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Abstract

Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF)
patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient
exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of
importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum
samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both
isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or
cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by
DNA- and RNA- based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we
associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific
anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study
has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has
revealed potential metabolic biomarkers for exacerbation.
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Introduction

Cystic fibrosis (CF) is the most common lethal autosomal

recessively inherited disorder of Europids. It is caused by a

mutation in the Cystic Fibrosis Transmembrane Conductance

Regulator (CFTR) gene that makes those diagnosed extremely

susceptible to pulmonary infections. This is in part due to

overproduction of mucus in the airways that predisposes patients

to microbial colonisation, which is the major cause of morbidity

and mortality. Although a limited number of bacterial species

including Pseudomonas aeruginosa, Burkholderia cenocepacia, Staphylococ-

cus aureus and Haemophilus influenzae have been established as

important CF pathogens [1], it is now appreciated that CF airway

infections are more broadly polymicrobial in nature. Furthermore,

culture-independent methodologies have revealed that the bacte-

rial communities present are even more diverse than previously

realised [2,3]. A range of these techniques has been deployed:

generation of 16S rRNA clone libraries [4,5], terminal restriction

fragment length polymorphism analysis [2,6], microarray hybrid-

isation [7], phylochip analysis [8] and pyrosequencing [9].

Collectively these studies demonstrate that a number of previously

unrecognised aerobic and anaerobic species are present in CF

airways, some of which represent new potential pathogens.

The strategies to uncover bacterial diversity described above

rely on using total DNA extracted directly from the sample of

interest and as a consequence are unable to discern between DNA

from metabolically active, latent or dead bacteria. This is a

considerable drawback for the selection of antimicrobial therapies

to be deployed in the treatment of CF lung infection as these

should be targeted towards those populations of bacteria that are

metabolically active, and hence sensitive to the agents [2,10,11].

Furthermore, microbes are subjected to numerous selective

pressures and nutritional or other environmental cues that can

control bacterial behaviour and response to therapy [12–14].

Unfortunately information concerning the metabolic activity of

microbes in the CF airway during infection is limited. To date,

metabolomic methods have been applied to bronchoalveolar

lavage fluid, model CF cell culture systems and to the examination

of regulatory lipid mediators in adult CF sputum [15–17].

Determining the relative abundance of metabolically active

bacteria and the metabolite composition during CF infections

may be imperative in the design of diagnosis strategies, tailoring

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82432



prescription of antibiotics and informing treatment regimes. To

address this issue, we have used a next-generation sequencing

approach to evaluate the diversity of total and metabolically active

bacteria associated with the CF airway. We isolated both DNA

and RNA from sputum samples taken from two separate cohorts

of CF patients and non-CF subjects for analysis of 16S rRNA

genes and transcripts. Concurrently a metabolic fingerprinting

approach was applied to the sputum samples to acquire an insight

of the low-molecular-weight molecules present.

Results

Collection of sputum samples from adult CF and non-CF
patients

To explore the relationship between respiratory tract bacterial

community and metabolite composition of CF lung disease, we

began by enrolling 80 patients of a long-term program at the Adult

CF clinic at Cork University Hospital. The patients recruited for

this cross-sectional study included 75 CF patients and 5 non-CF

patients with stable bronchiectasis. The average age of the patient

population was 28.3 years [range: 19–52]. The patient group

consisted of 44% females. Further clinical description and analysis

of these patients recruited is reported in Table S1. During

enrolment we collected 110 lower airway expectorated samples: 75

samples were collected during a period of stability, 26 during a

period of acute exacerbation and 9 sputum samples from non-CF

patients around the same period as defined in the Material and

Methods and by Fuchs et al., [18]. Henceforth, these three cohorts

of samples are referred to as ‘‘stable’’ and ‘‘exacerbated’’ and

‘‘control’’ samples, respectively.

Diversity and abundance of total and active bacteria
from CF airway

To determine the composition of the bacterial community in

each sputum sample from the stable, exacerbated and control

cohorts, we assessed 16S rRNA profiles amplified from total DNA

and reverse-transcribed RNA extracted from each cohort sample.

This entailed amplifying 16S rRNA genes from 110 samples (in

duplicate) using specific primers that spanned variable regions V3

to V5 and incorporating specific bar code tags for identification.

Amplicon libraries were prepared and sequenced using Roche 454

FLX titanium technology, as described in the Materials and

Methods and reported previously [19]. The analysis detected a

total of 60,000 PCR amplicons that were ,350 bp in length, with,

on average, .1500 reads for each sample (Table S2). Using a 98%

similarity threshold value, we identified a wide range of

operational taxonomic units (OTUs) for each sample. On average,

400 OTUs per sample were detected. After normalisation to the

sample with the smallest number of reads (<5000), 401 OTUs

were included in further analyses. The number of sequences from

each genus/order was used to determine the predominant bacteria

that were present. A complete summary of the read assignments

for each patient cohort is provided in Table S2.

Dominant bacteria. The 10 most abundant orders of

bacteria observed by DNA-based analysis in stable and exacer-

bated cohorts were Pseudomonadales, Xanthomonadales, Chrysiogenales,

Bacillales, Clostridiales, Chlamydiales, Burkholderiales, Bacteroidales,

Methanosarcinales and Flavobacteriales (FIG. 1 and FIG. S1).

Reassuringly, the predominant aerobic pathogens (Pseudomonas

and Burkholderia) detected by culture were recognised by sequenc-

ing to occur in the corresponding patient samples (Table S3). The

identification of these orders in both stable and exacerbated

patients is consistent with recently reported findings [8,9]. These

ten orders accounted for 89% of the reads detected from the stable

cohort but a greater proportion of the exacerbated cohort (96%).

Pseudomonadales, among which the major contributor was P.

aeruginosa, was the dominant order in all subjects in the

exacerbated cohort, demonstrating a reduction in bacterial

richness in exacerbated patients consistent with previous reports

(recently reviewed in [20]).

Not unexpectedly, the principal bacterial orders found in the

control cohort have been previously identified as normal flora of

the upper respiratory airway and oropharynx including Propioni-

bacterium, Corynebacterium, Staphylococcus spp., Neisseria, Haemophilus,

and anaerobic lineages such as Prevotella, Veillonella, and Fusobac-

terium spp. (data not shown).

The 16S rRNA gene data set generated from genomic DNA

represents the total community including dormant or dead

bacteria. In contrast, the 16S rRNA data set generated from

reverse-transcribed RNA indicates the community of metabolical-

ly active bacteria, i.e. those with higher ribosomal content.

Comparison of these data sets showed that the ten most abundant

bacterial orders as revealed by analysis of reverse-transcribed RNA

were identical to and had the same relative abundance as those

identified by the DNA-based methods in both stable and

exacerbated cohorts (FIG. 1; FIG. S1; FIG. S2). Furthermore,

the bacterial community revealed by DNA analysis did not contain

members that were absent in the community described by the 16S

rRNA data set. However, the DNA assessment appears to

overestimate the abundance of less prevalent organisms (including

anaerobes) to different degrees such that it skews the assessment of

the relative abundance of these bacterial orders (FIG. 1; FIG. S1;

FIG. S2). Notably, quantitative PCR analysis revealed no

significant differences in total bacterial densities in sputum samples

from stable and exacerbated cohorts (FIG. 1; FIG. S1).

Anaerobes. In the current study, only strict anaerobes were

classed as anaerobes, whereas, facultative anaerobes were classed

as aerobes. In agreement with previous studies [21,22], we also

found strictly anaerobic bacteria to be diverse and abundant

within the CF airways. Strict anaerobes accounted for between 1–

2% of the reads detected in both the stable and exacerbated

cohorts. The abundance of strict anaerobes in total did not appear

to alter between total and metabolically active populations in both

the stable and exacerbated cohorts (FIG. 2; FIG. S3). The

abundant orders in both stable and exacerbated cohorts were

Methanosarcinales, Bacteroidales, Clostridiales, Chrysiogenales, Actinomyin-

dales and Bifidobacteriales. The complexity of the anaerobe

community was considerably reduced in samples from the

exacerbated cohort as revealed by both DNA-based and RNA-

based methods. The RNA-based analysis suggested that the

anaerobe community in exacerbated patients was comprised

almost entirely of Bacteroidales, Clostridiales and Chrysiogenales, with

the last being the predominant order in the majority of cases

(FIG. 2). In contrast, DNA analysis detected, in addition, bacteria

of the orders Methanosarcinales, Actinomyindales and Bifidobacteria-

les.The few bacteria that have been classified within the order

Chrysiogenales are environmental organisms able to respire arsenate

or selenium [23,24]. As far as we are aware however, no

association of bacteria from this order with CF or other infections

has been made previously.

Other significant orders of bacteria. Numerous other

aerobic bacteria are believed to contribute to the community

complexity of the CF lung disease [9]. We examined the

prevalence of various genera identified by previous reports to be

important [9]. The genera examined included Mycobacterium sp.,

Streptococcus sp., Pandoraea sp., Rothia sp., Flavobacterium sp., and

Chlamydia sp. (FIG. 3; FIG. S4). These genera found within most

samples comprised ,3% of the total amplicon population. RNA-

Microbiota and Metabolite Profile of the CF Airway
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based analysis did not detect Pandoraea sp. or Mycobacterium sp. in

the exacerbated cohort (FIG. 3).

Community structure as revealed by DNA-based (total)
and RNA-based (metabolically-active) techniques

We compared community structures across patient cohorts to

determine if inter-individual differences in structure exceeded the

changes we observed between samples. Pairwise ecologic distances

were calculated for all samples using the Bray–Curtis (BC) distance

metric, which takes into account both community membership

and relative abundance. These distances then were visualised by

comparing stable and exacerbated cohorts revealing appreciably

distinct communities (FIG. 4). Bacterial communities revealed by

DNA-based and RNA-based techniques in stable cohorts appear

sporadically distributed with only a slight overlap at the centre of

the ordination diagram. The majority of the metabolically-active

(RNA-based) populations from stable patients clustered around

this point. Interestingly, with the exacerbated cohort considerable

overlap and clustering between communities from DNA-based

and RNA-based datasets was seen, with only a small number of

outliers. Together, these findings reflect that in single sample

community analysis using either DNA- or RNA-based techniques,

extensive variability is seen in communities identified in stable

samples, whereas little variability is seen in bacterial communities

from exacerbated samples, where in the majority of cases,

Pseudomonas aeruginosa is the predominant organism.

Standard culture profiling of CF airway
In parallel to the above studies, sputum samples were screened

using standard CF microbiology culture-based protocols as

detailed in the Methods section. Members of four phyla were

identified with the majority of isolates belonging to the gamma

subdivision of the Proteobacteria (Table S3). As expected, mucoid

and non-mucoid Pseudomonas, Staphylococcus aureus, and bacteria

from the genera Burkholderia and Haemophilus dominate the

microbiology profile. Other organisms such as Streptococcus and

Mycobacterium spp. were less commonly found, but no members of

the oropharyngeal flora were detected. Comparison of culture-

based profiling and detection by RNA-based analysis of sputum

showed that both methods detect dominant CF pathogens, but the

Figure 1. Relative abundances of bacterial orders identified as operational taxonomic units (OTUs) from the sequence reads
generated from sputum samples of CF patients presenting with exacerbation. The coloured segments of each bar represent the
proportion of reads mapping to different bacterial orders. Percentage of sequences from total DNA (A) or total transcribed RNA (B) are described.
Details of clinical parameters and microbiological assessment of each of the sputum samples collected are described in Table S3. Total bacterial
density in each sputum sample examined is indicated as 16S rRNA copies/ml sputum as measured by quantitative PCR.
doi:10.1371/journal.pone.0082432.g001
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RNA-based method provides a broader perspective of the CF

airway microbiome. This is consistent with previous studies [20].

Metabolite profiling of the secretions of the CF airways
Metabolite profiling of the sputum samples was carried out

using an LC-MS/MS approach. Samples were taken from 26 CF

patients during a period of stability and also during exacerbation.

The microbiome in these sputum samples was also profiled. From

each of these sputum samples, 200 small molecules were detected,

of which 47 could be identified and 36 (listed in Table S4) could be

quantified. These compounds included amino acids, polyamines,

and carbohydrates. A representative HPLC profile is presented in

FIG. 5.

The differences in the metabolite levels between stable and

exacerbated samples and their statistical significance were

calculated (see Materials and methods). Multi-variate analysis

was then employed to identify metabolites that showed reproduc-

ible changes between stable and exacerbated cohort across the

three replicates, with p,0.001 deemed to be significant. Of the 36

metabolites that were quantitated, 32 showed no statistically

significant variation in level between all of the samples. However,

statistically significant fluctuations were clearly seen in levels of

pyruvate, lactate, palmitate, and putrescine (FIG. 6A; FIG. S5).

Specifically, pyruvate, lactate and putrescine showed significant

increases in samples from exacerbated compared to stable patients,

whereas palmitate levels decreased. In summary, we detected

significant changes in the level of a small number of metabolites

associated with sputum samples between stable and exacerbated

patients.

Correlation between the levels of altered metabolites
and the composition of the bacterial community

Previous studies have shown that metabolite compositions in

clinical scenarios such as Crohn’s disease and urogenital infection

can be correlated with microbiota composition and host physiol-

ogy [25,26]. This prompted us to examine any possible

relationship between the composition of the respiratory tract

bacterial community and the metabolite profile of CF sputum. To

do this, we merged the data sets describing the levels of metabolites

and the RNA-based composition of the bacterial community for

each patient. Initial PCA analysis showed a trend for separation

according to clinical status (stable or exacerbated). Differences in

metabolites between stable and exacerbated were highly correlated

with changes in the total CF microbiota and provided evidence of

Figure 2. Identification of anaerobic bacterial populations among sputum samples from CF patients presenting with exacerbation.
Percentage sequences from DNA-based (A) and RNA-based (B) approaches are described. The coloured segments of each bar represent the
proportion of reads mapping to different anaerobic bacterial orders.
doi:10.1371/journal.pone.0082432.g002
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the microbial diversity having an impact on the small molecules

found in sputum (FIG. 6B). We further statistically characterized

the abundance of specific metabolites for a relationship to the

identified dominant CF microbiota. An assessment of the total

population identified a relationship between the increase in

putrescine, pyruvate and lactate and the abundance of Pseudomonas

and the strict anaerobes of the order Chrysiogenales. The correlation

with the level of Pseudomonas is consistent with previous reports that

P. aeruginosa dominates the microbiome during exacerbation.

Interestingly however, the correlation between the level of these

metabolites and the level of Chrysiogenales is stronger (p#0.012)

than that with Pseudomonas (p#0.05).

Discussion

In this study, we have applied the parallel technologies of

ribosomal tag sequencing based on DNA and RNA and

metabolomics to sputum samples taken from separate cohorts of

CF and non-CF subjects as an approach to characterise the

‘active’ bacterial community and environment in the CF airway.

This analysis revealed (i) that significant differences in particular

metabolites occur in sputum taken from clinically stable CF

patients and those presenting with CF pulmonary exacerbation, (ii)

that although the population size of all dominant orders of bacteria

as measured by DNA- and RNA-based methods are close, greater

discrepancies are seen with less prevalent organisms, some of

which we associate with CF for the first time, and (iii) that a strong

relationship exists between the abundance of specific strict

anaerobes and fluctuations in the level of several metabolites

during CF pulmonary exacerbation.

Alteration in metabolites of the CF airway during
exacerbation

We have shown that sputum from patients presenting with a CF

pulmonary exacerbation have elevated levels in pyruvate, lactate,

and putrescine compared with sputum taken from clinically stable

CF patients or non-CF patients. Conversely, levels of palmitate

were considerably higher in clinically stable CF patients than those

levels observed in sputum samples taken from CF patients with

exacerbation. Both host and microbial cells could contribute to

these changes in metabolite profile. Elevated levels of the

anaerobic glycolysis metabolites pyruvate and lactate in CF

respiratory secretions have already been associated with increased

Figure 3. Prevalence of emerging CF bacterial pathogens among sputum samples from CF patients suffering exacerbation.
Percentage of sequences from DNA-based (A) or RNA-based (B) approaches are delineated. The coloured segments of each bar represent the
proportion of reads mapping to different bacterial orders.
doi:10.1371/journal.pone.0082432.g003

Microbiota and Metabolite Profile of the CF Airway
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hypoxic conditions during CF exacerbation [27]. Under anaerobic

growth conditions in the absence of alternative electron acceptors,

P. aeruginosa utilises the conversion of pyruvate into acetate and

lactate for long-term survival [28]. Recent work has shown that

pyruvate fermentation is required for microcolony (biofilm)

formation by P. aeruginosa [29], which is consonant with an earlier

suggestion that pyruvate fermentation might contribute to the

survival of P. aeruginosa in biofilms during infection [28].

A recent study examining the contribution of arginase activity to

airway nitric oxide deficiency in CF demonstrated that levels of

various polyamines, including spermine, were significantly in-

creased in sputum taken from CF patients with exacerbation [30].

Interestingly, polyamines have been previously identified in the

outer membrane and attached to lipopolysaccharide of Gram-

negative bacteria, including P. aeruginosa and have been recently

linked to surface-associated functions that serve to protect the

bacterial outer membrane from oxidative stress and the action of

antibiotics [31]. Such effects could promote bacterial colonisation

and proliferation during CF airway exacerbation. To our

knowledge, a decrease in palmitate levels associated with a CF

pulmonary exacerbation has not been previously reported. This

may be of importance since airway surfactant components,

particularly lipids, are essential for proper airway function and a

lack of such components leads to respiratory distress. P. aeruginosa

has been shown to adapt to utilise abundant lipid molecules when

growing under hypoxic conditions, which might account partially

for this reduction in this specific lipid [32]. It is unlikely that the

microorganisms colonising the CF airway are the sole contributors

to the alteration in levels of specific metabolites in CF sputa, which

reflects the complex interplay between human and bacterial

processes. Nevertheless, if longitudinal studies could establish that

the changes identified preceded onset of exacerbation as measured

by clinical parameters, they may provide potential biomarkers that

would provide an early report of the need for intervention.

Alteration in the anaerobic bacterial population during
CF exacerbation

In this present study, we mapped the bacterial community

structure during periods of stability and exacerbation in the CF

airway using both DNA and RNA-based approaches. It was clear

from our study that the two approaches gave different estimates of

the relative abundance of less widespread organisms. This may

have considerable implications in measuring antibiotic impact and

subsequent treatment success of CF airway infections [11]. Both

methods have limitations; DNA-based approaches undoubtedly

overestimate the abundance of various bacterial orders since they

do not differentiate between bacteria that are metabolically active

and those that are metabolically inactive (or dead). However,

determination of relative abundance based on RNA-based

methods makes the assumption that all living bacteria are equally

metabolically active, which may not necessarily be the case [33].

This approach also allowed us to identify the Chrysiogenales as

being the predominant order of anaerobic organism in CF patients

undergoing exacerbation. To our knowledge this is the first

description that bacteria of the order Chrysiogenales are associated

with CF lung disease. The absence of previous reports of

Figure 4. Bacterial community structures of samples from stable CF patients and those presenting with exacerbation as plotted
based on Bray–Curtis (BC) distance metric. Each community from each sample is represented as a filled circle and coloured by class (green –
total DNA extracted from CF patients presenting with exacerbation; red – total RNA extracted from CF patients presenting with exacerbation;
magenta – total DNA extracted from stable CF patients; cyan – total RNA extracted from stable CF patients). BC sample clusters are based on the
distribution of the bacterial orders found in an individual sample. A confirmation of differences between samples was validated using the ade4
permutation test. This determined the statistical significance of the BC; the ellipses represent the 95% confidence region.
doi:10.1371/journal.pone.0082432.g004
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Figure 5. Representative HPLC trace of metabolites from sputum taken from a CF patient during a period of stability (A) and
presenting with pulmonary exacerbation (B). Regions are labelled to indicate a range were metabolites of interest that were recovered from
samples. Specific concentrations of metabolites identified are detailed in Tables S4 and S5.
doi:10.1371/journal.pone.0082432.g005

Figure 6. Concentrations of lactate (i), pyruvate (ii), putrescine (iii) and palmitate (iv) detected in sputum samples taken from 26 CF
patients during a period of stability and presenting with pulmonary exacerbation (A). Each dot represents an individual patient. Data are
given as the average values measured in triplicate (metabolite concentrations are described as mM unless otherwise stated and means 6 standard
deviations are reported). (B) PLS-DA plots of metabolite profile of sputum taken from 26 CF patients during a period of stability and presenting with
pulmonary exacerbation. Stable subjects (green) vs. exacerbated subjects (red); R2 = 0.95, Q2 = 0.93 for a two-component model. The ellipses
represent the 95% confidence region. Permutation tests (n = 1,000) validated the model (p,0.001).
doi:10.1371/journal.pone.0082432.g006
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Chrysiogenales in CF may reflect difficulties in their cultivation. The

only member of this order that has been characterised thus far is

Chrysiogenes arsenatis, an obligately anaerobic organism isolated

from estuarine environments that respires arsenate or selenium

[23,24]. Selected typed strains of Chrysiogenes arsenatis are at various

stages of genome sequencing [34] and a draft genome sequence is

available. Isolation of specific CF isolates and genome sequencing

would be of considerable benefit in advancing our limited

understanding of Chrysiogenales and their possible contribution

to disease and to promotion of pulmonary exacerbations. Such

effects may be exerted through interactions with the host or

through microbe-microbe interactions with more prevalent

pathogens, as has been seen for organisms such as Stenotrophomonas

maltophilia that have the ability to influence the behaviour of P.

aeruginosa [35,36].

In conclusion, the work in this paper adds to a number of

reports that suggest the significance of less prevalent organisms (to

include strict anaerobes) in CF infection, which may have

implications for therapeutic regimes [21,37].

Materials and Methods

Enrolment of subjects, ethics statement and sputum
sample collection

Sputum samples from 80 CF patients (January 2010–September

2010) were collected from the Adult Cystic Fibrosis Treatment

centre in the Cork University Hospital. All study participants

provided written consent. The Clinical Research Ethics Commit-

tee of the Cork Teaching Hospitals (CREC) granted full approval

to the project. Sputum samples were assigned into two clinical

states; stable and exacerbated based on medical history, which was

assessed by physician observations, patient-reported symptoms on

the day of collection and antibiotic use within 30 days before

collection. Sputa from non-CF patients with bronchiectasis were

also collected for control analysis. All sputa were analysed, then

frozen at 280uC in 1 ml aliquots for further study. Patient clinical

parameters were also recorded including the participant’s age,

lung function, CFTR genotype, pulmonary administered antibi-

otics, and colonisation by microorganisms identified by standard

clinical laboratory cultivation techniques. Solid media included

Chocolate-anaerobic agar (CHOC), MacConkey agar (MAC),

Polymyxin B- MacConkey agar, Mannitol-salt agar (MSA),

Colisitin-nalidixic acid agar. Plates were incubated at 37uC in

the presence of 5% CO2 for two days with the exception of

OFPBL cultures, which were incubated at 30uC and chocolate

agar cultures which were incubated anaerobically.

Definition of pulmonary exacerbation
Pulmonary exacerbations in CF patients have been defined as

the clinical need for additional treatment as indicated by a change

in clinical parameters as described by Fuchs et al., [18]. Significant

pulmonary symptoms include (but are not restricted to) increase in

cough, change in sputum production (volume and/or appearance),

onset or increase of haemoptysis, weight loss, exhaustion and

fatigue and/or lung function decline. Any combination of these

symptoms has been considered sufficient for additional treatment.

Nucleic acid extraction
Prior to DNA extraction, sputum samples were washed in

sodium phosphate buffer to remove adherent saliva. DNA and

RNA extraction from sputum samples was carried out as

previously described [19]. All reagents, glassware and plastics

used in RNA work were DEPC-treated prior to use. RNA was

extracted as follows: 0.75 ml of Tri Reagent (Sigma-Aldrich) was

added to approximately 0.2 ml of each sample and vortexed for

1 minute. Samples were incubated at room temperature for

5 minutes prior to the addition of 0.2 ml chloroform. Samples

were vortexed for 15 seconds and incubated at room temperature

for 5 minutes. Phases were separated by centrifugation at

12,0006g for 15 minutes at 4uC. For isolation of DNA 0.3 ml of

100% ethanol was added to precipitate the DNA from the lower

phase. The sample was mixed by inversion, incubated at room

temperature for 3 minutes and centrifuged at 12,0006g for

5 minutes at 4uC. The pellet was washed in 0.1 M sodium citrate,

10% ethanol solution (during each wash the pellet was allowed to

stand for at least 30 minutes). Pellets were centrifuged at 12,0006g

for 5 minutes at 4uC and washed twice in 75% ethanol. The DNA

was vacuum dried, with the pellet re-suspended in 50 ml H2O and

stored at 220uC. For isolation of RNA the upper phase was

transferred to a fresh microfuge tube and 0.5 ml of propan-2-ol

was added. Samples were incubated for 10 minutes at room

temperature and RNA was pelleted by centrifugation at 12,0006g

for 10 minutes at 4uC. The supernatant was removed and the

RNA pellet washed once in 75% ethanol and re-pelleted by

centrifugation at 7,500 6g for 5 min at 4uC. Pellets were air-dried

for 10 minutes, re-suspended in 30 ml distilled water and

incubated for 10 minutes at 55uC. Purified RNA samples were

stored as aliquots at 270uC. Prior to reverse transcription, any

residual DNA was removed using DNaseI (Epicentre) in accor-

dance with the manufacturer’s instructions, with PCR amplifica-

tion controls performed as appropriate.

Quantitative reverse transcriptase PCR
Total bacterial density was determined using a TaqmanH

Universal PCR Mastermix assay, in which a fragment of the 16S

ribosomal RNA gene was amplified, as described previously [38].

Details of the relevant primers are available upon request. Total

bacterial primers at a concentration of 100 nM each, and 1 ml of

undiluted sputum DNA or cDNA were used in each reaction. The

cycling conditions used are previously described [38]. Each run

contained non-template control and a 10-fold dilution series of P.

aeruginosa genomic DNA. All quantitative PCR analyses were

performed in triplicate. Standard curve samples were converted

from DNA concentration to 16S rRNA copy number based on

four rRNA operon copies and 6, 264, 403 bp per P. aeruginosa

PAO1 genome and used to extrapolate total 16S rRNA operon

copy number from cycle threshold (CT) values from specimens

samples.

16S rRNA universal PCR amplication and Roche 454
sequencing

The following universal 16S rRNA primers were used for the

PCR reaction: KTF (59-CCAGACTCCTACGGGAGGCAGC-

39) and KTR (59-CCGTCAATTCCTTTGAGTTT-39) for the

V3–V5 region. Barcode sequences for the V3–V5 samples of

either AGCAGAGC or AGCAGATG were attached between the

454 adaptor sequence and the forward primers. Standard PCR

reaction conditions were employed for reactions with Taq

polymerase 22 mM MgCl2, 200 nM each primer, 200 mM

dNTPs. The PCR conditions established were 94uC for 50 sec-

onds (initialisation and denaturing) followed by 40uC for

30 seconds (annealing), 72uC for 60 seconds in 40 cycles

(extension), and a final elongation step at 72uC for 5 minutes.

Two negative control reactions containing all components, but

water instead of template, were performed alongside all test

reactions, and were routinely free of PCR product, demonstrating

lack of contamination with post-PCR product. The optimal

annealing temperature for the primers, which included 454
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adapters and barcode sequences, was empirically determined by

gradient PCR using control reactions with initially purified

bacterial genomic DNA, and validated on Pseudomonas gDNA.

The 16S rRNA V3–V5 amplicons were subsequently sequenced

on a Roche 454 Genome Sequencer FLX platform (The Genome

Analysis Centre, UK) according to 454 protocols.

Sequence analysis and phylogenetic

classification. Sequences (FASTA format) and their respective

quality scores were obtained from SFF data files via Roche’s 454

Sequencing System Software (v. 2.5.3). A file giving the forward

primer sequence and defining samples by their barcodes was

created to enable analysis by the mothur software package (v.

1.20.0; http://www.mothur.org/). Mismatches to the barcode

(1 nt) and primer (2 nt) were allowed, but sequences were

discarded from the analysis if: they contained any ambiguous

bases, were of length ,100 nt, or if the average quality score fell

below 35 over a 50 nt window. Sequences were aligned using the

SILVA alignment database (http://www.arb-silva.de/) and clus-

tered for OTU analyses via the mothur analysis pipeline. Further

sequence analysis such as clustering, characterisation of chimeras

and sequence alignment was carried out as previously described

[8,9,19]. The sequences reported in this paper were deposited in

the Sequence Research Archive (SRA) at NCBI under the

following accession numbers: ERA259841; ERX330942;

ERX330943; ERX330944; ERX330945; ERX330946;

ERX330947; ERX330948; ERX330949.

Metabolomic profiling
The metabolomic platforms were described previously in detail

[39]. Briefly, the platform consisted of two independent platforms:

liquid chromatography/tandem mass spectrometry (LC/MS/MS)

optimised for basic species, LC/MS/MS optimised for acidic

species. The major components of the process are summarised as

follows:

Sample Extraction and MS Analysis. Triplicate samples

were extracted using an automated Hamilton liquid handling

workstation in 400 ml of methanol, containing the recovery

standards. The samples destined for MS analysis were dried

under vacuum desiccation for a minimum of 24 hours and then

derivatised under dried nitrogen using bistrimethyl-silyl-trifluor-

oacetamide. The GC column was 5% phenyl, and the temper-

ature ramp was from 40 to 300uC in a 16-minute period. Samples

were analysed on a Thermo-Finnigan Trace DSQ fast-scanning

single-quadrupole mass spectrometer using electron impact

ionization.

LC/MS/MS Analysis. Fractions were analysed by LC–MS–

MS. Analyses were performed using a Shimadzu SCL-10a VP

HPLC system connected directly to a Finnigan TSQ 7000 triple-

quadrupole mass spectrometer via an electrospray interface. Two

separate HPLC/MS injections were performed on each sample:

one optimised for positive ions and one for negative ions.

Chromatographic separation followed by full scan mass spectra

was carried out to record retention time, molecular weight (m/z),

and MS/MS of all detectable ions presented in the samples.

Metabolites were identified by automated comparison of the ion

features in the experimental samples with a reference library of

chemical standard entries that included retention time, molecular

weight (m/z), preferred adducts, and in-source fragments as well as

their associated MS/MS spectra. This library allowed the rapid

identification of metabolites in the experiment with high

confidence.

Statistical Analysis
Statistical analysis (a parametric independent t test, Mann-

Whitney test, and the Wilcoxon sign rank test) was performed with

STATA. Variables with a P value of less than 0.05 were said to be

statistically significant. All variables remained significant after

multiple testing. Custom R scripts employing the vegan [40] and

ade4 [41] packages were used for the principal component analysis

(PCA) and between-class correspondence analysis (BCA), respec-

tively. Partial least squares discriminant analysis (PLS-DA),

implemented by the MetaboAnalyst 2.0 software [42], was applied

to the metabolite dataset from the two subject classes (stable and

exacerbated). The data were mean-centred and range scaled and

differences between the two classes determined by PLS-DA were

validated by leave-one out cross-validation. The statistical

significance of the resulting separation was determined via a

permutation test, and the quality of the resulting model

determined via the R2 and Q2 parameters. The MetaboAnalyst

2.0 software was also used to generate Variable Importance on

Projection (VIP) scores [43,44] which may identify the best

variables for discriminating between subject classes.

Supporting Information

Figure S1 Relative abundances of bacterial orders
identified as operational taxonomic units (OTUs) from
sequence reads using 16S rRNA gene-based 454 se-
quencing among sputum samples taken from stable CF
patients. Percentage of sequences from total DNA (A) or total

transcribed RNA (B) taken each sputum sample most closely

related to 16S rRNA gene sequences from particular phylogenetic

subgroups of bacteria are shown. Total bacterial density in each

sputum sample examined is indicated as 16S rRNA copies/ml

sputum quantitative PCR.

(PDF)

Figure S2 Shannon–Weaver diversity indices are ex-
tremely close for the bacterial communities identified
by examining DNA or RNA from stable patients and
DNA or RNA from exacerbated patients. Values in the same

column followed by different letters are significantly different (p-

values from paired t-test: 0.89 & 0.19, respectively).

(PDF)

Figure S3 Identification of anaerobic bacterial popula-
tions among sputum samples from stable CF patients.
The coloured segments of each bar represent the proportion of

reads mapping to different anaerobic bacterial orders. Percentage

of sequences from total DNA (A) or total transcribed RNA (B)

taken from sputum sample most closely related to 16S rRNA gene

sequences from particular phylogenetic subgroups of bacteria.

(PDF)

Figure S4 Prevalence of emerging CF bacterial patho-
gens among sputum samples from stable CF patients.
The coloured segments of each bar represent the proportion of

reads mapping to different anaerobic bacterial orders. Percentage

of sequences from total DNA (A) or total transcribed RNA (B)

taken from sputum sample most closely related to 16S rRNA gene

sequences from particular phylogenetic subgroups of bacteria.

(PDF)

Figure S5 Plot of the Variable Importance on Projection
(VIP) scores for the top 15 ranked variables (metabolites
in this case). The VIP score summarises a variables contribution

to the model and is a measure of its power to discriminate between

sample classes. Scores,0.80 are considered ‘small’ (43). Blue

Microbiota and Metabolite Profile of the CF Airway

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e82432



circles represent stable samples while the red diamonds represent

samples from patients suffering exacerbation.

(PDF)

Table S1 Clinical data associated with CF and non-CF
patients included in this study.
(PDF)

Table S2 Sampling depth and biodiversity found by
bar-coded 454 sequencing of sputum samples from the
three patient cohorts.
(PDF)

Table S3 Microorganisms recovered from sputum
taken from three patient cohorts included in the study.
(PDF)

Table S4 Concentrations of metabolites identified in CF
sputum taken from 26 stable CF patients. Data are given as

the average values measured in triplicate (metabolite concentra-

tions are described as mM unless otherwise stated and means 6

standard deviations are reported).

(PDF)

Table S5 Concentrations of metabolites identified in CF
sputum taken from 26 CF patients presenting with
exacerbation. Data are given as the average values measured in

triplicate (metabolite concentrations are described as mM unless

otherwise stated and means 6 standard deviations are reported).

(PDF)
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