ICTAC 2018

15" International Colloquium on Theoretical Aspects of Computing
Stellenbosch, South Africa, Oct 19, 2018

Finding Rare Concurrent Programming Bugs

An Automatic, Symbolic, Randomized, and Parallelizable Approach

Gennaro Parlato
gennaro@ecs.soton.ac.uk

UNIVERSITY OF

Southampton

Concurrent programs

Concurrency is everywhere in computing
— Embedded systems
— multi-core architectures
— worldwide networks

Large concurrent computing resources are available

mHl \icrosoft
_ clusters AWS WE Azure >

Google Cloud Platform

R

— cloud computing

There is a big demand for concurrent software
— enterprise customer services (e.g, telecom companies)
— government services (e.g., tax payment services)
— social networks, cloud services, ...

Developing concurrent programs is difficult

[communication mechanism }

I

T, T, 1IN

\ J \ J \ /

Threads/processes

Programmers have to guarantee

— correctness of sequential execution of each individual thread

— under nondeterministic interferences from other threads
(interleavings)

Developing concurrent programs is difficult

What happens here...”?7??

int n=0; //atomic shared variable

int P(void) {
int tmp, i=1;
while (i<=10) {

tmp = n;
h=1tmp + 1;
T4++;

}
}

int main (void)
idl = thread_create(P);
id2 = thread_create(P);
join(idl);
join(1d2);
assert(n == 20);

Can the assert fail?

Developing concurrent programs is difficult

What happens here...”?7??

int n=0; //atomic shared variable

int P(void) {
int tmp, i=1;
while (i<=10) {

tmp = n;
h=1tmp + 1;
T4++;

}
}

int main (void)
idl = thread_create(P);
1d2 = thread_create(P);
join(idl);
join(1d2);
assert(n > 2);

Scale of the challenge: #interleavings

2 threads with N LOC

#interleavings: (ZI\II\I)

Bug-finding: finding needles in a haystack

Set of interleavings Haystack

[=T
P

o

n
<
A

PN

<

I
b
23

~

>
<<

+

=

[

N

>
b

<

Testing is easy when
many interleavings are buggy

Bug-finding: finding A needle in a haystack

Set of interleavings Haystack

>

! \<

—h
[n—T
o =

P

>
1

~

>

I g Il

>

N
>

... but is hard when buggy

interleavings are rare

> ... heeds to be complemented by automated analyses that
handle interleavings symbolically

Bounded Model Checking (BMC)
of concurrent programs

Testing vs Bounded Model Checking

» Testing:
— checks some executions
— may miss errors
— fast

BMC for sequential C programs

BOUNDED
PROGRAM

SEQUENTIAL SAT/SMT SOLVER
PROGRAM FORMULA 5,“

inlining

unrolling
SSA form
tools
— BLITZ [Cho, D'Silva, Song — ASE’13]
— CBMC [Clarke, Kroening, Lerda — TACAS’04]
— LLBMC [Falke, Merz, Sinz — ASE’13]

— ESBMC [Cordeiro, Fischer, Marques-Silva — ASE’09]

BMC for concurrent C programs

CONC BOUNDED
PROGRAM PROGRAM

concurrency
handling

SAT/SMT
FORMULA

[SO&;/ER]

SAT/SMT approach
* encode each thread as in the sequential case
« add a conjunct for shared memory operations
« all possible interleavings in the bounded program

(pthreads A (pconcurrency
papers
[Sinha, Wang — POPL’11]
- [Alglave, Kroening, Tautschnig — CAV’13] CBMC

Sequentialization

targeting BMC

Sequentialization: motivations

Building verification tools for full-fledged concurrent
languages is difficult and expensive...

... but scalable verification techniques exist for sequential
languages

— Abstraction
— SAT/SMT techniques (i.e., bounded model checking)

= Can we leverage these?

Sequentialization as a code-to-code translation

Code-to-code translation from multithreaded recursive programs
to sequential programs that preserves reachability

[shared variables] “equivalent”

Conc. 2 v Sequential
program[T] [T] = program

determinism

Use existing automatic verification techniques designed for
sequential programs to analyze concurrent programs

[Inverso—-Tomasco-Fischer-La Torre—Parlato, CAV’14]

Lazy-CSeq: Schema Overview

(a sequentialization for BMC)

Lazy-CSeq approach

CONC BOUNDED
PROGRAM PROGRAM

|

BMC
SEQ
{PROGRAM}_*[SEQT%EQLT 'ALJ
We have designed

new sequentializations targeting BMC
scalable analyses + surprisingly simple

(code-to-code translation)

SEQUENTIALIZATION

Lazy-CSeq

Bounded Concurrent Programs

4 A 4 D 4
main()
To T, Tt
. J . J .
* no loops

« no function calls
« control flow only forward
« one procedure for each thread

Round Robin Schedule

[) round 1
— | ———— >
........................... .
— >
....................... e
— e ———— >

T1
round k
e | >
_ Yy,

Lazy-Cseq sequentialization:

» captures all bounded Round-Robin computations for a given bound
 error manifest themselves within very few rounds

[Musuvathi, Qadeer — PLDI'07]

Schema Overview

N\ SR
main() e bounded concurrent program
To T1 TN
O\ __/
> > > sequentialization
C‘Z gz) (code-to-code translation)
® ® @
7 7 7
e U SR M) .
“equivalent”
sequential program
Fo F, Fy main()] with non determinism
_____/ __/ ./

Sequentialized functions Main Driver

Naive Lazy Sequentialization

e Adda global pc for each thread

main driver * thread locals = thread global

pc,=0; «.. pcy=0;
local,; ... local,;

main () |
for (r=0; r<K; r++)
for (i=0; 1i<N; i++)

// simulate T,
if (active,)

Fi();

Naive Lazy Sequentialization

for each round

main driver

for each thread T,

pc,=0; «.. pcy=0;
local,; local,;

simulate T,

main () {
for (r=0; r<K; r++)
for (1=0; i<N; 1i++)
// simulate T,
if (active,)

Fi();

Naive Lazy Sequentialization
F; ()

main driver

pc,=0; «.. pcy=0;
local,; ... local,;

main () |
for (r=0; r<K; r++)
for (i=0; 1i<N; i++)

// simulate T,
if (active,)

Fi();

Naive Lazy Sequentialization

main driver

pc,=0; ... pCcy=07;
local,; ... local,;

main () |
for (r=0; r<K; r++)
for (i=0; 1i<N; i++)

// simulate T,
if (active,)

Fi();

F; ()

switch (pc;) {
case 0: goto O;
case 1: goto 1;
case 2: goto 2;

case M: goto

: stmtO;
1: stmtl;
stmt?2;

stmt,,.

wisiueydaw awnsal

Naive Lazy Sequentialization

main driver

pc,=0; «.. pcy=0;
local,; ... local,;

main () |
for (r=0; r<K; r++)
for (i=0; 1i<N; i++)

// simulate T,
if (active,)

Fi();

switch (pc;) {
case 0: goto
case 1: goto
case 2: goto

case M: goto
CS(0); stmtO;

CS(1l),; stmtl;
CS(2),; stmt2;

CS (M) ; stmt,,

Context-switch mechanism:

#define CS(3j)

if (*) { pc;=3J; return;

}

Naive Lazy Sequentialization

switch (pc;) {
case 0: goto
case 1: goto
case 2: goto

case M: goto

Formula encoding:

: CS(0); stmtO;
goto statement to formula Cs(1) . stmel.

: CS(2); stmt2;
add a guard for each crossing
control-flow edge

: CS(M); stmt,,

= O(M?) guards

Context-switch mechanism:
#define CS(3j)

if (*) { pc,=j; return; }

Lazy-CSeq sequentialization

Guess next context-switch point

main driver

pc,=0; . pcy=0;
local,; ... local,;
nextCs;
main ()
for (r=0; r<K; r++)
for (i=0; 1i<N; 1i++)
// simulate T,
if (active,)

nextCS = nondet;

assume (nextCS>=pc,)
Fi();
pc, = nextCSs;

Lazy-CSeq sequentialization

J(0); stmtO
J(1l), stmtl
J(2); stmt?2

main driver

prc,=0; ... pcy=0;
local,; ... local,;
nextCS;
main ()
for (r=0; r<K; r++)
for (i=0; 1i<N; 1i++)

// simulate T,
if (active,)

nextCS = nondet;
assume (nextCS>=pc,)
Fi();

pc, = nextCSs;

tdefine J(J)
1f (jJ<pc; || Jj>=nextCS)

.
14

.
14

14

M: J(M); stmt,,

goto

J+1;

Lazy-CSeq sequentialization

resuming + context-switch

: J(0); stmtO;
1: J(1),; stmtl;

main driver C
: : J(2); stmt2;

pc,=0; ... pcy=0;
local,; ... local,;
nextCsS;
main ()

for (r=0; r<K; r++)

pc;

EXECUTE

for (1=0; 1i<N; i++) nextCSs
// simulate T, Q_<
if (active,) =~
nextCS = nondet; /
assume (nextCS>=pc,)
F, ()
pc, = nextCSs;

M: J(M); stmt,,

tdefine J(J)
if (J<pc; || J>=nextCS) goto J+1;

Lazy-CSeq sequentialization

resuming + context-switch

: J(0); stmtO;
: J(1),; stmtl;
: J(2); stmt2;

Formula encoding: pc;

goto statement to formula
nextCSs

add a guard for each crossing
control-flow edge

= O(M) guards

M: J(M); stmt,,

tdefine J(J)
if (J<pc; || J>=nextCS) goto J+1;

Lazy-CSeq sequentialization

resuming + context-switch

: J(0); stmtO;
: J(1),;, stmtl;
: J(2); stmt2;

pC;
inject light-weight, non-

invasive control code
nextCS

* NO non-determinism
* NO pc assignments
* NO return

M: J(M); stmt,,

AN

tdefine J(J)
if (J<pc; || J>=nextCS) goto J+1;

(lazy-cseq-example.pdf)

Lazy-CSeq tool

[Inverso-Nguyen-Fischer-La Torre-Parlato, ASE'15]
Seq is a framework that simplifies code-to-code translations
- for C programs + Pthread

- comprises several code-to-code translation modules
- supports several sequential analysis back-end tools

Internal modules

- unrolling
- function inlining sequential
concurrent 3 counteriexample non-deterministic

C program r N\ C program

— -4 'S eq — .
— |- | A — = | - analysis
=/ | & j— ool

Sequentialisations

- Memory-Unwinding
- Lazy-CSeq, UL-CSeq
- LR-CSeq

Timeins

SV-COMP concurrency (2014-17)

2015

2014

1000 ¢ 7 000 ¢ =
E CBMC —+—] E CBMC —+—]
- CSeqLazy 1 L ESBMC —=— 1
| CSegMU | I Lazy-CSeq i
ESBMC —5— " MU-CSeq l
100 |- Symbiotic —a&— < 100 HJ-Lazy-CSeq —a— -
£ Threader —— 3 F]
10 E = 10 ol =
- ’ - L i
i
1 a AT 1 TSk | I I == | , , I I |
-200 -150 -100 -50 0 50 100 150 200 0 200 400 600 800 1000 1200
Accumulated score Accumulated score
1000] 000
CBMC —+—] CBMC ——
CIVL CIvL
r CPA-Seq —— ConSequence
DIVINE —— CPA-Seq —H—
DepthK —y— DepthK
ESBMC —5— ESBMC-falsi —%—
100 b Forest —— 4 1ok ESBMC-incr —<—
I Impara —&— ESBMC-kind —H=—
. [Lazy-CSeq —e— ESBMC —5—
£ I MU-CSeq Lazy-CSeq-Abs ——
o SeaHorn Lazy-CSeq —@—,
E L SMACK Lazy-CSeq-Swarm ==¥—
BymDIVINE MU-CSeq
10 L UL-CSeq —a— 1 ok Skink i
E VT SMACK B
r SymDIVINE
UL-CS;
Yogar-CBNC
1 I I ! :
-500 1000 -400 200 0 200 600 1000 1200

Accumulated score

Accumulated score

Experiments on lock-free data structures
(hard benchmarks)

Safestack [Concurrency Testing Using Controlled Schedulers: An
Empirical Study, Thomson, Donaldson, Betts, PPoPP’14, TOPC’16]

— ABA problem: requires context bound of 5 for exposure

— Lazy-CSeq can find bug in ~7h and 6.5GB
> #unwind=3, #rounds=4, #threads=4, size=152 visible stmts
— all other tools fail

Eliminationstack [Bouajjani, Emmi, Enea, Hamza--POPL’15]
— ABA problem: requires 7 threads for exposure

— Lazy-CSeq can find bug in ~13h and 4GB
> #unwind=1, #rounds=2, #threads=8, size=52 visible stmts
— all other tools fail

State of affairs

Dream ©

[Nguyen —Schrammel—Fischer—La Torre—Parlato, ASE'17]

VERISMART

ition

Intu

Dream ©

How can we get the bales?

How can we partition a task into independent smaller tasks?

Tiling threads

Assumption: bounded concurrent programs

To

— control can only go forward
— same # of stmts, €.g.1000

T,

P

T3

Tiling threads

Tasks as variants of the original program by splitting
the code of each thread into fragments (tiles) and allowing
context-switches only in some of them

))))

T stmt; T stmt; T, stmt; T stmt;
0 1 2 3
stmt stmt; stmt stmt
stmt stmt; stmt stmt
stmt stmt; stmt stmt
stmt stmt; stmt stmt
stmt stmt; stmt stmt
stmt stmt; stmt stmt
stmt stmt; stmt stmt
stmt stmt; stmt stmt
stmt;

Tiling threads
o tile: (contiguous) subset of visible statements
« tiling: partition of program into tiles
« uniform window tiling: all tiles have same size

To

I

T

T
T
T

T

T3

UL T
AR
[[[

MEREIE

=

Tiling threads

o
T

Tiling threads

Tiling threads

k-selections & program variants

i b o
m_a.mmm
£

il

~ jueneA weiboud

Tiling threads

How can we get the bales?

How can we partition a task into independent smaller tasks?

How can we get the bales?

— generate the program variants for all k-selections

— fix a tiling and k

— generate the program variants for all k-selections

— fix a tiling
Why does this work?

How can we get the bales?

— each prgm variant captures a subset of k-round executions of P

— each execution is captured by a prgm variant

VERISMART architecture

Swarm-based Lazy-CSeq Sequentialization Verification

| cBMC
Conc. ‘ Prgm 1 =z = " No Bug
Program : »| Sequentialization : 5 3 : o

" Inllm.a- split 9 : 3 D k| cBMC

Unwind | Bounded i + - I
Program config-file | |nst. Generation Prgmn =S [CEX .
= < ry ry - Counter-
example
o #tiles, tile-size | grounds parallel(parallel / sequential
#unwinding all/x-random H#threads |S€duential verification
config-file generator

Eliminationstack: results

Eliminationstack
« ABA problem: requires 7 threads for exposure

« Lazy-CSeq can find bug in ~13h and 4GB

— #unwind=1, #rounds=2, #threads=8, size=52 visible stmts

— each experiment: 8,000 instances chosen randomly

(fastest instances

very fast — 1000x JERISMART: 2 il

#1: tile siz€ 2w a@X [.ONTS

#2: tile size 14, t_Max s

(N
reduced memory
consumption — 4x

3. tile size 18, t_max 3hrs

Verification Time Memory Verification Time Memory Verification Time Memory

Min 34.9 945.2 Min 39.7 979.84 Min 37.1 999.8

Max 4753.6 1199.1 Max 7195.2 1281.3 Max 10762.0 1785.5

Average 1116.3 1017.8 Average 2169.5 1096.3 Average 3162.41 1156.91
28 32% instances with bug: 61.38% instances with bug: 69.01%

verage still very

instancess -
a

fast — 40x

igh fraction of bug-

J (e

exposing instances

T

I some slowdown for
] larger tile sizes — 10x

]

Eliminationstack: expected bug-finding time

eliminationstack-SC (unwind=1, rounds=2, thread=8, visible point=>52)

I

3,000 |- — Tile size 12
— Tile size 18
—s— Minimum time

2,500 | a
All schedules:
Time: 46764s
Memory: 4203.9MB
2.000 | |
100 d-up!
ol X speed-up! *

bug found with
99% probability, .
5 cores, < 500sec

1,000 §

Expected bug-finding time (second)

1 400 800 1,200 1,600 2,000

Number of cores

Safestack: experiments

Safestack
— ABA problem: requires context bound of 5 for exposure

— Lazy-CSeq can find bug in ~7h and 6.5GB

> #unwind=3, #rounds=4, #threads=4, size=152 visible stmts

VERISMART: 4 tiles per thread

#1: tile size 11, t_max lhr

#2: tile size 14, t_max lhr

#3: tile size 20, t_max 4hrs

Verification Time Memory Verification Time Memory Verification Time Memory
Min 195.6 774.5 Min 574.8 846.6 Min 3130 850.3
Max 2662.6 1265.7 Max 3521.8 1450.4 Max 10315.8 3830.8
Average 11722 928.8 Average 1851.1 1147.3 Average 2167.5 1230.1
instances with bug: 1.26% instances with bug: 2.14% instances with bug: 10.20%

lower fraction of bug-)
exposing instances
than eliminationstack

...but boosted with
larger tile sizes

Safestack: expected bug-finding time

safestack-SC (unwind=3, rounds=4, thread=4, visible point=152)

— Tile size 11
—— Tile size 20 |
bug fOund Wlth 95% —e— Minimum time

prObablllty’ All schedules:

~32 cores, ~1300sec Time: 24139s
Memory: 6632.4MB | |

2,000 |

1,500 H

25X speed-up!

smaller tiles
take longer)
1 4(50 8(50 1500 1.600 2.000

Number of cores

1,000

(1135, 409)

Expected bug-finding time (second)

500

—_—

&
v

Conclusions

Testing VERISMART Lazy-CSeq
BMC: fully symbolic

PROBABILITY

PERFORMANCE

Current & Future Work

« Fast over-approximations to filter out safe instances
— abstract interpretation based on BMC?

« BBD-based analysis + VERISMART
— Safestack: bug found < 1 min

 Weak Memory Models

— Efficient encoding / Lazy-CSeq
>Memory shadowing

— VERISMART

People

Omar Inverso Ermenegildo Tomasco Truc L Nguyen
PhD U. Southampton PhD U. Southampton PhD U. Southampton

bk

Salvatore La Torre Bernd Fischer Peter Schrammel
U. Salerno U. Stellenbosch U. Sussex, diffblue

Thank You

CSeq users.ecs.soton.ac.uk/gp4/cseq

