section II the
operating principles and architecture of the proposed circuit
are shown. Section III shows simulation results detailing the
limits of configurability afforded to the template matching sys-
tem by the memristive components whilst section IV discusses
some of the important practical operating considerations and
concludes the paper.

II. CONCEPT AND OPERATIONAL PRINCIPLES

Template matching-based spike sorting systems rely on the
basic principle that action potentials emitted by the same
neuron will be recorded as stereotyped waveforms as shown
in fig. 1(a). Repeatedly time-sampling these stereotyped wave-
forms allows the generation of templates that a discrete-time
system such as our proposed one could then recognise and
discriminate from other templates. We shall refer to each
template sample as a ‘template pixel’ (’texel’).

A. Overall system architecture

The cornerstone of the proposed architecture is a standard-
ised, programmable texel circuit that assembles into arrays
capable of scanning conditioned input signals for the presence
of spikes on-line, as shown in Fig. 2. The system operates as
follows: Each channel receives a preconditioned neural data
signal f(t) from the AFE which then feeds into a comparator
(U1). Once f(t) exceeds ‘spike detection’ threshold TH1 a
spike is considered to be occurring (a technique also used
in [4]). That triggers the Finite State Machine (FSM) which
draws a fixed number of incoming analogue input signal
samples and distributes them to a bank of Sample & Hold
(SH) circuits; effectively an analogue register. Every tap in
the register then feeds an entire column of texels, but only
texels that receive an input sufficiently close to their preferred,
programmed input will respond by outputting a current on to
the output line of the template they belong to. The different
spike templates to be recognised are stored in the different
texel rows of the array. The current entering the output line of
each template is integrated on a capacitor (C1) for a suitable
amount of time and if an adjustable ‘spike recognition’ thresh-
old TH2 is exceeded a spike belonging to the corresponding
template is registered. This small-bandwidth/high-information
flag signal can then be transmitted outside the body. At the
end of the entire procedure C1 is reset. The system operates
in discrete time as concerted by a clock enforcing a suitable
sampling rate (typ. 7− 28 kHz [10]).

B. Block description

1) Input comparator, FSM and SH: The comparator can
be implemented using either a standard low power clocked
latch design (Fig. 3(a)) or a continuous time operational
amplifier. In the former case power will be saved, but in the
latter the expected reduction in sampling jitter may improve

Fig. 2. Block diagram level of proposed system architecture (1 channel).
The input signal f(t) is fed into a comparator and an FSM. Once the
‘spike detection’ threshold TH1 has been exceeded the FSM is activated
and distributes a series of input signal samples to a bank of sample & hold
circuits. These samples feed the texel array where they cause each texel to
respond by pumping current onto its corresponding template output line. The
closer the match between input and stored template, the higher the current.
Individual templates are stored in texel rows. The aggregate template output
current is integrated on C1 and if C1 charges above the ‘spike recognition’
threshold TH2 the respective template emits a flag.

Fig. 3. Supporting circuitry modules. (a) Low power clocked comparator. (b)
Sample and hold circuit. I1 and I2 can be gated to save power. I1 should be
operational only when a sample is being loaded and I2 when the inputs to
the entire texel array are ready and an answer needs to be computed.

performance accuracy. The FSM can be implemented either as
a counter or as a linear one-hot register, in both cases feeding
a multiplexer. The multiplexer, in turn, routes a succession of
input signal samples to the SH bank. Once triggered the FSM
cannot be re-triggered until the SH bank is full. Finally, the
SH circuit is implementable using the switch capacitor circuit
topology carrying out correlated double sampling in CMOS
imagers [14] (Fig. 3(b)). In the present system, however,
the input is single-ended. The optimisation of the circuitry
supporting the texel array lies outside the scope of this paper.

2) The texel: The basic architecture of the texel is shown
in Fig. 4 and consists of two stages. The first stage is an
inverter where a memristor-based potential divider has been
introduced between its transistors. By changing the resistive
states of the memristors the switch point of the inverter can be
shifted (see Fig. 4(b,c)). The second stage is another inverter,
this one fed through a mirror supply. The output of the texel



Fig. 4. Texel architecture and basic operation. (a) Circuit diagram with ele-
ments belonging to the test bench used for (b,c) coloured red. Rload = 1 kΩ.
The memristive devices are marked as R1, R2. (b,c) Examples of texel
operation for (b): R1 = 1MΩ, R2 = 10MΩ and (c) R1 = 3MΩ,
R2 = 0.1MΩ. The input voltage is swept from GND to VDD over 1 s
while current through the three branches (upper panels) and voltage at key
nodes (lower panels) is monitored. The control of Vpk through the values
of R1, R2 is evident, as is the ‘plateau’ region where the memristor divider
dominates the overall resistance of stage 1.

circuit is not the voltage, but the current draw of the second
stage inverter, reflected in Iout. This is maximised when the
voltage at node ‘MID’ VMID is such that both M3 and M4
are simultaneously maximally open, which will occur at some
value Vpk determined by the sizing of M3 and M4. The end
result of this topology is that by shifting the switch point
of stage 1 the texel input voltage causing VMID = Vpk and
consequently Iout to reach its maximum can be controlled.

The operation of the texel can be understood by exam-
ining two transfer characteristic (Iout = f(VIN )) examples
illustrated in Fig. 4(b,c), each for a different configuration of
memristor values. In one case, Iout spikes at VIN ≈ 0.66V
whilst in the other case the spike occurs at ≈ 1.04V yet
the fundamental operation mechanism is common. M1, M2,
R1 and R2 form a four-component potential divider where
for each value of VIN every component shows a fixed static
resistance (Rstat(VIN ) ≡ R(VIN ) = V (VIN )

I(VIN ) ). Sweeping VIN
reveals its effect on the balance between these resistances: in
both cases the current in stage 1 follows a table-hill form. At
the ‘table-top’ region of the curve the dominant R is the series
combination of the two memristors (R1, R2) as evidenced by
the fact that VMID is largely constant and determined roughly
as Vdiv ∝ R2

R1+R2 . At the ‘foothill’ regions the gate-source
voltage VGS of either M1 or M2 has begun to sink below
threshold (Vth) letting it dominate the divider.

So long as Vdiv 6= Vpk, it is at one of the foothills that
VMID will become equal to Vpk and Iout will maximise.
The sum of R1 + R2 and its relation to the VIN -dependent

static resistances of M1,2 defines the range of input voltages
for which the memristors dominate the divider and therefore
VMID cannot reach Vpk. Meanwhile the ratio R2

R1+R2 deter-
mines Vdiv and thus indirectly the shape of the foothill regions
and consequently the point where VMID = Vpk.

The texel can also be operated at the table-top region.
Keeping the ratio between R1 and R2 such that Vdiv ≈ Vpk
will allow Iout to maximise for a range of VIN voltages
determined by the sum R1 + R2. This can be useful when
the entire length of the pattern need not be defined. Any texel
may be tuned to a broad range of input signals (always on)
by setting Vdiv ≈ Vpk and maximising R1 +R2.

Finally, the second stage detects whether the output voltage
of the first stage is close to its preferred Vpk and outputs a
corresponding current in response. In both example cases Iout
is maximised at VMID ≈ 0.42V (max. Iout ≈ 250nA).

3) Read-out circuit: The read-out subsystem can use a
clocked latch-based comparator similar to the input compara-
tor. The reset signal that discharges the texel output integrating
capacitor can be globally shared. The option of integrating
texel output on a capacitor rather than measuring the potential
across a load resistor was chosen for power considerations.

III. SIMULATION RESULTS

In order to better understand the capabilities of the proposed
architecture the texel circuit was simulated over a broad range
of resistive state values for R1 and R2. Performance was then
assessed using three key metrics: a) The voltage at which
Iout peaks, b) the breadth of the voltage range for which
Iout ≥ Iout

2 and c) the maximum overall texel steady-state
power dissipation at its preferred VIN . Results are summarised
in Fig. 5. For these simulations TSMC 0.35µm technology
devices have been used, C1 and C2 are set to 1 pF (small
but controllably achievable in integrated implementations), and
V DD = 1.65V .

The simulations reveal a number of interesting trends:
First, Vpk is tunable within a range of ≈ 0.55 − 1.05V ,
which is broadly similar to the range defined by the power
supply minus the thresholds of the p- and n-MOS devices
[Vth,n, V DD − Vth,p] (approx. [0.50, 0.94]V in this technol-
ogy). Second, memristor resistive states within 0.1 − 5MΩ
suffice for covering a large part of that range. Third, the full-
width half maximum (FWHM) plot of Vpk indicates that to
some extent it might be possible to cover most of the Vpk range
at a controllable degree of sensitivity. The broader the FWHM
the blunter the ‘tuning curve’ of the texel (the broadness of the
Iout(VIN ) curve - Fig. 4(b,c)). Finally, the power dissipated at
VIN = Vpk increases, as expected, when both memristors drop
in resistive state, but remains at < 1.5µW for the majority of
the design range. It must be stressed that the power dissipation
when the texel is shown a non-preferred input will be generally
much lower, as can be inferred from Fig. 4(b,c).

In terms of overall power and area requirements (texel array
only) let us investigate a 3-template, 10-texel/template system
(30 texels). Power: we consider the case where a 10-point
input is being presented to the array and matches one of the



Fig. 5. Key texel performance indicators vs. memristor resistive states. (a)
Input voltage at which Iout reaches maximum Vpk . (b) Full-width half
maximum (FWHM) of Vpk . (c) Total texel power dissipation Ptot when
VIN = Vpk . Red and yellow crosses indicate the configuration of the
simulations in Fig. 4(b) and (c) respectively. Red dashed lines in (a,b) roughly
delimit regions where FWHM is broader than the majority of the design space.

stored templates. Whilst the texel array is computing the match
the matching row will consume approx. 10 pts · 1.5µW =
15µW whilst the non-matching rows will consume approx.
2 patterns · 10 pts · 0.5µA · 1.65V = 16.5µW for a total of
31.5µW (based on the ‘table-top’ current in Fig. 4(c)). If the
system operates at 12 kHz this comparison can be performed
at most at fsample/(pts/template) = 1.2 kHz. If we further
assume that a texel assessment can be completed within

1
fsample

≈ 83µs, then the maximum channel power dissipation
for an input signal consisting of a constant stream of back-
to-back matchable spikes drops to 3.15µW . Area: transistors
M4,5,6 occupying a W ·L of 120×1µm2 each, comprise the
majority of the total nominal transistor W · L of 415.5µm2

footprint (500µm2 incl. 20% overhead). Note: These calcu-
lations are intended to illustrate rough expected power/area
overheads only. The technology, transistors sizings and power
supply voltage are not optimised and the currents flowing
through the system are conservative (e.g. reasonable template-
wide match estimate obtainable with Iout < 250nA/texel).

IV. DISCUSSION AND CONCLUSIONS

The proposed architecture features its own set of design
considerations. First, the AFE block is affected through its
input signal range requirements (usable range of ≈ 0.5V ), the
most notable feature being the difference between input range
and power supply. This may be potentially addressed using
lower threshold transistors in suitable CMOS technologies, in
which case the supply voltage may be able to drop without
loss of performance. Another important consideration is noise.
This is mitigated by the capacitor in the SH circuit (Fig. 3(b))
and by the integrator-based read-out approach (Fig. 2). Next,
memristors are non-linear I-V elements which may render

control over the precise distribution of voltage in the first stage
of each texel challenging. This can be mitigated by using a
1/chip (or few/chip), normally-off programmer that programs
the texel array one row at a time; accessing the memristors
in each texel individually and manipulating them until the
pattern current is maximised at the correct input (currently
under development).

Simultaneously, the architecture inherently allows control
over the tuning sharpness for each template through adjustment
of TH2 in Fig. 2, shows great promise in terms of down-
scaling both in area (6 transistors/texel + back-end elements)
and power and obviates the need for an analogue-to-digital
converter (ADC) anywhere in the system.

In conclusion we have presented a concept architecture for a
memristor-CMOS hybrid on-line template matcher with a view
towards integrated implementation. We discussed the basic
operating principles, gave simulation results based on TSMC
0.35 micron technology illustrating the reconfigurability of
the texel circuit underlying the architecture and performed
back-of-the-envelope power and area overhead calculations.
With further optimisation this technology offers a potentially
disruptive solution to the problem of brain recording.
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