
 1

© Crown copyright (2019), Dstl. This material is licensed under the terms of the Open Govern-
ment Licence except where otherwise stated. To view this licence, visit
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the In-
formation Policy Team, The National Archives, Kew, London TW9 4DU, or email:
psi@nationalarchives.gsi.gov.uk.

Published by the Safety-Critical Systems Club. All Rights Reserved

Developing Critical Software in the Modern
Threat Environment

Brian StevensA, Rob AshmoreA, Andrea MargheriB and Vladimiro SassoneB

A Defence Science and Technology Laboratory (Dstl), Portsdown West, UK
B Electronics and Computer Science, University of Southampton

Abstract As software becomes ever more embedded into the fabric of society,
more systems are becoming critical to large numbers of people, either by design
or unintentionally. Even those that may not be considered safety-critical can have
a large impact when they fail (e.g. banking systems). Consequently, software can
be critical for a number of reasons, including: safety; security; and mission im-
pact of failure. We would expect criticality, along with software requirements, to
emerge from coherent, integrated systems-level analyses that include data, securi-
ty, mission and safety aspects. We have combined software requirements from a
number of sources, including those based on the "4+1" software safety principles
and those emerging from security considerations, to produce a single list of top-
level expectations that any critical software development would be expected to
satisfy. This list provides a simple, unified structure that may, for example, be
used to organize audits or promote discussion between customer and supplier.

1 Introduction

Software is becoming increasingly embedded into the fabric of our society and we
are becoming critically reliant on it functioning correctly. This software ranges
from large systems (e.g. air traffic management) to small, often forgotten, pieces
of embedded software (e.g. drivers in a USB stick). Parts of this software may be
important for reasons of safety, security or mission criticality and special care
must be applied in the development of these items.

At the same time as our dependence on software is increasing, new threats are
emerging. In earlier decades, software-related issues tended to occur because the
environment had produced an unexpected input, which exposed behaviour not
explicitly covered by a test case. Now, threats are posed by those actively wishing

2 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

to disrupt systems, for example, for monetary or political gain. The large variety
of frameworks freely available for automated software vulnerability investigation
has significantly increased the number of subjects potentially posing threats: off-
the-shelf scripting security attacks can still pose critical threats and endanger criti-
cal safety and mission requirements. Given this situation, it is crucially important
that software development processes address all types of criticality.

In this paper, we build on our software, safety and cyber security experience to
propose a structured list of expectations supporting the development of modern
software systems.

The remainder of this paper is structured as follows. In Section 2 we outline our
scope and terminology. Section 3 provides background on critical software, whilst
Section 4 highlights key attributes of the modern threat environment. Section 5
summarises our method. Our expectations are described in Section 6. Summary
conclusions are provided in Section 7.

2 Scope and Terminology

Given the broad scope of software and development terms, we first formalise their
use in our paper. Then, we introduce the primitive types of software component
intended for our analysis.

2.1 Software

For the purposes of this paper, we use the term "software" to encompass a wide
variety of programmable elements, including:

• Traditional Software: That is, software written in languages such as Ada, C++,
Java and assembler. This is normally loaded from non-volatile storage when
required and may be readily updated; typically, these updates do not require
changes to the underlying computational hardware.

• Firmware: That is, software produced in the same manner as traditional soft-
ware, but embedded within a device prior to delivery. Typically, changes to
firmware are associated with changes (e.g. in part number) to the associated
device.

• Complex Electronic Hardware (CEH): That is, software contained within de-
vices such as Application Specific Integrated Circuits (ASICs) and Field Pro-
grammable Gate Arrays (FPGAs). Although there are some similarities, this
software is developed using different approaches to traditional software and
firmware.

• Algorithmic Data: That is, collections of data items that influence system be-
haviour, including configuration and adaption data. These are typically used to

Developing Critical Software in the Modern Threat Environment 3

increase software flexibility, in particular by giving a greater amount of control
to an end user.

All of these types of software need to be developed appropriately and all are with-
in the scope of this paper.

2.2 Development

For brevity, we use the term software development to cover all aspects of soft-
ware: management; development (including design and implementation); verifica-
tion; and maintenance. All of these activities are within the scope of this paper.

Although we recognise the importance of regular communication between
software and system teams, activities of the latter are outside our scope. In particu-
lar, we expect system-level activities to have produced a set of structured require-
ments that are allocated to software. We also expect system-level activities to have
assigned criticalities to these requirements (or the system functions they deliver)
through the application of a rigorous, repeatable and auditable process.

2.3 Item

To simplify discussion, this paper often refers to a Computer Software Configura-
tion Item (CSCI), which is, "An aggregation of software that is designated for
Configuration Management (CM) and treated as a single entity in the CM process"
(ISO, 2017).

In addition to that specific definition, we also use the term CSCI as convenient
shorthand to refer to controlled software that is produced as part of the develop-
ment process. In some cases the development process may produce a single CSCI;
in others, a collection of related CSCIs may be produced from the same process
(e.g. using the same planning documents, etc.).

3 Critical Software

Software can be critical for many reasons and be developed by many types of pro-
cess. To proceed with our analysis, we first introduce the precise meaning of criti-
cal software and its potential hidden criticality factors.

4 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

3.1 Reasons and Levels

Historically, the notion of "critical software" has been inextricably linked with
"safety-critical software". However, the way that software is now used and the
diverse range of threats it faces mean we need to widen our understanding of what
critical software means. We believe there are three main reasons a CSCI to be
deemed critical:

• Safety, where software failures lead to loss of life, significant loss of equipment
or significant environmental damage. Aircraft flight control software is an ex-
ample.

• Security, where software failures adversely impact confidentiality, integrity or
availability of information. Stock Exchange control software is an example.

• Mission, where software failures prevent the achievement of operational goals
(i.e. failures stop the software delivering what it was designed to). Software
that displays train departure information at a railway station is an example.

Although these categories are conceptually simple, it is difficult to precisely de-
fine a critical / non-critical boundary for any of them. For example, it could be
argued that simply flying an aircraft causes some environmental damage; the point
at which environmental damage becomes significant is more debatable.

This challenge can be eased by defining a range of criticality levels, for exam-
ple, Safety Integrity Levels (SILs) in IEC-61508 (BSI, 2010) or Development As-
surance Levels (DALs) in ARP4754A (SAE International, 2010). At first sight,
providing a greater range of levels appears to complicate our problem of defining
boundaries and increase the chance of a CSCI being misclassified. However, mul-
tiple levels allow us to adapt our development approach in a graduated manner,
which reduces the consequence of a (minor) misclassification.

As indicated by the references above, allocation of criticality levels to software
functions (and consequently to CSCIs) is best addressed at the system level. As
such, it is outside the scope of this paper.

That said, the close relationship between accidents, system-level hazards, soft-
ware functions and software criticality levels is obvious. Consequently, the lack of
established guidelines on how to integrate safety, security and mission critical
development standards may lead developers to inappropriate decisions which may
be in conflict. By way of example, the same system can be designed differently by
only considering safety or security standards. For example, consider a train's
emergency brake system. From a safety perspective, the system may be designed
to be as easy to use as possible; from a security perspective, two-factor authentica-
tion may be implemented, to protect against misuse.

In this context, we note that in System Theoretic Process Analysis (STPA)
(Ishimatsu, 2014) accidents are things that a stakeholder would consider as a loss.
Consequently, STPA provides a coherent framework within which all three rea-
sons for software criticality can be considered together. Its flexibility allows

Developing Critical Software in the Modern Threat Environment 5

STPA to be easily tailored and extended in order to include new development
principles, for example cyber security principles (Howard, 2017).

Being able to treat all three reasons for software criticality in a coherent manner
alleviates potential difficulties associated with boundaries between them. As such,
the expectations we propose in this paper try to harmonise the fundamental devel-
opment principles of each of the reasons. This is helpful as establishing meaning-
ful boundaries is likely to be impossible. For example, in the modern world, a
system cannot be safe if it is not secure and safety is often a key part of the sys-
tem's mission.

3.2 Hidden Criticality

The preceding discussion focussed on reasons why software may be critical from
the perspective of the system it supports. This the most obvious way that software
can become critical, but it is not the only way. For example:

• Functional misuse. The software may be correct with respect to its specifica-
tion, but its behaviour may not be properly understood by the user. For exam-
ple, there have been cases where patients have been given inappropriate doses
of radiation during treatment (Ash, 2007). Potential causes include inadequate
training and lack of documentation in the user's language (i.e. user-level docu-
mentation was critical).

• Architectural misuse. The wider system within which the software is imple-
mented may be used inappropriately. For example, there are cases where blind
obedience to a satellite navigation device has led car drivers into difficulties.
This is a specific example of a more general problem: over-reliance on adviso-
ry items.

• Escalation of non-critical functionality. A piece of apparently low criticality
software in one system may (unintentionally) allow the behaviour of high criti-
cality software in another system to be altered. For example, an Internet-
enabled fish tank was used to exfiltrate data from a North American casino
(Matthews, 2017).

Given the almost infinite number of ways that modern software-bearing systems
can interact, identifying all routes by which a CSCI may become critical seems an
impossible task. Nevertheless, there are some simple, practical things that can be
done, including: educating users on intended software behaviour and acceptable
system use; driving up minimum software standards (e.g. by increasing the quality
of supporting tools and frameworks); and providing strong partitioning of obvi-
ously critical software.

6 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

4 Modern Threat Environment

Nowadays, software systems need to face a large variety of threats, each of them
of different impact and with different originating motivations. Threats are not
caused just by software implementation errors, but also by vulnerabilities in
CSCIs. A single vulnerability of a component can lead to severe threats for the
associated system.

Differently from the past, the freely-available, off-the-shelf vulnerability as-
sessment tools (Kali Linux, 2018) allow any programmer to potentially become a
threat agent. As a matter of fact, scanning and searching for known vulnerable
configurations or versions of software can be done by so-called "script kiddies".
These are technologically-minded individuals that for curiosity, for fun, or for the
desire to be a hacker, challenge themselves to succeed in a cyber-attack. Although
surprising, this is still a significant threat that, despite the low attack difficulty, can
cause severe harm.

More severe threats are posed by cybercriminals and hacktivists. Both groups
represent highly skilled hackers and are the most active threat agent groups in the
modern environment. Cybercriminals are motivated by illegal profit, for example,
stealing money or sensitive data and exploiting malware for ransom payment.
Hacktivists conduct similar attacks, but they are motivated by political, religious
or social ideologies. The complexity of attacks is significant and successful at-
tacks can completely disrupt systems leading to large-scale consequences. Attacks
are not specifically targeted, but operate at large aiming to capture as many vic-
tims as possible, as was the case with recent attacks (e.g. WannaCry, Petya).

Modern threats can also be tailored and developed exclusively against a single
organisation or country. Thanks to substantial financial support, a nation-state
agent, can destabilize and disrupt targets.

Given this range of threats, a structured and complete vulnerability assessment
procedure, which allows a timely response (e.g. patching), is vitally important.
However, the patching procedure needs to be adequately conducted to ensure that
it does not introduce new vulnerabilities.

All in all, to face modern threat agents, software systems must rely on a princi-
pled development process, on continuous monitoring for undetected vulnerabili-
ties and on regular maintenance.

5 Method

The large variety of threats requires us to adopt a multi-faceted approach, bringing
together safety and security guidelines into a structured group of expectations. We
present here the rationale behind our approach and the organisation of our out-
comes.

Developing Critical Software in the Modern Threat Environment 7

5.1 Approach

Successful development of critical software relies on a combination of factors,
including processes, tools and skills. When identifying factors, we have taken in-
spiration from a number of sources, including: the "4+1" software safety assurance
principles (Hawkins, 2013); software considerations in airborne systems and certi-
fication (RTCA, 2011); design assurance guidance for airborne electronic hard-
ware (RTCA, 2000); data safety guidance (DSIWG, 2018); functional safety of
programmable electronic safety related systems (BSI, 2010); technical risk as-
sessment and risk treatment (HMG, 2012); and a framework for improving critical
infrastructure cyber security (NIST, 2018).

Building from those sources and drawing on our own experience we have iden-
tified things that we expect from every development of critical software. When
eliciting these expectations our focus was tightly restricted to things within the
remit of a software development team (rather than, for example, a systems team or
a corporate entity). This focus was adopted because of our experience of conduct-
ing, assessing and auditing software development. More specifically, our expecta-
tions could potentially form the basis of a combined safety and security assess-
ment of software development activities.

It is important to acknowledge our focus means many things that are important
to safety (e.g. system-level hazard assessment) are omitted. Likewise, many things
that are important to security are also omitted (e.g. building access controls).

The desire to support a range of approaches, along with the immaturity of the
expectations, meant we chose not to define a large number of criticality levels.
Instead, we simply identify common expectations and, where necessary, supple-
ment these with additional pieces that apply to more critical CSCIs; that is, cases
where a greater level of assurance is required.

Our aim was to produce a set of sufficiently-generic expectations that would
apply to every development, yet which contained sufficient detail to allow them to
be of practical utility, whilst also allowing sufficient flexibility for different soft-
ware development philosophies (e.g. waterfall, iterative) and approaches. Flexibil-
ity is also important, as we anticipate these expectations being refined as they are
used: whilst we believe many of the core themes will remain constant, the details
are likely to change.

In summary, we were targeting a region that was more detailed than the "4+1"
software safety principles, but was less rigid than, say, the 71 objectives of
DO-178C (RTCA, 2011).

5.2 Organisation

Given our approach, we have found it convenient to organise the expectations into
three broad groups:

8 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

• Those that are underpinning, in the sense that they apply throughout a software
development process. This includes:

- Quality Assurance (QA);
- Change and Configuration Management (CCM).

• Those that apply to particular phases of software development. This includes:

- Planning (P);
- Requirements (R);
- Design and Implementation (D&I);
- Verification (V).

Note that our use of phases does not imply use of a particular software devel-
opment philosophy; mapping our phases on to a particular development philos-
ophy should be straightforward.

• Those that highlight specific items (S) that warrant particular attention, includ-
ing: use of algorithmic data; management of subcontractors; tooling; and staff-
ing. Note that this list of specific items results from practical experience and
aims at tackling a broad part of complementary development activities. How-
ever, there is no guarantee that all relevant items have been captured.

These three groups are not independent, instead they are tightly coupled. Intuitive-
ly, expectations associated with phases build upon those associated with under-
pinning processes, whilst specific items bring in items that are neither underpin-
ning nor restricted to a single phase. This coupled relationship between the head-
ings in these three groups is illustrated in Figure 1.

Fig. 1. Relationship between headings used to organise expectations

Similarly, there can be overlap between the individual expectations. For example,
the need for a QA plan can be considered as both a QA expectation and a planning
(P) expectation. From our perspective, relationships between expectations provide
added strength, as they make omissions less likely.

P - Planning; R - Requirements; D&I - Design and
Implementation; V - Verification; S - Specific Items;

CCM - Change and Configuration Management;
QA - Quality Assurance

Developing Critical Software in the Modern Threat Environment 9

6 Expectations

This section describes our expectations, providing practical information to help
their interpretation and application. All expectations are intended to apply to large
critical software development projects, regardless of the motivating reason for the
criticality.

6.1 Underpinning

Quality Assurance (QA) – Planned and monitored review controls assuring the
quality of the development. For a critical system it is important that QA activities
are independent of the engineering activities. These activities will support the de-
velopment of a robust product in a number of ways, including, providing inde-
pendent evidence that processes have been followed and supporting continuous
process improvement.

Expectation QA1 – QA Process Plan: The developer is expected to
implement an independent, planned QA process that provides evidence that
defined processes have been followed. For CSCIs that require a greater level
of assurance, an additional pre-release review, which provides independent
evidence that all processes are complete, would be expected.

Expectation QA2 – Independent QA Monitoring: The QA plan is
expected to establish an independent group of people who will monitor the
software development activity.

Change and Configuration Management (CCM) – Tracking the evolution of
software-related artefacts. In any critical system, CCM establishes and maintains
a consistent record. This means, for example, any item released to operational use
can be faithfully recreated. CCM is also required to prevent "enthusiastic" devel-
opers making unilateral changes.

Expectation CCM1 – CCM Plan: The developer is expected to design a
CCM process, which includes a problem reporting process. The plan must
be based on defined configured items (e.g. planning documents; design
artefacts; code; verification results; software development environment). For
CSCIs that require a higher level of assurance, the plan would be expected
to establish explicit baselines and traceability.

Changes are an intrinsic feature of software development. Typically, there are four
reasons for a software change: (i) adaptive changes, which respond to new envi-
ronments or standards; (ii) corrective changes, which address defects; (iii) perfec-
tive changes, which relate to new requirements; (iv) preventive changes, which
ease future maintenance (Williams and Carver, 2010).

10 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

A key aspect of the modern software environment is the discovery of vulnera-
bilities. For example, zero-day vulnerabilities (i.e. those whose existence was not
known publicly and whose nature is significantly different from known cases)
would motivate corrective changes. In order to be confident that critical software
will continue to perform throughout its life, there needs to be a process that scans
for identified vulnerabilities and implements appropriate corrective action.

Expectation CCM2 – CCM Vulnerability Monitoring: The developer and
independent reviewers are expected to continuously monitor for potential
vulnerabilities. Should any be identified, appropriate changes should be
implemented.

Within the safety-critical software domain the need to maintain software artefacts
for a prolonged period is well understood. Extending our considerations to include
security means we also need to consider how artefacts are destroyed. This is espe-
cially important for artefacts that are destroyed during the system's life.

Expectation CCM3 – CCM Data Management: Appropriate processes for
the secure long-term archive, retrieval, release and secure destruction of
CSCI-related information should be implemented.

6.2 Phase-Based

Planning (P) – Definition and scheduling of development tasks. Developing criti-
cal software is a complex, costly process, which needs to be appropriately planned
and managed. Plans need to be sufficiently detailed to ensure that everyone under-
stands what is expected of them (and when), but not so detailed as to constrain the
application of sound engineering judgement.

A variety of supporting standards would also be expected. In addition, the doc-
uments would be expected to be made available for review by the customer or, in
some cases, by other stakeholders (e.g. regulatory authorities).

Expectation P1 – Planning Documents: The developer’s software
development planning documents would be expected to cover: software
development; verification; CCM (see also CCM1); and QA (see also QA1).

Expectation P2 – Development Guidelines: The developer is expected to
define guidelines that support all phases of the software development
process. To facilitate QA, methods of checking standards would also be
expected. A minimum would be a coding standard (used in the
implementation phase). For CSCIs that require more assurance,
requirements and design standards would also be expected.

Expectation P3 - Customer Review: The developer is expected to make all
relevant software development artefacts available for review by the
customer (or their representative).

Developing Critical Software in the Modern Threat Environment 11

The information contained in software development artefacts is likely to be of
value to adversaries who seek to deliberately undermine software behaviour.
Some artefacts are likely to be more valuable than others. For example, a QA plan
may reveal little about the software in question, whereas a detailed design docu-
ment is likely to contain many useful details. This information needs to be appro-
priately protected, but in a manner that does not unduly prevent engineers from
doing their jobs. The way this balance is to be achieved is an important topic,
which should be covered in the planning documents.

Expectation P4 – Controlling Development Process Data: The planning
documents would be expected to consider the value of the information
contained in all artefacts produced by the software development process.
According to different levels of confidentiality, it is expected that access to
and sharing of this information is controlled.

In many cases, critical software developments occur within legal and / or regulato-
ry frameworks. Consequently, planning documents would be expected to support
engagement with relevant authorities.

Expectation P5 – Legal and Regulatory Compliance: The planning
documents would be expected to ensure, via the production of auditable
evidence, that legal and regulatory requirements (e.g. relating to
cryptographic controls) are satisfied. The planning documents are also
expected to highlight any novel or contentious areas that may make it
challenging to produce suitable assurance evidence, so these areas can be
discussed with relevant regulatory authorities.

Requirements (R) – Definition of software functionality and criticality level. Re-
quirements will be allocated to software from the system engineering process (or
as part of contracts). These requirements must be consistent, implementable and
verifiable. They should also define the level of criticality associated with each
software function. These criticality levels should be established using a rigorous,
auditable and repeatable process, which considers mission impacts, security im-
pacts and safety impacts.

Expectation R1 – System-level Requirements: The developer is expected
to ensure that the initial system-level (or contract-level) requirements are:
sufficient; consistent; and verifiable.

Expectation R2 – Requirement Traceability: The developer is expected to
develop software requirements that are traceable to system-level (or
contract-level) requirements. Traceability is also expected from the software
requirements to verification tests. For CSCIs that require a higher level of
assurance, the software requirements would be expected to be split into high
and low-level requirements, with traceability extended across these levels.

Expectation R3 – Software Requirements: The developer is expected to
demonstrate that the software requirements exhibit certain characteristics,
for example they should be: accurate; sufficient; consistent; verifiable. If

12 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

criticality requirements conflict, the developer is expected to clearly identify
these so an informed decision on priority can be made.

Design and Implementation (D&I) – Defining the software architecture and
developing the corresponding code. The development process is a potentially
complex activity, which should be informed via discussions with the system team.
This activity refines the requirements through a number of levels to arrive at a
design, an architecture and low-level requirements from which the software can be
successfully implemented. Traceability is expected to be maintained through this
process (and beyond).

Expectation D&I1 – Design Activity: The developer would be expected to
complete a design activity that results in an artefact that can be directly
coded against. Artefacts from the design process would be expected to be
accurate, consistent and verifiable. For CSCIs that require more assurance
the design artefacts would be expected to include explicit descriptions of the
architecture and low-level requirements.

Expectation D&I2 – Extended Traceability: The developer is expected to
maintain traceability from system level requirements through software
requirements, design, implementation and verification.

The design is expected to include features that provide security protection. This
includes protection to maintain confidentiality, integrity and availability of data,
as well as protection to prevent one CSCI being able to affect the behaviour of
another in a way that was not planned and designed for. This latter consideration
includes protection against malformed, or otherwise inappropriate, input data, as
well as protection of a CSCI's memory space.

Expectation D&I3 – Design Security Protection: The design would be
expected to provide provision for sufficient protection of data, both at rest
and during transit. The potential for data leakage would be expected to be
considered, as would the need to validate the integrity of information that is
received.

Expectation D&I4 – Partitioning: The design would be expected to
include appropriate partitioning, taking into account criticality
considerations. CSCIs that require more assurance would be expected to
have specific protection against random failures, chance events and
deliberate hostile actions.

Given the criticality of the system, it is expected that the design phase should in-
clude assessment of algorithms. This is because algorithms, especially numerical
ones, have properties that may be difficult to exhaustively examine during testing.
For example, aerodynamic equations can become unstable as airspeed approaches
the sound barrier. This instability may not be immediately obvious from test re-
sults; aircraft have been released to front line service without it being detected
(Alberico, 1999). Consequently, we would expect algorithms to be reviewed by
knowledgeable parties, including experts in the algorithm’s domain and experts in

Developing Critical Software in the Modern Threat Environment 13

issues associated with representations of real numbers in computational hardware
(Goldberg, 1991).

Expectation D&I5 – Algorithm Accuracy: The developer would be
expected to confirm the accuracy of the algorithms that are used. This may
be achieved through, for example, knowledgeable review or simulation or
prototyping.

Verification (V) – Confirming software functionality and robustness. The evi-
dence necessary to support the assurance of critical software comes from activities
throughout its development. In particular, this evidence is not simply restricted to
results from dynamically executing the software on test cases. For example, we
would expect some form of code review.

Expectation V1 – Code Review: The developer would be expected to
conduct some form of code review. This may be a formal analysis or peer
review, targeted at key parts of the code and may be tool assited. For CSCIs
that require more assurance, this could include static analysis to confirm
compliance with a coding standard; it may include formally-documented
peer review of all code (or artefacts from which code is automatically
generated).

Of course, testing remains an important activity. We would expect requirements-
based tests (with, as per D&I2, traceability maintained from system-level re-
quirements to test cases). These tests should cover cases of expected behaviour;
that is normal test cases. They should also cover cases where the CSCI is subject-
ed to unexpected inputs and situations (e.g. abnormal initialisation); that is, ro-
bustness test cases. Robustness cases would also be expected to include examples
where an adversary deliberately tries to adversely affect software behaviour.

Expectation V2 – Requirement-based Test Cases: The developer would
be expected to develop requirements-based tests. Normal test cases and
robustness test cases would be expected, and every requirement would be
expected to be covered by at least one test. Evidence would be expected to
demonstrate the test procedures are correct and the test results are accurate.
For CSCIs that require higher assurance a particular level of structural
coverage (e.g., statement coverage, branch coverage) would be expected; the
level of coverage is expected to be commensurate with the CSCI's
criticality.

Expectation V3 – Security-based Test Cases: The developer would be
expected to develop tests based on potential activities that may be
undertaken by an adversary. These tests are expected to strengthen classical
robustness testing, for example, tests of partitioning would be expected to
explicitly cover cases where a threat is actively trying to defeat the
partitioning.

Expectation V4 – Test Review: The developer is expected to instigate a
review of the test procedures. Independent running or observation of tests

14 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

would be expected to be formally-documented procedures. Tests of
parameter data files would be expected to explicitly cover cases where the
data is incomplete or incorrect.

6.3 Specific Items

Modern software systems have many items that may be configurable via data,
either once at system load and start up, or multiple times depending on the phase
of the application. The key concepts of managing this type of data are that: any
allowable data set will not cause an error; only allowable data sets are used; and
data sets are treated with a rigor commensurate with the criticality level of the
CSCIs they may influence. There is also a need to demonstrate that data artefacts
exhibit the required properties (e.g. timeliness, accuracy) (DSWG, 2018).

Expectation S1 – Algorithmic Data: The developer is expected to
explicitly identify any algorithmic data being used and to ensure it is
controlled and managed with the appropriate rigor. For example, the
developer would be expected to consider whether specific data artefacts
need to exhibit particular properties and, if so, to ensure these properties are
maintained.

Software systems often include components produced by multiple suppliers.
Whilst the integrator remains responsible to the customer, it is important that any
subcontractor is appropriately chosen and suitably managed (including ensuring
that all required evidence is available).

Expectation S2 – Subcontractor Management: The developer is expected
to have a documented process, including criteria, for the selection of
subcontractors. The contractor is expected to monitor subcontractors; this
monitoring includes collection of evidence so that a coherent,
comprehensive body of assurance evidence is available for the CSCI.

Although the integrator is responsible for subcontractor management and perfor-
mance, the integrated nature of the overall software means that the final customer
may need to obtain evidence from subcontractors. The right to do this has to be
included in contracts.

Expectation S3 – Customer Audit: The rights of the customer to review
planning documentation and to audit their implementation, including the
resulting artefacts, is expected to be extended to all subcontractors.

Humans have been using tools to make their job easier for millions of years and
software engineers are continually developing tools to make the engineering pro-
cess more efficient.

Expectation S4 – Tools: The developer is expected to ensure that any tools
used in the development of a CSCI are of a suitable quality and, if

Developing Critical Software in the Modern Threat Environment 15

appropriate, qualified to an appropriate level. A greater amount of evidence
is expected for tools that can introduce errors into the software than for tools
that may only fail to detect errors.

In any project having staff with appropriate skills (e.g. both domain knowledge
and software engineering skills), and supporting those still acquiring these skills,
is an important aspect of project management. This becomes more important on
projects with long development or long in-service periods, as staff changes are
more likely.

Expectation S5 – Staff: The developer is expected to have a process to
ensure staff are appropriate for the task, this can be achieved via assessment
of skills and experience, and to support relevant training, without
jeopardizing the quality of the software. The competencies considered
should include: software engineering; information security; safety and
domain (mission) knowledge.

7 Conclusions

We have developed and described a set of expectations that should be met for any
development of critical software. These are summarised below.

• Quality Assurance (QA):

- QA1: QA Process Plan;
- QA2: Independent QA Monitoring.

• Change and Configuration Management (CCM):

- CCM1: CCM Plan;
- CCM2: CCM Vulnerability Monitoring;
- CCM3: CCM Data Management.

• Planning (P):

- P1: Planning Documents;
- P2: Development Guidelines;
- P3: Customer Review;
- P4: Controlling Development Process Data;
- P5: Legal and Regulatory Compliance.

• Requirements (R):

- R1: System-level Requirements;
- R2: Requirement Traceability;
- R3: Software Requirements.

16 Brian Stevens, Rob Ashmore, Andrea Margheri, Vladimiro Sassone

• Design and Implementation (D&I):

- D&I1: Design Activity;
- D&I2: Extended Traceability;
- D&13: Design Security Protection;
- D&I4: Partitioning;
- D&I5: Algorithm Accuracy.

• Verification (V):

- V1: Code Review;
- V2: Requirement-based Test Cases;
- V3: Security-based Test Cases;
- V4: Test Review.

• Specific Items (S):

- S1: Algorithmic Data.
- S2: Subcontractor Management;
- S3: Customer Audit.
- S4: Tools.
- S5: Staff.

From the perspective of a safety specialist, it may be tempting to consider the
above list as being just a minor extension on existing practice. For example,
CCM2, which relates to vulnerability monitoring, is readily identifiable as an ex-
tension introduced for security reasons. Conversely, many of the other items will
be familiar to those with experience in safety-critical software.

However, to view the list as, in some way, "safety-critical software plus a bit"
misses the point. In particular, our aim was to create an integrated list of expecta-
tions that addressed safety, security and mission criticality. As such, an individual
expectation can address issues from multiple perspectives. An obvious example is
D&I4, which relates to partitioning; this is common practice in safety-critical
software, but is also of great value from a security perspective.

Whilst there may be much debate about the specific expectations we have cho-
sen, we hope the need for a holistic software development process that considers
all forms of criticality is clear. We also hope our work has made a small contribu-
tion to that end.

Acknowledgments BS and RA would like to thank Andy Adams of the Defence Airworthiness
Team, Defence Equipment and Support (DE&S), for his support and encouragement. RA, AM
and VS would like to thank the Cyber Security Academy, Southampton University, for many
stimulating conversations, which have informed this work. In addition, we note the paper bene-
fitted significantly from comments received during the review process for the 2019 Safety-
critical Systems Symposium.

References

Developing Critical Software in the Modern Threat Environment 17

Alberico D, et al. (1999) Software System Safety Handbook. Joint Software System Safety
Committee.

Ash D (2007) Lessons from Epinal. Clinical Oncology 19.8 614-615.
BSI (2010) Functional safety of electrical/electronic/programmable electronic safety related

systems. BS EN 61508:2010.
DSIWG (2018) Data Safety Guidance. Version 3, SCSC-127C.
Goldberg D (1991) What every computer scientist should know about floating-point arithmetic.

ACM Computing Surveys (CSUR) 23.1 5-48.
Hawkins R, Habli I, Kelly T (2013) The principles of software safety assurance. 31st Interna-

tional System Safety Conference, Boston, Massachusetts USA.
Howard G, Butler M, Colley J, Sassone V (2017) Formal analysis of safety and security re-

quirements of critical systems supported by an extended STPA methodology. At 2nd Work-
shop on Safety & Security Assurance, 2017.

HMG (2012) IA Standard Numbers 1 & 2 - Supplement Technical Risk Assessment and Risk
Treatment.

Ishimatsu T, et al.(2014) Hazard analysis of complex spacecraft using systems-theoretic process
analysis. Journal of Spacecraft and Rockets 51.2 509-522.

ISO (2017) Systems and software engineering - Vocabulary. BS ISO/IEC/IEEE 24765:2017.
Kali Linux (2018) Penetration Testing and Ethical Hacking Linux Distribution. Available from

https://www.kali.org.
Matthews L (2017) Criminals hacked a fish tank to steal data from a casino. Forbes.

https://www.forbes.com/sites/leemathews/2017/07/27/criminals-hacked-a-fish-tank-to-steal-
data-from-a-casino/#ec931b632b96.

NIST (2018) Framework for improving critical infrastructure cybersecurity, Version 1.1.
RTCA (2000) Design assurance guidance for airborne electronic hardware. DO-254.
RTCA (2011) Software considerations in airborne systems and equipment certification.

DO-178C.
SAE International (2010) Guidelines for Development of Civil Aircraft and Systems. Aerospace

Recommended Practice (ARP) 4754A.
Williams B J and Carver J C. (2010) Characterizing software architecture changes: a systematic

review. Information and Software Technology 52.1 (2010): 31-51.

Disclaimer This article is an overview of UK MOD sponsored research and is released for in-
formational purposes only. The contents of this article should not be interpreted as representing
the views of the UK MOD, nor should it be assumed that they reflect any current or future UK
MOD policy. The information contained in this article cannot supersede any statutory or contrac-
tual requirements or liabilities and is offered without prejudice or commitment.

