Insights on the impact of systematic model errors on data assimilation performance in changing catchments
Insights on the impact of systematic model errors on data assimilation performance in changing catchments
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
202-222
Pathiraja, S.
31f1856d-aa02-4166-8bc4-7769db25b74c
Anghileri, D.
611ecf6c-55d5-4e63-b051-53e2324a7698
Burlando, P.
5484fcec-b4d3-45e9-a72c-206ccbb5265f
Sharma, A.
144dd2e6-ea28-43dd-a4d1-c6fa3115fc63
Marshall, L.
1aa28715-4505-4522-baf7-613aa1d37933
Moradkhani, H.
eccf07a1-95f9-4d92-a930-811c1e4b0fea
1 March 2018
Pathiraja, S.
31f1856d-aa02-4166-8bc4-7769db25b74c
Anghileri, D.
611ecf6c-55d5-4e63-b051-53e2324a7698
Burlando, P.
5484fcec-b4d3-45e9-a72c-206ccbb5265f
Sharma, A.
144dd2e6-ea28-43dd-a4d1-c6fa3115fc63
Marshall, L.
1aa28715-4505-4522-baf7-613aa1d37933
Moradkhani, H.
eccf07a1-95f9-4d92-a930-811c1e4b0fea
Pathiraja, S., Anghileri, D., Burlando, P., Sharma, A., Marshall, L. and Moradkhani, H.
(2018)
Insights on the impact of systematic model errors on data assimilation performance in changing catchments.
Advances in Water Resources, 113, .
(doi:10.1016/j.advwatres.2017.12.006).
Abstract
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
This record has no associated files available for download.
More information
Accepted/In Press date: 7 December 2017
e-pub ahead of print date: 30 December 2017
Published date: 1 March 2018
Identifiers
Local EPrints ID: 425846
URI: http://eprints.soton.ac.uk/id/eprint/425846
ISSN: 0309-1708
PURE UUID: e92e56d1-339e-4223-b97d-a3a452305454
Catalogue record
Date deposited: 05 Nov 2018 17:30
Last modified: 18 Mar 2024 03:49
Export record
Altmetrics
Contributors
Author:
S. Pathiraja
Author:
P. Burlando
Author:
A. Sharma
Author:
L. Marshall
Author:
H. Moradkhani
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics