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Abstract In this paper we apply methods typically used in engineering ap-
plications to the optimization of human locomotion, more specifically a swim-
mer’s underwater ‘dolphin kick’. This is a dual-objective problem where we
search for the optimal trade-off between thrust (simulated using Lighthill’s fish
propulsion method) and the force in the muscles to produce this thrust (sim-
ulated using musculoskeletal modelling). The expense of the analyses leads us
to use a surrogate modelling based optimization technique (multi-objective ex-
pected improvement using Kriging). Our results indicate that optimal human
motion does, in many respects follow that of fish, with low frequency eel-like
techniques suitable for endurance and a high frequency tuna-like kick for high
thrust. Matlab R© code, including thrust and muscle activity models is included
as supplementary material.

Keywords multiobjective · surrogate modelling · Kriging · expected
improvement · dolphin kick · musculoskeletal modelling · swimming

1 Introduction

Humans propel themselves fastest underwater by mimicking aquatic life; using
the so-called dolphin kick1. Due to the increased speed possible with this
technique, swimmers are limited to 15 metres of underwater swimming per
length (in official races). To maximise the effectiveness of these underwater
periods, we wish to understand the trade-off between speed and endurance,
and find a dolphin kick technique that has the correct balance for a given race
length.
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E-mail: Alexander.Forrester@soton.ac.uk

1 Other terms for this technique are fly-kick or human underwater undulatory swimming.
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To continue the analogy with aquatic life, consider the difference between
an eel and a tuna. The former swims entire oceans at minimal effort while
the latter is optimized for speed. The technique is very different: the whole-
body anguilliform of the eel and the tail-dominated tuniform of the tuna. A
halfway house would be, for example, the carangiform of the mackerel. Natu-
rally humans are limited in their ability to mimic these forms precisely, due to
fewer joints in their ‘tails’ and non-symmetric flexion/extension in the sagit-
tal plane, but we anticipate that similar trends in technique and performance
will hold true. Through fluid dynamic and musculoskeletal simulation, cou-
pled with a surrogate modelling based multi-objective optimization strategy,
we aim to obtain an optimal trade-off of speed versus endurance for human
swimming. In a similar vein as cost/performance tradeoffs drive decisions in
engineering design, provision of services, etc., here identifying the endurance
(cost) vs. thrust (performance) tradeoff could allow coaches and athletes to
select optimal techniques for given race distances.

Our aim requires us to parameterise the dolphin kick technique; allow-
ing us to vary a simulated kick-cycle to move between optimal strokes in a
multi-dimensional hyperspace. The parameterisation must be parsimonious
to reduce the size of this optimization search space, but flexible enough to
produce a wide range of kick forms, which are also physically realisable. We
discuss this parameterisation in Section 2. Despite our efforts at parsimony,
the potential for multiple local optima and the expense of musculoskeletal
simulation dictates that an efficient global optimization method is needed. We
employ a multi-objective expected improvement based search using Guassian
process (Kriging) models, which is presented in Section 3. The fluid dynamics
and musculoskeletal models, used to simulate the performance of the different
parameterised techniques chosen by the optimiser, are presented in Sections 4
and 5, before results are presented and discussed in section 6.

2 Dolphin kick parameterisation

As a basis for our parameterisation of the dolphin kick, we analyse a video of a
male world record holding swimmer. The video is obtained using an underwater
camera, translating parallel to the swimmer (with the swimmer appearing
essentially stationary in x-direction in the video). The x velocity (required later
for Equation 13) is measured using a trailing line attached to the swimmer,
which is unwound from a rotary encoder as the swimmer propels themselves
forward (Phillips et al., 2014) – as depicted in in Figure 1. The line is attached
at the swimmer’s side at the centre of rotation of their pelvis segment. In doing
so we minimise the impact on the swimmer’s motion and reduce artificial surges
in velocity caused by local hip rotation rather than true forward speed. The
velocity data is collected at 250 Hz.

We assume a purely two-dimensional kick, i.e. both legs kick in unison,
and capture the kinematics by recording the pixel location of anatomical land-
marks at 25 frames per second for 10 kick-cycles. A sample frame, with these



Thrust vs. Endurance Trade-off Optimization in Swimming 3

landmarks identified is shown in Figure 2. The process is completed using a
Matlab R© interface, via which landmarks are visually identified and ‘clicked’
upon, frame-by-frame. 2 Errors in this manual digitisation process will, natu-
rally, impact on the fluid dynamic and musculoskeletal simulations. However,
this experimental data collection is a means to obtain realistic baseline kine-
matics and small errors here will not propagate through to our final solution.

From Figure 2, it can be seen that the body has been simplified into seven
segments; hand, arm, thorax & abdomen, pelvis, thigh, shank and foot (la-
belled 1 through 7 respectively). These segments are articulated by six joints:
ankle, knee, hip, lumbosacral, shoulder and wrist. The body is orientated about
the pelvis such that here there are two angles of interest: the pelvis angle with
respect to the global frame of reference, and the pelvis-thorax angle. We there-
fore have a total of seven time-dependent angles to optimise over the kick-cycle.
For the purposes of this study we will limit ourselves to the hip, pelvis-thorax
and pelvis angles (angles between segments 5 & 4, 4 & 3 and the angle of
segment 4, respectively). Experience shows that these are important param-
eters in coaching the technique and, being at the root of the connected and
articulated system, will have greatest influence on resultant motion (Phillips,
2013).

The recorded kinematics are then parameterised with the mean and first
two pairs of terms of a Fourier series fitted to each joint angle for the 10 kick-
cycles. With three joints of interest this yields 15 variables for our two-objective
trade-off optimization. The mean Fourier term of each angle is constrained to
be between ±10◦ of the observed experimental mean. Similarly, the sine and
cosine terms were constrained to be within ±25% of the experimental values.

A single cycle representation of the Fourier series fit of the ten kick-cycles
of the experimental data is shown as the bold line in Figure 3. The raw data
for the ten kick-cycles are also shown. The mean, minimum and maximum
Pearson correlation coefficients between the Fourier series and these raw data
are ρ̄hip = 0.901.000.78, ρ̄pelvic pitch = 0.930.990.84, & ρ̄pelvis−thorax = 0.910.990.77. These
values close to one indicate the appropriateness of using a Fourier series to
represent the kinematics. Optimizing the coefficients changes the amplitude
and frequencies, but retains the characteristic rhythmic motion. The remaining
joints are articulated using the mean and first two pairs of a Fourier series
approximation of the original kinematics.

In the next section we discuss the method by which optimal values for
these 15 Fourier terms is found (noting that we use the term optimal slightly
loosely, as we are limited to the bounds shown in Figure 3 and, with a large
(15-dimensional) search space, will never find truly optimal solutions in all but
the most trivial problems).

2 Automated contrast recognition software can be used for such a process, but here the
reliability of manual digitisation outweighed the time-savings of automation.
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Fig. 1 A schematic of the video and velocity acquisition arrangement.
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Fig. 2 Digitising the image to obtain the kinematics used in the thrust and musculoskeletal
simulations. The hip, pelvis-thorax and pelvis rotations are defined by the angles between
segments 5 & 4, 4 & 3 and the angle of segment 4, respectively)

3 A brief tutorial on the expected improvement approach to
optimization

The thrust and endurance calculations discussed in Sections 5 and 4 provide
the objective functions for our trade-off study. A single calculation of both
objectives takes approximately 30 minutes on a desktop machine with 12 GB
RAM and 2.67 GHz CPU. To keep within a one week time limit, we are
therefore limited to 100s rather than 1000s of calculations. This effectively
precludes the direct use of global search methods such as genetic algorithms
(GAs). We therefore build surrogates of the objective functions, which take
fractions of a second to evaluate and can be used in lieu of the original calcu-
lations when applying a GA. There is a large literature on the use of surrogate
models in engineering, with a review by Forrester and Keane (2009) and a
more detailed discussion of our chosen method, Kriging, by Jones, Schonlau,
and Welch (1998). Rather than repeat these, and other works, in this section
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Fig. 3 The mean joint angle for one kick-cycle derived from experimental data is shown as
a single bold line. Raw data for the ten kick-cycles are shown as dashed lines. The many
thin, solid grey lines illustrate the joint angles from the initial optimal Latin hypercube
sample of the search space.

we will take more of a tutorial approach, and have provided Matlab R© code as
supplementary material.3

3.1 Kriging

We start with a set of n experiments defined by n vectors of k design variables,
x(1),x(2), ...,x(n) (k = 15 for our dolphin kick parameterisation). There are
many ways in which we could choose how many experiments to run and which
combinations of design variables to use in each of these experiments. We will
assume that the observed results will vary smoothly and continuously over our
domain of interest and so, without any further knowledge of the domain, we are
likely to achieve better models with experiments evenly distributed throughout
the domain. To do this we maximise the minimum distance between any two
experiments in the k-dimensional hypercube. This criterion would be satisfied
by a grid of points, however, sampling only every corner of the hypercube

3 A more extensive surrogate modelling toolbox for Matlab R© is available at
www.optimization.codes with an accompanying book (Forrester, Sóbester, and Keane,
2008). Another notable resource is the R package DiceKriging (Roustant, Ginsbourger,
and Deville, 2012).
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would require 2k experiments, which is 32,768 in our case. This is clearly
impracticable. We also wish to incorporate some randomness in the location
of points to avoid potential problems with aliasing. This is when we sample
at or above the frequency of a harmonic effect in the response (which we may
expect here, given the Fourier series parameterisation) and so miss this effect.
A maximin Latin hypercube design (Morris and Mitchell, 1995) can guard
against this, whilst maintaining an even distribution of experiments, and is
implemented in Listing 1 using our Matlab R© toolbox.

In all but very low dimensional problems, the number of experiments is
usually limited by financial and/or time constraints. Rules of thumb are to
use 10k experiments (Loeppky, Sacks, and Welch, 2009) or, when going on to
search and update the model with an expected improvement infill strategy, as
we do here in the following sections, choose 1/3 of the total budget for the
initial sample (Sóbester, Leary, and Keane, 2005). Here we use n = 75 and
add 150 further points, from a total budget of 225.

Listing 1 Matlab R© script to create an n = 75, k = 2 maximin Latin hypercube sample.

1 n=75; % no . po in t s in i n i t i a l sample
2 k=15; % no . v a r i a b l e s
3 % c a l l b e s t l h ( l a s t two arguments con t ro l maximin search )
4 Obje c t i v e In f o {1} .X=b e s t l h (n , k , 7 5 , 1 0 ) ;
5 % same sample f o r both o b j e c t i v e s
6 Obje c t i v e In f o {2} .X=Obj e c t i v e In f o {1} .X;

These experiments produce 2n responses, yj = {y(1)j , y
(2)
j , ..., y

(n)
j }T for

j ∈ [1,m] where m is the number of objectives (here m = 2), which are
calculated in Listing 2.

Listing 2 Matlab R© script to calculate both objective functions at the sample locations.

1 for i =1:n
2 Obje c t i v e In f o {1} . y ( i ,1)= thrus t ( ModelInfo .X( i , : ) ) ;
3 Obje c t i v e In f o {1} . y ( i ,1)= maxmusc leact iv i ty ( ModelInfo .X( i , : ) ) ;
4 end

Kriging assumes that our observed data (i.e. here our thrust and endurance
calculations) are random variables Y (x(1)), Y (x(2)), ..., Y (x(n)).4 Building a
Kriging model is a process of finding the parameters that describe the correla-
tions between these random variables. We specify the form of the correlation
as

cor[Y (x(i)), Y (x(l))] = exp

− k∑
j=1

θj

(
x
(i)
j − x

(l)
j

)2 . (1)

This is a Gaussian correlation function5, which has the intuitive property
that as two experiments x(i) and x(l) approach each other in the k dimen-

4 In reality the thrust produce by and the endurance of a swimmer are clearly random
variables – a slightly different result will be obtained every time they are measured –, but our
computer simulations are not – they always return the same result. Nevertheless, Kriging
can still provide remarkably good surrogates of such deterministic experiments.

5 Other correlation functions are possible and may be more suitable for some problems –
see, e.g.Ginsbourger, Durrande, and Roustant (2013).
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sional hypercube, the correlation goes to unity, but as |x(i) − x(l)| → ∞,
cor[Y (x(i)), Y (x(l))] → 0. That is, two of the same experiments will have the
same answer and two very different experiments will have different answers.
The rate at which the correlation drops off is controlled by the θj parameter.
If a variable has very little effect on the result of the experiment, θj → 0, while
for a large effect θj >> 0. Maximum likelihood estimates (MLEs) are found
for the θ parameters of each objective function, based on the observed data.
To find these estimates we in fact minimize the negative of the concentrated
ln-likelihood function:

min
θ

n

2
ln(σ̂2) +

1

2
ln |Ψ |, (2)

where σ̂2 is a MLE of the variance in the data:

σ̂2 =
(y − 1µ̂)TΨ−1(y − 1µ̂)

n
, (3)

µ̂ is a MLE of the mean of the data:

µ̂ =
1TΨ−1y

1TΨ−11
, (4)

Ψ is an n× n matrix of correlations between all data points (the correlations
defined by equation 1):

Ψ =

 cor[Y (x(1)), Y (x(1))] . . . cor[Y (x(1)), Y (x(n))]
...

. . .
...

cor[Y (x(n)), Y (x(1))] . . . cor[Y (x(n)), Y (x(n))]

 . (5)

and 1 is an n × 1 vector of ones. Listing 3 shows how this minimization can
be performed in Matlab R©. Lines 2 and 3 set upper and lower bounds for the
θ parameter before a for-loop cycles through the two objectives. Line 9 uses
Matlab R©’s genetic algorithm (GA) to minimize the output of this function.
Line 12 calls likelihood() so that the correlation matrix and its Cholesky
factorisation can be calculated based on the MLE for θ, and stored for use in
future calculations.

Listing 3 Matlab R© script to find a MLE for θ, build the correlation matrix, and find its
Choloesky decomposition.

1 % se t bounds on t h e t a s
2 lowerTheta=ones (k ,1 ) .∗ −3 ;
3 upperTheta=ones (k , 1 ) . ∗ 2 ;
4 % se t GA opt ions as de s i r ed
5 opt ions=gaopt imset ( ’ Popu lat ionS ize ’ ,10 , ’ Generat ions ’ , 5 ) ;
6 % for each o b j e c t i v e . . .
7 for i =1:2
8 % run GA, c a l l i n g l i k e l i h o o d ()
9 Obje c t i v e In f o { i } . Theta=ga (@( x ) l i k e l i h o o d (x , Ob j e c t i v e In f o { i } ) . . .

10 , k , [ ] , [ ] , [ ] , [ ] , lowerTheta , upperTheta , [ ] , opt i ons ) ;
11 % and s t o r e matr ices
12 [ NegLnLike , Ob j e c t i v e In f o { i } . Psi , Ob j e c t i v e In f o { i } .U] = . . .
13 l i k e l i h o o d ( Ob j e c t i v e In f o { i } . Theta , Ob j e c t i v e In f o { i } ) ;
14 end
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With the model parameters estimated, predictions at new points can be
made quickly using the Kriging mean:

ŷ(x(n+1)) = µ̂+ψTΨ−1(y − 1µ̂) (6)

(where ψ is a vector of correlations of the point at which the prediction is to be
made, x(n+1), and the observed data), which is implemented in the function
predictor(). For example, the script in Listing 4 will find values for both
objectives at the centre of the search domain.

Listing 4 Matlab R© script to find a MLE for θ, build the correlation matrix, and find its
Choloesky decomposition.

1 Obje c t i v e In f o {1} . Option=’ Pred ’ ;
2 thrustPred=p r e d i c t o r ( ones ( 1 , 1 5 ) . ∗ 0 . 5 , Ob j e c t i v e In f o {1} ) ;
3 Obje c t i v e In f o {2} . Option=’ Pred ’ ;
4 maxMusActPred=p r e d i c t o r ( ones ( 1 , 1 5 ) . ∗ 0 . 5 , Ob j e c t i v e In f o {2} ) ;

3.2 Expected improvement

The quick-to-call models created in the previous section can now be used as
surrogates for the original objective functions, and searched extensively by a
range of optimisers. However, one must remember that these are just mod-
els and cannot necessarily be trusted to produce accurate results. Tentative
optima can be validated by running the true codes at these locations in the
search domain. This gives confidence in the values at these points, but can-
not guarantee optimality. Indeed, it is unlikely that the region of the global
optimum will be found by exploiting models built with such a sparse initial
sample. There are a number of methods we can use to guard against possible
errors in the Kriging models. Jones (2001) is an excellent taxonomy of these
methods. The key benefit of Kriging (and other similar methods) is that, as
well as the Kriging mean prediction in Equation 6, we have an estimate of the
error in this prediction:

ŝ2(x(n+1)) = σ̂2

[
1−ψTΨ−1ψ +

(1− 1TΨ−1ψ)2

1TΨ−11

]
. (7)

Sampling where this error is large will help to improve the model, rather
than simply exploiting it, though more subtle criteria can be developed. Con-
sider the situation in Figure 4; a rather deceptive one-dimensional function
has been sampled at eight locations, which have failed to fall in the region of
the global optimum where the Kriging prediction is a poor representation of
the true function. A vertical Gaussian distribution has been plotted with its
centre at the kriging mean and with variance from Equation 7. This distribu-
tion represents the values that the Kriging prediction could take. We naturally
opt for the mean when making our prediction, but we can calculate the proba-
bility of other values. A useful quantity is the probability of improving on the
best value so far. This integral is shown in bold in the figure. When searching
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Fig. 4 A graphical representation of the expected improvement. The true function is f(x) =
(6x−2)2 sin(12x−4). This figure is reproduced from Forrester, Sóbester, and Keane (2008).

for useful improvements, a more pertinent criterion is the expectation of this
improvement, which is calculated as:

E[I(x)] =

{
(ymin − ŷ(x))Φ

(
(ymin−ŷ(x))

ŝ(x)

)
+ ŝ(x)φ

(
(ymin−ŷ(x))

ŝ(x)

)
if ŝ(x) > 0

0 if ŝ(x) = 0
,

(8)
where Φ(.) and φ(.) are the normal cumulative density function (cdf) and prob-
ability density function (pdf) respectively. Note that x(n+1) has been abrevi-
ated to x for clarity.

Equation 8 may implemented using the code in Listing 4, also using the
function predictor(), but with ObjectiveInfo{.}.Option=’NegLnExpImp’.
We now go on to extend this criterion to deal with two-objective problems,
i.e. our thrust vs. endurance trade-off.

3.3 Multi-objective expected improvement

For a single objective, we simply integrate φ(Y (x)) below the best value so
far to obtain the probability of improvement. For two objectives we need to
integrate a two-dimensional pdf:

φ(Y1, Y2) =
1

ŝ1(x)
√

2π
exp

[
− (Y1(x)− ŷ1(x))2

2ŝ21(x)

]
×

1

ŝ2(x)
√

2π
exp

[
− (Y2(x)− ŷ2(x))2

2ŝ22(x)

]
(9)
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Fig. 5 A Pareto front and the areas where new points would augment the front (dark grey)
and replace at least one point on the front (light grey). This figure is reproduced from Parr
(2013).

(here we use subscripts to identify two uncorrelated Kriging models of our
two objectives). For a two objective optimization there is not usually one best
point to integrate below; there are a set of non-dominated solutions: a Pareto
front, which we denote as y?

1 and y?
2 at locations x?. Figure 5 is an example of

a Pareto front and shows the areas for which Equation 9 must be integrated to
find the probability of augmenting, improving, or augmenting OR improving
on the current front. Furthermore, we need to calculate the centroid of this
integral, (Ȳ1(x), Ȳ2(x)) to obtain the expected improvement:

E[I(x?)] = P [I(x?)]

[√
(Ȳ1(x)− y?

1)2 + (Ȳ2(x)− y?
2)2
]
min

, (10)

where the [.]min term refers to the minimum Euclidean distance between the
centroid and a point on the Pareto front.

P [I(x?)] and E[I(x?)] are finally obtained after some rather tedious inte-
gration by parts, and the full expressions can be found in Parr (2013) (along
with a review of other similar methods by Emmerich (2005) and Bautista
(2009)). Following on from creating our two Kriging models of thrust and
maximum muscle activity in Listing 3, Equation 10 can be evaluated using
the script in Listing 5. This script goes on to maximize E[I(x?)] (in fact mini-
mize − log10E[I(x?)]) using a GA, and evaluate the objective functions at the
resulting point (the Fourier coefficients calculated to give the best improve-
ment over the current Pareto front).
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Listing 5 Matlab R© script to find the multi-objective expected improvement in the Kriging
models of thrust and maximum muscle activity, maximise the expected improvement, add
the corresponding point to the data set, and evaluate it.

1 % se t opt ion to c a l c u l a t e −l o g 10 (EI )
2 Obje c t i v e In f o {1} . Option=’NegLogExpImp ’ ;
3 % f ind −l o g 10 (EI ) at a po in t and return Pareto f r on t
4 [ EI , Py1 , Py2 ,PX]= m u l t i e i ( ones ( 1 , 1 5 ) . ∗ 0 . 5 , Ob j e c t i v e In f o ) ;
5 figure
6 plot ( Ob j e c t i v e In f o {1} . y , Ob j e c t i v e In f o {2} . y , ’ k . ’ )
7 hold on
8 plot (Py1 , Py2 , ’ ko ’ )
9 % se t GA opt ions as de s i r ed

10 opt ions=gaopt imset ( ’ Popu lat ionS ize ’ ,50 , ’ Generat ions ’ , 2 0 ) ;
11 % run GA, c a l l i n g mu l t i e i
12 [ varOpt , EIOpt]=ga (@( x ) m u l t i e i (x , Ob j e c t i v e In f o ) , k , . . .
13 [ ] , [ ] , [ ] , [ ] , zeros (k , 1 ) , ones (k , 1 ) , [ ] , opt i ons ) ;
14 % add max(EI ) po in t to data s e t
15 Obje c t i v e In f o {1} .X(end+1 ,:)= varOpt ;
16 Obje c t i v e In f o {2} .X(end+1 ,:)= varOpt ;
17 Obje c t i v e In f o {1} . y (end+1)=thrus t ( Ob j e c t i v e In f o {1} .X(end , : ) ) ;
18 Obje c t i v e In f o {2} . y (end+1 ,1)=. . .
19 maxmusc leact iv i ty ( Ob j e c t i v e In f o {2} .X(end , : ) ) ;

Having covered the methodology by which we optimize the objective func-
tions, the next two sections consider the musculoskeletal and fluid modelling
behind these functions. The results produced by running the scripts in this
tutorial will then be examined in Section 6.

4 Musculoskeletal simulation

Here we use the AnyBody Modelling SystemTM (AMS) to simulate the biome-
chanics of the swimmer. For a prescribed motion with predefined forces ap-
plied, the AMS will estimate when and which muscles in the body are used
to achieve this motion and how much force each muscle must produce. One
method for determining realistic muscle loadings is by employing the min/-
max criterion (Rasmussen, Damsgaard, and Voigt, 2001); the objective being
to minimise the maximum muscle activity of all the muscles at each time
step. A solution to which can be found using a computationally efficient linear
optimisation process (Rasmussen, Damsgaard, and Voigt, 2001).

The basis of this criterion is that the body’s central nervous system will
strive to produce motion by activating each muscle in the most energy efficient
manner. The min/max criterion has previously been used in other swimming
related studies and has shown reasonable correlation to electromyography mea-
surements (Nakashima et al., 2013). It is therefore assumed that this criterion
can be seen as a surrogate for minimising the energy consumed for the given
task and so for our simulations the maximum muscle activity is used as a
surrogate for endurance.

The few examples of musculoskeletal models relating to human swimming
in the literature include Nakashima et al. (2012) and Langholz, Westman, and
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Karlsteen (2016) for example, however, for ease of integration with the optimi-
sation process we have developed our own from the existing FreePostureMove
model available from the AnyBody managed model repository (AMMR).

In this form of underwater swimming, the arms are raised above the swim-
mer’s head inline with the long axis of the body – in effect increasing the
water line length of the object moving through the water and helping to re-
duce hydrodynamic drag (Molland and Turnock, 2007). We assume that the
arms remain in this position across all the fly-kick techniques we research
and so the simulated energy consumption would not change across techniques.
Since we are interested in comparing techniques (not in accurately predicting
overall energy consumption) the arms can therefore be excluded from the mus-
culoskeletal simulation, helping to reduce the complexity of the optimization
process.

The resultant model consisted of 36 rigid body segments, connected by
137 joints and 519 muscles (158 in each leg). These 36 segments include all
the constituent segments of the feet and spine. Even in the ‘gold standard’ of
lab based optical motion capture there is insufficient kinematics to drive all
segments. The model therefore estimates the kinematics of the unmeasured
segments using those of the measured segments (Wong et al., 2006; Bassani
et al., 2017).

The kinematics for the ankle and knee joint remained the same as the
original mean kinematics for all simulations while the kinematics for the pelvis
relative to the global reference frame, the hip and the pelvis-thorax angles
were each refined as described in Section 2. The kinematics were assumed to
be symmetrical for the left and right side of the body.

In recognition that many readers will not have access to the AnyBody
software, we have provided in the online supplementary material a Matlab R©

p-code function maxmuscleactivity() which returns an approximation to the
AnyBody R© results. This function is in fact a Kriging model built from our
database of results. We have validated the model with a bootstrapped 10-
fold cross validation. Here we draw with replacement 1/10th of the data from
that used to build the model, rebuild the model with these data removed,
back-predict the removed data and calculate the r2 value between the true
data and model data. This process is repeated 1,000 times and yields a mean
µ(r2) = 0.9946 and standard deviation σ(r2) = 0.0031, indicating the model
is reliably accurate at predicting maximum muscle activity.

5 Thrust simulation

As well as the kinematic components to the musculoskeletal model, it is also
necessary to define any external loads. In underwater swimming, these forces
consist of the hydrostatic forces (buoyancy) and hydrodynamic forces due to
the movement of the body relative to the water. Gravitational forces are han-
dled internally by the AMS.
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Fig. 6 A still image of the AnyBody model depicting the external forces. The vertical blue
arrows illustrate the buoyancy forces applied at each segments’ centre of mass. The green
is the hydrodynamic force in the positive direction which is applied at the time dependant
centre of pressure on each segment. Similarly the red arrow is the hydrodynamic force in
the negative direction.

The hydrostatic forces are subject specific and therefore scaled in relation
to the AnyBody model. Their direction is opposite to that of gravity, has
magnitude proportional to the volume of the displaced water and its effort is
applied to the centre of mass for each segment. Using the internal mass and
density values in the FreePostureMove model, the magnitude of the buoyancy
on segment seg is calculated as,

Bseg = ρf Vseg g (11)

where ρf is the density of the fluid, Vseg the volume of the displaced fluid by
the segment and g the acceleration due to gravity. The displaced fluid volume
by each segment is calculated as,

Vseg =
mseg

ρseg
(12)

where mseg and ρseg are the segment’s mass and density, respectively.
These hydrostatic forces are visualised by the large blue vertical arrows in
Figure 5.

Dynamic pressure from the fluid also acts on each of the body segments.
Because the segments are modelled as rigid bodies, it is possible to integrate
the pressure over the segment and apply a point load at the centre of pressure
perpendicular to the long-axis of the segment. The sign and magnitudes of
these hydrodynamic point loads are visualised by the large red and green
arrows in Figure 5. The centre of pressure at which these point loads act is
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depicted by the sphere of corresponding colour and is able to translate along
the length of the segment at each time step.

Pedley and Hill (1999) review the mechanisms for predicting the muscle
generated forces required in swimming fish. They identify that inertial forces
dominate (large Reynolds number) with drag arising from viscous shear stress,
pressure drag due to separation and due to the boundary layer growth along
the body. Thrust is generated by the reactive inertia of the undulatory motion
along the body creating a pressure difference either side of the body. The resul-
tant flow field consists of regions of irrotational flow due to the added inertia
of the fluid and vorticity created. The vorticity is shed from the body either
at points of separation or at a sharp trailing edge. Fish are hydrodynamically
streamlined with thin sharp edged fins unlike human swimmers whose toes are
relatively blunt and are thus less effective in exploiting the propulsive benefits
of generating trailing vortex structures.

Lighthill (1971) developed an analytical approach that captures the dom-
inant inertial mechanism of large amplitude undulatory motion in generating
forward thrust and this axial variation in transverse force. Due to its ana-
lytical approach it is computationally compact, typically two to three orders
of magnitude faster than the vortex ring approach, to which it is compared
by Pedley & Hill, and which primarily improves the vortex induced pressure
field of the tail (of more significance in fish). Recent advances in computa-
tional power have allowed solutions of the Navier Stokes equations, typically
using Reynolds averaging or Large Eddy simulation for undulatory motion.
However, these computationally expensive approaches, at least six orders of
magnitude more expensive than Lighthill (Molland and Turnock, 2007) are
as yet unvalidated and only presented in a qualitative manner describing the
flow field behaviour rather than giving a detailed breakdown of forces. The
state-of-the-art in CFD is attempting to compute the forces on a forearm and
hand during a front crawl stroke with qualitative agreement with experimen-
tal measurements (Samson et al., 2017), whereas progress is being made with
validation of passive glide (Banks et al., 2014; Barbosa et al., 2017).

In seeking to understand the differences between different styles of under-
water flykick, Lighthill’s large amplitude analytical approach is applied in this
work as it captures the dominant mechanism that generates a pressure dif-
ference against which the muscles work in a computationally efficient manner
suitable for use in an optimisation study.

Webb et al. (2012) demonstrated the use of Lighthill’s numerical theory
developed for fish locomotion (Lighthill, 1970) to determine the forward thrust
of a swimmer. As part of these calculations, the hydrodynamic side forces are
also determined. The Lighthill approach (Lighthill, 1971) uses a momentum
conservation method within a defined domain, ξ. This domain fully encapsu-
lates the swimmer’s motion but excludes the wake and hence is bound by plane
Π, perpendicular to the tip of the swimmer’s toes at all times. The swimmer
is subdivided into n strips along their length, where each strip is described in
global coordinates x (a, t) , z (a, t) in terms of parametric distance a, along the
body at time t, where 0 < a < l and the constant l is the parametric length of
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Fig. 7 The Lighthill reference system.

the body. This reference system is demonstrated in Figure 7. Lightill describes
the rate of change of momentum in this control volume in terms of (i) the rate
of change due to convection of momentum out of ξ across plane Π; (ii) plus
the rate of change due to pressure forces acting across Π; and (iii) minus the
reactive forces with which the fluid acts on the swimmer.

For prescribed kinematics, the thrust generated for propelling the swimmer
through the water T and the side forces acting on the swimmer Q is expressed
as,

(T,Q) =

[
mw

(
∂z

∂t
,−∂x

∂t

)
−
(

1

2
mw2

(
∂x

∂a
,
∂z

∂a

))]
a=0

− d

dt

∫ l

0

mw

(
−∂z
∂a
,
∂x

∂a

)
.

(13)
where m is the mass per unit length (m(a) = 1

4πρs(a)2, where ρ is the water
density and s the depth of the cross-section) and w is the velocity component
perpendicular to the direction of parameter a.

For the experimental case, the forward speed of the swimmer was taken
from the measured speed. A mean drag coefficient (CD) was then calculated
by,

T̄ =
1

2
ρV̄ 2SCD (14)

where T̄ is the mean thrust, ρ the density of water, V̄ the swimmer’s mean
forward speed and S the swimmer’s frontal area (assumed proportional to kick
amplitude (A) × breadth at the pelvis (B)).

To calculate the forward speed for all other kinematics, the thrust was first
calculated using 13 and the same mean speed measured experimentally. An
updated speed value was then calculated from 14 using the mean thrust and
the same drag coefficient obtained from the experimental measurements. This
process was itterated until the mean speed convereged (< 0.003ms−1).

Using Lighthill’s formula, we can then very quickly calculate both the hy-
drodynamic forces for the musculoskeletal model and determine the thrust
produced; one of the objectives of this trade-off.

In the same manner as the AnyBody model at the end of Section 4, we
have provided a supplementary material for the thrust model as a p-code



16 Christopher WG Phillips et al.

-600 -500 -400 -300 -200 -100 0
-ve thrust [N]

0.5

1

1.5

2

2.5

3

3.5

4

4.5
m

ax
 m

us
cl

e 
ac

tiv
ity

 [
.]

ve
lo

ci
ty

 [
m

/s
]

1

2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

initial sample
infill points
initial Pareto front
final Pareto front
mean 10 original kick cycles

Fig. 8 The Pareto front showing the trade-off between the two objectives, thrust and
maximum muscle activity. Point ‘1’ is has the minimum maximum muscle activity and
point ‘2’ the maximum thrust.

function thrust() which returns an approximation to the thrust model. The
bootstrapped 10-fold cross validation of the thrust model yields µ(r2) = 0.9957
and σ(r2) = 0.0048

6 Results and discussion

Figure 8 shows the initial 75 point maximin Latin hypercube sample results
as filled circles. Negative thrust is on the x-axis and maximum muscle activity
on the y-axis, i.e. we wish to be in the south-west corner of the plot to produce
more thrust for less power. The circles are coloured according to the velocity
of the swimmer. We see immediately that more thrust means higher velocity
(naturally, since we do not model the drag implications of different techniques),
but that the relationship between max. muscle activity and velocity is non-
linear on the axes we have used.

The best trade-off between thrust and max. muscle activity for the ini-
tial sample is depicted by black circles. Following 150 additional simulations
(shown by filled squares), i.e. running Listing 5 150 times, the best trade-off
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points are improved to the black squares. These points indicate that the true
Pareto front is likely to be a smooth, continuous line. As would be expected,
the two objectives are in contention with each other; for an increased demand
in thrust the maximum muscle activity displays a non-linear increase. Just
as cost/performance Pareto front visualisations are useful in product design,
here athletes and coaches might consult this Pareto front in order to examine
techniques suitable for races of varying endurance.

The kinematics that produced the minimum maximum muscle activity (la-
belled ‘1’ in Figure 8) and those that delivered the maximum thrust (labelled
‘2’) are overlaid with the original kinematics in Figure 9. For each joint, both
objectives’ results differed from the original experimental data of the elite
swimmer. In the hip joint, the kinematics for greatest thrust have twice the
frequency of the original kinematics including a greater peak angle. The min-
imum maximum muscle activity case, conversely, has only one peak per cycle
– similar to the original kinematics in terms of shape and range of motion,
but at a higher flexion angle. For the pelvis-thorax angle the maximum thrust
and minimum maximum muscle activity results produce kinematics with two
distinct oscillations per cycle in contrast to the experimental data, and with
roughly half the range of motion. A shift in flexion angle is the only difference
between maximum thrust and minimum maximum muscle activity. The same
double oscillation of the maximum thrust case is also seen in the pelvic-pitch.
The minimum maximum muscle activity case also has a double oscillation, but
at a reduced amplitude, and out of phase with the maximum thrust case.

The mean thrust and maximum muscle activity of the 10 original kick
cycles is shown as a triangle, and lies on the Pareto front near to the minimum
maximum muscle activity end. While the optimization process has found a
range of techniques with optimal thrust/energy tradeoff, it has not actually
improved on the swimmer’s current technique for that given thrust and muscle
activity. This is somewhat reassuring insofar as the optimizer seems not to have
exploited assumptions/loopholes in the analyses to find unrealistic objective
function values. However, the higher thrust techniques at the other end of the
Pareto front may not be attainable.

By basing our kick parameterisation on Fourier series fitted to experimental
data, we have assumed that all motions investigated could be implemented by
a swimmer. This may not be the case, as one joint angle will naturally influence
the range of motion in others. Ensuring all motions are physically realisable
would require us to work our way up/down the kinematic chain from the pelvis,
ensuring distal joint ranges of motion are compatible with the proximal joint
(a Markov chain process).

Further enhancements to the study presented here might naturally include
improving the fidelity of both the fluid dynamic and musculoskeletal modelling,
though this would come at increased computational expense, reducing the
number of techniques that could be investigated and so may not necessarily
improve the results. A more fruitful avenue of research may be to work with
swimmers/coaches to implement the optimal techniques found and provide
some validation for the results presented.
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Fig. 9 The kinematics for one kick-cycle.The dashed line represent the optimal kinematics
for the objecting of minimising the mean muscle activity and the dashed-dotted line identifies
the kinematics that maximise the mean thrust.
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