
Gennaro Parlato
gennaro@ecs.soton.ac.uk

ICTAC 2018
15th International Colloquium on Theoretical Aspects of Computing

Stellenbosch, South Africa, Oct 19, 2018

Finding Rare Concurrent Programming Bugs

An Automatic, Symbolic, Randomized, and Parallelizable Approach

Concurrent programs

Concurrency is everywhere in computing
– Embedded systems

– multi-core architectures

– worldwide networks

Large concurrent computing resources are available

– clusters

– cloud computing

There is a big demand for concurrent software
– enterprise customer services (e.g, telecom companies)

– government services (e.g., tax payment services)

– social networks, cloud services, …

 Developing concurrent programs is difficult

Programmers have to guarantee

– correctness of sequential execution of each individual thread

– under nondeterministic interferences from other threads

(interleavings)

communication mechanism

…
T2 TN

T2

Threads/processes

What happens here...???

int n=0; //atomic shared variable

int P(void) {

 int tmp, i=1;

 while (i<=10) {

 tmp = n;

 n = tmp + 1;

 i++;

 }

}

int main (void)

 id1 = thread_create(P);

 id2 = thread_create(P);

 join(id1);

 join(id2);

 assert(n == 20);

}

Can the assert fail?

 Developing concurrent programs is difficult

What happens here...???

int n=0; //atomic shared variable

int P(void) {

 int tmp, i=1;

 while (i<=10) {

 tmp = n;

 n = tmp + 1;

 i++;

 }

}

int main (void)

 id1 = thread_create(P);

 id2 = thread_create(P);

 join(id1);

 join(id2);

 assert(n > 2);

}

 Developing concurrent programs is difficult

Scale of the challenge: #interleavings

Scenario 1:

– N=40

– If 1 billion interleavings

are simulated per second

3.4 million years

2 threads with N LOC

#interleavings: () 2N

 N

Scenario 2:

– N=150

 # interleavings >

estimated # atoms in the

known universe! >= 1080

T1 T2

Bug-finding: finding needles in a haystack

Set of interleavings Haystack

Testing is easy when

many interleavings are buggy

Bug-finding: finding A needle in a haystack

Set of interleavings Haystack

… but is hard when buggy

 interleavings are rare

⇒ … needs to be complemented by automated analyses that

handle interleavings symbolically

Bounded Model Checking (BMC)

of concurrent programs

• Bounded Model Checking (BMC)

– Exhaustively explores all executions

bounding loop iterations

bounding context-switchs, etc.

– Can be extremely resource-hungry

Testing vs Bounded Model Checking

• Testing:

– checks some executions

– may miss errors

– fast

BMC for sequential C programs

tools
– BLITZ [Cho, D'Silva, Song – ASE’13]
– CBMC [Clarke, Kroening, Lerda – TACAS’04]
– LLBMC [Falke, Merz, Sinz – ASE’13]
– ESBMC [Cordeiro, Fischer, Marques-Silva – ASE’09]

SEQUENTIAL

PROGRAM

BOUNDED

PROGRAM

SAT/SMT

FORMULA
SOLVER

inlining

unrolling

SSA form

BMC for concurrent C programs

SAT/SMT approach

• encode each thread as in the sequential case

• add a conjunct for shared memory operations

• all possible interleavings in the bounded program

 φthreads ∧ φconcurrency

papers

• [Sinha, Wang – POPL’11]
• [Alglave, Kroening, Tautschnig – CAV’13] CBMC

CONC

PROGRAM
BOUNDED

PROGRAM

SAT/SMT

FORMULA
SOLVER

concurrency

handling

Sequentialization

 targeting BMC

 Sequentialization: motivations

Building verification tools for full-fledged concurrent
languages is difficult and expensive...

… but scalable verification techniques exist for sequential
languages

– Abstraction

– SAT/SMT techniques (i.e., bounded model checking)

– …

⇒ Can we leverage these?

 Sequentialization as a code-to-code translation

Code-to-code translation from multithreaded recursive programs

to sequential programs that preserves reachability

Conc.

program

“equivalent”

Sequential

program
with non

determinism

shared variables

…
T2 TN T1

Use existing automatic verification techniques designed for
sequential programs to analyze concurrent programs

Lazy-CSeq: Schema Overview
(a sequentialization for BMC)

[Inverso–Tomasco–Fischer–La Torre–Parlato, CAV’14]

 Lazy-CSeq approach

BOUNDED

PROGRAM

BMC

SEQUENTIAL
TOOL

SEQ
PROGRAM

S
E

Q
U

E
N

T
IA

L
IZ

A
T

IO
N

(c

o
d

e
-t

o
-c

o
d

e
 t
ra

n
s
la

ti
o

n
)

CONC
PROGRAM

 We have designed

 new sequentializations targeting BMC

 scalable analyses + surprisingly simple

 Lazy-CSeq

 Bounded Concurrent Programs

main()

T0 TN TN-1 T1 …

• no loops

• no function calls

• control flow only forward

• one procedure for each thread

 Round Robin Schedule

main()

T0 TN TN-1 T1

…

Lazy-Cseq sequentialization:

• captures all bounded Round-Robin computations for a given bound

• error manifest themselves within very few rounds

 [Musuvathi, Qadeer – PLDI’07]

round 1

round 2

round k

round 3

 Schema Overview

… main()

T0 T1 TN

…
F0 F1 FN main()

bounded concurrent program

“equivalent”

sequential program

with non determinism

sequentialization
(code-to-code translation)

Sequentialized functions Main Driver

tra
n
s
la

te
s

…

tra
n
s
la

te
s

tra
n
s
la

te
s

 Naïve Lazy Sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

main() {

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 Fi();
}

main driver
• Add a global pc for each thread

• thread locals  thread global

 Naïve Lazy Sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

main() {

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 Fi();
}

main driver
for each round

 for each thread T
i

simulate T
i

 Naïve Lazy Sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

main() {

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 Fi();
}

switch(pck) {

 case 0: goto 0;

 case 1: goto 1;

 case 2: goto 2;

 ...

 case M: goto M;

}

0: CS(0); stmt0;

1: CS(1); stmt1;

2: CS(2); stmt2;

 . .

 . E XE .

 . .

M: CS(M); stmtM;

main driver

Fi()

 Naïve Lazy Sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

main() {

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 Fi();
}

switch(pci) {

 case 0: goto 0;

 case 1: goto 1;

 case 2: goto 2;

 ...

 case M: goto M;

}

0: CS(0); stmt0;

1: CS(1); stmt1;

2: CS(2); stmt2;

 . .

 . E XE .

 . .

M: CS(M); stmtM;

main driver

Fi()

 ...
 ...

re
su

m
e

 m
e

ch
a

n
ism

 Naïve Lazy Sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

main() {

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 Fi();
}

switch(pci) {

 case 0: goto 0;

 case 1: goto 1;

 case 2: goto 2;

 ...

 case M: goto M;

}

0: CS(0); stmt0;

1: CS(1); stmt1;

2: CS(2); stmt2;

 . .

 . E XE .

 . .

M: CS(M); stmtM;

main driver

Fi()
 ...

 ...
 ...

Context-switch mechanism:

 #define CS(j)

 if (*) { pci=j; return; }

 Naïve Lazy Sequentialization

pc0=0; pc1=0; ... pcN=0;

local0; local1; ... localk;

main() {

 for (r=0; r<R; r++)

 for (k=0; k<N; k++)

 // simulate T
k

 Fk();
}

switch(pci) {

 case 0: goto 0;

 case 1: goto 1;

 case 2: goto 2;

 ...

 case M: goto M;

}

0: CS(0); stmt0;

1: CS(1); stmt1;

2: CS(2); stmt2;

 . .

 . E XE .

 . .

M: CS(M); stmtM;

main driver

 ...

 ...
 ...

Formula encoding:

goto statement to formula

add a guard for each crossing

control-flow edge

= O(M2) guards

Context-switch mechanism:

 #define CS(j)

 if (*) { pci=j; return; }

main driver

 Lazy-CSeq sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

nextCS;

main()

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 nextCS = nondet;

 assume(nextCS>=pci)

 Fi();

 pci = nextCS;

Guess next context-switch point

main driver

Fi()

 Lazy-CSeq sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

nextCS;

main()

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 nextCS = nondet;

 assume(nextCS>=pci)

 Fi();

 pci = nextCS;

0: J(0); stmt0;

1: J(1); stmt1;

2: J(2); stmt2;

 . .

 . E XE .

 . .

 . .

 . E XE .

 . .

M: J(M); stmtM;

 .
..

sk
ip

 .
..

sk
ip

 #define J(j)

 if (j<pci || j>=nextCS) goto j+1;

main driver

Fi()

 Lazy-CSeq sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

nextCS;

main()

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 nextCS = nondet;

 assume(nextCS>=pci)

 Fi();

 pci = nextCS;

0: J(0); stmt0;

1: J(1); stmt1;

2: J(2); stmt2;

 . .

 EXECUTE

 . .

 . .

 . .

M: J(M); stmtM;

nextCS

 .
..

sk
ip

pci

 .
..

sk
ip

 #define J(j)

 if (j<pci || j>=nextCS) goto j+1;

resuming + context-switch

main driver

Fi()

 Lazy-CSeq sequentialization

pc0=0; ... pcN=0;

local0; ... localk;

nextCS;

main()

 for (r=0; r<K; r++)

 for (i=0; i<N; i++)

 // simulate T
i

 if (active
i
)

 nextCS = nondet;

 assume(nextCS>=pci)

 Fi();

 pci = nextCS;

0: J(0); stmt0;

1: J(1); stmt1;

2: J(2); stmt2;

 . .

 EXECUTE

 . .

 . .

 . .

M: J(M); stmtM;

nextCS

 .
..

sk
ip

pci

 .
..

sk
ip

 #define J(j)

 if (j<pci || j>=nextCS) goto j+1;

resuming + context-switch

Formula encoding:

goto statement to formula

add a guard for each crossing

control-flow edge

= O(M) guards

Fi()

 Lazy-CSeq sequentialization

0: J(0); stmt0;

1: J(1); stmt1;

2: J(2); stmt2;

 . .

 EXECUTE

 . .

 . .

 . .

M: J(M); stmtM;

nextCS

 .
..

sk
ip

pci

 .
..

sk
ip

 #define J(j)

 if (j<pci || j>=nextCS) goto j+1;

resuming + context-switch

inject light-weight, non-

invasive control code

• no non-determinism

• no pc assignments

• no return

(lazy-cseq-example.pdf)

 Lazy-CSeq tool

sequential

non-deterministic

C program

P'

concurrent

C program

 P

sequential

analysis

tool

code-to-code

translation

 [Inverso-Nguyen-Fischer-La Torre-Parlato, ASE'15]

is a framework that simplifies code-to-code translations

- for C programs + Pthread

- comprises several code-to-code translation modules

- supports several sequential analysis back-end tools

Internal modules

- unrolling

- function inlining

- counter-example

…

Sequentialisations

- Memory-Unwinding

- Lazy-CSeq, UL-CSeq

- LR-CSeq

…

Concolic

testing

 Klee

bounded

 model-checking

- BLITZ

- CBMC

- ESBMC

- LLBM

abstraction

- CPA-checker

- Frama-C

- SATABS

- Seahorn

SV-COMP concurrency (2014-17)
2015

2017 2016

2014

Experiments on lock-free data structures

(hard benchmarks)

Eliminationstack [Bouajjani, Emmi, Enea, Hamza--POPL’15]

– ABA problem: requires 7 threads for exposure

– Lazy-CSeq can find bug in ~13h and 4GB

 #unwind=1, #rounds=2, #threads=8, size=52 visible stmts

– all other tools fail

Safestack [Concurrency Testing Using Controlled Schedulers: An

Empirical Study, Thomson, Donaldson, Betts, PPoPP’14, TOPC’16]
– ABA problem: requires context bound of 5 for exposure

– Lazy-CSeq can find bug in ~7h and 6.5GB

 #unwind=3, #rounds=4, #threads=4, size=152 visible stmts

– all other tools fail

 State of affairs

Testing

BMC

Dream 

VERISMART

[Nguyen –Schrammel–Fischer–La Torre–Parlato, ASE'17]

 Intuition

Testing

BMC

Dream 

VERISMART

How can we get the bales?

How can we partition a task into independent smaller tasks?

???

??? ???

???

???
???

Tiling threads

Assumption: bounded concurrent programs
– control can only go forward

– same # of stmts, e.g.1000

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

Tiling threads

Tasks as variants of the original program by splitting

the code of each thread into fragments (tiles) and allowing

context-switches only in some of them

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

Tiling threads

• tile: (contiguous) subset of visible statements

• tiling: partition of program into tiles

• uniform window tiling: all tiles have same size

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

Tiling threads

Observation: For a k-round execution at most k tiles

 per thread are involved in context-switching!

Example: k=2

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

Tiling threads

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

Observation: For a k-round execution at most k tiles

 per thread are involved in context-switching!

Example: k=2

Tiling threads

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

Observation: For a k-round execution at most k tiles

 per thread are involved in context-switching!

Example: k=2

k-selections & program variants

• k-selection: subset of k tiles for each thread

– context switches are only allowed from selected tiles

• each k-selection specifies a reduced interleaving instance

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

p
ro

g
ra

m
 v

a
ri

a
n

t

Tiling threads

T0
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T1
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T2
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

T3
stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………
stmt;

stmt;

 ………

stmt;

• k-selection: subset of k tiles for each thread

– context switches are only allowed from selected tiles

• each k-selection specifies a reduced interleaving instance

How can we get the bales?

How can we partition a task into independent smaller tasks?

???

??? ???

???

???
???

How can we get the bales?

Answer:

– fix a tiling and k

– generate the program variants for all k-selections

 # tiles

 k ()
threads

 # pgrm variants =

How can we get the bales?

Answer:

– fix a tiling

– generate the program variants for all k-selections

Why does this work?

– each prgm variant captures a subset of k-round executions of P

– each execution is captured by a prgm variant

VERISMART architecture

Eliminationstack: results

• Lazy-CSeq: 46764 sec, 4.2 GB

• CBMC (sequential): 80.8 sec, 0.7 GB

– average over 3000 interleavings, bug not found

fastest instances

very fast – 1000x

average still very

fast – 40x
some slowdown for

larger tile sizes – 10x

reduced memory

consumption – 4x

high fraction of bug-

exposing instances

Eliminationstack

• ABA problem: requires 7 threads for exposure

• Lazy-CSeq can find bug in ~13h and 4GB

– #unwind=1, #rounds=2, #threads=8, size=52 visible stmts

– each experiment: 8,000 instances chosen randomly

Eliminationstack: expected bug-finding time

bug found with

99% probability,

5 cores, < 500sec

100x speed-up!

Safestack: experiments

lower fraction of bug-

exposing instances

than eliminationstack

…but boosted with
larger tile sizes

Safestack

– ABA problem: requires context bound of 5 for exposure

– Lazy-CSeq can find bug in ~7h and 6.5GB

 #unwind=3, #rounds=4, #threads=4, size=152 visible stmts

Safestack: expected bug-finding time

bug found with 95%

probability,

~32 cores, ~1300sec

smaller tiles

take longer

25x speed-up!

Conclusions

Lazy-CSeq
BMC: fully symbolic

VERISMART Testing

PROBABILITY

PERFORMANCE

Current & Future Work

• Fast over-approximations to filter out safe instances

– abstract interpretation based on BMC?

• BBD-based analysis + VERISMART

– Safestack: bug found < 1 min

• Weak Memory Models

– Efficient encoding / Lazy-CSeq

Memory shadowing

– VERISMART

Omar Inverso
PhD U. Southampton

Ermenegildo Tomasco
PhD U. Southampton

Truc L Nguyen
PhD U. Southampton

Salvatore La Torre
U. Salerno

Bernd Fischer
U. Stellenbosch

Peter Schrammel
U. Sussex, diffblue

 People

Thank You

users.ecs.soton.ac.uk/gp4/cseq

