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Finding Rare Concurrent Programming Bugs      
 

An Automatic, Symbolic,  Randomized, and Parallelizable  Approach 

 



Concurrent programs 

Concurrency is everywhere in computing 
– Embedded systems  

– multi-core architectures 

– worldwide networks 
 

Large concurrent computing resources are available 
 

– clusters  

 

– cloud computing 

 

There is a big demand for concurrent software  
– enterprise customer services (e.g, telecom companies) 

– government services (e.g., tax payment services) 

– social networks, cloud services, … 

 



  Developing concurrent programs is difficult 

Programmers have to guarantee 
 

– correctness of sequential execution of each individual thread 
 

– under nondeterministic interferences from other threads 

(interleavings) 

 

 

communication mechanism 

… 
T2 TN 

T2 

Threads/processes 



What happens here...??? 

int n=0; //atomic shared variable 
 

int P(void) { 

   int tmp, i=1; 

   while (i<=10) { 

        tmp = n; 

        n = tmp + 1; 

        i++; 

   }  

} 
 

int main (void) 

   id1 = thread_create(P); 

   id2 = thread_create(P); 

   join( id1 ); 

   join( id2 ); 

   assert(n == 20); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Can the assert fail? 

  Developing concurrent programs is difficult 



What happens here...??? 

int n=0; //atomic shared variable 
 

int P(void) { 

   int tmp, i=1; 

   while (i<=10) { 

        tmp = n; 

        n = tmp + 1; 

        i++; 

   }  

} 
 

int main (void) 

   id1 = thread_create(P); 

   id2 = thread_create(P); 

   join( id1 ); 

   join( id2 ); 

   assert(n > 2); 

} 

  Developing concurrent programs is difficult 



Scale of the challenge: #interleavings 

 

Scenario 1: 

– N=40 

– If 1 billion interleavings 

are simulated per second 

3.4 million years 
 

2 threads with N LOC 
 

#interleavings:                                     (  ) 2N 

 N 

 

Scenario 2:  

– N=150 

  # interleavings > 

estimated # atoms in the 

known universe! >= 1080 

 

T1 T2 



Bug-finding: finding needles in a haystack 

Set of interleavings  Haystack 

Testing is easy when  

many interleavings are buggy 



Bug-finding: finding A needle in a haystack 

Set of interleavings  Haystack 

… but is hard when buggy  

       interleavings are rare 

⇒ … needs to be complemented by automated analyses that 

handle interleavings symbolically 



 

Bounded Model Checking (BMC)  

of concurrent programs  

 



• Bounded Model Checking   (BMC) 

– Exhaustively explores all executions 

bounding loop iterations 

bounding context-switchs, etc. 

– Can be extremely resource-hungry 

Testing   vs   Bounded Model Checking 

• Testing: 

– checks some executions 

– may miss errors 

– fast 



BMC for sequential C programs 

tools 
– BLITZ                               [ Cho, D'Silva, Song – ASE’13 ] 
– CBMC                [ Clarke, Kroening, Lerda – TACAS’04 ]  
– LLBMC                                [ Falke, Merz, Sinz – ASE’13 ] 
– ESBMC    [ Cordeiro, Fischer, Marques-Silva – ASE’09 ] 

SEQUENTIAL 

PROGRAM 

BOUNDED 

PROGRAM 

SAT/SMT 

FORMULA 
SOLVER 

inlining 

unrolling 

SSA form 



BMC for concurrent C programs 

SAT/SMT approach 

• encode each thread as in the sequential case  

• add a conjunct for shared memory operations 

• all possible interleavings in the bounded program  

                              φthreads ∧ φconcurrency 

papers 

• [ Sinha, Wang – POPL’11 ] 
• [ Alglave, Kroening, Tautschnig – CAV’13 ]       CBMC 

CONC 

PROGRAM 
BOUNDED 

PROGRAM 

SAT/SMT 

FORMULA 
SOLVER 

concurrency 

handling 



 

Sequentialization  

    targeting BMC 



  Sequentialization:   motivations 

 

Building verification tools for full-fledged concurrent 
languages is difficult and expensive... 

 

… but scalable verification techniques exist for sequential 
languages 

 

– Abstraction 

– SAT/SMT techniques (i.e., bounded model checking) 

– … 

 

⇒ Can we leverage these? 



 Sequentialization as a code-to-code translation 

Code-to-code translation from multithreaded recursive programs 

to sequential programs that preserves reachability  

Conc. 

program 

“equivalent” 

Sequential  

program  
with non  

determinism 

shared variables 

… 
T2 TN T1 

Use existing automatic verification techniques designed for 
sequential programs to analyze concurrent programs 



 

 

Lazy-CSeq: Schema Overview 
(a sequentialization for BMC) 

[ Inverso–Tomasco–Fischer–La Torre–Parlato,   CAV’14 ] 



  Lazy-CSeq approach 
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   We have designed 

                         new sequentializations targeting BMC  

                               scalable analyses  +  surprisingly simple 

 

                                          Lazy-CSeq 



  Bounded Concurrent Programs 

main() 

T0  TN TN-1 T1 … 

• no loops 

• no function calls 

• control flow only forward 

• one procedure for each thread 



  Round Robin Schedule 

main() 

T0  TN TN-1 T1 

…
 

Lazy-Cseq sequentialization: 
 

• captures all bounded Round-Robin computations for a given bound 

• error manifest themselves within very few rounds   

                                                            [ Musuvathi, Qadeer – PLDI’07 ] 

round 1 

round 2 

round k
 

round 3 



 

 

 

 

 

 

 

 

 

 

 

 

  Schema Overview 

… main() 

T0 T1 TN 

… 
F0 F1 FN main() 

bounded concurrent program 

“equivalent” 

sequential program  

with non determinism 

  

sequentialization 
(code-to-code translation)     

Sequentialized functions  Main Driver 

tra
n
s
la

te
s
 

… 
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s
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s
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  Naïve Lazy Sequentialization 

   

 

pc0=0;   ... pcN=0; 

local0;  ... localk; 

 

main() { 

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
)  

         Fi(); 
} 

main driver 
• Add a   global pc   for each thread  

• thread locals     thread global 



  Naïve Lazy Sequentialization 

   

 

pc0=0;   ... pcN=0; 

local0;  ... localk; 

 

main() { 

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
)  

         Fi(); 
} 

main driver 
for each round 
 

      for each thread T
i 

 

simulate T
i 



  Naïve Lazy Sequentialization 

   

 

pc0=0;   ... pcN=0; 

local0;  ... localk; 

 

main() { 

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
)  

         Fi(); 
} 

switch(pck) { 

  case 0: goto 0; 

  case 1: goto 1; 

  case 2: goto 2;

 ... 

  case M: goto M; 

} 

 

0: CS(0); stmt0; 

1: CS(1); stmt1; 

2: CS(2); stmt2; 

   .       . 

   . E XE  . 

   .       . 

M: CS(M); stmtM; 

main driver 

Fi() 



  Naïve Lazy Sequentialization 

   

 

pc0=0;   ... pcN=0; 

local0;  ... localk; 

 

main() { 

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
)  

         Fi(); 
} 

switch(pci) { 

  case 0: goto 0; 

  case 1: goto 1; 

  case 2: goto 2;

 ... 

  case M: goto M; 

} 

 

0: CS(0); stmt0; 

1: CS(1); stmt1; 

2: CS(2); stmt2; 

   .       . 

   . E XE  . 

   .       . 

M: CS(M); stmtM; 

main driver 

Fi() 

 ...  
 ...  
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  Naïve Lazy Sequentialization 

   

 

pc0=0;   ... pcN=0; 

local0;  ... localk; 

 

main() { 

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
)  

         Fi(); 
} 

switch(pci) { 

  case 0: goto 0; 

  case 1: goto 1; 

  case 2: goto 2;

 ... 

  case M: goto M; 

} 

 

0: CS(0); stmt0; 

1: CS(1); stmt1; 

2: CS(2); stmt2; 

   .       . 

   . E XE  . 

   .       . 

M: CS(M); stmtM; 

main driver 

Fi() 
 ...  

 ...  
 ...  

Context-switch mechanism: 

    #define CS(j) 

     if (*) { pci=j; return; } 



  Naïve Lazy Sequentialization 

   

 

pc0=0;  pc1=0;  ... pcN=0; 

local0; local1; ... localk; 

 

main() { 

  for (r=0; r<R; r++) 

    for (k=0; k<N; k++) 

      // simulate T
k
 

      Fk(); 
} 

switch(pci) { 

  case 0: goto 0; 

  case 1: goto 1; 

  case 2: goto 2;

 ... 

  case M: goto M; 

} 

 

0: CS(0); stmt0; 

1: CS(1); stmt1; 

2: CS(2); stmt2; 

   .       . 

   . E XE  . 

   .       . 

M: CS(M); stmtM; 

main driver 

 ...  

 ...  
 ...  

 

 

Formula encoding: 
 

goto statement to formula 
 

add a guard for each crossing 

control-flow edge 

 

= O(M2) guards 

Context-switch mechanism: 

    #define CS(j) 

     if (*) { pci=j; return; } 



   

main driver 

  Lazy-CSeq sequentialization 

 

pc0=0;   ... pcN=0;  

local0;  ... localk; 

nextCS; 

main()  

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
) 

        nextCS = nondet; 

        assume(nextCS>=pci)  

        Fi(); 

        pci = nextCS; 

Guess next context-switch point
 



   

main driver 

Fi() 

  Lazy-CSeq sequentialization 

 

pc0=0;   ... pcN=0;  

local0;  ... localk; 

nextCS; 

main()  

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
) 

        nextCS = nondet; 

        assume(nextCS>=pci)  

        Fi(); 

        pci = nextCS; 

0: J(0); stmt0; 

1: J(1); stmt1; 

2: J(2); stmt2; 

   .       . 

   . E XE  . 

   .       .    

   .       . 

   . E XE  . 

   .       .   
   

 

M: J(M); stmtM; 

 .
..

  

sk
ip

 

 .
..

  

sk
ip

 

  #define J(j) 

  if (j<pci || j>=nextCS) goto j+1;  



   

main driver 

Fi() 

  Lazy-CSeq sequentialization 

 

pc0=0;   ... pcN=0;  

local0;  ... localk; 

nextCS; 

main()  

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
) 

        nextCS = nondet; 

        assume(nextCS>=pci)  

        Fi(); 

        pci = nextCS; 

0: J(0); stmt0; 

1: J(1); stmt1; 

2: J(2); stmt2; 

    .       . 

    

  EXECUTE  
   

 

    .       . 

    .       . 

    .       . 

M: J(M); stmtM; 

nextCS 

 .
..

  

sk
ip

 

pci 

 .
..

  

sk
ip

 

  #define J(j) 

  if (j<pci || j>=nextCS) goto j+1;  

resuming + context-switch 



   

main driver 

Fi() 

  Lazy-CSeq sequentialization 

 

pc0=0;   ... pcN=0;  

local0;  ... localk; 

nextCS; 

main()  

  for (r=0; r<K; r++) 

    for (i=0; i<N; i++) 

      // simulate T
i 

      if (active
i
) 

        nextCS = nondet; 

        assume(nextCS>=pci)  

        Fi(); 

        pci = nextCS; 

0: J(0); stmt0; 

1: J(1); stmt1; 

2: J(2); stmt2; 

    .       . 

    

  EXECUTE  
   

 

    .       . 

    .       . 

    .       . 

M: J(M); stmtM; 

nextCS 

 .
..

  

sk
ip

 

pci 

 .
..
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ip

 

  #define J(j) 

  if (j<pci || j>=nextCS) goto j+1;  

resuming + context-switch 

 

 

Formula encoding: 
 

goto statement to formula 
 

add a guard for each crossing 

control-flow edge 

 

= O(M) guards 



   
Fi() 

  Lazy-CSeq sequentialization 

0: J(0); stmt0; 

1: J(1); stmt1; 

2: J(2); stmt2; 

    .       . 

    

  EXECUTE  
   

 

    .       . 

    .       . 

    .       . 

M: J(M); stmtM; 

nextCS 

 .
..

  

sk
ip

 

pci 

 .
..

  

sk
ip

 

  #define J(j) 

  if (j<pci || j>=nextCS) goto j+1;  

resuming + context-switch 

inject light-weight, non-

invasive control code  
 

• no non-determinism 

• no  pc assignments 

• no  return 



(lazy-cseq-example.pdf) 



 Lazy-CSeq tool           

sequential 

non-deterministic 

C program 

P' 

concurrent 

C program 

 P 

sequential 

analysis 

tool 

 
code-to-code 

translation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             [Inverso-Nguyen-Fischer-La Torre-Parlato, ASE'15 ] 

is a framework that simplifies code-to-code translations 

- for C programs + Pthread 

- comprises several code-to-code translation modules 

- supports several sequential analysis back-end tools 

Internal modules 

- unrolling 

- function inlining 

- counter-example  

… 

 

Sequentialisations 

- Memory-Unwinding 

- Lazy-CSeq, UL-CSeq 

- LR-CSeq 

… 

 

Concolic 

testing 

   Klee 

bounded 

 model-checking 

- BLITZ 

- CBMC 

- ESBMC 

- LLBM 

 

abstraction 

- CPA-checker 

- Frama-C 

- SATABS 

- Seahorn 



SV-COMP concurrency (2014-17)  
2015 

2017 2016 

2014 



Experiments on lock-free data structures 

(hard benchmarks)  

Eliminationstack     [Bouajjani, Emmi, Enea, Hamza--POPL’15] 

– ABA problem: requires 7 threads for exposure 

– Lazy-CSeq can find bug in ~13h and 4GB 

 #unwind=1, #rounds=2, #threads=8, size=52 visible stmts 

– all other tools fail 

Safestack     [Concurrency Testing Using Controlled Schedulers: An 

Empirical Study, Thomson, Donaldson, Betts,  PPoPP’14, TOPC’16] 
– ABA problem: requires context bound of 5 for exposure 

– Lazy-CSeq can find bug in ~7h and 6.5GB 

 #unwind=3, #rounds=4, #threads=4, size=152 visible stmts 

– all other tools fail 

 



  State of affairs 

Testing 

BMC 

Dream  



 

VERISMART 
   

[ Nguyen –Schrammel–Fischer–La Torre–Parlato,   ASE'17 ] 



  Intuition 

Testing 

BMC 

Dream  

VERISMART 



How can we get the bales? 

 

 

 

 

 

 

 

 

 

 

How can we partition a task into independent smaller tasks? 

 

??? 

??? ??? 

??? 

??? 
??? 



Tiling threads 

Assumption: bounded concurrent programs 
– control can only go forward 

– same # of stmts, e.g.1000     

T0  
stmt; 

 ……… 
stmt; 
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Tiling threads 

Tasks as variants of the original program by splitting 

the code of each thread into fragments (tiles) and allowing 

context-switches only in some of them 
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Tiling threads 

• tile: (contiguous) subset of visible statements 

• tiling: partition of program into tiles 

• uniform window tiling: all tiles have same size 
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Tiling threads 

Observation:   For a k-round execution at most k tiles    

                    per thread are involved in context-switching!  
 

Example:  k=2 
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Tiling threads 
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Observation:   For a k-round execution at most k tiles    

                    per thread are involved in context-switching!  
 

Example:  k=2 



Tiling threads 
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Observation:   For a k-round execution at most k tiles    

                    per thread are involved in context-switching!  
 

Example:  k=2 



k-selections   &  program variants 

• k-selection: subset of k tiles for each thread 

– context switches are only allowed from selected tiles 

• each k-selection specifies a reduced interleaving instance 
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Tiling threads 
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• k-selection: subset of k tiles for each thread 

– context switches are only allowed from selected tiles 

• each k-selection specifies a reduced interleaving instance 



How can we get the bales? 

 

 

 

 

 

 

 

 

 

 

How can we partition a task into independent smaller tasks? 

 

??? 

??? ??? 

??? 

??? 
??? 



How can we get the bales? 

 

 

 

 

 

 

Answer:  

– fix a tiling and k 

– generate the program variants for all k-selections 

 # tiles 

                  k (   ) 
# threads 

                     # pgrm variants = 

                     



How can we get the bales? 

 

 

 

 

 

 

Answer:  

– fix a tiling 

– generate the program variants for all k-selections 

Why does this work? 

– each prgm variant captures a subset of k-round executions of P 

– each execution is captured by a prgm variant   



VERISMART architecture  



Eliminationstack:  results 

• Lazy-CSeq: 46764 sec, 4.2 GB 

• CBMC (sequential): 80.8 sec, 0.7 GB 

– average over 3000 interleavings, bug not found 

fastest instances 

very fast – 1000x 

average still very 

fast – 40x 
some slowdown for 

larger tile sizes – 10x 

reduced memory 

consumption – 4x 

high fraction of bug-

exposing instances 

Eliminationstack      

• ABA problem: requires 7 threads for exposure 

• Lazy-CSeq can find bug in ~13h and 4GB 

– #unwind=1, #rounds=2, #threads=8, size=52 visible stmts 

 

– each experiment: 8,000 instances chosen randomly 



Eliminationstack: expected bug-finding time 

bug found with 

99% probability, 

5 cores, < 500sec 

100x speed-up! 



Safestack: experiments 

lower fraction of bug-

exposing instances 

than eliminationstack 

…but boosted with 
larger tile sizes 

Safestack 

– ABA problem: requires context bound of 5 for exposure 

– Lazy-CSeq can find bug in ~7h and 6.5GB 

 #unwind=3, #rounds=4, #threads=4, size=152 visible stmts 



Safestack: expected bug-finding time 

bug found with 95% 

probability, 

~32 cores, ~1300sec 

smaller tiles 

take longer 

25x speed-up! 



Conclusions 

 

Lazy-CSeq 
BMC: fully symbolic 

VERISMART Testing 

PROBABILITY 

PERFORMANCE 



Current & Future Work 

• Fast over-approximations to filter out safe instances 

– abstract interpretation based on BMC? 
 

 

 

• BBD-based analysis + VERISMART  

–  Safestack: bug found < 1 min 
 

 

• Weak Memory Models 

– Efficient encoding / Lazy-CSeq 

Memory shadowing 

– VERISMART 
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