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Numerous empirical studies show that when people play social dilemma games in

the laboratory they often cooperate conditionally, and the frequency of conditional

cooperators differs between communities. However, this has not yet been fully-

explained by social dilemma models in structured populations. Here we model a

population as a two-layer multiplex network, where the two layers represent economic

and social interactions respectively. Players play a conditional public goods game on

the economic layer, their donations to the public good dependent on the donations

of their neighbours, and player strategies evolve through a combination of payoff

comparison and social influence. We find that both conditional cooperation and

social influence lead to increased cooperation in the public goods game, with social

influence being the dominant factor. Cooperation is more prevalent both because

conditional cooperators are less easily exploited by free-riders than unconditional

cooperators, and also because social influence tends to preserve strategies over time.

Interestingly the choice of social imitation rule does not appear to be important: it

is rather the separation of strategy imitation from payoff comparison that matters.

Our results highlight the importance of social influence in maintaining cooperative

behaviour across populations, and suggest that social behaviour is more important

than economic incentives for the maintenance of cooperation.
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I. INTRODUCTION

Many important issues can be framed as social dilemmas, or tensions between actions that

favour the interests of the individual (‘defection’ or ‘free-riding’) and those that favour the

group (‘cooperation’). Game theory is often used to analyse the prevalence of cooperation

in social and biological systems [1, 2], and in particular in social dilemmas [3] including

common fisheries [4] and water sources [5]. In standard one-shot social dilemma games

players typically choose from two distinct strategies: cooperate or defect. Previous analyses

of one-shot games in unstructured populations find that defection dominates the population

[6], a result that is at odds with the cooperation widely observed in both social and biological

systems [7].

Numerical simulations of single networked populations [8] have been extensively used to

examine the reasons that cooperation persists. These networks represent player interactions:

network nodes describe players and network edges describe the connections between them.

Combinations of networks are also studied, including multiple networks with edges formed

between them (interdependent) [9] and multilayered networks where ties between nodes are

not necessarily the same on each layer (multiplexes) [10].

The central mechanism through which cooperation is supported on single networks is

network reciprocity, or the formation of clusters of cooperators that avoid exploitation by

surrounding defectors [11–14]. Network reciprocity has been shown to increase on inter-

dependent networks for social dilemmas [15, 16], combinations of different games [17–19],

and in games where players’ fitness is defined as a weighted sum of their payoffs on each

layer [20–26]. On multiplex networks, cooperation is found to be increased [27–29] due to

“incoherent” players, who do not play the same strategy across all layers, generating a large

enough payoff through defection on some layer(s) to support cooperation on others.

Szolnoki and Perc [30] find that network reciprocity also supports conditional cooperators,

who decide to cooperate or defect dependent on others’ behaviour, along with the standard

binary ‘cooperate’ and ‘defect’ strategies. Playing explicitly conditional strategies on lattices

they found that the conditional strategies shield cooperative clusters from exploitation by

free-riders, encouraging cooperation.

Despite network reciprocity providing a key mechanism for the support of cooperation,

evidence for it in human laboratory experiments is disputed [31–33]. The most likely ex-
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planation for the results in [33] is that some players act as moody conditional cooperators,

who are more likely to cooperate if their network neighbours also cooperate. Numerical

simulations by Gracia-Lázaro et al. [34] support this hypothesis.

Conditional cooperation can also take the form of continuous strategies, for example

where players can decide how much to donate to the public good from a continuous range.

Thus while cooperators donate all they have and defectors donate nothing independent of

others decisions, conditional cooperators can choose to donate some intermediate amount

depending on what others have donated. (Note that this contrasts with the moody condi-

tional cooperation reported in [33] and modelled in [34], where the conditional cooperators

have a binary choice either to donate all or to donate none, and it is only the choice of action

that depends on how others behave.) There exists a range of empirical evidence that suggest

individuals use these kinds of conditional strategies [35], and furthermore, that participants

from different backgrounds exhibit different frequencies of conditional cooperation within the

population [36–39]. In general, there are two factors that influence how cooperative players

are in the laboratory: the first being real-life experiences akin to the public goods game,

and the second membership of a group where cooperation is strongly enforced. Members of

groups that discourage free-riding in real life cooperate more in the laboratory.

Conditional strategies have been included in a number of models by mapping the group’s

contribution to the player’s by some linear factor. Guttman [40] found that dominant

strategies were not unconditional, but included a component that exactly matched group

donations in the public goods game. Zhang and Perc [41] represented strategies as a piecewise

linear function, finding that the dominant strategy is one that free-rides for low contributions

and conditionally cooperates for higher contributions, due to the competing influences of

inter- and intra-group competition. Continuous strategies have also been studied in [42].

Mechanisms other than network reciprocity, such as non-payoff-based strategy updates

can also lead to an increased prevalence of cooperation. Cimini and Sánchez [43] mod-

elled the evolution of moody conditional cooperation on a network numerically using both

payoff-dependent and non-payoff-dependent update rules, including the voter model and re-

inforcement learning. Interestingly, it is reinforcement learning that generates populations

with similar prevalence of cooperation to that observed in the laboratory. Other studies find

increased cooperation if certain subsections of the population blindly imitate neighbouring

strategies, disregarding their neighbour’s payoff either probabilistically [44] or at key points
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in the network [45]. Lugo and San Miguel [46] updated strategies on a multiplex by con-

sidering both the payoff and the number of other players using a given strategy on a given

layer, and found that coordination of strategies only occurs when the payoffs are taken into

account.

Separating payoff- and non-payoff-based considerations has also been investigated on

multiplexes with separate layers representing payoff accumulation and strategy imitation.

Wang et al. [47] found reduced cooperation in a two-layer multiplex when one layer connects

nodes of similar degree and one layer connects high degree nodes with low degree ones. More

recently Amato et al. [48] investigated a model on a two-layer multiplex, where on one layer

a 2×2 matrix game is played, while the other acts as the opinion layer, on which it is assumed

that cooperation is encouraged. They find that the addition of the opinion layer leads to

either full cooperation across the multiplex or polarisation of cooperation and defection

across communities, depending on the parameters selected.

Inspired by the laboratory observations highlighting the relevance of conditional cooper-

ators and social influences [35–39], in this article we consider the two themes of conditional

cooperation and strategy updates that depend on a mix of economic and societal factors.

We investigate the tension between the economic and social influences on conditional coop-

erators by modelling the population as a set of individuals linked by a multiplex network and

playing a repeated version of the public goods game. Through this we seek to understand

the importance of social influence on conditional strategies, and the variation of conditional

strategies across the community.

The article is structured as follows: in section II we describe the details of the model.

Section III presents our results, where we establish the profound impact of both conditional

cooperation and societal pressures on levels of cooperation. Our findings support previous

empirical discoveries: the dominant factor in the preservation of cooperative strategies is

social influence, and this must be considered when modelling cooperation. We explain the

mechanisms by which cooperation is preserved by considering outcomes from simulations

where social influence either is or is not a factor, and investigate the robustness of our results

to the introduction of community structure. We conclude with a discussion in section IV.
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II. METHODS

In our model individuals play a public goods game (PGG), each player contributing con-

ditionally to the public good depending on what others have contributed. We divide each

generation of the game into two phases: firstly, a sequence of iterations of the conditional

PGG resulting in payoff accumulation, and secondly a strategy update phase that depends

on both economic factors and social influence. Players are linked by a multiplex network

consisting of two layers: one labelled ‘economic’ and the other ‘social’. Payoff accumulation

takes place on the economic layer, while both layers can play a part in strategy updates.

This structure enables us to vary the strength of economic and social interactions indepen-

dently. Consequently, for appropriate parameter settings, the model replicates results for

the standard PGG and also describes the conditional PGG both with and without social

influence.

Section II A describes the structure of the multiplex network. Sections II B and II C set

out the the rules for payoff accumulation and strategy updates respectively. Details of the

numerical simulations are given in II D.

A. Network structure

The players are placed on nodes in a multiplex Erdős-Rényi network [49] consisting of two

layers: the economic layer (mean degree 〈kp〉) and the social layer (〈ks〉), with N nodes on

each layer. The economic layer defines those with whom each node plays the game to gain

a payoff. Each node plays in multiple groups: the group in which the node is focal and the

groups in which each of the node’s neighbours is focal. The social layer defines those whose

strategy the player knows, but does not necessarily play against. Each player is assumed

to know the strategy of those with whom it plays the game, and so the payoff network is

a subnetwork of the social network. The economic layer is first generated by forming edges

between nodes with probability 〈kp〉
N−1 . Because the economic layer is a subgraph of the social

layer, the economic layer is first replicated into the social layer. The social layer is then

completed by adding additional edges to each node on the social layer so that the final

degree distribution matches that expected of an Erdős-Rényi network with mean degree

〈ks〉.
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B. Payoff accumulation

During payoff accumulation, each player plays a public goods game that is repeated for

L iterations. In each iteration, players make donations based on their conditional strategy

and receive payoffs. Each player i has a strategy ai ≥ 0 which describes how conditionally

cooperative they are. Free-riders play strategy ai = 0 whilst very cooperative players play

strategies ai � 0.

Each player has a maximum of one unit to donate in each group, and possible donations

range between zero and one. At each iteration l of the game, player i contributes

ci,g(l) =

aicg(l − 1) if cg(l − 1) < 1
ai

1 otherwise,
(1)

where cg(l) is the average contribution over all players in the group in iteration l. Critically,

the fact that ci,g(l) depends on cg(l−1) means that players typically do not donate the same

amount in every iteration, but instead donate an amount that is conditional on the level of

the group contribution in the previous iteration.

As in the standard public goods game, the payoff of player i is calculated by multiplying

the average group contribution (cg(l)) by an enhancement factor r, and subtracting the

amount donated by player i in that iteration:

pi,g(l) = r
ci,g(l) +

∑
j∈g,i6=j cj,g(l)

G
− ci,g(l) = rcg(l)− ci,g(l), (2)

where j ∈ g are the players in player i’s group, and G is the number of players in the group.

This process of payoff accumulation repeats for a single generation of L iterations. At the

beginning of a generation (l = 1) it is not known what each member of the group contributed

in the last iteration, and so the initial group contribution is set to cg(0) = 0.5. The minimum

generation length for a conditional game is therefore two. In the results we report below,

we set L = 2 since we find that our results are not strongly dependent on the value of L ≥ 2

(see Fig. A.2).

The total payoff Pi of player i is defined as the sum of their payoffs over the generation

length in each group in which they play the game:

Pi =

ki+1∑
g=1

L∑
l=1

pi,g(l), (3)
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where ki is the degree of node i and pi,g(l) is the payoff of player i playing in group g at

iteration l.

Note that if a player’s strategy ai is smaller than one, then over the generation their dona-

tions decrease, and conversely for a strategy higher than one donations increase. Therefore,

populations with an average strategy larger than one will donate large amounts, and popu-

lations with average strategy smaller than one will donate small amounts.

C. Strategy update rules

Following payoff accumulation players update their strategy using information from the

social layer with probability λ, or from the economic layer with probability 1 − λ. We call

λ the social influence strength.

Updates on the economic layer are designed to mimic a rational self-interest, and therefore

a player changes its strategy in an attempt to increase its payoff. Each player (i) in the

population selects a neighbour (j) in the economic network at random and compares payoffs

derived in the previous generation: if the payoff of the selected player is higher, player i

moves its strategy in the direction of player j by a factor θ (known from now on as the

imitation strength) and so the updated strategy is

ai(t+ 1) = ai(t) + θH(Pj > Pi)(aj(t)− ai(t)) (4)

where t labels the generations and H(x) is the Heaviside step function. Updating on the

social layer is designed to mimic a player’s desire to adjust their behaviour towards the

average of the community. The average behaviour is represented as the mean of the strategies

of player i’s neighbours in the social network, and updates occur by moving the player’s

strategy towards the average of the neighbours’ strategies on the social layer, āi, such that

ai(t+ 1) = ai(t) + θ(āi(t)− ai(t)), (5)

a rule that is similar to Deffuant opinion dynamics [50].

D. Numerical simulations

Our model extends the standard PGG on a network by including both conditional coop-

eration and social influence. We can tease apart the effect of conditional cooperation and
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social influence on cooperation by considering different parameter regimes. For example,

when λ = 0 only economic considerations are taken into account during strategy updates,

enabling us to study the effect of conditional cooperation alone. However, when λ = 1 only

social influence is important, and Deffuant-like opinion dynamics [50] are recovered. Simi-

larly when θ = 1 players copy each other exactly, and the standard PGG can be recovered

when λ = 0. Table I sets out each of the parameter regimes we will study and the conditions

that they describe.

Regime Social influence, λ Imitation strength, θ Initial conditions Plot colour

Conditional cooperation 0.1 0.9 Uniform, 0 ≤ ai ≤ 5 Red

and social influence

Conditional cooperation with 0 0.9 Uniform, 0 ≤ ai ≤ 5 Blue

economic considerations only

Standard PGG 0 1 Bimodal, ai ∈ {0, 5} Black

TABLE I: Parameter regimes for which numerical results are presented, defined in terms of

social influence and imitation strengths and initial strategy distributions. The colour used

for each regime in subsequent plots is also given.

Unless otherwise stated, in the results reported below, the number of nodes in each layer

is N = 500, and each run of the dynamics is for 20, 000 generations, or until the dynamics

have converged to a single strategy. Here we consider a population to have converged when

all members of the population share the same strategy. Due to the form of the strategy

imitation rules, and the lack of noise the population will not deviate from this value, and

so the simulations are stopped. The mean degree on the economic layer is 〈kp〉 = 4, and

the mean degree of the social layer is 〈ks〉 = 8. Unless otherwise stated each data point is

an average over 20 distinct, randomly initialised runs of the dynamics. Shading indicates a

single standard deviation from the mean over the 20 runs.

Two measures of cooperation are used. The first is the mean contribution averaged over

players, groups and iterations. If the amount donated by player i in iteration l to group g is

ci,g(l), then because a player with degree ki plays in ki + 1 groups, the average contribution

is

〈c〉 =

∑N
i=1

∑ki+1
m=1

1
ki+1

∑L
l=1 ci,gi,m(l)

LN
, (6)
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where gi,m is the mth group containing player i. The second measure of cooperation is the

mean strategy in the population

〈a〉 =

∑N
i=1 ai
N

. (7)

In the simulations each measure is calculated as an average over the last 2000 generations

to give the final average mean contribution and strategy.

III. RESULTS

We present results from numerical simulations for each of the three regimes described in

table I, before exploiting the independence of conditional cooperation and social influence to

explain the effect of each in turn. In section III A we first illustrate that both conditional co-

operation and social influence dramatically increase cooperation at low enhancement factors

compared to the standard public goods game. The reasons for the increased cooperation due

to conditional strategies is investigated in section III B, before further examining the effect

of social influence in section III C. In section III D we consider network structures closer to

those described in empirical studies of cooperation in communities [35–39].

A. Comparing the effects of economic and social influences

Fig. 1a plots the mean contribution 〈c〉 against the scaled enhancement factor η = r
〈kp〉+1

for each of the three regimes described in table I.

As expected, in the standard public goods game (Fig. 1a, black triangles) contributions,

and hence cooperation, are maintained on the network at scaled enhancement factors above

η = 0.7 (as in [14]). In contrast, with the introduction of conditional cooperation, (blue

circles), cooperation occurs above η = 0.2, whilst the introduction of social influence results

in large contributions for enhancement factors as low as η = 0.05 (red diamonds).

The differences between the three sets of results are caused by the differences in mean

strategies at each enhancement factor, as shown in Fig. 1b. The larger strategies at low

enhancement factors for λ = 0.1 confirm that the inclusion of social influence increases

cooperative strategies within the population.

Note that for λ = 0 and λ = 0.1, the points where there is rapid change in mean

contribution all occur when the mean strategy is close to the the critical value 〈a〉 = 1. As
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FIG. 1: The mean contribution (a) and strategy (b) plotted against the scaled

enhancement factor η = r
〈kp〉+1

for conditional cooperators on the multiplex: economic layer

only (λ = 0, red diamonds) and two-layer multiplex with social influence strength λ = 0.1

(blue circles). Here, the mean degree on the economic layer is 〈kp〉 = 4 and on the social

layer is 〈ks〉 = 8; and imitation strength θ = 0.1. Also plotted are results for the standard

public goods game (black triangles).
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highlighted in section II B, for strategies ai > 1 donations increase over the game iterations,

whilst the converse is true for ai < 1, and in general, large mean group strategies result in

larger contributions. Consequently, in the neighbourhood of 〈a〉 = 1, a small difference in

mean strategy results in a large difference in mean contribution. A striking feature of the

λ = 0.1 results is the dip in cooperation at η ≈ 0.2, a result we explain in section III C.

It is important to note that in Figs. 1a and 1b the probability of strategy update through

the social layer is only λ = 0.1, so the influence of the social behaviour is relatively small.

Yet even this low level of influence has a dramatic effect on the amount of cooperation in

the system. We confirm the dominance of social influence, varying the generation length

and mean social network degree, and finding that neither appears to have much impact on

the effect of social influence (appendix A.1, Figs. 7 and 8).

Fig. 2 shows that social influence has an equally dramatic effect on cooperation for two

other possible social imitation rules: either targeting the median of the group, or selecting a

random social neighbour’s strategy (essentially the voter model [50]). The latter is similar

to the way in which updates are performed on the economic layer, but on the social layer

the payoff of the randomly selected neighbour is not taken into consideration. We observe

that which social imitation rule is chosen makes little difference to the mean strategy within

the population. Due to the small groups and random initial conditions this is not surprising

for the mean and the median rules. However, the fact that on a structured population

selecting a neighbour at random on the social layer and blindly imitating it gives the same

results as imitating the mean of the social neighbours is interesting. It suggests that it is

the separation of strategy imitation from payoff comparison that is important rather than

the selection of a particular social imitation rule. We also observe that at low enhancement

factors, payoff comparison favours the lowest possible strategy value of zero, and so any

non-payoff based imitation rule increases the mean population strategy.

B. Isolating the effect of conditional cooperation: restriction to the economic layer

(λ = 0)

As discussed in II D, a measure of the level of cooperation is the mean strategy in the

population. In this section we show that the two key factors in determining the strategies at

equilibrium are the initial distribution and the enhancement factor. In order to demonstrate
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FIG. 2: The mean strategy plotted against the scaled enhancement factor η = r
〈kp〉+1

for

conditional cooperators on the multiplex, for three different social imitation rules:

targetting the mean of the social neighbourhood (blue circles), targetting the median (red

diamonds) and imitation of a random member of the social neighbourhood (black triangles)

this clearly we remove any network effects and consider a well-mixed population initialised

with just two strategies, ai(0) ∈ {a0(0), a1(0)}, where aw(0) defines one of two possible

strategies that player i may take. As players update their strategies by moving towards that

of a better performing player (Eq. 4), we can approximate the subsequent dynamics of the

distribution of strategies as two distinct strategies moving towards each other, eventually

coalescing at an equilibrium strategy determined by the relative rates of strategy imitation.

These rates are defined by the probability that a player with strategy av imitates another

player with strategy aw, that is the probability that the total payoff to player w, Pw, is larger

than the total payoff to player v, Pv, defined as Qvw. Under the above assumptions using
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a mean-field approximation we find that the equilibrium strategy 〈a〉(t) as t→∞ depends

on the difference in value of the initial strategies ∆a(0), and the ratio of the probabilities of

each strategy imitating the other

lim
t→∞
〈a〉(t) = a0(0) +

∆a(0)

1 +Q10/Q01

, (8)

where a0(0) is the initial value of the smaller strategy. The derivation of this result is given

in Appendix A.5.

The importance of the initial strategy distribution is clearly demonstrated by the presence

of a0(0) and ∆a(0) in Eq. (8). However, the key to understanding the dynamics of the

conditional game is the function Qvw, which depends on the number of possible group

compositions where Pw > Pv. Due to the form of the public goods game (Eq. (2)), at

larger enhancement factors there is a larger number of group compositions in which a more

cooperative player gains a higher payoff than in which a less cooperative one does. (See

section A.3 for further details.) Hence Q01 is increased and Q10 is decreased, and therefore

according to Eq. (8) increased enhancement factors lead to larger equilibrium strategies.

We further apply the above arguments to explain why conditional cooperation increases

cooperation in comparison to the standard PGG. In the conditional game cooperative strate-

gies are less easily exploited, and so the number of cooperative strategies needed in a group

for cooperation to flourish at each enhancement factor is lower, leading to higher frequencies

of cooperation in the conditional game in comparison to the standard PGG (as observed in

Fig. 1b).

Returning to the conditional cooperator game on a network, it is the relative probabilities

of one strategy imitating another, along with network reciprocity that explain the results in

the absence of social influence (λ = 0). (See the appendix for further details.)

C. The effect of social influence (λ = 0.1)

We now explain the difference in cooperation between parameter regimes (Fig. 1b) by

considering the combination of the mean strategies on the two layers. Taking each layer

separately, the dynamics on the social layer attract the population towards the initial mean

strategy, owing to the Deffuant-like strategy update rule (Eq. (5)), whereas updating strate-

gies on the economic layer shifts them towards a value dependent on the enhancement factor.
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Competition between the dynamics on the two layers results in the equilibrium mean strat-

egy observed for each value of λ.

At each enhancement factor in Fig. 1b the initial population mean strategy (〈a〉(0) = 2.5)

is higher than the equilibrium strategy found by the economic layer dynamics alone. Thus

at low enhancement factors the introduction of social pressure increases the mean strategy

above one, and so the contribution to the public good is dramatically increased. This

effect is less pronounced for higher enhancement factors because the difference between the

equilibrium strategies with and without social influence is reduced, and at some enhancement

factors the equilibrium strategy without social influence is higher. We illustrate this effect

by plotting strategy distributions for a single run of the dynamics in Fig. 3, where we

observe that for dynamics where social influence is included (λ = 0.1, red histogram) the

mean strategy is closer to the initial population mean and the strategy distribution is much

narrower than for λ = 0.

The differing equilbrium strategies on the two layers also explain the split in behaviour

of the mean strategy above and below η = 0.2 (Figs. 1b, 2, 4b, 7 and 8). Eq (A.17) in

section A.4 shows that the critical enhancement factor above which any positive strategy

performs better than a free-rider in direct competition is ηc = 0.2. Above this enhancement

factor, previous arguments that the mean strategy is a combination of economic and social

equilbrium strategies hold. However, below it the equilibrium strategy on the economic layer

is decoupled from the enhancement factor (as the equilibrium strategy on the economic layer

is zero for all η < 0.2). Furthermore, at enhancement factor η = 0, payoffs on the economic

layer are given by the negative of the player’s contribution (2). Owing to the distribution

of initial strategies many players contribute c = 1 initially, so there is no difference between

them in economic payoff and thus social influence dominates strategy imitation halting the

slide to free-riding that would otherwise occur. As the enhancement factor increases from

zero, the economic payoff gradually becomes more strongly coupled to strategy through the

increasing importance of the group contribution (Eq. (2)), and so the overall equilibrium

strategy is attracted towards the economic equilibrium strategy.

The importance of social influence in shifting the mean strategy towards the initial popu-

lation mean is further supported by comparing results for a smaller range of initial strategies

with a lower initial mean (uniform distribution, 0 < ai < 2, Fig. 4), with the results in Fig. 1a

(uniform distribution, 0 < ai < 5).
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FIG. 3: The distribution of strategies after t = 1000 generations. Plotted from a single run

of the dynamics updating using the economic layer only (λ = 0, blue line) and social

influence (λ = 0.1, red line) for enhancement factor η = 0.3, mean economic degree

〈kp〉 = 4 and mean social degree 〈ks〉 = 8.

Comparing the contribution for the high and low mean initial distributions (Figs. 1a

and 4a respectively) the mean contribution for low mean initial conditions is lower for all

enhancement factors compared to the high mean initial conditions. As might be expected,

social influence slightly depresses the mean strategy and consequent contributions at high

enhancement factors for the low mean initial conditions, because it entrenches the impact of

initial strategies that are lower on average than the purely economic equilibrium strategy for

higher enhancement factors. The lower mean strategies and cooperation in Fig. 4 compared

to Fig. 1 confirm the importance of the initial distribution of strategies, as also observed in

Eq. (8).
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FIG. 4: The mean contribution (a) and strategy (b) plotted against the scaled

enhancement factor η = r
〈kp〉+1

for conditional cooperators on the multiplex. The mean

strategy is compared for the economic layer only (λ = 0, blue circles) and the two-layer

multiplex with social influence strength λ = 0.1 (red diamonds), with initial strategies

selected at random from a unifom distribution 0 < ai < 2. The dynamics are run for mean

degree 〈kp〉 = 4 on the economic layer and 〈ks〉 = 8 on the social layer, and imitation

strength θ = 0.1.
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D. The effect of community structure

In this section we study the behaviour of the model on a network designed to resemble

the populations observed in empirical investigations [35–39]. These communities tend to be

small, with a large number of connections between people and so we use the block network

[51] structure to model them. We first create the economic layer by building a number of

complete networks, or ‘communities’. Edges between nodes in different communities are

formed on the economic layer with probability pBR = pe ∀B,R where B and R label the

communities. The social layer is a replica of the economic layer. An example of the economic

network used in this section is shown in Fig. 5.

We run our model dynamics on a community network, and find that for disconnected

communities the distribution of strategies mimics those observed in the empirical studies.

The economic network consists of N = 40 nodes divided at random into six economic com-

munities, with community sizes selected at random, whilst ensuring that each community

has at least two members. To understand the effect of the community network structure,

we compare the strategy distribution on the community networks with that on a random

network. We generate Erdős-Rényi networks of an equal size and mean degree as the com-

munity networks (〈kp〉=7.3 for pe = 0 and 〈kp〉=7.9 for pe = 0.01). Mean degrees were

calculated by averaging the mean network degree across 100 community networks. We plot

the distribution of final strategies for 100 runs of the dynamics for both the community

and Erdős-Rényi networks in Fig. 6. The dynamics are run for 5000 generations with an

initial group contribution of cg(0) = 0.5. Strategies are selected from a uniform distribution

0 ≤ ai ≤ 5, the enhancement factor is η = 0.5, the social influence strength is λ = 0.1, and

the mean strategy is averaged over the last 500 generations.

Figure 6 shows that the model dynamics in this community structure result in a wide

distribution of strategies, and in both Fig. 6a and Fig. 6b the strategies found on the

community networks are lower than those on random ones.

When no edges are formed between communities (pe = 0, green line in Fig. 6a) strategies

range between approximately 0 and 2, mimicking results found in [35–39], where strategies

tend to vary from free-riding to conditionally cooperative, with a few players that donate

more than the group average at each iteration.

The low strategies in the community networks in Fig. 6a are explained by considering the
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FIG. 5: An example of the network of communities. Here the probability of forming an

edge between nodes not in the same community is pe = 0.01.

behaviour of a single community on the economic layer. The community is a fully connected

network, so each individual gains the same from the public good, cg. However, players with

larger strategies donate more, thereby lowering their payoff (see Eq. 2). Updates on the

economic layer therefore tend to the lowest strategy in the community. Since strategies

are initialised randomly, the lowest strategy is not necessarily zero and so strictly positive

strategies are observed. Based on our results in section III C we expect that social influence

is also helping to maintain strategies at a higher level than they would be in its absence.

On the Erdős-Rényi network players donate to multiple groups of different sizes, reducing
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FIG. 6: The cumulative distribution of strategies on community networks after 5000

generations for 100 runs of the dynamics, with updates with no inter-community edges (a,

pe = 0) and with inter-community edges (b, pe = 0.01). Initial strategies are distributed

uniformly on the interval [0,5]. The enhancement factor is η = 0.5, the social influence is

λ = 0.1 and the initial group contribution is cg(0) = 0.5.

the strict relationship of a low strategy to a high payoff, and thereby preserving larger

strategies than in the community networks. The same effect, but to a lesser extent, causes

the observed strategy increase on community networks between pe = 0 and pe = 0.01 (the

green lines in Figs. 6a and 6b respectively).

IV. DISCUSSION AND CONCLUSION

We have introduced a model inspired by a number of empirical observations of human

cooperation in the real world. We sought to understand how non-payoff based imitation

alters cooperation in the conditional public goods game, and whether non-payoff based rules

could account for the variation in conditional cooperation observed within communities.

Both conditional cooperation and social influence on strategy updates can have a con-

siderable effect on the amount contributed to the public good, even when social influence

operates as little as 10% of the time. Similar effects are observed for a range of social imita-

tion rules, suggesting that it is the decoupling of imitation dynamics from economic payoffs

that is important rather than the particular choice of social imitation rule.
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Conditional cooperation increases contributions compared to the standard public goods

game through two mechanisms: the resilience of conditional strategies to free-riding; and

network reciprocity.

In general, social influence in the conditional public goods game homogenises the final

distribution of strategies across the population. This homogenisation is very strong, and

remains unaffected by changes in the social network degree, or the number of game iterations.

Whether social influence leads to an increase in cooperation is heavily dependent on the

initial strategies in the population. If strategies are initially highly cooperative on average,

then social influence will increase cooperation in the system at very low enhancement factors.

However, if initial strategies are insufficiently cooperative, then social updates do not affect

the amount donated greatly at low enhancement factors, and can decrease contributions at

high enhancement factors. One possible reason for the sensitivity to the initial conditions

may be that global dynamics are sensitive to local arrangements of particular strategies.

However, we do not believe this is the case for two reasons: the variation in mean strategies

and contributions in Fig. 1 are small between each randomly initialised run; and preliminary

investigations of additional noise (not included) result in little change in the mean strategy

for reasonable values of noise.

Since the least cooperative strategy in the public goods game, namely free-riding, is the

most economically advantageous at low enhancement factors, we emphasise that any social

influence rule that does not favour free-riding will result in more cooperative strategies at

low enhancement factors than evolve under purely economic considerations. This may be

relevant to the finding of a review of empirical studies comparing the efficacy of economic

and social interventions aimed at increasing cooperative behaviour, that social interventions

prove more successful [52].

Our findings lend support to other studies showing that conditional cooperation in the

public goods game leads to an increase in overall cooperation, that players evolve to play

conditionally [40, 41], and that an update rule that does not take the payoff into account

results in more cooperative strategies [34, 44, 53]. We have extended these results by study-

ing conditional strategies on networked populations, and considering empirically motivated

strategies within the context of non-payoff based update rules on the multiplex. In con-

trast to [48], in our model there is no need to explicitly encourage cooperation on the social

layer in order to mimic the cooperation found in the real world. The results presented are
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also supported by previous theoretical work [54–56], demonstrating that non-payoff based,

asymmetric imitation rules result in larger frequencies of cooperation.

We have also studied networks designed to resemble the structure of real communities that

manage renewable resources described in a number of empirical studies. When our model

dynamics are run on such community networks the final distribution of strategies mimic

those observed in real-life communities, ranging from free-riding to conditional cooperation.

We were motivated to understand the variation of conditional cooperation across real

communities. However, within our model there is no penalty for an entire community that

chooses to free-ride, i.e. there is no minimum payoff required for survival, no minimum

resource that must be harvested. To make our model more realistic in this respect, we

could extend it to include a minimum payoff threshold for survival. Our work could also be

extended to investigate the importance of social influence on more complex strategies, such

as the piecewise linear responses to group contributions studied in [41].

We conclude that social influence should be taken into account when modelling coopera-

tion in social systems. In our model social influence leads to a large increase in cooperation,

as long as cooperative individuals are already present in the population. Thus any interven-

tion to increase cooperation should take account of existing social norms in the population,

and the current prevalence of cooperative behaviour, rather than attempt to increase coop-

eration purely through economic incentives.
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FIG. 7: The mean strategy plotted against the scaled enhancement factor η = r
〈kp〉+1

for

conditional cooperators on the multiplex. The mean strategy is compared for different

degrees on each layer (〈ks〉 = 8, 〈kp〉 = 4, blue circles) and equal degrees (〈ks〉 = 〈kp〉 = 4,

red diamonds).

APPENDIX

A.1. SIMULATION RESULTS FOR VARYING GENERATION LENGTH AND

MEAN SOCIAL NETWORK DEGREE

We compare results for different generation lengths (L) and different mean degrees on

the social network (〈ks〉). Figure 7 compares two different mean degrees on the social layer

(〈ks〉 = 8 and 〈ks〉 = 4), whilst figure 8 compares two different generation lengths (L = 10

and L = 2). The mean strategy is plotted against the scaled enhancement factor η = r
〈kp〉+1

for conditional cooperators on the multiplex. The number of nodes is N = 500.



24

0.0 0.2 0.4 0.6 0.8 1.0

Enhancement factor, η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea
n
st
ra
te
gy
,
<

a
>

L = 2

L = 10

FIG. 8: The mean strategy plotted against the scaled enhancement factor η = r
〈kp〉+1

for

conditional cooperators on the multiplex. The mean strategy is compared for long

generation lengths (L = 10, red diamonds) and short generation lengths (L = 2, blue

circles).

A.2. CALCULATION OF THE PAYOFF

We show how to calculate analytically the total payoff over a single generation in a single

group for small donations. For sufficiently small initial contributions cg(0) players always

donate less than one. Recall from Eq. (2) that player i, with strategy ai calculates their

payoff from group g in iteration l of the game as

pi,g(l) = rcg(l)− ci,g(l), (A.1)

where cg(l) is the group contribution at this iteration and ci,g(l) is player i’s contribution

to this group. When players only contribute conditionally the contribution in group g with
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size G at iteration l is then

cg(l) =

∑
i∈g aicg(l − 1)

G
= agcg(l − 1), (A.2)

where ag = 1
G

∑
i∈g ai, and as long as cg(0) < 1 for all l the group mean contributions are

therefore given by

cg(l) = algcg(0). (A.3)

The payoff at each iteration is thus

pi,g(l) = ralgcg(0)− ci,g(l) (A.4)

= ralgcg(0)− aial−1g cg(0) (A.5)

= cg(0)al−1g (rag − ai) , (A.6)

and the total payoff for player i over a generation is

Pi,g =
2∑

l=1

cg(0)al−1g (rag − ai) (A.7)

= cg(0)

(
1− a2g
1− ag

)
(rag − ai) (A.8)

= cg(0) (1 + ag) (rag − ai) . (A.9)

A.3. PROBABILITY OF ONE STRATEGY IMITATING ANOTHER

We calculate the probability of one strategy imitating another in a population where each

player plays one of two strategies a0 or a1 (as defined in section III B). Player i with strategy

a0 imitates player j with strategy a1 if Pj is greater than Pi, and using Eq. (A.9) this occurs

when

(A.10)

(
1 +

n1a
0 + (G− 1− n1)a

1 + a1

G

)(
r
n1a

0 + (G− 1− n1)a
1 + a1

G
− a1

)
>

(
1 +

n0a
0 + (G− 1− n0)a

1 + a0

G

)(
r
n0a

0 + (G− 1− n0)a
1 + a0

G
− a0

)
where r is the enhancement factor and n0 and n1 are the numbers of a0 strategies in players

i and j’s groups respectively. Both groups are of size G. This condition can be written

(A.11)f(a1, a0, n1, n0) > 0,
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where

f(a1, a0, n1, n0) = (G+ n1a
0 + (G− 1− n1)a

1 + a1)(r(n1a
0 + (G− 1− n1)a

1 + a1)−Ga1)
− (G+ n0a

0 + (G− 1− n0)a
1 + a0)(r(n0a

0 + (G− 1− n0)a
1 + a0)−Ga0).

(A.12)

The probability that a player with strategy a0 imitates a randomly selected player with

strategy a1 is the probability of selecting a player with strategy a1 multiplied by the proba-

bility that the selected player has a larger payoff, or

Q01 = ρ1

G−1∑
n0=0

G−1∑
n1=0

q(n0)q(n1)H(f(a1, a0, n1, n0)) (A.13)

where again H(x) is the Heaviside step function and q(n) is the probability of a group

forming with n strategy a0 players in the rest of the group. As the rest of the group is

formed at random from a bimodal distribution in the well-mixed case

q(n) =

(
G− 1

n

)
ρn0 (1− ρ0)G−1−n, (A.14)

where ρ0 is the density (fraction) of strategy a0 players in the population.

A similar calculation can be made to determine Q10, the probability that a player with

strategy a1 imitates a randomly selected player with strategy a0.

A.4. CRITICAL ENHANCEMENT FACTOR

The minimum enhancement factor, ηc = rc
G

, at which positive strategies generate higher

payoffs than free-riders is the enhancement factor at which the minimum payoff of a strategy

a1 player is larger than the maximum payoff of an a0 = 0 player. The maximum possible

payoff is when all other group members play strategy a1, whilst the minimum is when all

other players play a0. Therefore from Eq. (A.12) we have

f(a1, 0, G− 1, 0) = (G+ (G− 1)a1 + a1)(r((G− 1)a1 + a1)−Ga1)

− (G+ (G− 1− (G− 1))a1)(r((G− 1− (G− 1))a1)) (A.15)

= G2a1(1 + a1)(r − 1). (A.16)

The critical enhancement factor occurs when f(a1, 0, G−1, 0) = 0, or rc = 1, and therefore

ηc =
1

G
(A.17)
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A.5. EQUILIBRIUM STRATEGY IN A WELL-MIXED BIMODAL

POPULATION

We derive an expression for the mean strategy at equilibrium in a well-mixed bimodal

population in terms of the probability of strategy av imitating strategy aw, Qvw(t), and

demonstrate that this is determined by the initial strategies and the rate at which each of

the bimodal peaks approaches the other. We assume that the probability of one strategy

imitating the other remains constant across generations for both strategies so that Qvw(t) =

Qvw(0) = Qvw, and use this to calculate the equilibrium strategy 〈a〉 as t → ∞. Treating

each strategy as independent and coherent, and using Eq. (4) the updated strategy in

generation t+ 1 is given by

av(t+ 1) = av(t) + θQvw(t)(aw(t)− av(t)). (A.18)

Thus the expected mean strategy of a population consisting of two strategies a0 and a1

evolves according to

〈a〉(t+ 1) = ρ0a
0(t+ 1) + ρ1a

1(t+ 1) (A.19)

= 〈a〉(t) + θ(a1(t)− a0(t))(ρ0Q01(t)− ρ1Q10(t)), (A.20)

where ρ0 and ρ1 are the fractions of the population playing strategies a0 and a1 respectively.

The difference between two strategies a1(t) and a0(t) in the next genetation is

a1(t+ 1)− a0(t+ 1) = a1(t)− a0(t) + θQ10(a
0(t)− a1(t))− θQ01(a

1(t)− a0(t)) (A.21)

= (a1(t)− a0(t)) (1− θQ10 − θQ01) (A.22)

and substituting ∆a(t) = a1(t)− a0(t) gives

∆a(t+ 1) = ∆a(t) (1− θQ10 − θQ01) . (A.23)

Writing

β = 1− θQ10 − θQ01 (A.24)

we have

∆a(1) = β∆a(0), (A.25)

which by induction gives

∆a(t) = βt∆a(0). (A.26)
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Using ρ0 + ρ1 = 1, this gives the mean strategy as

〈a〉(t+ 1) = ρ0a
0(t) + ρ1a

1(t) + θ(a1(t)− a0(t))(ρ0Q01 − ρ1Q10) (A.27)

= a0(t) + ∆a(t)(ρ1 + θ(ρ0Q01 − ρ1Q10)) (A.28)

Substituting Eq. (A.26) and letting γ = ρ1 + θ(ρ0Q01 − ρ1Q10) gives

〈a〉(t+ 1) = a0(t) + βt∆a(0)γ. (A.29)

We rewrite Eq. (A.18) to give

a0(t+ 1) = a0(t) + θQ01∆a(t) (A.30)

= a0(t) + δ∆a(t), (A.31)

where δ = θQ01. The value of the smaller strategy after one generation is then

a0(1) = a0(0) + δ∆a(0), (A.32)

and therefore after t generations is

a0(t) = a0(0) + δ∆a(0)(1 + β + β2 + ...+ βt−1) (A.33)

= a0(0) + δ∆a(0)

(
1− βt

1− β

)
. (A.34)

We combine this with Eq. (A.29) to give

〈a〉(t+ 1) = a0(0) + δ∆a(0)

(
1− βt

1− β

)
+ βt∆s(0)γ. (A.35)

Since we have θ > 0, 0 < Qvw < ρw and ρ0 + ρ1 = 1, then from Eq. (A.24) we must also

have 0 < β < 1, and so we find

〈a〉(∞) = lim
t→∞
〈a〉(t) = a0(0) +

δ∆a(0)

1− β
. (A.36)

Substituting β and δ as defined above into this Eq. gives

〈a〉(∞) = a0(0) +
θQ01∆a(0)

1− (1− θQ10 − θQ01)
(A.37)

= a0(0) +
∆a(0)

1 +Q10/Q01

(A.38)

From this equation we see that the final equilibrium mean strategy depends on the ratio of

the probabilities of each strategy imitating the other, and the initial strategies.

We confirm that Eq. (A.38) is a good fit by plotting the mean strategy at equilibrium,

for both numerics and Eq. (A.38), against the scaled enhancement factor η in figure 9. Once

again the initial strategies are a1(0) = 5 and a0(0) = 0.
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FIG. 9: The mean strategy plotted against the scaled enhancement factor η with bimodal

initial conditions a0(0) = 0 and a1(1) = 5 for numerics (single points) and analytics (dashed

lines from Eq. (A.38)). The imitation strength is θ = 0.1 and the group size is G = 5.

A.6. NETWORK RECIPROCITY

Network reciprocity is confirmed by plotting the strategy of each player against the mean

strategy of the player’s neighbours (Fig. 10). Strategy segregation (network reciprocity)

does indeed emerge over time: at early times (Fig. 10, top row) the player and neighbour

strategies are not strongly correlated, and many of the extreme strategies have not changed.

After t = 50 generations, however, a very strong correlation between a player’s strategy and

that of its neighbours emerges (bottom rows), with correlation coefficient 0.71 for η = 0.5.



30

0

1

2

3

4

5
N
ei
gh
b
ou
r’
s
m
ea
n
st
ra
te
gy (a) (b)

0 2 4

Focal player’s strategy

0

1

2

3

4

5

N
ei
gh
b
ou
r’
s
m
ea
n
st
ra
te
gy (c)

0 2 4

Focal player’s strategy

(d)

FIG. 10: The mean strategy of a node’s neighbours plotted against that node’s strategy in

the network for scaled enhancement factor η = 0.5. Plots are for figure a) at generation

t = 1 with Pearson correlation coefficient between the node’s strategy and the mean

strategy of its nearest neighbours 0.15, b) at generation t = 10 with correlation 0.51, c) at

generation t = 50 with correlation 0.71 and d) at generation t = 500 with correlation 0.75.
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[44] D. Vilone, J. J. Ramasco, A. Sńchez, and M. San Miguel, Social imitation versus strategic

choice, or consensus versus cooperation, in the networked Prisoner’s Dilemma, Phys. Rev. E,

90, 2 (2014).

[45] A. Szolnoki and M. Perc, Conformity enhances network reciprocity in evolutionary social

dilemmas, J. R. Soc Interface, 12, 20141299 (2014).

[46] H. Lugo and M. San Miguel, Learning and coordinating in a multilayer network, Sci. Rep. 5,

7776 (2015).

[47] Z. Wang, L. Wang, and M. Perc, Degree mixing in multilayer networks impedes the evolution

of cooperation, Phys. Rev. E, 89, 052813 (2014).

[48] R. Amato, A. Dı́az-Guilera, and K. Kleineberg, Interplay between social influence and com-

petitive strategical games in multiplex networks, arXiv preprint (2017).
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