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Auscultation has long been the primary test for initial assessment of the patient’s
heart conditions and early detection of anomalies. However, the reliability of this
technique on subjective judgement, expertise, and individual’s hearing accounts
for the inconsistency in the diagnostic among experts. Despite several efforts
towards the development of autonomous systems, their limited success suggests
the use of new approaches for signal representation and pattern classifiers.

This thesis explores the use of hidden Markovian models (HMM) for
characterisation and classification of heart sounds.

Inspired on the cardiohemic theory, Cepstral coefficients are proposed as
suitable heart sound representations for analysis and classification. Their
performance is evaluated by comparison with sub-band energy representations
derived from a standard set of filters for clinical phonocardiography (Maass-
Weber filters), and line spectral pairs, proposed as an alternative to linear
prediction coefficients.

Using hidden Markov models and cepstral representations, an autonomous
algorithm that requires no external signal reference is proposed for PCG signal
segmentation.

Using a database of paediatric heart sounds, a screening test is devised to
asses the performance of the HMM as signal classifier for systolic murmur
identification. Measures of diagnostic accuracy for the algorithm are obtained
using different input representations. The best results, obtained using cepstral
representations, are compared to those provided by paediatric cardiologist’s
diagnosis based on X-ray plates and electrocardiograpy. Both results are
combined in a sequential tests to assess the use of the HMM classifier as a clinical

diagnosis aid.
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1 Introduction

‘I have been able to hear very plainly the beating of
a Man’s heart .. Who knows, I say, but it may be
possible to discover the Motions of the Internal
Parts of Bodies... by the sound they make’

Robert Hooke (1637-1703)

1.1 Background

Auscultation is a non-invasive technique in which a stethoscope is used to listen
to the sounds in the body. The vibromyogram; a manifestation of contraction of a
skeletal muscle, and the vibroarthrogram; recorded from an articulation in
movement, are two good examples of the various applications of this technique to
gain information about the physiology of the body. When this technique is used to
listen to the heart, the sounds received provide valuable information concerning
the integrity and function of the heart valves and on the hemodynamics of the
system. Auscultation has a high potential for detecting various heart diseases. It
has long been the primary test for initial assessment of the patient’s heart

conditions and early detection of anomalies.

The usefulness of auscultation for diagnosis has been recognised for a long time.
During the Hippocratic period (460 to 370 BC) for example, auscultation was
practised by the direct application of the ear to the patient’s chest and abdomen, a
process known as immediate auscultation. Hippocrates described a ‘succussion
splash’ a noise heard when a body cavity containing air and water is shaken
briskly. He provided simple descriptions of the sounds that would let one know by
means of direct auscultation when the chest contained water but no pus.
(Mckusick, 1958).

This form of immediate auscultation remained unchanged until Rene Laennec
invented the stethoscope in 1816 (the word stethoscope derives from the Greek

words stethos meaning chest and skopein that means to view or to see). Rolling a



piece of paper into a sort of cylinder and applying one end of it to the region of
the heart and the other to his ear Laennec invented the first stethoscope and the

use of mediate auscultation.

The invention of the stethoscope, although driven by convenience and propriety
rather than for a technical need, focused the attention of the scientific community
on a scientific approach to physical examination. Laennec himself carried on his
research on diseases of the chest, carefully auscultating close to 3000 patients
between May 1817 and May 1819, while correlating his antemortem observations
with necropsy findings. His ability to play a variety of musical instruments
enhanced his appreciation of the acoustic discoveries. His work ‘Traité de
L auscultation Médiate’ published in 1819 provides many of the related
terminology still used like the terms crepitations, bruit, rales, egophony, and
rhonchi (McKusick, 1958).

Since then, many illustrious physicians have contributed to the understanding of
cardiac auscultation by providing an explanation for the sounds and noises that are
heard in the normal and diseased heart. Such has been the impact of this technique
in medicine that nowadays the most renowned medical instrument is the

stethoscope.

The information obtained by the clinician from the sounds produced by the heart
is used to recognise different heart diseases; however, the use of the stethoscope is
limited by several factors. The expertise of the practitioner, subjective judgement,
the limitations of the terminology used, hearing constraints, and constraints of the
instrument itself, can account for the inconsistency among experts (Rushmer,
1968). Referring to the instrument for example, from a technical point of view,
sounds are damped and distorted by stethoscopes. Various types of stethoscopes
exhibit marked differences in their efficiency at transmission of cardiovascular
sounds as determined by length of transmission pathway, diameter, and stiffness
of tubing, and especially, the sealing at the chest wall and in the ear canal (Groom,
1964).



Despite its limitations, cardiac auscultation remains an important tool for initial
diagnosis. Many pathological conditions of the cardiovascular system cause
murmurs and aberrations in heart sounds much before they are reflected as other
symptoms, such as changes in the Electrocardiogram signal (Rushmer, 1970). The
cost, ease of operation, and non-invasive nature of cardiac auscultation are

irreplaceable by other techniques.

Nevertheless, with the advent of new technologies particularly the use of m-mode,
bi-dimensional, and Doppler echocardiography, the use of auscultation as a
diagnostic tool has been relegated. The complexity of this technique, the
incomplete knowledge about the mechanisms generating the heart sounds, and its
implicit limitations have also contributed to changing it from a diagnostic
procedure to a pre-diagnostic assessment, which in the vast majority of cases

needs to be supported by more complex techniques.

Nevertheless, the evolution of technology also provides the means to overcome

many of the limitations associated with traditional auscultation technique:

e The use of means to record heart sounds provides a basis for comparison
among experts. Phonocardiography is useful to obtain specific measurements
on the timing of heart sounds and murmurs, and provides a means to archiving
auscultated sounds for a better follow-up of patients. Simultaneous recording
of phonocardiograms, electrocardiograms, and carotid pulse provide a better
tool for diagnosis. Those recordings are also extremely useful for the training

of future cardiologists.

e The use of electronic stethoscopes expands the range of frequencies that can
be used in the analysis of heart sounds beyond the frequency range that can be
perceived by humans. Electronic stethoscopes can amplify low-level sounds
and help to minimise the sources of error due to the variability of auditory
capabilities associated with ageing and differences among individuals. An
electronic stethoscope can be used as a stand-alone instrument or as input

stage for an electronic system for processing and displaying.



e The use of digital signal processing techniques provides different
representations suitable for objective analysis, comparison, and classification.
Signal processing techniques can be applied to the heart sound signals
providing visual representations that could ease the interpretation of the
physical phenomena involved. The use of time frequency representations
helps in the detection of murmurs according to their frequency content.
Changes in the spectrum of the first heart sound component are consistent
with reduced ventricular elasticity associated with myocardial infarct (Adolph,
1970). Several efforts have been focused towards the development of an
autonomous system in order to provide heart sound classification aiming to
aid diagnosis (Iwata, 1980; Baranek, 1989; Barschdorff, 1995; Leung, 2000Db;
Reed, 2001; Olmez, 2003).

e Specialised interactive training software offers the opportunity to capture and
share the expertise required for an accurate diagnosis. Software developed at
the Institute of Sound and Vibration Research (Brown, 2002) aimed at future
cardiologists allows the user to listen to a recording and either eliminate or
enhance the different components until they are confident that the sounds are
correctly identified. This software is used for teaching auscultation to students
and junior doctors on the Wessex Cardiothoracic Unit in Southampton. The
use of this training aid also helps to familiarise the user with the modified
spectral composition of the heart sounds and murmurs heard with electronic
stethoscopes. The difference between the sounds obtained with an electronic
stethoscope and the familiar sound of the bell and diaphragm acoustic
stethoscope has been stressed as one of the main difficulties in introducing the

electronic stethoscope into clinical practice (Durand, 1995).

Relatively recent technical developments, such as the use of electronic
stethoscopes and computers have largely contributed towards the renaissance of
this ancient valuable technique leading to what is now called ‘digital

phonocardiology’.



1.2 Digital Phonocardiography

The use of electronic stethoscopes, the increasing processing power of digital
computers and the development of signal processing techniques have renewed the
interest of the scientific community in the improvement and diversification of the
phonocardiogram analysis techniques. Research in this area can be classified into
the following main categories: (1) Studies on the genesis, transmission and
propagation of heart sounds (Fergulio, 1963; Zalter, 1963; Agress, 1964;
Kingsley, 1974; Van Vollenhoven, 1971; Yoganathan, 1976; Kozmann, 1977,
Stein, 1980; Durand, 1982, 1985, 1986; Baracca, 1990; Donnerstein, 1994; Wood,
1995; (2) Detection of cardiomyopathies, ventricular dysfunction and pulmonary
hypertension by analysis of heart sounds (Rangayyan, 1979; Iwata, 1980;
Baranek, 1989; Obaidat, 1992; Barschdorff, 1995; White, 1994; Leung, 1997,
1998a, 1998b, 2000a, 200b; Reed, 2001; Olmez, 2003); (3) Condition monitoring
of prostethic heart valves (Stein, 1980; Durand, 1986, 1990); (4) Detection of
coronary artery disease (Akay, 1990a, 1990b, 1991, 1993, 1994).

1.2.1 Study on the genesis transmission and propagation of heart sounds

The heart sounds are a consequence of the dynamic events associated with the
contraction and relaxation of the atria and the ventricles, the valve movements,
and blood flow; however, the exact mechanisms producing such sounds are still

not fully understood.

There are many theories regarding the causes of heart sounds among which two
main explanations are predominant. The valvular theory (McKusky, 1958)
hypothesises that heart sounds are transient vibrations resulting from the abrupt
tension of the valve leaflets at the end of opening and closure of the four heart
valves, although opening and closure are considered to be silent. The Cardiohemic
theory introduced by Rushmer (1970) attributes the heart sounds to vibrations of

the whole heart structure caused by acceleration and deceleration of intracardiac



blood mass following the opening and closure of the heart valves. Although the

latter is the most accepted theory there is still some controversy.

The development of intracardiac phonocardiography, signal processing, and
echocardiography, has provided new approaches to investigate the basic
mechanisms involved in the genesis of heart sounds and murmurs. Some of the
basic controversies between theories were solved, but some others, especially
those associated with the genesis of the first and third heart sounds and some

functional murmurs, like the Still’s murmur, are still debated (Miao, 1987).

The application of the fast Fourier transform (FFT) to the spectral analysis of
heart sounds has improved the basic understanding of the phonocardiogram

(PCG) and its relationship to the cardiovascular events.

Several researchers have used FFT analysis of PCG signals. For instance,
Yoganathan (1976) used FFT to analyse the first (S1) and second (S2) heart
sounds. They found significant peaks in the 80-400 Hz range in the aortic and
pulmonary areas and concluded that those peaks are related to the elastic

properties of the heart muscles and the dynamic events causing S1 and S2.

Stein (1980) investigated the frequency spectrum of S2 and related the frequency
with the highest amplitude with the stiffness of the aortic valve. This work

initiated studies on condition monitoring of prosthetic valves.

Application of the spectrogram in normal children showed a decrease of the
frequency content of Still’s innocent murmur with an increase in age and heart
dimensions (Donnerstein, 1994). This study also suggested that the difficulty of
detecting this murmur in older children is probably due to its decrease in
frequency content, since the ear is less sensitive to Jower frequencies, making this

murmur difficult to detect by auscultation but not by phonocardiography.

Baracca (1990) used the spectrogram to evaluate the contributions of various heart

structures to the time frequency distribution of S1 by correlating its energy in



various frequency bands with geometrical parameters of the heart structures
obtained by echocardiography. The best correlation was obtained with the
diameter of the left atrium, the volume of the left ventricle, the mitral valve area,

and the aortic diameter.

Wood (1994, 1995) studied the local time-frequency response of S1 recorded on
the epicardium of dogs during 2 hours of coronary ischemia to determine if
changes in myocardial properties would affect the time frequency distribution of
S1 due to a local change in the resonant properties (stifness) of the myocardium.
Their results showed inconsistency with the theory supporting a resonant origin of
the first heart sound. It was thus suggested that S1 appears to be a superposition of
low-frequency vibrations arising from myocardial contraction and high frequency

transients initiated by valvular activity.

The exact mechanisms of transmission of the heart sounds and murmurs within
the heart-thorax structures and on the surface of the thorax are still unknown. The
transmission characteristic of the thorax, and the various thoracic sites used to
record the heart sounds and murmurs often generate major difficulties in the

comparison of the results obtained from different studies.

The physical, mechanical and vibrational aspects of heart sounds and sound
transmission through human tissues have been studied in detail by many
researches using different methodologies (Agress, 1964; Van Vollenhoven, 1971;
Kingsley, 1974; Kozmann, 1977; Durand, 1985).

Intracardiac sound generators and transducers were used to evaluate the
transmission characteristics of the thorax by inside to outside transmission and
vice-versa (Fergulio, 1963; Zalter, 1963). The studies indicate that the nature of
the recorded external sounds depends upon cardiac action characteristics, site of

sound production, and properties of the conducting tissues.

Using a multi-channel acquisition system and an array of 25 microphones

Rangayyan (1987) studied the distribution of the PCG on the surface of the



thorax. This study has been used to identify optimal sites of radiation of stenotic
and regurgitan murmurs by generating reference isocontour maps of the heart and

murmaurs.

Computer models have been developed in order to characterise the heart thorax
acoustic system from the point of view of heart sound transmission (Durand,

1982, 1985, 1986).

1.2.2 Detection of cardiomyopathies, ventricular dysfunction, valvular heart
disease, and pulmonary hypertension by analysis of hearts sounds

With the aim of overcoming the limitations imposed by traditional auscultation
techniques, several efforts have been made to use electronic stethoscopes,
computers, and advanced digital signal processing techniques to analyse heart
sounds and to relate qualitatively PCG signal features with the corresponding

physiological and pathological conditions.

Most of the research is focused towards the identification of murmurs, i.e.
abnormal heart sounds caused by turbulent blood-flow in the heart. From the
localisation of the murmurs, duration, loudness, timing, pitch, quality and shape, it
is possible to identify anomalies in heart valves, ventricular dysfunction, heart
defects, and pulmonary hipertension, among other pathological conditions
(Guadalajara, 1998).

Initial works were orientated into finding representations that overcome human
hearing constrains and could provide more information related to the physical
phenomena. The search of the best feature representation was mainly based either
on frequency or on time domain analysis (Rangayan, 1979; Obaidat, 1992; Leung,
1997).

Subsequent efforts have focused towards the development of autonomous systems
for heart sound diagnosis in order to avoid the dependence on the skill and

expertise of the listener and to extend the human hearing system capabilities



(Iwata, 1980; Baranek, 1989; Barschdorff, 1995; Leung, 2000a; Reed, 2001,
Olmez, 2003). Some attempts to perform automatic classification explore the use
of parametric classifiers or neural networks (Leung, 2000; DeGroff, 2001; Reed,
2001).

Time frequency methods have been applied to the analysis of signatures of
paediatric heart murmurs (Leung, 1997, 1998a). The murmurs were considered as
approximately cyclostationary and as a result the signal to noise ratio enhanced by

averaging the time frequency distributions across cycles of heartbeats.

The use of signal processing techniques for heart sound analysis and recognition

will be further explained in chapter 3.

1.2.3 Condition monitoring of prostethic heart valves

The primary function of the cardiac valves is to allow unidirectional flow of blood
through the cardiac chambers. The normal valve performs this function without
causing obstruction (stenosis) or reversal of flow (insufficiency), which ensures
efficient transformation of energy from myocardial contraction into blood flow
circulation throughout the body. When the valves malfunction sometimes
compensatory mechanisms initially allow the heart to function efficiently,
however, after some time these mechanisms become inadequate and the heart fails

to meet the metabolic requirements of the body.

Either mechanical prosthetic valves or bioprosthetic valves extracted from pigs
may replace native valves. Although the incidence of mechanical prosthetic valve
fracture is low, mechanical prostheses are prone to sudden failure due to fracture
of their components with major consequences and often leading to the death of the
patient. Bioprosthetic valves may last from seven to twelve years but gradually
fail due to tissue degeneration and calcification. The inevitable patient risk
associated with both mechanical and biological prostheses requires periodical

evaluations of prosthetic integrity.



Based on the theory that the opening and closure of heart valves contributes
directly to heart sounds, PCG analysis offers a non-invasive and passive approach
to the evaluation of prosthetic heart valves. Stein (1980) were the first to
demonstrate that the dominant frequency of closure sounds produced by native
and prosthetic valves was increased by stiffening of the valve leaflets due to

calcification and fibrosis.

Durand (1990) studied the spectra of the first heart sound in order to determine the
contribution of bio-prosthetic valves implanted in the mitral position in humans.
He demonstrated that the band width of spectrum of the first heart sound broadens
when the valves degenerate. Durand derived spectral parameters from the first
heart sound spectra and used them to discriminate normal from degenerated bio-

prosthetic valves achieving classification accuracy as high as 98%.

Durand (1986) studied the sounds of bioprosthetic valves in the aortic position.
The comparison among the basic periodogram, Welch’s averaged periodogram,
all pole modelling, and pole zero modelling, showed that the basic periodogram
provides the best compromise between spectral distribution and localisation of

spectral frequency peaks of bioprosthetic valve sounds.

1.2.4 Detection of coronary artery disease

Coronary artery disease (CAD) is caused by the obstruction of coronary arteries
by atheromatous plaques. Blood vessels are normally flexible, elastic, and pliant,
with smooth internal surfaces. When a segment of blood vessel is hardened due to
the deposition of calcium and other minerals, the segment becomes rigid.
Furthermore, the development of plaque inside the vessels causes narrowing or
constriction of the vessel, which impedes the flow of blood. Coronary artery

disease is the leading cause of death in the western word.
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The occlusion of coronary arteries is usually detected by Coronary angiography,
which is an X-ray examination of the blood vessels or chambers of the heart. A
very small tube (catheter) is inserted into a blood vessel in a groin or an arm. The
tip of the tube is positioned either in the heart or at the beginning of the arteries
supplying the heart. Then a special fluid visible by X-ray (called a contrast
medium or dye) is injected. The X-ray pictures obtained (angiograms) are
required in order to assess further treatment. Coronary angiography is a time

consuming and expensive technique.

An alternative method consists of the development of non-invasive acoustic
techniques for detection and characterisation of coronary artery disease. Akay et
al. (1990a, 1990b, 1991, 1992, 1993, and 1994) conjectured that coronary artery
disease could present high frequency sounds due to turbulence caused by the
narrowing or constriction of the vessel. The study of the spectra of mid diastolic
segments of the PCG over 20-30 beats of normal subjects and patients with
coronary artery disease (confirmed by angiography) showed greater portions of
the energy above 300 Hz when coronary artery disease was present. Subsequent
studies demonstrated that relatively high power levels of resonance frequencies in
the range 400-600 Hz, evident in patients with CAD, were reduced after
angioplasty (Akay, 1990b).

In an attempt to improve the diagnosis ability of the technique wavelet transforms
(Akay, 1994), min-max neural classifiers (Simpson, 1992, 1993), high resolution

spectral estimators (Akay, 1990a, 1990b, 1991), and adaptive line enhancer
techniques have been used (Akay, 1992, 1993).

1.3 Objective

Increased concern over the long term effects of radiation of various forms used in

diagnosis medical imaging has reinforced the need for the development of passive
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and non-invasive techniques (Verbug, 1979). This concern is particularly
important in paediatrics due to the frail nature of the infants being examined.
Moreover, premature births compounded by congenital defects strengthens the

need for passive observation procedures.

Auscultation as a passive technique is specially suited for assessment of heart
pathologies in infants. The technique has the potential to determine the presence
of a heart murmur and hence, a pathological condition. Nevertheless, some
limitations of this technique and its demand for high expertise from general
practitioners means that often a non pathological murmur is not recognised as
such and the patient needs to be referred for further analysis, bringing unnecessary
concern, limitation of activity and needless antibiotic prophylaxis (Rushmer

1968).

The development of digital phonocardiology and the use of advanced signal
processing techniques provide the means to overcome many of the limitations
associated with classical auscultation. Autonomous systems to aid PCG diagnosis
have been the focus of the latest research. However, the limited success of the
different signal processing techniques applied to PCG analysis and classification
has made evident the non-triviality of the problem and suggests the use of new

approaches.

This work explores the use of a statistical pattern classification technique able to
account for the inherent variability of the biomedical signals. Starting from a
necessarily limited signal sample space available the method presented derives
statistical models able to represent unseen data. The thesis also explores the use
autonomous system-orientated representations to extract information based on the
bio-dynamics of the system rather than the traditional features that provide visual
meaningful representations. The main objective is to identify abnormal heart
conditions through the analysis of the recordings of sounds produced by the heart
(PCG) by means of a statistical pattern classification technique: Hidden
Markovian Models (HMM).
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The research is based on the classification of paediatric heart sounds
corresponding to the following categories: Aortic Stenosis (AS), Atrial Septal
Defects (ASDs), Ventricular Septal Defects (VSDs), Innocent Pulmonary Flow
Murmurs, and normal heart sounds. These categories represent the most common
conditions encountered in paediatric cardiology. The signals have been obtained
from subjects in an age range between 3 months and 16 years old with the support

of the Wessex Cardiac Unit of Southampton General Hospital.

1.4 Synopsis

This thesis starts with a brief introduction the traditional technique of auscultation
presented in Chapter 1. The importance of the technique for diagnosis is presented
in an historical context and in relation to contemporary techniques. Recent
technological developments that lead to the development of digital
phonocardiography have started new areas of research and diagnosis-oriented
applications based on analysis of cardiovascular sounds. Those areas are briefly
described before justifying the objective of this research: the identification of
murmurs in paediatric PCG signals by means of statistical pattern classification

techniques.

Chapter 2 introduces the biomedical background required for a good
understanding of the study. Despite the controversy about the origin of heart
sounds, the anatomy and physiology of the heart are presented in relation to the
most generally accepted theory of the genesis of the heart sounds and murmurs:
the Cardiohemic theory. The chapter also presents an overview of the
characteristics described by physiologists for the classification of heart sounds and

the specific signature for the systolic heart sounds studied in this research.

Chapter 3 introduces the use of signal processing techniques for PCG signal
classification. Autonomous heart sound identification aimed to aid differential
diagnosis is conceptualised as a signal classification task. After a review of the

main approaches applied to phonocardiography, a technique of statistical signal
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processing, namely the use of hidden Markovian models is proposed for this

application.

Chapter 4 presents a brief introduction to hidden Markovian models. Basic
concepts of the technique are explained through a practical example. The hidden
Markovian model developed, although not related with the analysis of heart
sounds, is useful to clearly show the relationship between the components of the
model and the applications of this statistical technique. Finally, references to

tutorials and details of the algorithms are provided.

Feature representations for analysis and classification of the phonocardiogram
signal is the subject of Chapter 5. The most common techniques are mentioned
and two of the main approaches are presented: linear prediction analysis and
Mass-Weber filters. Neverthless, the use of line spectral frequencies is proposed
as alternative representations for linear prediction coefficients. Inspired by the
cardiohemic theory, a third approach for PCG signal representation using cepstral
analysis is proposed. The viability of the latter technique for differentiation of

PCGs characteristic of certain medical conditions is explored through examples.

The problem of PCG signal segmentation is addressed in Chapter 6. Since the
identification of the main components of the heart sounds is considered the first
step towards the automatic classification of heart sounds, a review of available
techniques is presented. Segmentation is usually performed with the aid of the
ECG signal. An algorithm for PCG segmentation using Cepstral analysis and
HMM without an ECG reference signal is proposed. These techniques were
selected in chapters 5 and 3 for signal classification and PCG representation
respectively, and therefore, their use for signal segmentation is logical
consequence. Finally, results obtained from the application of the algorithms on a
database of hearts sound signals collected in collaboration with the cardiology unit

of Southampton General Hospital are presented.
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Chapter 7 explains the model selected for the classification of systolic murmurs.
The algorithms are applied to real signals and the performance of the classifier is

presented.

Chapter 8 presents a summary of the research and suggestions for future work.

1.5 Novel Contributions

e Use of hidden Markovian classifiers for PCG recognition.

o Cepstral representations of PCG based on the cardiohemic theory.

e Automatic PCG segmentation by hidden Markovian models without an
external reference signal.

e Line spectral frequencies PCG representations for classification.

e Comparison of Mass-Weber filter PCG representations, line spectral

frequencies, and cepstral coefficients for PCG analysis.
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2 Biomedical Background

2.1 Overview

Basic knowledge of the related biological events is required in order to understand
the problems involved in automatic phonocardiogram classification. This section
describes the basic principles of the anatomy and physiology of the heart and the
most accepted theory proposed for the genesis of heart sounds and murmurs.
Principles of auscultation are also presented in relation to the analysis of
phonocardiograms including an overall description of the general criteria used by
cardiologists to identify a possible pathology from the heart sounds perceived.
The main auscultation areas are briefly described before a short description of the
physiological characteristics and particular signatures of the pathologies involved
in this research and their related phonocardiographic signals. This section is only a
brief introduction presenting the basic concepts needed, for a more detailed
explanation refer to the medical literature (Rushmer, 1970; Sahver, 1985;
Guadalajara, 1998; Kusumoto, 1999; Brown, 2002).

2.2 The Heart

The cardio-vascular system comprises the heart and blood vessels. The heart is the
central organ of the entire system, and consists of a hollow muscle; by its
contraction the blood is pumped to all parts of the body through a complicated
series of tubes, termed arteries. The arteries have multiple ramifications and end
in very minute vessels called arterioles, which in turn open into a mesh network of
microscopic vessels called capillaries. In this passage through the capillaries of
the body, the blood gives to the tissues the materials necessary for their growth
and nourishment. In the capillaries the blood receives from the tissues the waste
products result from metabolism and afterwards, it is collected into a series of

Jarger vessels called veins and returned to the heart.
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2.3 Heart Sounds

There is a wide diversity of opinion concerning the theories attempting to explain
the origin of heart sounds and murmurs. More than 40 different theories have been
proposed to explain the origin of the first heart sound (Rushmer, 1970;
Rangayyan, 1988). Although the controversy continues about the exact origin of
the heart sounds (especially for the first and the third sounds), the concepts around
the most accepted theory, which is used for cardiology teaching, are presented
here (Rushmer, 1970; Kusumoto, 1999; Brown, 2002).

The cardiohemic theory proposed by Rushmer in 1970 assumes that since the
chambers of the heart are filled with blood, none of these structures can vibrate
independently without producing movements of blood. Similarly, vibrations in the
blood must be transmitted to surrounding structures. Therefore, all structures:
heart cavities, valves, and blood constitute an interdependent system vibrating at
the same time. Heart sounds are regarded as vibrations or sounds due to the
acceleration or deceleration of blood within the elastic system triggered by
pressure gradients (Rushmer, 1970). The elasticity of a chamber completely filled
with fluid is analogous to a spring whereas the fluid and supporting mass are
analogous to a vibrating mass. Any sudden movement such as acceleration and

deceleration throws the system into vibration.

A normal cardiac cycle contains two major sounds: the first heart sound (S1) and
the second heart sound (S2). Figure 2.2 shows the main heart sounds and their
relation to the electrical events of the cardiac cycle. The systolic and diastolic
components are defined in relation to S1 and S2. The systolic component is
usually shorter than the diastolic; a fact that is generally used during auscultation

to distinguish the second heart sound from the first one.

Figure 2.3 shows the main components of an ideal heart sound. The first heart
sound has four components associated with the movement of blood during the
contraction of the ventricles. As the ventricles contract (systolic phase), blood

shifts towards the atria, closing the atrioventricular valves (mitral and tricuspid)
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The second sound is composed of two components (A2 and P2) corresponding to
the closure of the aortic and pulmonary valves respectively. Under normal,
conditions during expiration, P2 appears from 10 to 30 ms after A2. With
inspiration, overload of the right ventricle due to venous return causes a longer
delay in the closure of the pulmonary valve and thus of P2. Consequently, it is
easier to perceive both components. Pathological conditions could cause this gap
to widen, may reverse the order of occurrence of A2 and P2, or fix the delay as in
the case of atrial septal defect conditions as shown in figure 2.4 and explained in

section 2.6.2.

The third sound is attributed to the sudden termination of the rapid filling phase of
the ventricles from the atria and the associated vibration of the ventricular muscle
walls, which are relaxed. The fourth or atrial heart sound occurs when the atria
contracts and propels blood into the ventricles. These sounds are generally much
quieter than the first and second ones. In addition to these sounds, valvular clicks

and snaps are occasionally heard.

2.4 Murmurs

The intervals between S1 and S2 during ventricular systole, and S2 and S1 during
ventricular diastole are normally silent, but murmurs may occur during those
intervals. According to Rushmer heart murmurs are prolonged sounds arising

from turbulent blood flow from one of four causes:
1) High rates of flow through normal valves.
e Pathological related: Murmurs may be present in pathological conditions
like anemia and thyrotoxicosis, for example, where the patients have

structurally and functionally normal hearts, but the high-blood flow

indicates an underlying disease.
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e Non pathological related: As in the case of innocent pulmonary flow
murmurs, where the cardiac anatomy is normal, common in childhood

and young adults and also in hyperdinamic states such as pregnancy.

2) Forward flow through a narrowed or irregular shaped valve. May occur for
example when a valve does not open completely due to a calcium deposit
(acquired stenosis), or in congenital malformation such as bicuspid aortic

stenosis.

3) Backward flow through a leaking heart valve. Regurgitation or insufficiency
occurs when valves fail to occlude completely. It can be associated with a
rheumatic origin, congenital malformation, atrophy of the tendons or muscles
involved in its function, or functional origins in an anatomically normal valve

due to annular dilatation such as in the case of functional mitral regurgitation.

4) Flow through an abnormal cardiac or extracardiac connection. Such as in
ventricular septal defect where a hole in the ventricular septum allows blood

to flow from the left ventricle to right ventricle.

2.5 Auscultation

Features of heart sounds and murmurs like intensity, frequency content, and
timing are affected by many physical and physiological factors such as the
recording site on the thorax, intervening thoracic structures, left ventricular
contractility, position of the cardiac valves at the start of the systolic cycle, the
degree of the defect present, the heart rate, and blood velocity. Despite the
variations introduced by all this facts, it is possible to distinguish between

different murmurs by their particular morphology.
To identify a specific abnormal condition the information obtained from the heart

sound is described in terms of frequency patterns (pitch and quality), intensity

(loudness and patterns of sound intensity), timing (systolic and diastolic cycles),
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localisation (where the murmur is best heard and spread pattern) and whether the

murmur changes during respiration. Table 2.3 shows the information utilised in

evaluating the significance of the heart sounds and murmurs (Rushmer, 1968).

A. Frequency patterns

1.
2.

Pitch (high or low)
Quality (presence of dominant frequencies or
harmonics)

B. Intensity

1.

2.

Loudness of heart sounds

Grade I: very faint, difficult to hear

Grade II: faint, but easily heard

Grade III: moderately loud

Grade IV: very loud

Grade V very loud, can be heard with the edge of the
stethoscope to the skin

Grade VI: extremely loud, can be heard with the
stethoscope off the skin

Patterns of sound intensity of murmurs

a. Crescendo

b. Decrescendo

¢. Crescendo-Decrescendo (“Diamond shaped”)

d. other

C. Timing

D.

1.
2.
3.

PR HO VR

Splitting of sounds

Systolic murmurs

Diastolic murmurs

a. Early diastolic

b. Mid-diastolic

c. Protodiastolic

Intervals between sounds and murmurs
Gallop rhytms and similar
Identification of opening snap

ocalisation on precordium

“Mitral” area
“Aortic” area
“Pulmonary” area
“Tricuspid” area

Table 2.3. Types of Information Employed in Auscultation

Diagnosis.
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The limitations of auscultation are indicated by the common tendency to classify
heart murmurs according to a few general types (Table 2.4) based primarily on

timing and intensity characteristics shown in Table 2.3 (Rushmer, 1968).
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Figure 2.5. ‘Diamond shaped’ murmur. Named by its Crescendo — Decrescendo
characteristics and well defined start and end points PCG Recorded at pulmonary area,
Fs=4KHz.

Accordingly to this time and intensity classification Figure 2.5 shows a grade II
crescendo — decrescendo or ‘diamond’ shaped mid-systolic murmur. Note that
high frequency information is not evident in this time-domain plot since low
frequency components have higher amplitude. Filters such as the Maass-Weber
set are therefore required to extract the information provided by high frequency

components.

It is important to note that murmurs vary in intensity and an increase in loudness

does not necessarily indicate an increase in the severity of the disease.
If physicians were forced to rely on interpretations of heart murmurs without other

clues (i.e., only by the recorded signals) they would be able to distinguish several

general types of murmurs but could not specify confidently the kind of disease. To
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the extent that a particular kind of murmur can be caused by a variety of
pathological conditions, its diagnostic specificity is limited. The practitioner
differentiates those conditions and provides a diagnosis based not only on the

heart sounds, but considering the entire clinical scenario.

L. Systolic murmurs
A. Ejection murmurs
1. Aortic valvular stenosis
2. Pulmonary valvular stenosis
3. Infundibular stenosis
4. Dilatation of aorta or pulmonary artery
5. Increased ejection outflow rates
IIL. Diastolic murmurs
A. Early diastolic decrescendo murmurs
1. Aortic regurgitacion
2. Pulmonary regurgitacion
B. Atrioventricular diastolic murmur
1. Mitral stenosis
2. Tricuspid stenosis
III. Continuous murmurs
A. Patent ductus arteriosus
B. Intrathoracic arteriovenous fistulae
1. Coronary A-V fistulae
2. Ruptured sinus of Valsalva
3. Intrapulmonary A-V fistulae
C. Coarctation (systemic collaterals)
D. Venous hum
E. Other anomalies
IV.  Musical murmurs
A. Everted aortic cusp
B. Chiari nets
C. Moderator bands

Table 2.4. Categories of Murmurs.

2.5.1 Auscultation areas

Externally, particular heart sound components are best heard at certain locations
on the chest, and this localisation has led to the concept of secondary sources on

the chest.
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2.6.1 Valvular Aortic Stenosis

The aortic valve is composed of three cusps of equal size attached symmetrically
around the circumference of the valve orifice. The normal function of the aortic
valve is to allow blood flow from the left ventricle to the body without obstruction
or reversal of flow. The normal aortic valve closes completely and when open has
a triangular orifice considerable smaller than its cross-sectional area; however, it
is sufficiently large so the pressure gradient required to force blood through it is
negligible. Stenosis occurs when a valve does not open completely. The causes of

aortic stenosis can be divided into congenital and acquired forms.

A patient with a congenital bicuspid aortic stenosis has a valve with only two
cusps. Two cusps of equal size are equally effective in completely closing but a
bicuspid valve can not open widely and obstructs the flow of blood. Other forms
of congenital disease include the formation of a unicuspid valve and a tricuspid
valve with fused commissures. Persons born with an abnormal bicuspid valve are

particular susceptible to calcification in later life.

Acquired stenosis may arise from secondary conditions such as rheumatic heart
disease or idiopathic calcification of the valves. The valve may become hardened
or stiff with calcium deposits or scarring, and thus, it is hard to push open. Blood
has to flow through a smaller opening, and therefore less blood gets through the
valve into the next chamber. The origins of aortic stenosis in infants and children
are always congenital. In teenagers, this condition would be congenital when
found alone, and rheumatic whenever it is accompanied with mitral stenosis
although the latter patterns are characteristic of adults. Aortic stenosis in patients
over 65 years old is generally due to senile, degenerative or calcific origins,

resulting from mechanical wear and tear, and calcium deposits.
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The normal aortic valve area is approximately from 3 to 4 cm’ and starts to
produce a pressure gradient when reduced to 1.5 cm? and below. The expulsion
time of the left ventricle is prolonged accordingly to the severity of the stenosis in
order to compensate for the obstruction of blood flow out of the left ventricle to
the aorta. The left ventricular pressure increases due to the restriction and the
ventricle compensates for this pressure overload by becoming hyperthorphic. The
wall thickness increases to provide the necessary force to open the stenotic valve.
Due to this compensatory mechanism patients with aortic stenosis remain
asymptomatic during the long latent phase of the disease. Symptoms develop as
the valve orifice narrows and the hyperthorpy is not enough to compensate.
Angina (chest pain or discomfort that occurs when the heart muscle does not get
enough blood), syncope (transient loss of consciousness) and congestive heart
failure (a condition in which the heart can not pump enough blood to the body's

other organs) are among the symptoms of advanced aortic stenosis.
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Figure 2.6. Aortic Stenosis Murmur. PCG recorded at aortic area, Fs =4 KHz.
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Figure 2.6 shows a phonocardiogram (PCG) of a heart sound with a murmur due
to aortic stenosis. These murmurs are typically a mid-systolic (occurring in the
middle of the systolic cycle) ejection (discrete start and end points) murmurs
heard best over the aortic area. The aortic stenosis murmur has a harsh quality,
medium pitch, coarse, crescendo-decrescendo quality. The murmur peaks later in
systole as the stenosis worsens since a larger pressure gradient with a longer
ejection period are required to open the aortic valve. When the left ventricle
begins to fail the murmur becomes softer and therefore, the intensity of the

murmur does not necessarily correlate with the severity of stenosis.

An aortic ejection sound (ejection click) may also be present early in the natural
history of aortical stenosis. The ejection click is caused by the sudden opening of
a stiff aortic valve in ventricular systole and depends on valve mobility. This
sound is high pitched and occurs approximately 60 ms after S1. The ejection click
is heard better at the apex than in the aortic area (where the murmur is loudest but

the click may be inaudible).

Because the second heart sound is largely generated by the sudden closing of the
aortic valve, a poorly mobile and stenotic aortic valve may cause the second
sound (S2) to become quieter or even be absent. S2 is normally created by the
closure of the aortic valve originating the A2 component, followed by the
pulmonary valve that originates the P2 component. In aortic stenosis, the aortic
component A2 becomes progresively delayed as the degree of stenosis worsens
and the left ventricular period becomes consequently simultaneously longer. If the
closure of the aortic valve is delayed sufficiently, it may close after the pulmonary
and therefore, two distinct sounds can be heard at expiration rather than
inspiration, this condition is called abnormal paradoxical split of S2 (Isselbacher,
1984).
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Patients with ASD are generally asymptomatic until the third or fourth decade of
life. The first symptoms are dyspnea (an unpleasant sensation of difficulty in
breathing), fatigue, chest discomfort, cyanosis, and hemoptysis (coughing up of

blood from the respiratory tract).

Figure 2.8 shows a typical ASD murmur. This mid-systolic ejection murmur,
usually grade II, is produced by hyperflux in the pulmonary valve and
consequently is best heard over the pulmonic area of the chest. With larger shunts,

a mid-diastolic tricuspid murmur may also be audible.

The most characteristic feature of an ASD is the fixed split S2 as shown in figure
2.4. In a normal heart, a split S2 is caused physiologically during inspiration
because the increase in venous return (due to a compliance decrease of the
pulmonary arterial bed) overloads the right ventricle and delays the closure of the
pulmonary valve. With an ASD, the right ventricle can be thought of as being
continuously overloaded because of the left to right shunt, producing a widely
split S2. Because the atria are tinked via the defect, inspiration produces no net
pressure change between them, and has no effect on the splitting of S2. Thus, S2
is split to the same degree during inspiration and expiration, and the split is said to

be fixed.
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Figure 2.8. Atrial Septal Defect Murmur. PCG recorded at pulmonary area, Fs =4 KHz
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extends to adjacent muscular septum) which is the most common ventricular

septal defect: accounting for 65% of cases.

The least common muscular septal defects (accounting for 18% of cases) may
appear anywhere in the muscular portion of the septum. The defect is probably the
result of excessive resorption of the myocardial tissue during the formation of the

interventricular septum.

The third type of defect is located in the outlet septum. This defect accounts for
8% to 12% of cases, and can be associated with prolapse of the aortic valve (out
of its usual position) and aortic regurgitation. The fourth type relates to defects of
the inlet septum accounting for approximately 7% to 10% of VSD.

The pressure in the left ventricle during the systolic cycle is significantly higher
than that present in the right ventricle by a ratio of four to one and therefore an
aperture between cavities propels oxygenated blood from the left ventricle into the
right. The degree of flow through the shunt is related to the size of the defect and
the relative resistances of the pulmonary and systemic circulation. With a small
defect, there is a significant resistance to flow with a pressure gradient between
ventricles. In case of large defect there is no restriction of flow between ventricles
and equilibration of pressure within ventricles occurs. Large defects with
significant pulmonary vascular resistance result in bi-directional shunting with a

predominant right to left shunt leading to cyanosis.

Figure 2.10 shows a typical VSD murmur. These murmurs are characteristically
holosystolic (completely filling the systolic phase of the cycle) since the pressure
difference between the ventricles is generated almost instantly at the onset of
systole, with a left to right shunt continuing throughout ventricular contraction.
Small and medium shunts tend to generate harsh decrescendo murmurs. With
large shunts, an intense holosystolic constant murmur is present and an apical
mid-diastolic murmur may be appreciated secondary to increased flow through the
mitral valve. The P2 component may be reinforced as a consequence of

hypertension. VSDs murmurs are usually best heard over the tricuspid area. Since
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murmur is actually registered in all normal subjects by intracardiac

phonocardiography (Guadalajara, 1998).

Innocent pulmonary flow murmurs are non-pathological murmurs caused by the
gjection of blood through a normal pulmonary valve. Since children have a more
dynamic flow of blood, turbulent blood flow sometimes develops in the
pulmonary artery and causes the murmur. Since the cardiac anatomy and
physiology of the heart is normal there will be no cardiac symptoms associated
with an innocent pulmonary flow murmur, however, children with symptoms such
as chest pain which are actually non-cardiac in origin, may have co-existing

innocent murmurs.

Figure 2.11 shows an innocent pulmonary flow murmur. This murmur is mid-
systolic and is best heard in pulmonary auscultation area. It is seldom more than
grade II (faint but easily heard, according to table 2.3), without spread and
occupies approximately two thirds of systole. In children with particularly thin
chest walls the murmur, and in general all the heart sounds, will be louder since a

negligible amount of energy is lost in transmission to the surface.
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Figure 2.11. Innocent Pulmonary Flow Murmur. PCG recorded at pulmonary area,
Fs =4 KHz.
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The murmur has a diamond shape (a crescendo-decrescendo intensity pattern), is
generally of soft quality, and has predominant mid-frequency components. The
murmur tends to decrease during inspiration and also decreases when the child
sits. The second heart sound splits and varies normally, and no diastolic murmur
exists over the right ventricle at the lower left sternal border. Absence of all of
these pathologic findings provides confidence that the pulmonic flow murmur is

not associated with an atrial left to right shunt or pulmonic valve stenosis.

It should be stressed that although a description of the murmur can be provided
there are no phonocardiographic findings that identify an innocent murmur with
certainty. Differential diagnosis is made based on the absence of features

characteristic of other possible causes and with the help of clinical manoeuvres.

2.7 Summary

A brief overview of the biomedical aspects related to the genesis of the heart
sounds and murmurs has been presented as an introduction to the problem of

phonocardiogram classification for the diagnosis of heart clinical conditions.

The main classification of heart murmurs, the systolic murmurs to be studied in

this research and the pathological conditions related to them were presented.

This chapter also introduced the terminology employed in auscultation diagnosis
to describe the frequency patterns, intensity, timing, and localisation of murmurs.
These terms reflect the kind of information that the specialist looks for in order to

identify abnormal heart sounds.

The next chapter presents a discussion about the signal processing techniques

applied to PCG analysis and classification aimed to aid diagnosis.
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3 Classification of PCG Signals to Aid Diagnosis
3.1 Overview

As described in previous chapters, the use of digital stethoscopes and advanced
signal processing techniques can help to overcome some of the intrinsic

limitations inherent to the traditional auscultation technique.

One of the most promising areas in the use of these techniques is the automatic
identification of specific cardiopathologies that have proven to be difficult to
define by differential diagnosis through traditional auscultation methods, such as
the case of innocent murmurs and pathological related murmurs. Based only on
the sound signal, a trained cardiologist can easily distinguish a pulmonary
regurgitaton murmur from an aortic stenosis murmur. However, the distinction
between, an innocent pulmonary flow murmur and an atrial septal defect murmur
may be very difficult. An autonomous system that could ease the identification of

similar murmurs would constitute a valuable tool to aid diagnosis.

From the signal processing point of view, the problem can be defined as a
classification task. An autonomous system could assign a heart sound with a
murmur to a specific class representative of a certain medical condition by
objective analysis of its characteristics. Therefore, an innocent flow murmur
would be correctly identified if the system were able to assign it to the innocent

class rather than to the atrial septal defect class.

The identification problem can be simplified to a classification task if the signal in
question belongs to one of the categories available. This approach could be
helpful to differentiate murmurs with similar signatures that are known to belong
to one of the available classes. However, a murmur not belonging to any of the
classification groups will be wrongly assigned to one of the classes available.
Consequently, this approach is only valid to confirm differential diagnosis of a
specific group of pathologies with similar acoustic signatures. Other murmurs that

may have similar acoustic signatures, and do not belong to the classes available,
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should be previously discarded with the help of non-acoustical clues, symptoms
and clinical manoeuvres. For example, the murmur of a rheumatic stenotic aortic
valve of arterosclerotic nature, although similar to the murmur of a functional
congenital aortic stenosis, can be differentiated simply using the age of the

patient.

3.2. Signal classification

As shown in Figure 3.1, the recognition of the time sequences of the recorded
PCG signals for classification is divided into four major components, namely:
signal conditioning, segmentation, feature extraction, and classification of the
features associated with that pattern. The performance of a signal classification
procedure depends on the selection of the feature representations of the signal and
the use of a convenient classifier technique for such representations. Matching
these procedures eases the classification task. The work in the field has considered

various combinations of these steps; although not necessarily exhaustively.

PCG Database |y Pre-processing |- Feature extraction Classilication

Figure 3.1. Main Stages for the Classification of PCG.

3.3 Classification approaches

The first step in any pattern-classification system is to select some representation
of the input pattern. Although in some cases this is the raw input data, in general,
compressing the data into a few salient features improves overall system

performance.
The aim of feature extraction is to represent the signal by a choice of features that

reduce variability between samples associated with the same class, whilst

increasing the variability between samples belonging to different classes. In some
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sense, the pattern classification can be solved trivially if the selected features are

good enough (Gold, 2000, p. 105).

Given a feature vector choice, pattern classification primarily consists of the
development, or training, of a system for classification of a large number of
examples of the different classes. In a supervised learning process a database of
patterns, labelled with the correct class, is provided for the training; whereas in an
unsupervised process the data feature itself defines the classes. In the case of PCG
classification, the classes are predefined by the cardiopathologies associated with
the acoustical signals and therefore a training set of labelled signals,
representative of each medical condition, is provided for the supervised learning

process.

The computed features of each heart beat period are interpreted as a multiple
dimensional feature vector within a corresponding feature space. Using this
feature vector as the input to the classifier, an automatic decision is achieved
generally by computing a suitable predefined distance between test and reference
patterns or by assuming that separate clusters are formed in the feature space and
that a decision function can be used to distinguish the boundaries. Nevertheless,
decision functions are highly dependent upon the set of training samples provided.
Their success when applied to new cases will depend on the accuracy of

representation of the various pattern classes by the training samples.

If distinctive class distributions in the feature space are attained and the
classification problem can be described algorithmically, deterministic or statistical
classifiers could be utilised. The deterministic methods exploit some known
specific properties of the signal. Specification of the signal model is generally
straightforwardj it is only required to estimate the values of the parameters of the
signal model. The statistical approach, conversely, tries to characterise only the
statistical properties of the signal. The underlying assumption is that the signal
can be characterised as a parametric random process and that the parameters

inherent to the stochastic process can be estimated (Rabiner, 1989).
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Linear discriminant analysis is an approach that tries to maximise variance among
classes and minimise variance within classes, given the constraint of a linear
transformation of the input features. Discriminant analysis has been used in the
PCG classification problem. Atrial septal defect murmurs, ventricular septal
defect murmurs, and normal PCG paediatric signals were analysed by Leung
(1998a) in a study conducted at the Institute of Sound and Vibration Research
(ISVR) with the aim of classifying them. The systolic signals were characterised
in the time-frequency domain by a representation based on the averaged
spectrogram from which the spectral features were extracted to form feature
vectors. Discriminant analysis was then performed to project the higher
dimensional spectral features onto a two-dimensional space, in which the three
groups form natural clusters that were linearly classified. Although the study
shows three distinctive clusters, some samples for VSD and ASD lay near to the

Normal cluster (Leung, 1998a).

An example of the use of statistical classifiers is the work conducted by Joo
(1983) to study heart valve function. He proposes the use of pole-zero modelling
to provide a high-resolution spectral estimate from which the frequency domain
features were derived. The two maximum spectral peak locations are the features
selected for the classifier. The design of the classifier was based on a statistical
model for the dependence of the peak’s frequencies upon the state of the valve.
For PCG analysis, the probability density function is assumed to be Gaussian. A
Gaussian classifier is then used to define a quadratic decision surface in the
feature space. A set of twenty PCG signals from abnormal and normal aortic
valves was used for training, whereas another set of the same magnitude was
designed for testing. Seventeen of the twenty signals presented were correctly
classified. Only one of the misclassified signals had a feature vector that was not
near the decision boundary in the feature space. However, the need of a large

patient population to prove the effectiveness of the method is acknowledged.
If the class related clusters in the feature space are not arranged in distinctive

areas, nonlinear decision functions would be needed for classification. For simple

cases of non-linear decision surfaces, quadratic surfaces can be derived.
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Nevertheless, for more complex cases, artificial neural networks can be utilised to

attain more general surfaces.

3.4 Neural networks

Artificial neural networks (ANN) have long been a subject of research interest for
many pattern recognition tasks, including classification of phonocardiograms.
Trimmed mean spectrograms and self organising maps (Leung, 1999) trimmed
mean spectrograms and probability neural networks (Leung, 2000b) FFT
representations and multiple layer perceptrons (DeGorf, 2001) Mass-Weber filter
bands and multiple layer perceptrons (Barschoff, 1995) wavelets and multiple
layer perceptrons (Reed, 2001) wavelets and grow and Learn networks (Olmez,

2002) among others have been used in this context.

ANN have proven to be powerful tools in signal classification as well as
modelling numerical data. The main advantage of ANNs is their learning
capability. Instead of applying time-consuming methods for analytical description
of a problem, neural networks are able to represent even non-linear relationships

with good accuracy by learning from examples.

The basic neural network model includes a large number of highly interconnected
units, whose coupling weights can be modified by a leaming process. The
response of the units is a non-linear function of the combined input stimulation
(by analogy with the firing threshold of neurons). Training a network involves
supplying example patterns to the input units together with the desired output
patterns. A learning algorithm is used to modify the connection weights in a
direction that forces the model to give a closer approximation to the desired

output.
The simplest ANN is the perceptron, for which the input units are connected

directly to the output units. Each output unit computes a single output as a

function of one or more inputs (fig 3.2.a). There is only one layer performing any
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computation: the output layer, as the input layer is only used to store the input
values to the system. Although this single layer can perform linear classification,
this topology performs well only on very limited scenarios. To overcome such
limitations, present day systems include more layers containing hidden units. This
multi-layer perceptron (MLP) is capable of learning arbitrarily complex decision

boundaries between different classes (fig 3.2. b).

Outputs

Outputs

Hidden
layer

Inputs inputs
(a) Single perceptron (b) Multi-layer perceptron

Figure 3.2 Neural Networks.

There are straightforward training procedures for this MLP. An error function
(such as the mean-squared error) is defined, and this function is differentiated with
respect to each of the network weights. These derivatives can then be used to find
values of the weights that minimise the error function. By propagating the errors
back through the network, it is possible to optimise these weights (error back

propagation).

The main drawbacks of neural networks are their inability to capture temporal
properties of time varying signals, their difficulty in dealing with signals of
different length, and the fact that the modelling is hidden in the network and

therefore it provides no insight into the classification process.
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Time domain modelling: In the heart sound context before the data can be
presented to the classification algorithm, individual heart cycles should be initially
extracted to specify the necessary boundaries. Each cycle is then framed at regular
intervals to set sub-unit boundaries and feature vectors are obtained for such
frames. This approach is also used for the majority of the classification
approaches. Multilayer perceptrons are feed forward networks and are unable to
capture temporal properties of time varying signals directly because connections
are all in one direction from input to output. There are no implicit relations
established among the time sequence of input vectors, only unidirectional
channels that are assumed to compute in parallel connecting the input units

(features) to the outputs (classes).

Time scale variations: In order to train a connectionist network, it is necessary to
specify the correspondence between the input feature vectors, from a signal pre-
segmented to identify unit boundaries, and the output classes to be recognised. In
the heart sound analysis context these boundaries are not usually precisely known

in advance.

In some medical conditions the occurrence of murmurs is not time-fixed in the
heart cycle for a specific heart condition. For eXample, in the case of pulmonic
stenosis, during inspiration the pulmonic murmur occurs earlier in the cardiac
cycle than it does during expiration. (Shaver, 1985). In aortic valvular ejection
sounds the ability of the deformed valve to move plays an important role in the
sound production. In patients with severe calcific fixation of the valve, when no
excursion of the valve is possible, valvular ejection sounds are not recorded
(Shaver, 1985). When valvular excursion is possible, the amplitude of the ejection
sound correlates with valve mobility. In mobile nonstenotic bicuspid valves, the
ejection sound is not only loud but is widely separated from S1, both being a

function of a mobile valve with a prolonged excursion.
The use of constant length input vectors for the neural networks obtained through

a linear time-length normalisation (to account for heart rate variability) increases

the mismatch between sound events and linear spaced input features presented to
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the network. These methods also rely on a precise segmentation algorithm and
some problems may arise when signals of different heart rate have to be

compared.

These time correspondence problems (segmentation and time occurrence of events
within a cycle) are more important when neural networks are combined with
discrete wavelets representations for their lack of time-shift invariant properties.
In a recent study (Reed, 2001) a neural network was trained using ten shifted
versions (over a range of one hundred time samples) of a single heart beat cycle
from each type in an attempt to provide a degree of shift invariance. Such shifts
are attributed in their research to variations in the heartbeat starting time found in
the segmentation process. In this study the effect of noise levels in the
classification process was also investigated, and although the study reveals a
100% accuracy for a SNR above 31 dB, it is worth to consider that the sample set

consists of only one patient per heart condition.

Barschdorff (1995) proposes a model with no time normalisation of the input
vectors for the systolic cycles, leaving the network to determine boundaries of the
cycle as part of the learning process. An artificial neural network was trained
using normalised power spectral densities as input features in a study to compare
the performance of neural and statistical classifiers. Using this approach, the
network could cope with time variations of up to 20% the length of a systolic
cycle. Nevertheless, connectionist models do not cope with time scale variations
very easily (Holmes, 2001). This can be partly overcome by the use of posterior
neural network models, which apart from using feed forward connections, may
also allow the use of recurrence by means of feed back or a set of previous

activation values as part of the input.

Hidden Structure. Another practical problem in developing ANN systems is that,
since all the modelling is hidden within the network, it tends to be very difficult to
understand what is actually happening in that network and thus, to gain insights
into how a signal recognition is performed (Holmes, 2001, p 216). As described in

the biomedical background section, there are more than 40 different theories about
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the heart sound genesis. A classification system that could provide some insights
on the structure of the classification task may provide some clues for

understanding the generation process.

3.5 Proposed technique: use of HMM for PCG classification

Several techniques have been proposed for the classification of phonocardiograms
with different amounts of success. Notwithstanding, the importance of the

application and the complexity of the problem demand the use of new approaches.

A technique able to account for the high variability seen in biomedical signals and
with the capacity to learn, infer, and generalise from an incomplete (but
representative) data set is needed. Preferably, a technique reflecting the dynamics
of the system efficiently, dealing with time scale variations and with a clear

structure that may provide insight in the physical phenomena.

Statistical methods seem suitable since they only require a general structure whose
parameters are trained automatically using a large amount of training data. In an
autonomous system the structured succession of events in time of a PCG signal
could be modelled as a sequence of events with a specific pattern by means of a
statistical model. Such models are a good mechanism to represent the
dependencies of each sound component on the previous and posterior, providing
time modelling. Furthermore, statistical distributions are a reasonable way to

formally represent the variability observed in real heart sound samples.

Hidden Markov modelling is a powerful technique for modelling the temporal
structure and variability of a signal, and to generalise a model through statistical
distributions to include unseen data. This technique is based on a probabilistic
pattern matching approach, which models a sequence as the output of a random

process.
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One of the main advantages of these models is their ability to deal with time scale
variability (Holmes, 2001); HMMs are popular in speech because the model can
cope with changes in the length of sounds. This ability to deal with time scale
variability is particularly important in the case of PCGs where the systolic and
diastolic cycle lengths present both inter-subject and intra-subject variability.
Moreover, as described before, particular events in the cardiac cycle may exhibit

relative variations within a cycle for different stages of the pathology.

The HMM methodology provides a tractable mathematical framework with
straightforward algorithms for recognition and for training to create models of
time sequences. The features used to represent a signal and the temporal sequence
relationships are treated separately but within a consistent framework. As a
consequence segmentation of particular events within a signal is possible based on
their own statistical characteristics. This methodology can also be used for the

segmentation of phonocardiogram signals (Romero, 2002).

The use of mathematical models to represent the signal may provide a better
insight into the physical phenomena involved. The parameters of the models can
be proposed based on physical phenomena or can be used as a tool for the
discovery of structure in a time series. In the latter case, the significance of the
states of the model is based on the parameters estimated by the model. By
revealing structures in the feature representations of PCG signals, hidden
Markovian models may contribute to our understanding of the genesis of the heart
sounds by relating these signal defined states with the physical events. The idea of
replacing priori labelling of the states of the model by a probabilistic labelling has
been used to model text (Cave, 1980), phonetics (Neuburg, 1971) and speech
(Poritz, 1982).

Hidden Markov Models have been successfully applied to speech signals (Gold,
2000), DNA sequences (Mount, 2004), and ECG signals for automatic pattern
recognition problems (Throval, 1994). In these applications, the HMM is used as
a powerful model to characterise temporal nonstationary, spatially variable, but

learnable and regular patterns of the signal. One particular aspect of this model is
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its sequentially arranged Markov states that allow the use of piecewise stationarity
for approximating the nonstationary properties of a signal. Hidden Markovian
models are supported by a strong mathematical background, and their dynamic
and time variability modelling properties make them a good candidate technique

for PCG classification.

3.6 Summary

The problem of PCG signal identification was discussed from the perspective of
signal classification techniques. The main steps involved in the classification
process were briefly explained and the principal general techniques applied to
heart sound analysis were described along with some relevant examples.
Particularly, the advantages and disadvantages of the use of neural networks for
classification of PCG signals were evaluated. Finally after a brief discussion,
hidden Markovian models were suggested as an alternative technique that may

improve the classification of phonocardiograms.

The following chapter explains the theory of the hidden Markovian models.
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4 Hidden Markovian Models

4.1 Overview

This section presents a brief introduction about the classification method to be
used: the Hidden Markovian Models. The theory of the HMM is presented at a

conceptual level by means of an example.

The problem selected is a real phenomena that can be represented by hidden
Markovian models. Although it is not related with heart sound analysis, it is
useful to clearly show the relation between the states of the model representing the
generation mechanism and the consequences it has on the observations. In a
HMM the physical significance of the states are not required to be know for it is a
mathematical model, however, in practice the characteristics of the HMM are

preferably chosen according to some insight regarding the generation mechanism.

In the example presented, the states are not completely hidden since they can be
measured, but in practical terms they are not easily monitored in a representative
manner and their complex relation to the observations make them suitable to be

treated as a hidden generation mechanism.

Using this example, the relationship between the components of a HMM can be
easily conceptualised and the variations between models can be illustrated
intuitively. The concepts acquired through the development of this chapter are
sufficient to understand the details of subsequent chapters, although the treatment

of the topic is not rigorous.

A more in depth explanation of the concepts and techniques can be found in

Rabiner (1989) and Jelinek (1999).
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4.2 Example: Paralytic Shellfish Poisoning

Consider the example of the relationship between toxic algae blooms and the

poisonous toxins in shellfish that humans consume.

Paralytic Shellfish Poisoning (PSP) is a life-threatening syndrome caused
predominantly by the consumption of contaminated shellfish, with both
gastrointestinal and neurologic symptoms. Cases of PSP have been reported

worldwide.

Gymnodinium catenatum is a single cell alga species (dinoflagellate) that is the
source of PSP marine toxins that can affect humans, birds, and fish.
Gymnodinium dinoflagellates move up and down the oceanic water column, being
closer to the surface in daytime and deeper during the night. Its life cycle, growing
rate, and toxicity depend on several environmental factors such as temperature,
salinity, and variations in nutrimental sea components. These unicellular
dinoflagellates develop into an algae blooms throughout the world for unknown
reasons, although a variety of factors have been studied, including change in

weather, upwellings, temperature, turbulence, salinity, and transparency.

Paralytic Shellfish Poisoning is caused by a group of chemicals called the
saxitoxins and gonyautoxins. These chemicals are produced by the algae and
released into the shellfish when the algae are eaten. The chemicals all differ in
their toxicity to humans, and change depending on the species of shellfish. After
the consumption of raw or cooked contaminated shellfish (the toxins are heat
stable so cooking the shellfish will not remove them) stomach acids in animals

and humans also alter the chemical’s toxicity.

Ingestion of molluscs contaminated results in the following clinical scenario (Kao,
1993): From five to thirty minutes after consumption, there is slight perioral
tingling progressing to numbness, which spreads to face and neck when present in
moderate cases. In severe cases, these symptoms spread to the extremities causing

lose of co-ordination and respiratory difficulty. There are medullary disturbances
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in severe cases evidenced by difficulty swallowing, sense of throat constriction,
speech incoherence or complete loss of speech, as well as brain stem dysfunction.
Approximately 75% of severely affected people die within two to twelve hours by
complete paralysis and death from respiratory failure in the absence of ventilatory
support. After twelve hours, assisted victims start to recover gradually and have

no residual symptoms within a few days (Halstead 1984).

Large-scale proactive monitoring programs (assessing toxin levels in mussels,
oysters, scallops, clams, etc.) prevent PSP and rapid closures to harvest of suspect

or toxic areas is a common practice throughout the world.

Consider the problem of modelling the possible occurrence of PSP events (due to

algae blooming) from the levels of toxins measured in shellfish.

The species that appears to take the highest amounts of toxins are green-lipped
mussels although other species have been found with toxins that are in the range
where illness is possible. These include tuatua, toheroa, oysters, scallops, and

cockles.

In order to provide practical guidance to the public, food safety authorities can set
various ranges according to the levels of toxins measured in green-lipped mussels.
For instance, a safe range can be defined for levels below 30 ng/100 g saxitoxin
equivalent. A caution range could be defined from 311g/100 g to 80 pug/100 g. At
this level it is expected that the toxins will not affect most people since the upper
limit in this action level is around ten times lower than the lowest level associated
with outbreaks. Close monitoring should be advised when toxin levels fall within
this range. A warning range defined from 81 ug/100 g to 800 pg/100 g would lead
to closure of commercial farms. A danger range is defined from 801 pg upwards
and relates to outbreaks of PSP in humans. Previous events have reported levels as

high as 4000 ng/100g.

Although the generation mechanism is the algae blooming, to obtain a close

correlation between the number of Gymnodinium catenatum cells and shell fish
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toxicity truly representative water sampling is required. On exposed coasts this is
difficult to achieve. Most of the samples are collected from the shore and within
the surf zone, and are therefore not truly representative of cell abundance in the
adjacent water column. One approach is to model the algae process using a hidden
generation mechanism. Therefore, in this example, the shellfish toxin level
samples constitute the observations and an underlying hidden process, the algae

toxicity, generates these observations.

If we consider for example three levels of toxicity in the algae, namely a low,
medium, and high level, we can relate these algae toxin levels with the levels of
shellfish toxins and therefore, to the warnings issued by the food safety authorities
about the risks of PSP.

The Markov assumption presumes that the present level of algae toxicity can
always be predicted solely given knowledge of the past levels; other
environmental factors are not considered. In this example, and many others, such
assumptions are obviously unrealistic. Nevertheless, since such simplified systems
can be subjected to analysis, we often accept the assumption in the knowledge that

it may generate information that is not fully accurate.

In a first order system, the actual state depends only on the previous state, and
therefore, in a first order Markov model for the algae levels the current level of

algae toxicity depends only on the immediate previous level.

Figure 4.1 shows all first order state transitions for the underlying Markov model
of this example. Three levels of algae toxicity are defined and arrows represent
the transition between them. Notice that transitions to the same state are possible.
This characteristic gives the HMM the flexibility to deal with time scale variations

since long lasting event can be modelled through a sequence of self transitions.
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Algae Saxitoxin Levels

Figure 4.1. Underlying Markov Model for the Algae Toxicity.

The probability of the current level of toxicity (current state) depending on the
previous level (previous state) can be expressed in a transition matrix, called the
state transition matrix. Figure 4.2 shows a set of possible transition probabilities

for the changes in toxicity levels in the alga Gymonodinium catenatum.

Current Algae Saxitoxins Level
Low Medium  High

ij;‘ggus Low 042 039 019
Saxitoxins  Medium | 012 043 045
Level High 009 040 0.51

Figure 4.2. State Transition Matrix.

For the model represented by this set of probabilities, given that the previous
sample of shell fish toxins level was low then there is a slightly higher probability
that the levels remain low than there is that the levels to increase to a medium
level. There is also a low probability it jumps straight to a high status from a low
level of algae toxicity. In this way the matrix reflects the dynamics the generation

process for a specific model.

52



Notice that since the numbers are probabilities the sum of the entries for each row
is one; i.e. given a previous algae state, for example a low state, the current state

can only be low again, medium or high.

To initialise such a system, we need to state what the level was (or probably was)
on the first sample; we define this in a vector of initial probabilities. An example
of an initial vector is shown in Figure 4.3, it corresponds to the case where the

first sample is known to have had a low level of algae saxitoxins.

Until now, the model presents predetermined probability values to relate the states
in the underlying process. However, given a suitable algorithm, the real values for
the hidden Markov process have to be inferred from the sample sequences of
observations. The observations are related to the states by a further set of

probabilities, contained in the confusion matrix.

Low Medium High
( 1.0 0 o)

Figure 4.3. Vector of Initial Probabilities.

The confusion matrix in Figure 4.4 and further ilustrated in Figure 4.5, represents

the connections between the hidden states and the observable states for this

example.
Shellfish ‘
Poisoning Alert
Safe Caution Warning Danger
wp w080 o o
Saxitoxins Medium o ; - g
Level High 0.03 0.07 0.28 062

Figure 4.4. Confusion Matrix between States and Observations.
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The confusion matrix describes the probability of having a particular range of
shellfish toxins and therefore, being in a particular state of alert, given a level of
algae saxitoxins. In the example matrix there is a high probability that it is safe to

consume shellfish for a low level of algae saxitoxins

There is also a higher probability that a danger alert level (a high level of toxins
measured in the shellfish) can be associated with high levels of toxins present in
Gymonodinium algae. Nevertheless, since the toxicity present in the shellfish is
influenced by other factors besides the toxicity levels in the algae, there is also
probability relating lower toxic levels of algae with high levels of toxicity in the

shellfish population.

OBSERVABLE /~ N\ /N

STATES Safe Caution Shellfish
Poisoning Alert
- ® & ® = " F . & 2 @
HIDDEN ~Alga
STATES Saxitoxins
Level

Figure 4.5. Relation between Hidden States and Observations.

4.3 Uses associated with HMMs

Learning -The sets of probability values in the matrices characterising this model
are learned form sets of observations reflecting specific phenomena. In the case of
PSP, this may be for example a model for summer harmful algae blooming events

in a specific geographical location with observation sets obtained for events
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occurring in different years. Using the same structural model of three levels of
algae toxicity and four alert levels, other probability values are expected to be
obtained for models of seasons without harmful algae proliferation. Similar
models with characteristic probability values can be obtained for different

seasons, and or geographical locations.

Evaluation- To evaluate the risk of PSP, different HMM models can be used to
characterise the relationship between the alga toxicity and the associated shellfish
poisoning risk in relation to different seasonal ecosystem conditions. A set of
observations of the levels of toxicity in the shellfish could then be used to identify
models during initial stages of the phenomena and therefore to forecast the

harmful algae blooming.

Decoding — As mentioned before, the acquisition of truly representative samples
of cell abundance by water sampling in exposed coasts is not practical in most
cases. This is not easily attainable since it implies identifying and counting micro
organisms in discrete samples that harbour a great diversity of species where a
rapid analysis of a large number of samples would be routinely desired.
Nevertheless, through the models obtained it is possible to estimate the most
probable sequence of algae toxicity level states from a specific set of shellfish
toxicity observations, i.e. to find the hidden states that generated the observed
output. Analysis of the models allows the interaction of both sets of variables to

be examined.

4.4 Variations of the hidden Markovian model

The values obtained for the levels of saxitoxins measured in the shellfish are
continuous, but for practical guidance the food safety authorities establish an alert
system comprised of four discrete levels as described before. This set of discrete
levels provides immediate guidance about the risk of shellfish consumption by
contrast to providing continuous values that require interpretation. Nevertheless,
from a biological perspective, continuous values may be more appropriate to track

the fluctuations that characterise the process.
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In this particular hidden Markov model, continuous values of shellfish saxitoxin
were converted to discrete values by setting labelled ranges. The observations
were characterised as discrete symbols chosen from a finite alphabet: the four
alert levels, and therefore a discrete probability could be used to relate the states to
the observations of this model. Such a model is called a discrete hidden Markov

model.

In order to model the process using direct shellfish saxitoxin values, the relation
between the states and the continuous observations can be defined by a
probabilistic distribution. Assuming a parametric distribution, such as a Gaussian
distribution, the necessary values can be estimated from the data by a recursive
process. Many natural processes involve variable quantities that approximate
reasonably well to the normal or Gaussian distribution. A weighted sum, or
mixture, of Gaussian distributions is generally used to model other distributions.
Provided that there is a sufficient number of Gaussian mixture components, any
distribution shape can be approximated closely. The models generated are called
single Gaussian hidden Markovian models and Gaussian mixture hidden

Markovian models (GMHMM) respectively.

Neural networks can also be used to compute the probability for any given
correspondence between states and observations generating a hybrid hidden
markov neural network model (HMM/ANN model).

4.5 Solutions to the HMM Problems (Rabiner, 1989)

Once a system can be described as a HMM, three problems can be solved. The
first two are pattern recognition problems: Finding the probability of an observed
sequence given a HMM (evaluation) and finding the sequence of hidden states
that most probably generated an observed sequence (decoding). The third problem

is generating a HMM given a sequence of observations (learning).
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4.5.1 Definitions

The example in section 4.2 shows how a Hidden Markovian Model is
characterized by two model parameters (the number of states and the number of
distinct observation symbols), specification of observation symbols, and the

specification of three probability measures. Lets formally define these symbols.

Lets S= {S4,S,,..,Sn} be the finite set of states of the model and V= {V,V,,..,Vu}

the finite set representing the individual (observable) symbols. Aditionally, let q;

represent the state at time t.

A corresponds to the state transition probability matrix with entries

a;; = P(qw1 = Sjlq: = S9), 1

B denotes the observation symbol probability distribution vector B={bj;(k)}, where
bi(k) = P(Vy at tjq; = §;). i

IT represents the initial state distribution vector I'T={IT;} where

IT; = P[q; = Si]. iii

Given appropiate values of N, M, A, B, and II, the HMM can be used as a

generator to give an observation sequence
O= {01, 02,...,0T}, v

where each observation O is one of the symbols from V, and T is the number of

observations in the sequence, and

A=(A, B, IT), v
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is used to indicate the complete parameter set of the model.

The application of this model to real signals generally involves the solution of

some or all of three basic problems: Evaluation, Decoding and Learning.

4.5.2 Evaluation: Finding the probability of an observed sequence given a
HMM

The aim is to compute the probability of occurrence of a particular observation

sequence, O = {o04,...,01}, given the model A, i.e., P(OJA).

The most straightforward procedure to solve this problem is to enumerate every

possible state of the T-length sequence. Consider the following state sequence

Q={q19,..-9r},
vi

where ql is the initial state. Assuming that observations are independent, given
the hidden states, the probability of the observation sequence O for the state

sequence Q is

T
P(O|Q,A)= HP(O, lq,,A)= bql (0, )qu (02)"'qu(OT)
t=1
vii
The probability of such state sequence Q is given by
P(Q I ﬂ') = ﬂqlaqlqzaq2q3'“aqT-qu
viii

The probability that O and Q occur simultaneously is the product of the above
terms

P(0,014)=PO]Q,HPQ] 1)
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X
The probability of O given the model A is obtained by adding this joint probability

over all possible state sequences q is giving by

P(O|2) =) P(01g,A)P(q|2) X

The calculation of P(OJA) in this direct form involves 2TNT arithmetic procedures,
which make it computationally unfeasible. However, altermative and more
efficient procedures (that requires only N’T elemental mathematical operations)

are available, and they are explained below:

4.5.2.1 Forward procedure

The problem of computing the probability of a particular observation sequence
given a HMM can be solved by dividing the problem into computing the

probability of partial observation sequences.

Consider the forward variable o.(i) defined as
a,(i)=P(o,..0,,9, =S, | A)

X1

This is the probability of the partial sequence until a given time t and state S; at
the same time t, for a given model A. A recursive algorithm can be used to obtain
the probability of the whole sequence P(O, A). This procedure consists of three

stages:
a) Initialise

In this step the probability for the first observation (a partial sequence with one

element) is computed using the set of initial probabilities of the model.
o, (i) = m;b,(0,) 1<i<N

b) Calculate
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atﬂ(]):[iat(i)aij:bj(ou.l) 1SIST"“1

Thus, the probability for the next partial observation sequence will be computed
considering the values obtained in the previous one. This process continues

(forward) until the last observation is reached.

¢) Obtain

PO12)= 30

Xiv

The probability for the whole sequence is the result of adding the probabilities of

all the partial observation sequences.

4.5.2.2 Backward procedure

Once again, the problem of computing the probability of a particular observation
sequence given a HMM is solved by dividing the problem into computing the
probability of partial observation sequences. But in this case starting from the last

observation and going backwards.

In a similar manner a backward variable can be defined as

B,(0) = P(0,,10,,.55--07 | 4, = Si,4)
XV

This is the probability of the partial observation sequence from t+1 to the end,

given state S; at time t and the model A. Solving for Br(1)
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a) Initialise

Bri)=1 1<i<N
xvi

Starting from the last observation

b) Calculate

A= iﬂm(j)aﬁbf(%) f=T-1L,T=2,. L 1Si<N
j Xvil
¢) Obtain
PO D=3 A (=711
B xviii

Adding all the partial sequence probabilities, the probability for the whole
sequence is obtained. Again, the computation requires only N°T calculations
making this procedure more computationally feasible than the procedure

described first enumerating all possibilities.

4.5.3 Decoding: Finding the sequence of hidden states that most probably
generated an observed sequence

The aim is to find the single most likely state sequence, Q = {q1,92,...qr}, for the
given observation sequence O = {01,02,...0r}. This can be computed using the

Viterbi algorithm (Viterbi, 1967). Defining the auxiliary variable 5(i)

o6,()= mfo(q,,qz,.‘.,q, =1,0,,0,,...0, | A)

Xix
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which is the highest probability along a single path, at time t, accounting for the

first t observations and ends in state S;, therefore

0., ()= miax(st (i)aij)bj (0441)
XX
To retrieve the state sequence, it is necessary to keep track of the argument that

maximised the previous equation for each t and j. This can be done using the array

vi(j). The procedure can be stated as follows

a) Initialise

6,()) =7;b,(0,) 1<i<N
w,()=0 xX1
XXii
b) Compute
6,(J) = max(5,.,()a;)b;(0,) 2<t<TI<j<N
xxiii
v, (J) = argmax(d,, ()a;) 2<t<TI<j<N
XX1V
¢) Obtain
P =qnaxd: ()
XXV

g, = argmax 8, (i)

1<i<N
XXVi
d) State sequence backtracking
4 =¥ u(d) t+T-1,T-2,..1
XXVii

Therefore, backtracking the pointer q*t the single most likely state sequence can
be retrieved. The Viterbi algorithm is similar (except for the backtracking) in

implementation to the forward calculation previously described. The mayor
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difference is the maximization (xxiil) over previous states instead of the

summation (xiii).

4.5.4 Learning: Generating a HMM given a sequence of observations

The aim is to find the model parameters A = (A,B,IT) such that P(O[A) is locally

maximised. This can be done through an iterative procedure

a) Initialise Ao

b) Compute new model . using Ao and the observations O
c) At <A

d) Repeat steps b and ¢ until

logP(O| A)=1og P(O| 4,) <d
. XXViii

Using the Baum-Welch procedure (Rabiner, 1989) to compute the new model
parameters, we define £(i,j), the probability of being in state S; at time t and at

state S; at time t+1, given the model A and the observation sequence O as

— a, (l)aybj (0t+1 ):Bt+l (.])
PO 4)

at (l)aybj (Ot+1 )ﬂtﬂ (])

N N

Z Z a‘ (Z)aljbj (0t+1 )ﬂt+1 (.])

=l j=1

s, ))

XX1X

Let v,(i) be the probability of being in state S; at time t, given the observation

sequence O and the model A

N
AOEDRAT)
j=1
XXX
Summing Y,(i) over the time index t the number of transitions made from state Si
is obtained. Similarly summation of Ei,j) over t can be interpreted as the

expected number of transitions from state S; to state S;. That is
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T-1
Z 7,(f) = expected number of transitions from S;

t=

Xxxi
T-1
; FONE expected number of transitions from S; to S;

XXX1i

Consequently, the following formulas provide the new values for I, A, and B

7= 7 (l)
XXX111

D X-A(N))

aij R

> 7.0 |

XXX1V

bA] (k) _ ZI,O,=IC 7!(.])

PWAT)

XXXV

If we define the current model Ao and use it along with the observations to
compute the auxiliary variables y(i) and &(i,j), then a new model A can be
obtained using xxxiii, xxxiv, and xxxv. Baum (1970) proved that if the new model
parameters are different to the old ones, the observation sequence is more likely to

have been produced by the new model.

4.6 Continuous observation densities in HMM

In order to use continuous values for the observations, some restrictions have to
be imposed on the form of the probability density function (pdf) to guarantee that
the parameters can be computed in a consistent way. The most general

representation is a mixture of the form
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M
b,(0)=2, ¢;anllOs 11, U] 1<j<N
m=1

XXXVi
Where cjm is the mixture coefficient for the m™ mixture in state j and 7 is any log-

concave or elliptically symmetric density (e.g., Gaussian), with mean vector pjm
and covariance matrix Uy, for the m™ mixture component in state S;. Usually, a

Gaussian density is used. The mixture gains cjm, satisfy

M
> ¢, =1 1<j<N
m=1
XXXVii
Cim 20 1<j<SN 1<msM
and thus, the pdf is normalised i.e.,
[ b,(xax=1 1<j<N
XXX Vviii

The re-estimation formulas for the coefficients of the mixture density are

T
PWACNS
Ejk = T'=1M
DN ACH
t=1 k=1
XXX1X
T
Z}/t (]’ k) Ot
_‘fk = =1T
PWACA S
t=1
x]
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T
DN ACR IR (RIS (R
Ujk — =1

Zn (j. k)

xli

where 7(j,k) is the probability of being in state j at time t with the k™ mixture

component accounting for o,

v k) = NO—’, (NB.()) Mcﬂc” (O, 15,U )

2@ NB.G) | 2emOr e U)

xlii
The re-estimation formula for a;; is identical to that used for discrete observation

densities.

EDXACY)
WG

For more details on the algorithms refer to the tutorial paper presented by Rabiner
(1989).

xliii

4.7 Multiple Observation Sequences

To use multiple observation sequences mutual independence is assumed. The set

of k observation sequences is defined as

0=[ 0! 0?%,...,04
xliv

where Ok= [ Olk, 0, . OTkk] is the kth observation sequence. The parameters

of the HMM needs to be adjusted to maximize
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PO|2)=11PO | H=1IR,

The formulas for the estimation of the new parameters are

>33, 4 0ab 0 P n)

P
a;j L k 1 T,-1 Bk
— > a* () B4 ()
gaﬂ ‘
k 1Tk—1 . .
Z; at @) B ()
k=t Tk = 5.£.0,=V,
b(f)=— B —
> =N ek ()B4 G)
lk=1Pk t=1

Using the scaling factor

1

ZMO

a, (i)
Zm@

¢ =

()=

/Bt(i) = C“B, @)

4.8 Summary

xlv

x1vi

x1vit

x1vii

xlix

x1x

The statistical model assumes an underlying process (hidden) generating a set of

discrete or continuous observations. The hidden process is a Markovian chain
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representing the different possible states. At regularly spaced times the system
undergoes a change of state (possibly returning to the same state) according to a
set of probabilities associated with the current one. The model assumes that the
actual state depends only on the previous ones (Markov assumption), and the
probabilities associated with the states do not change with time. The observations
are related to the states by a discrete probability function for discrete observations,
a parametric probability function for continuous observations, or using a neural
network (Rabiner, 1989).

The next chapter introduces the use of cepstral analysis in the context of

phonocardiogram representation.
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5 PCG Feature Extraction

5.1 Introduction

Hidden Markovian models have been proposed as an advantageous technique for
the classification of PCG signals; however, the performance of a classifier also

depends highly on the features selected to represent the heart sounds.

In order to perform the automatic analysis of a PCG signal, a simplified
representation is necessary to ease the computation required. An overly detailed
representation may also take into account characteristics of the particular training
set that will not be present for independent data sets. For signal classification
problems, the features selected aim to represent the signal in a manner that

minimises variability within a class and retains class differences (Gold, 2000).

The PCG time domain signal is usually transformed to other domains by applying
specific operations to it. Although the main purpose may be data reduction,
transformation of the signal to other domains may be required to emphasise some
signal patterns, due to the statistical properties of the new variables, or because of
computational advantages. In some specific domains the transformation is a one to
one mapping and therefore, an inverse transformation exists and can be used to
recover the original time signal. When this is not the case, and the raw signal is
not recoverable any longer, the transformation is still useful as long as the pattern

in the new domain is still descriptive of the main signal characteristics.

The most important features of the PCG signal are the intensity and timing
sequence of the components of the heart sounds and their location, frequency
content, and envelope shape of murmurs, if any (Rushmer, 1970). Based on these
characteristics, several methods have been employed for the analysis of PCG,
among them the use of time frequency representations (Leung, 1997; Ritola,
1996) linear prediction analysis (Iwata, 1977), cepstral analysis (Rangayyan,
1978a, 1979), and wavelets (Barschdorff, 1995; Obaidat, 1992; Zhang, 1998;
Olmez, 2003).
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In the literature available, two different classes of feature representations can be

distinguished.

e TFeatures developed initially for analysis of the PCG. Such features aim to find
an alternative representation that may emphasise certain patterns of the signal
to ease visual diagnosis. Generally, these representations have a counterpart in
the characteristics sought by auscultation techniques. Examples of this
technique are the Maass-Weber set of filters (Holldack, 1965) and most of the
time-frequency representations. Some of these representations have been later

used as input features for classification algorithms.

o Feature representations specifically aimed at classification. These
representations may not have a straightforward interpretation although related
to a model of the physical phenomena. Nevertheless, they are selected for their
computational advantages, their data reduction capabilities, and/or due to their
mathematical properties. Examples of these techniques are linear prediction

and pole — zero modelling.

In this research, based on a model in accordance with the most accepted theory for
the genesis of heart sounds, cepstral coefficients are proposed as the preferred
feature representations for the classification models. Nevertheless, there are other
approaches that also provide a simplified representation of the PCG signal and are
suitable to be used as input features for the signal classifier. Consequently, two
other main approaches have been selected as alternative representations and for
performance comparison: an energy integration method based on the use of

Maass-Weber filters and linear prediction analysis.

Maass-Weber filters were selected as a simple sub band energy representation
(basically a simplified spectrogram), which nevertheless, embraces the practical
approach for clinical analysis of heart sounds: The use of this technique for
clinical phonocardiography is considered standard practice in countries like
Germany or Mexico (Holldack, 1974; Guadalajara, 1998).
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Linear prediction analysis, was selected not only due to its wide success as a
feature representation technique in the signal processing literature, but also
because it is the main candidate to substitute the use of cepstral representations as

inputs to the hidden Markovian Models.

The reminder of this chapter explores the use of these feature extraction methods

for PCG representation in the context of signal classification.

5.2 Proposed technique: cepstral representations

The most accepted theory for the genesis of heart sounds (the cardiohemic theory)
regards the generation of heart sounds as a consequence of a system set into
vibration by the acceleration and deceleration of blood flux. These variations of
blood flux are related to the sequence of the opening and closing of the heart

valves and the contraction and expansion of its chambers during a cardiac cycle.

The PCG signal can be assumed to be the convolution of a system’s impulse
response and an excitation component. The excitation component is generated by
the blood acceleration and deceleration components of S1 and S2, the noise signal
caused by flow turbulence, or both, whereas the impulse response of the system
would be defined by the heart structure. Accordingly, the PCG signal would be
the result of the convolution of the heart structure and the vibrations induced by

blood flow regardless of its generating mechanism.

Following this model, cepstral analysis can potentially be used to separate the
components of the sound representing the system’s response dominated by the

heart structure from the components due to the blood flux excitation.
Cepstral analysis is a signal processing technique in which a measurable signal is

conceived as the result of a convolution of an excitation and a system response.

The aim of the technique is to transform this convolution to a linear addition so
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that the high order components related to the excitation can be separated from the
low order components related to the system response. Accordingly, abnormalities
in the heart structure will be reflected in the lower order coefficients, whereas the
contribution of the excitation due to blood flux variations will be reflected in

higher order coefficients (see appendix B).

The following section explores the feasibility of using cepstral representations for

the differentiation of pathological and non pathological PCGs.

5.2.1 Methodology

Cepstral analysis is a special case within a general class of methods known as
‘homomorphic’ signal processing. There are two main variants of cepstral
analysis, namely complex cepstum and power cepstrum. The basic difference
between them is that real cepstrum discards phase information about the signal
while the complex cepstrum retains it. Complex cepstral is preferred in phase
sensitive applications when it is required to return to a time waveform. However,
since phase processing adds complexity, power cepstrum is employed more
widely for practical applications. In automatic speech recognition for instance, a
filter bank designed according to some model of the auditory system is used in the
computation of a power cepstrum to obtain a mel-ceptrum that compensates for

the unequal sensitivity of human hearing at different frequencies (Gold, 2000).

Power cepstrum is selected for this research since a simplified representation of
the phonocardiograms is required. Figure 5.1 illustrates the steps involved in
computing the cepstrum of the phonocardiograms. The signal is firstly divided
into frames of 20 ms overlapped by 50%. The length of the window has been
selected within the range proposed by Jamous (1992) for frequency analysis of
heart sounds (see appendix B). Secondly, a Hamming window and a discrete
Fourier transform are applied to each frame to obtain its spectrum. Afterwards, an
inverse discrete Fourier transform is applied to the logarithm of each spectrum

frame in order to obtain its cepstrum. The last step involves a cepstral truncation:
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the higher order coefficients (assumed to represent the excitation) are discarded
and only the values near to the origin (corresponding to the resonance structure)
are retained since as illustrated in appendix B this low order coefficients provide a
simplified spectrum representation. This set of operations is performed for each

frame until the cepstrum for the whole PCG signal is computed.

- f [Tverse A
M - |Discrete — PV Low order -
R—Fourier 1 LOG[] f—y Discrete - cepstral
PCG Transform | | Fourier coefficients
; Transform | ‘ ‘
[?ata Cepstrum
Window Truncation

Figure 5.1. Cepstral Analysis.

Figure 5.2 shows a normal PCG signal and the evolution of the first ten cepstral
coefficients. Each plot shows the evolution of one cepstral coefficient in time. The

signals have been normalised to its maximum amplitude.

Considering that HMMs with more features need more training data, the
limitations imposed by the size of the database lead us to set the number of input
features to be small, but should still be sufficient to provide visual differentiation.
Based upon the rule of thumb that the number of training samples should be five
or more times the number of features used (Rangayyan, 2002, pp. 474), five
coefficients were initially proposed to represent the signals. By inspection of the
plots representing the samples in our database it was confirmed that these
coefficients were able to provide visual differentiation. Later in the research the
limitations on the number of samples available led us to use only one coefficient

for heart sound segmentation.

Comparing the PCG trace and the plots corresponding to the cepstral coefficients
it is possible to identify the relation between the cepstral coefficients and the
mechanical events during a normal cardiac cycle. The fifth coefficient for

example, shows a peak of higher magnitude for the second sound S2 that may
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differentiate it from S1. The value of this representation becomes even more
evident when comparing the phonocardiograms related to different pathological

conditions.

Figure 5.3 shows the plots of the first five cepstral coefficients for three
phonocardiograms representing a normal PCG heart sound, a ventricular septal
defect (VSD) murmur and an aortic stenosis (AOS) murmur. The data in the first
column of the plot represents the normal data, the second column the VSD data

whilst the final column contains the AOS data. The first row shows the PCG
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Figure 5.2. Cepstral Representation of a Normal PCG. PCG recorded at pulmonary area,
Fs =4 KHz.
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The first cepstral coefficient, which is essentially related to the power of the signal

(see appendix B), clearly shows the difference between normal and abnormal

PCGs. The first coefficient in the second column shows the distinctive pansystolic

murmur characteristic of a ventricular septal defect. The murmur presents a

decrescendo characteristic towards S2. Although the initial strength of this

murmur is obscured by the first sound in this plot, S1 and S2 are clearly seen in

the second coefficient. The murmur’s characteristic contribution is more evident

in the third and fourth coefficients.
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Figure 5.3. Comparison among Cepstral Representations of PCGs for Normal,

Ventricular Septal Defect and Aortic Stenosis Conditions. Recorded at pulmonary,

lower left sternal edge and aortic areas, Fs =4 KHz.

The third row shows the early systolic murmur caused by aortic stenosis. The

plots show a pronounced increase in the third and fifth cepstral coefficients at the
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time of the murmur. Note that as in the PCG, the contribution of the S2
component in the fifth coefficient appears diminished compared to the other two

conditions.

The aim of figure 5.3 is to show that the cepstral coefficients obtained from the
PCG display different characteristics depending on the pathologies associated
with the heart sound and therefore, to show that the cepstral representations are

suitable to be used in a classification algorithm.

5.2.2 Advantages of cepstral representations

The procedure to obtain the cepstral coefficient to represent PCGs was described
and it was shown that this representation could be used to visually differentiate

medical conditions.

Cepstral analysis has been applied before to PCG analysis by analogy to its use on
speech analysis for vocal tract - excitation models (Rangayaan 1978b). In these
studies, the whole cardiac cycle was used to compute the complex cepstra and
after low and high liftering (filtering in the cepstral domain), the process was
inverted to obtain a system response and an excitation sequence respectively. The
excitation sequences were found to differ between normal and abnormal PCG
(aortic stenosis and mitral stenosis); however, the system responses were

discarded since it was argued that they lacked of useful information.

The concept of cepstral analysis is further expanded in this work proposing the
tracking of the variations of the short-term real cepstral coefficients for
classification. Instead of using the computationally demanding approach of
complex cepstral deconvolution with its phase unwrapping complications, the
signal is represented as pattern variations in the power cepstral domain. In the
same manner as a time series is better represented in the time frequency plane to
enhance frequency patterns, the PCG signal is chosen to be represented in the new

plane.
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Cepstral truncation is required to keep the number of input features low, and
therefore, the slow varying low-quefrency coefficients related to the system
response are used. However, most of the faster varying high-quefrency
coefficients relating to the excitation are discarded. In an opposite approach to
Rangayaan (1978a), who discards the reconstructed system response, we propose
to track the variations in the low order coefficients associated with the system
response. The viability of these representations to discern patterns of PCG

characteristic of specific pathologies has been shown.

The use of these representations may be useful for the differentiation of
turbulence induced murmurs due to abnormal communications from murmurs
produced by non physiological hyperflux conditions. For example, atrial septal
defect murmurs and innocent pulmonary flow murmurs present a similar grade II
mid systolic ejection murmur, best heard in the pulmonary area. Both murmurs
are caused by an increased volume of blood ejected by the right ventricle through
a normal pulmonary valve. Nevertheless, the increased blood flow is caused by an
extracardiac connection in the first case, whereas in the second case the increased
blood flow results from a structural and functionally normal heart (Guadalajara,
1998). A similar excitation signal may be considered to set the system into
vibration: the turbulent flow in the pulmonary valve, however, a system response
from a heart with a hole in the atria, in theory, may be expected to be different

from a system response of a normal heart.

The use of cepstral coefficients to represent the PCG has some computational and
mathematical advantages. Since several coefficients are used to represent the PCG
signal, the input features for the HMM are multidimensional and therefore, if the
state observation probabilities are represented by single Gaussian distributions,
they would form a multivariate Gaussian distribution (Holmes, 2001, page 143). If
the features do not vary independently, a covariance matrix specifies their
interdependence. The entries along the main diagonal of such a matrix represent
the variance of each feature, whilst the remaining entries indicate the extent to

which the separate feature distributions are correlated with each other. Assuming
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this set to be of highly uncorrelated features simplifies the computation of the
parameters in the hidden Markovian model since the covariance matrix can be

reduced to a matrix with only diagonal elements, the variances (Jelinek, 1999).

5.3. Maass-Weber filters

During auscultation, a physician as an experienced expert, performs a subjective
diagnosis of heart murmurs by an analysis of frequency and intensity patterns,

relative intensity levels, timing, and localisation.

In the recording of phonocardiograms, relatively high-energy components in the
low frequency regions often obscure high frequency components of relative low
energy. Therefore, in clinical phonocardiography, a standard set of filters is
usually required to ease the visual analysis of the PCG signals. The filters required
have been empirically defined and the set comprises a low-frequency band filter
t35, two medium frequency filters m1o and m240, two high frequency filters hl,sg
and h2400, and a logarithmic filter m, to mimic the response of the human ear,
although this last filter is of low clinical value. This set of filters, known as the
Maass-Weber filters, are standard for clinical phonocardiography analysis
(Holldack, 1965, 1974; Barschdorff, 1995; Guadalajara, 1998).

Figure 5.4 shows the frequency response of the Maass-Weber set of filters. The
cut-off frequencies are defined at 10% below nominal amplitude (unitary gain).
The critical frequency of the low pass filter t35 (from the German fiefe) is set at 35
Hz with a 7.5 dB/octave roll-off. The first medium frequencies band pass filter
m1 has a cut-on frequency at 70 Hz, an 18 dB/octave roll-on and a 24 dB/octave
roll-off. The gain of this filter reinforces the frequencies within the band centred
at 140 Hz (this reinforcement is a common characteristic of the subsequent
filters). The filters m2140, hl50 and h2490 have cut-on frequencies at 140 Hz, 250
Hz and 400 Hz respectively with symmetric roll-on and roll-off slopes of 24
dB/octave. Note the different maximum gains, since the filters are specified by the

cut on frequencies at 0.9 gain and the central frequencies. This set was empirically
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defined in the early days for PCG plotters where the gain was manually adjusted
to enhance specific features on the clinical findings.

Figure 5.4. Frequency Response of the Maass-Weber Filters t3s, m170, m2 4o,

Frequency response of the Maass-Weber filters

I ! i i
20 35 70 140 250 400 800
Frequency

h12s0, h2400.
Figure 5.5 shows a normal PCG recorded at the LLSE position with this set of
filters. The first and the second sound can be identified in all the frequency bands;
however, the initial and final segments of S1, which are of low frequency (around
30 Hz), are better seen on t3s and are not visible on m2;49 or hl,s0. The main group
of S1 with frequencies between 100 Hz and 150 Hz is better seen on m2;49 and
hlys0. The first half of the second sound (aortic) has higher amplitude and higher
frequency components than the second half (pulmonic). Their respective
contributions can be easily recognised on t3s, m2;40, and hl,so. As an example of
the use of these filters to ease the identification of pathologies, Figure 5.6 shows
an innocent systolic murmur recorded with the Maass-Weber set of filters. The

murmur is predominant in mly and m249 and the split in S2 is more evident in
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Figure 5.5. Normal Phonocardiogram Filtered with the Maass-Weber Set. PCG
recorded at lower left sternal edge area, Fs =4 KHz.
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Figure 5.6. PCG with an Innocent Systolic Murmur Filtered with the Maass-
Weber Set. PCG recorded at pulmonary area, Fs =4 KHz.
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5.3.1. Feature representations based on Maass-Weber filters

To obtain a simple set of features, the PCG signal is segmented into frames of 20
ms overlapped by 50%. The short time Fourier spectra of each frame is computed
and weighted by the five band Maass-Weber filter characteristics. A single value
for each band is obtained by computing the normalised average spectral power

yielding five coefficients per frame (Barschdorff, 1995).
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Figure 5.7. Coefficients Obtained for Each Band of the Maass-Weber Filter for

Different Conditions. Recorded at pulmonary, lower left sternal edge and aortic areas,
Fs =4 KHz.

Figure 5.7 compares the features obtained for signals characteristic of three

clinical conditions, namely: a normal PCG, a heart sound signal with a

characteristic murmur caused by a ventricular septal defect and a PCG with a
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systolic murmur, typical of aortic stenosis. The first row shows the unfiltered
record of the PCG, whereas the subsequent rows represent the normalised energy
coefficients obtained for each frequency band in a time-frame axis. As expected,
in the normal heart sound, no particular signature is present during the systolic
cycle. The particular signature of a pansystolic VSD murmur is easily identified in
the bands m2140, h1;50 and h2400. The mid-systolic ejection murmur, characteristic
of aortic stenosis, is clearly seen in the bands m2;49 and hl;so, Its medium-high
frequency component contributions are not as remarkable in h249 as in the

previous bands.

Note the similarity between the Mass-Weber representations shown in figure 5.7
and the cepstral representations shown in figure 5.3. In the case of the ventricular
septal defect murmur, for example, the signal from the filter h1 250 is remarkably
similar to the signal obtained for the fifth cepstral coefficient. The fourth cepstral
coefficient for the VSD murmur exhibits the strong systolic murmur and
diminished S1 and S2 components, those characteristics are reflected also in the

signal obtained for the filter h2 400 in figure 5.7.

If there were a restriction on the use of only one coefficient for each
representation, the best choice would be the first cepstral coefficient since it better
represents the distinctive shape of the murmurs and the relative amplitudes of S1,
S2 and the murmur. For the Maass-Weber coefficients the hl 250 signal would be
a good candidate although the relative amplitudes of the components are not

maintained.

The Maass-Weber filter set has been defined through experience to aid in visual
differentiation, and consequently, it is not surprising that the features obtained are
a good descriptor for a visual assessment of the differences between pathologies
(at least for the typical signals presented). Nevertheless, the differences that
discriminate between similar murmurs are not always discernible by visual
inspection of these graphs, and therefore, their performance as feature
representations for an automatic classification algorithm have to be evaluated

within the context of the method selected and the database available.
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5.4. Linear prediction coefficients

The linear prediction model forecasts the amplitude of a signal at certain times
using a linear weighted combination of a number of past samples (they are also
referred to as autoregressive models). If a predictor error is defined as the
difference between the actual sample value and its predicted value, a set of the
best prediction coefficients can be defined by minimising a mean square error

criterion.

The success with which a signal can be predicted from previous samples depends
on the autocorrelation function, or equivalently, on the bandwidth and the power
spectrum of the signal. A predictable signal has a smooth and correlated
fluctuation in time, and the energy will be concentrated in narrowbands of
frequencies, whereas the energy of an unpredictable signal is spread over a wide
band of frequencies. Most signals are partially predictable and partially random.
These signals can be modelled as the output of a filter excited by an uncorrelated
input. The aim of linear prediction is to model the mechanism from introducing
correlation in a signal; i.e. the filter characteristics, and therefore in the frequency
domain LP analysis can be regarded as a method of spectral modelling. For details

of the technique see Makhoul (1975), Vaseghi (2000, pp. 227 - 261).

LP analysis has been used before as input feature representations for PCG
parametric classifiers (Itawa, 1977). The technique is based on a model of
resonances in which the distribution of poles provides the information of interest,
such as high frequency poles corresponding to murmurs and low frequency poles
representing the heart sounds. A feature space formed with prominent poles of the

models (with bandwidth < 80 Hz) can be used for classification (Itawa, 1980).
Figure 5.8 shows an example of the FFT spectrum of a section of the PCG signal

comprising a second heart sound and the spectrum obtained by modelling with an

eighth order linear predictor. A better estimate of the underlying spectrum can be
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achieved by increasing the order of the filter. The signal also shows the time

domain signal and the all pole diagram of the filter model.
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Figure 5.8. PCG Time Signal of the Second Heart Sound, Z Plane Diagram of

the All-pole Filter, FFT Spectrum and LP Spectrum. PCG recorded at pulmonary
area, Fs =4 KHz.

For the analysis of PCGs, Itawa (1997) suggest an eight-pole filter to model the
spectral contours of 25 ms time frame windows overlapped by 50%. In practice,
the prediction coefficients are not a good representation to use for most
applications. In cases in which the digital word length is critical, the polynomial
coefficients tend to be too sensitive to numerical precision. The coefficients are
not orthogonal, which potentially creates other difficulties for classifiers that
might use these features (Gold, 2000). Interpolating between parameters
corresponding to two different filters will not vary the frequency response

smoothly from one to the other: stability is not even guaranteed.
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For all of these reasons LPC coefficients are generally transformed into one of a
number of representations including pole positions, reflection coefficients, log
area ratios and line spectral frequencies (Makhoul, 1975; Itakura, 1975; Deller,
2000).

The pole positions are obtained finding the roots of the polynomial defined by the
set of LPC features. The polynomial roots are either real or occur in complex
conjugate pairs. The main disadvantage of using the pole positions is that the

frequency response is sensitive to pole positions near the unit circle.

To obtain the reflection coefficients the LPC polynomial is transformed into a set
of coefficients that represent the fraction of energy reflected at each section of a
non-uniform tube with as many sections as the order of the polynomial. These
reflection coefficients lie between —1 and +1 (for totally open and totally closed
boundary conditions), however, the coefficients also become very sensitive to

noise when they are near to +1.

Log area ratios, defined as the inverse hyperbolic tangent of the reflection
coefficients, are used to wrap the amplitude scale of the reflection coefficients to
decrease their sensitivity to quantization errors when their magnitude is near to

unit.

5.4.1 Proposed representation: line spectral pairs

Line spectral pairs are an alternative to LPC representations. In this technique, the
predictor polynomial computed by the auto-correlation method of linear
prediction is split into a symmetric and an anti-symmetric polynomial by
extending the order of the filter (without introducing any new information).
Letting the added reflection coefficient be 1 or —1 is equivalent to setting the
corresponding acoustic tube model to be completely closed or completely open at
the added stage (Itakura, 1975). The poles of the resulting symmetric and anti-

symmetric polynomials are interlaced with each other and are on the unit circle
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and therefore these pairs of poles can be uniquely represented only by their phase

i.e. providing a set of line spectral frequencies.

Figure 5.9 shows the line spectral frequencies computed from the LP spectrum of
figure 5.8. The vertical lines represent the line frequency pairs. The peaks in the
spectra are defined by the position of the pairs and the distance between them. As
shown in the figure, the first pair of LSF which are close to each other result in a
sharp peak in the frequency fesponse curve. The frequency response is relatively
flat around a pair of LSF far from each other as is the case in the last pair for
example. A spectrum where the signal amplitude is low in all frequency bands

will be represented by equally spaced LSF.
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Figure 5.9. PCG Time Signal of the Second Heart sound, Z Plane Diagram.

PCG recorded at pulmonary area, Fs =4 KHz.

Figure 5.10 shows a PCG with a murmur typical of aortic stenosis and the
representation of the line spectrum frequencies computed form time windows of

25 ms overlaped by 50%.
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The figure shows the time evolution of the four line spectral pairs. The first line
spectral pair (bottom two lines) is closely spaced and just below 50 Hz indicating
a low frequency peak persisting across time. The fourth pair (uppermost lines) are
general far-spaced lines characteristic of a flatter spectrum; however, within the
range from 0.1 to 0.3 seconds the lines become closer with a shift of frequency

showing peaks in the spectra. Although the interpretation of this line frequency
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Figure 5.10. PCG with an Aortic Stenosis Murmur and its Line Frequency

Spectral Representation. PCG recorded at aortic area, Fs =4 KHz.

spectrum is not straightforward, the presence of the murmur in the systolic cycle
can be seen in the line frequency spectrum. To ease its interpretation, Figure 5.11
shows the spectrogram of the same signal and the line frequency spectrum

superimposed.

Figures 5.11 and 5.12 show how line frequency spectral pairs can represent the
spectrogram of the signal in a simplified form. Each line spectral pair represents
the location of the spectral peaks by their position and the sharpness of the peak
by their proximity. In Figure 5.11 closely spaced line pairs in the range from 200
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5.5 Summary

The viability of using power cepstral analysis, line spectral pairs and Maass-
Weber derived energy features to provide a simplified representation of the
phonocardiograms has been demonstrated. In those techniques the variations of
the time signal that reflect the occurrence of pathologies lead to traceable
differences in those feature representations. It has been shown that some of them
may be especially suitable to ease computational demands. Nevertheless the
viability of the use of those representations as inputs for the classifier needs to be
assessed for the particular models selected and the database available. The next

chapters will assess their performance within this context.

The following chapter shows how those representations can be used to solve a

related problem: the segmentation of heart sounds.
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6 Heart Sound Segmentation by Hidden Markovian Models

6.1 Introduction

During auscultation, one of the main clues to differentiate similar murmurs
corresponding to different pathologies is their position with respect to the main
components of the heart sound. For instance, murmurs are initially classified into
systolic and diastolic murmurs depending on their timing within the heart cycle
and further labelled as early, middle and late murmurs by their occurrence within
the systolic and diastolic cycles. Components of the PCG are also required to be
identified since they also present changes due to cardiac abnormalities, for
example, the wide fixed split of S2 associated with atrial septal defects or the

accentuation of the third heart sound in some ventricular septal defects.

It is therefore of prime importance for an autonomous system to be able to
identify the main components of the PCG and the relative position of abnormal
sound events within the heart cycle. Once the main components are identified,
individual portions of the PCG signal can be extracted for a more detailed analysis
and modelling. Accordingly, the segmentation of heart sounds into its components
is commonly regarded as the first step towards the automatic classification of

heart sounds (Iwata, 1980; Liang, 1997; Lehner, 1987).

A summary of the techniques available for the segmentation of the
phonocardiogram is presented in this chapter before a new approach is proposed.
Since previous techniques for heart sound signal segmentation make extensive use
of other biomedical signals such as the electrocardiogram and the carotid pulse,
the relation between these events is briefly explained. Using the cepstral
coefficients derived from the PCG as input features, a hidden Markovian model is
then proposed to identify the main components of the phonocardiogram and

consequently perform the heart sound signal segmentation.
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6.2 Heart sound segmentation using the electrocardiogram and carotid pulse

signals

In a normal PCG (at normal heart rate), the first and the second heart sounds can
be identified by visual inspection, but the presence of murmurs and high heart
rates makes their localisation within the cardiac cycle difficult. Moreover, the
non-specific nature of vibration signals, the various transmission paths from the
heart to the chest surface, and superimposed background noises including
ambient, instrumental, and extra-cardiac noise, further hinders their detection. For
these reasons, several proposed systems make use of auxiliary signals like the
electrocardiogram and the carotid pulse for automatic identification of heart sound

components (Rangayyan, 2002).

Figure 6.1 shows the main components of the heart sound signal namely: first
sound (S1), second sound (S2), the systolic and diastolic phases, and their relation

to events in the electrocardiogram (ECG) and the carotid pulse (CP).

In the ECG, the sino-atrial node, a basic natural pacemaker triggering its own
action potentials starts the cycle. Electrical activity is propagated through the
atrial muscle causing contraction of the atria. This slow activity and the small size
of the atria results in a low-amplitude slow P wave on the ECG. The excitation
delayed at the atrio-ventricular node results in a normally iso-electric segment
known as the PQ segment. This pause assists in the completion of blood transfer
from the atria to the ventricles. The His bundle, the bundle branches, and the
Purkinje system of specialised conduction fibers propagates the stimulus to the

ventricles at high rate.

The electric stimulus is spread from the apex of the heart upwards causing rapid
contraction of the ventricles, this results in the QRS wave of the ECG. As the
ventricles contract, the tension in the chordae tendineae, and the pressure of
retrograde blood flow towards the atria seals the mitral and tricuspid valves
causing the initial vibrations of the first heart sound (S1) appearing immediately

after the QRS complex.
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Ventricular muscle cells have a relative long action potential duration, which
causes the ST segment. Finally, relaxation of the ventricles causes the slow T
wave and the second heart sound S2 appears slightly afterwards, due to the

closure of the aortic and pulmonary valves (see chapter 2).
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Figure 6.1. Correlation of the Components of the Heart Sounds with the

Electrical Activity Represented by the ECG and the Carotid Pulse. From
Rangayyan (2002).

The QRS complex is a reliable indicator of the beginning of S1, and since its
detection is fairly easy, PCG segmentation into cardiac cycles is usually
accomplished aided by the ECG trace. There are several signal processing
techniques for QRS complex detection, among them the Pan-Tompkins algorithm
(Pan, 1985), and several studies related to PCG analysis where the signal is first
segmented using the ECG as an auxiliary signal (Barschdorff, 1995; Haghigi-
Mood, 1995).

The time relationship between the T wave of the electrocardiogram and the
second heart sound suggests the possibility of using the former for identification
of the latter. However, as explained in chapter 2, the T wave can not be referred to

a specific event per se, is often of low amplitude, and almost negligible in many
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ECG records. For this reason, the identification of S2 is usually performed with

the aid of another signal reference: the carotid pulse.

The carotid pulse is a signal recorded at the neck over the carotid artery providing
indication of the variation in arterial blood pressure and volume within each heart
beat. The percussion wave (P) in the carotid pulse shows the increase of pressure

due to the abrupt ejection of blood from the left ventricle to the aorta.

A secondary wave caused by a reflected pulse returning from the upper body
causes the tidal wave (T). Closure of the aortic valve is accompanied by
deceleration and reversal of flow in the aorta causing a sudden drop of pressure.
The dicrotic notch (D) is consequence of the latter and may be followed by a

dicrotic wave (DW).

The dicrotic notch, measured at the carotid artery, has a delay of 4.26 ms with a
standard deviation of 5 ms with respect to the second heart sound signal (52)
(Tavel, 1978) and can be used as a reliable indicator of the end of systole

(Lehener, 1987).

Summarising, in order to perform the PCG segmentation the ECG signal is
generally used to detect the first heart sound (Barschdorff, 1995; Haghigi-Mood,
1995; Iwata, 1980), whereas the carotid pulse is generally used as a reference to
detect the second heart sound (Lehner, 1987). Nevertheless, the use of these
external references involves the use of extra equipment, which may not be
desirable or feasible. Furthermore, the timing between electrical and mechanical
activities in a cardiac cycle will not be exactly constant among patients in some
pathological conditions like Bundle branch block, severe aortic or mitral disease,
and hypertropic left ventricle (Haghigi-Mood, 1995). Under these circumstances,
an alternative approach is the use of the inherent characteristics of the PCG signal

to perform the segmentation.
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6.3 Signal processing techniques for PCG segmentation without an external
reference signal

The need for an autonomous system able to identify the PCG signal component
without use of an external reference has been recognised and acknowledged in the
literature (Itawa, 1980, Haghigi-Mood, 1995, Rangayyan, 2002). Typical
examples of methods that rely only on the PCG signal are spectral tracking at a
single frequency (Itawa, 1980), spectral tracking over a frequency band (Haghigi-
Mood, 1995), methods using a measure of the signal energy (Liang, 1997) and
methods using matching pursuit techniques (Sava, 1998).

Itawa (1980) uses linear prediction analysis techniques as described in Chapter 5
to represent the spectra of a high pass filtered PCG signal recorded at the apex.
The filter defined by standards of the Japanese Society of Medical Electronics and
Biomedical Engineers has a 26 dB per octave roll-off with a cut off frequency of
250 Hz. This filter band was selected as the most representative for murmur
detection. A group of sixty nine subjects was analysed to establish statistically the
peak frequencies of the first and second heart sound, and consequently two
tracking frequencies were chosen: 100 Hz for detection of S1 and 150 Hz for S2.
Peaks in the spectral level in these frequency bands represents the occurrence of
heart sounds. No carotid pulse is needed for S2 detection, and only one PCG filter
sub-band (defined in a similar manner as the Maass-Weber filters described in

chapter 5) is required.

Haghighi-Mood (1995) presents a similar algorithm in which instead of tracking a
single predefined frequency, he tracks the energy in a certain PCG dependent
frequency band and uses a length weighting function to distinguish the relatively
short S1 and S2 peaks from longer peaks corresponding to murmurs. The
frequency band used to track is defined for each PCG signal using the first heart
cycle which is individually evaluated to obtain the first peak in the spectra
considered to be either S1 or S2. Consequently, a -3 dB threshold around this

peak defines the bandwidth. The method is less sensitive to recording quality and
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the overall frequency response of the system since the frequency band selection

depends on each PCG. No ECG signal is required to segment the PCG signal.

Liang (1997) proposes a segmentation method based on the envelope of the PCG
signal calculated using the normalised average Shannon energy. The squared time
signal is multiplied by its logarithm and averaged; therefore, medium intensity
signals are emphasised whilst low intensity ones are more attenuated than the high
intensity ones. The Shannon energy shortens the difference between the envelope
intensity of the low intensity sounds and the high intensity ones, making low
intensity signals easier to detect. A threshold level of this envelogram is firstly
used to select the peaks. A time interval set of rules is then defined to exclude
additional peaks. After examining time intervals, the threshold is adjusted to
include possible missing peaks. Finally, considering that the diastolic interval is
longer, and that the systolic interval remains relatively constant, S1 and S2 peaks
are identified by their relative time occurrence. For PCG signals that include
interfering signals like ambient noise or artifacts the method provides incorrect
identification, and although these can be avoided by improving the recording
techniques, cases of murmurs that overlap either S1 or S2 make the identification

impossible.

Sava (1998) proposes to decompose the PCG signal in basic units arranged in an
energy decreasing order. The coherent structure of the first and second sounds is
expected to be represented in the first unit components since the heart sound
signals convey more energy than the random murmurs, consequently the number
of units is restricted to extract the main components S1 and S2. The length of the
units is also limited in order to detect short transit events like the first and second
sounds and to exclude long random murmurs. Once the most energetic units have
been determined, they are ordered according to their time position creating a
template. Subsequent events are found cross-correlating this template with the
PCG signal. Considering the time characteristics of the systolic and diastolic
cycles, S1 and S2 are identified. The main deficiency of this matching pursuit

method is the setting of a threshold level for the cross-correlation since the
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performance depends not only on the accuracy with which the template is

represented, but also on the similarities of consecutive S1 and S2.

6.4 Proposed technique: PCG segmentation by hidden Markovian models

and cepstral representations

Chapter three proposes that the identification of specific cardiopathologies
through the automatic analysis of heart sounds can be simplified to a classification
task to support differential diagnosis. Consequently, hidden Markovian models
were proposed as a suitable technique to perform PCG signal classification. As
part of the main stages of the process, simplified representations of the input
signals are required, and therefore, Chapter four explored some techniques for
feature extraction. Accordingly with the cardiohemic theory, cepstral coefficients

were proposed and may provide suitable representations for the PCG signals.

To perform the automatic segmentation of the heart sound signal, a simplified
representation of the PCG is also required to ease the computations. Using such
representations and a sequence recognition algorithm, the main components of the
PCG can be identified. Cepstral analysis and hidden Markovian models satisfy
these requirements and since they will be used in a posterior stage for signal

classification, it is worth exploring their use at this point for PCG segmentation.

6.4.1 Cepstral representations for S1 and S2 identification

In the previous chapter, it has been shown how the spectral envelope of the signal
can be represented by the first cepstral coefficients. Figure 6.2 shows the PCG
signal of a subject with normal cardiac function and the first-five cepstral
coefficients computed as described in Chapter 5, see for example Figure 5.3. From
the picture, it is easy to identify the portions related to the first and second sound
in the first representations. Figure 5.3 shows that S1 and S2 heart sound
components can also be identified in cepstral representations of PCG reflecting

pathological conditions. Therefore, for the aim of signal segmentation of the PCG,
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More over, for a multiple set of representations such as the Maass-Weber
representations, a simple threshold would not suffice since the main contribution
of different components of the signal may appear in different bands depending on
its frequency content. An automatic algorithm able to distinguish these

components is therefore still required.

According to the cardiohemic theory, the phonocardiogram signal recorded on the
chest is the acoustical manifestation of a succession of mechanical events
including variations of blood flow related to a sequence of opening and closing of

heart valves and contractions of the heart chambers.

This succession of events can be modelled as a Markov process on the assumption
that each of the events only depends on the previous one, and the sequence can be
considered as hidden since it is not directly observable. Nevertheless, the
phonocardiogram, generated by this underlying process, is available and can be
modelled as the observation signal following the structure of a hidden Markov

model.

The mechanical events generating each of the main PCG signal components can
be represented by a single state, and consequently, each of the main components
of the PCG signal, namely S1, S2, systolic and diastolic cycles can be modelled as

acoustic observations related to a specific hidden state.

Using this structure and a set observation sequences (heart sounds) a model
relating the hidden sequence of mechanical events to the PCG observation
sequences can be trained. The parameters of the HMM namely: the state transition
probabilities, the state observation probabilities and the initial conditions will be
adjusted in a training stage via a recursive algorithm to represent the most

probable set of values generating the training sequences.
The identification of the main components of a new PCG signal can be regarded

as a decoding stage where the aim is to find the most probably sequence of hidden

stages that generated the sequence of observations. The problem can be addressed
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by using the Viterbi algorithm (Rabiner, 1989). Once the main components S1
and S2 are identified, the segmentation of the PCG signal can be performed

accordingly.

6.4.3 The model

Due to the fact that a complex model requires more realisations of the signal in
order to learn the parameters involved, it is desirable to find the simplest model
that could achieve the segmentation. It is likely that the most basic model of a
normal PCG is constructed by assuming that there are only two main conditions:
either, a sound that could be S1 or S2, or there is a relatively silent period such in
the case of systolic and diastolic events. Therefore, for simplicity, a two state
HMM is initially proposed for the segmentation of normal sounds. The first state
is assigned to the S1 and S2 components, whereas the second state accounts for

either the systolic or diastolic cycles.

Figure 6.3 shows the two-state model for the segmentation process and an
example of how the normal PCG signal can be represented as a succession of
these states. The arrows indicate the possible transitions. Notice that transitions
are permitted from each state to itself and to the other, this permits variations in
the duration of the events. Since there are only two states there are no restrictions
in the possible state transitions, nevertheless, a left-right structure HMM is shown

in the diagram to represent the time succession of events embedded in the heart

signal.

At this point, the model does not discriminate S1 from S2. However, the timing
between events is a key parameter in the identification of the onset of the first and
second sound, and the differentiation of systole from diastole can be realised by
noting that the former period is shorter and its duration is relatively constant
compared with the latter (Liang, 1997). Using this information, a time interval set
of rules can be implemented to identify the main events of the PCG signal, which

also helps to avoid false event detection.
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Figure 6.3 shows the states of the model in relation to the PCG. From Figure 6.2 it
can be seen that for normal PCG signals, the use of exclusively the first cepstral
coefficient seems to provide a good representation for the identification of S1, S2,

systolic and diastolic cycles.

The PCG signal is divided in overlapping frames of constant duration and from
each frame the cepstral coefficients are computed using the methods described in
Chapter 5. The continuous valued cepstral representations will be related to the
states by a single Gaussian probability distribution and their characteristic

parameters will be learnt from the training set of PCG signals.

Bystolic 4 ystolic 8ystolic k
Diastoli/ | Diastoli Diastoli
Figure 6.3. State Model for the PCG Segmentation.

6.4.4 Database

The research involves the use of an initial database of identified heart sounds
collected in a previous study (Leung, 1998a) and a second set of signals acquired

at the cardiology unit of Southampton General Hospital. Both studies were
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Figure 6.4 summarises the content of the database, the abscissa shows the
categories corresponding to the medical conditions, whereas the ordinate defines
the number of patients for each condition. The number of patients rather than the
number of recordings is considered since a higher variability is expected to be

found between subjects than between recordings of the same subject.

6.4.5 Training the HMM

Initially, to evaluate the proposed HMM based segmentation scheme only the set
of normal PCG signals, the simplest case, was considered. The initial database,
which contains PCG signals and simultaneous ECG recordings from five
paediatric patients with normal structural and functional heart conditions, was
used since an external reference is available to evaluate the performance of the
segmentation algorithm. Table 6.5 presents a summary of the signals. In three
cases PCG signals were recorded from two auscultation locations namely: the
pulmonary and the mitral area. The first heart sound is best heard near to the apex
whilst in this position the second sound appears diminished, the mitral
auscultation area, located at the apex, is preferred for S1 recordings. Conversely,
the pulmonary area is recommended for recordings of the second heart sound,
where S1 is less intense and the splits of S2 are more noticeable (MSD, 2004). In
all patients only the signals from the pulmonary auscultation area were used for

the test.

Considering the size of the database, the leave-one-out method was selected to
define the training and testing sets (Rangayyan, 2002). Therefore, trials were run
using four out of the five PCG signals for the training stage and one for testing the

segmentation algorithm until all the available signals were tested.

Each PCG time signal was normalised to have unit amplitude at its maximum

point, and for each trial, five heart cycles of the four PCG training signals were
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manually segmented, their first cepstral coefficient was computed and presented

to the training algorithm.

Patient | Age | Condition HR Auscultation Length

Pulmonary 30s

N1 8 yrs Normal 74 bpm
Mitral 30s
12 Pulmonary 30s

N2 Normal 78 bpm
yIs Mitral 30s
N3 7 yrs Normal 86 bpm Pulmonary 30s
N4 2 yrs Normal 102 bpm Pulmonary 30s
11 Pulmonary 30s

N5 Normal 60 bpm
yrs Mitral 30s

Table 6.5. Normal PCG Signals. Fs=4 KHz

For the two states to be trained, five cardiac cycles for each patient were
considered representative since a low intra-subject variability is expected
compared to a higher inter-subject variability. Nevertheless, first cepstral
coefficient of the whole length of the time signal to be tested (30 seconds) was
presented to the hidden Markovian model to assess the performance of the
segmentation process'. The evaluation was based on the identification of the main

components of the PCG cycles.

Notice that since only five normal patient’s signals are available, if as suggested
in the literature (Rangayyan, 2002), the number of samples required for a
classification method is generally expected to be five times or more than the
number of features used, only one cepstral coefficient was to be used. If more data

were available it would be recommended to assess the performance of the

' Consequently, for the first trial 30 seconds of N1 (at 74 ppm) were used for testing (37 heart
cycles), and 5 heart cycles of N2, N3, N4, and N5 (20 heart cycles in total) were used for training.
For the second trial 30 seconds of N2 (at 78 ppm) were used for testing (39 heart cycles), and 5
heart cycles of N1, N3, N4 and N5 were used for training, and so on.
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algorithms using more coefficients, but since for a fixed number of samples the
addition of more features will eventually lead to a poorer performance, a balance
has to be found. Nevertheless, keeping the number of coefficients low is advised

to avoid an overly detailed representation.

Table 6.6 shows the values obtained for the HMM parameters on different trials.
The model shows a higher probability to start in state 2 (corresponding to either
the first or the second heart sound) since it was trained with segmented PCG
starting with the first heart sound. The state transition matrix shows that self-
transitions have a higher probability that change of states. A Gaussian probability
density distribution was selected to represent the state-observations probability
distributions. This distribution is completely defined by the first and second order

statistics, and consequently, the values for the mean and the variance are shown in

the table.
Test | Training | Initial Prob. | Sate transitions Mean Variance
Signal | Signals L S1 Si2 Muy, Sigma,
Ik Sy S22 Mu, Sigma,
N1 N2,N3, | 0.0847 09813  0.0187 |-0.0889 | 0.0351
N4,N5 0.9153 0.1545  0.8455 | 04602 |0.1230
N2 NI,N3, |0.1411 0.9080  0.0920 |-0.1112 | 0.0319
N4,N5 0.8549 0.2216 0.7784 | 0.2173 0.1492
N3 N1,N2, |0.2424 0.9234 0.0766 | -0.1036 | 0.0430
N4,N5 0.7579 02019  0.7981 |0.4932 |0.1030
N4 N1,N2, |0.1740 0.9133  0.0867 |-0.0928 | 0.0381
N3,N5 0.8260 0.2246  0.7754 | 0.5025 | 0.1036
NS NI,N2, |0.1104 0.9065  0.0935 |-0.0931 | 0.0401
N3,N4 0.8896 0.2242  0.7758 |0.4848 |0.1101

Table 6.6. Parameters for the HMM obtained during the leave-one-out training

process. [], Initial state distribution vector, S, state transition probabilities, Mu, and Sigma, are
the mean and variance that characterize the Gaussian observation symbol distribution. 1 S1 or S2,

2 systolic or diastolic cycle
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Given a training set of cepstral coefficients derived from normal
phonocardiograms the parameters of the HMM were computed for each trial by

means of a learning algorithm.

For instance, signals N2, N3, N4, and N5 are used in the first trial to iteratively
adjust the two probability functions of the HMM (training) so as to maximize the
likelihood that the sequences of values for the first cepstral coefficient could be

produced by that model.

Once the model parameters are obtained, the test PCG signal N1 was used to
compute the most likely sequence of states generating the sequence of
observations (decoding), and therefore to segment the signal, since each state

defines different portions of the PCG.

This sequence of states is obtained using the Viterbi algorithm (Rabiner, 1989) by
mean of the forward probabilities, i.e. the joint probability of obtained a certain
value for the cepstral coefficient, and being in a certain state (considering the

transition from the previous one).

The first two values for the forward variable (one for each state) are obtained
using the initial probabilities and the state observation probabilities computed
from both Gaussian probability density functions. The highest forward probability

value also defines the most probably state.

For the next cepstral value, the two forward probabilities are computed using the
previous forward probabilities, the states transitions, and the state observation
probabilities. Again, the highest forward probability will define the most probably

state for this point.

Each new computation of the forward variable accounts for the previous ones.

Consequently, when the last point of the cepstrum values sequence is reached, the
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maximum forward probability represents the Viterbi probability for this particular
HMM of producing the whole observation sequence; i.c. of generating this
cepstral pattern. Back-tracking the maximum forward variables it is possible to

find the most likely state sequence emitting this pattern.

The hidden states can be related to the PCG time signal through the cepstral
coefficients, and since the first state represents the occurrence of either the first or
the second heart sound, using this HMM it is possible to identify those events in
the PCG.

The intervals between occurrences of the first state will differentiate a systolic
period from a diastolic one. The former is considered relatively constant whilst the
later is considered larger and with more variability. Starting from the largest, the
intervals are examined forwards and backwards to maintain consistency with

systolic and diastolic cycles.

Details of the algorithms for training and decoding can be found in Chapter 4 and
appendix A.

6.4.6 Results and discussion

Figure 6.7 shows the graphical result of the segmentation of a normal PCG using
the proposed hidden Markovian model.

The first graph shows a normalised PCG signal from an eight year old patient
recorded in the pulmonary auscultation area. Marks for the first and second heart
sound components for a single cardiac cycle are included for reference. The most
probable sequence of state changes as obtained form the hidden Markovian model
is depicted in the second graph. The first state (labelled 1 in the y-axis) represents
either the systolic or diastolic cycle, whilst the second state (labelled 2 in the y-

axis) represents either the S1 or S2.
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e Zero false negatives since there are no S1 or S2 sounds missed.

The same criterion is applied to the normal PCG signals available and the results
are summarised in table 6.9. Following the leave-one-out procedure, to test the

signal N1 for example, the parameters obtained for N2, N3, N4, and N5 are used.

Since each PCG is divided into S1, S2, diastolic and systolic cycles, four events
were considered for each of the cardiac cycles of the five patients; and therefore,

eight hundred and four samples are considered for the evaluation.
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Figure 6.8. False Positive Event Detection.

Heart | No of
FP { TN | TP | FN | S+ S-
beats | samples

201 804 21 | 381 | 399 | 3 19925% | 94.77 %

Table 6.9. Evaluation Results. FP false positives, TN true negatives, TP true positives, FN

false negatives, S+ sensitivity, S- Specificity.
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As shown in table 6.9, the algorithm presented excellent values for both
sensitivity and specificity (these terms and their significance are further explained
in the next chapter). Consequently, the algorithm is highly efficient in detecting
the presence or absence of either the first or the second sounds. Time rules used to
differentiate systolic cycles from diastolic can be used to correct false positive

detection cases.
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Figure 6.10. False Negative Event Detection.

6.4.6.1 Segmentation of abnormal PCGs using a HMM model of normal signals

Systolic and diastolic murmurs provide essential information in the finding and
evaluation of many common heart diseases; however, abnormal cardiac conditions
also introduce additional sounds and changes in other components of the PCG.
The wide split of S2 in atrial septal defects or the accentuation of the third heart

sound in some ventricular septal defects are good examples. These changes can be
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of major diagnostic importance when differentiating certain types of murmurs
through auscultation. For example, the abnormal split of S2 distinguishes aortic

stenosis from innocent pulmonary flow.

Consequently, pathological conditions are not only characterised by the presence
of murmurs but also reflected as changes in S1 and S2. Therefore, using a model
for normal S1 and S2 states and normal systolic and diastolic states to identify
their equivalents in abnormal PCG signals may present some difficulties. When a
strong murmur is present in the systolic, the diastolic cycles, or both, the model
for the state representing corresponding to normal silent cycles does not hold and

consequently, poor performance of the algorithm is expected.

In these cases, the best approach to perform the signal segmentation would be to
use hidden Markovian models trained with signals representative of similar
pathological conditions, but this would require one to classify the murmur prior to
performing the segmentation. This apparent contradiction implies that models of
the whole cardiac cycle for different pathologies can be used to classify and

segment the signal simultaneously.

Nevertheless, for conditions presenting either soft murmurs, minor S1 and S2
modifications, or both, the models trained using normal signals could be expected
to perform satisfactorily. To assess the validity of this hypothesis, the hidden
Markovian model obtained for segmentation of normal PCG signals was also

tested using PCG signals characteristic of pathological conditions.

PCG signals representative of different medical conditions were presented to the
hidden Markovian model trained with the five normal PCG signals. Only the
recordings which also included simultaneous ECG signals were considered. Only
five heart cycles of each of the normal signals were used for training, whilst 30
seconds of each of the abnormal signals were used for testing. Table 6.11 presents

a summary of the signals.
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Figures 6.12, 6.13, 6.14, and 6.15 present results for the segmentation of PCGs
corresponding to atrial septal defect, innocent pulmonary flow, valvular aortic

stenosis, and muscular ventricular septal defect conditions.

Figure 6.12 presents results for the segmentation of a PCG containing an atrial
septal defect murmur. Notice that due to the state self transitions of the HMM,
despite the wide fixed splitting of S2 characteristic of large defects and a high
heart rate of the two years old patient (110 bpm), the algorithm continues to
correctly identify S1 and S2.

Patient | Age | Condition HR Auscultation | Length
Al 8 yrs ASD 80 bpm Pulmonary 30s
A2 2 yrs ASD 110 bpm | Pulmonary 30s
A3 16 yrs ASD 84 bpm MLSE 30s
A4 2 yrs ASD 122 bpm | Pulmonary 30s
I1 6 yrs IPF 88 bpm Pulmonary 30s
12 17 yrs IPF 70 bpm Pulmonary 30s
I3 11 yrs IPF 52 bpm Pulmonary 30s

Asl 14 yrs As 74 bpm Aortic 30s
As2 17 yrs As 60 bpm Aortic 30s
As3 8yrs | As& Ar | 74 bpm Pulmonic 30s
As4 11 yrs As 84 bpm Aortic 30s
AsS 9 yrs Sub As 76 bpm LLSE 30s
Asb 12 yrs | Sub As 66 bpm Aortic 30s
Vi 8 yrs VSD 82 bpm Pulmonary 30s
V2 8 yrs VSD 102 bpm LLSE 30s
V3 8 dys VSD 126 bpm | LLSE-Apex 30s
V4 19 yrs VSD 78 bpm MLSE 30s

Table 6.11. Subset of abnormal PCGs. ASD atrial septal defect, IPF innocent pulmonary
flow, As aortic stenosis, Ar aortic regurgitation, VSD ventricular septal defect. Fs = 4 KHz.
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Table 6.17 summarises the performance of the segmentation algorithm for each
condition and the over all performance. The model trained using normal PCG
signals presents excellent results for the segmentation of PCGs representative of
conditions containing mild or soft systolic murmurs and a decreased performance

in the case of pathological conditions presenting very strong murmurs.

Condition | Heart | No of FP | TN TP | FN | S+ S-
beats | samples

ASD 198 792 11 | 385 382 | 14 | 96.46% | 97.22%

IPF 105 420 2 208 207 |3 98.57% | 99.04%

VSD 194 776 5 383 324 | 64 |83.50% | 98.71%

AS 217 868 8 426 416 |18 |95.83% | 98.15%

Abnormal | 714 2856 26 | 1402 | 1329199 |93.06% | 98.17%

Table 6.17. Evaluation Results for Abnormal PCGs. ASD atrial septal defect, IPF

innocent pulmonary flow, VSD ventricular septal defect, AS aortic stenosis, FP false positives, TN

true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity.

6.4.7 Noise in Phonocardiograms

The robustness of the algorithm to noise in the phonocardiogram signals can be
shown in figure 6.18. This phonocardiogram was recorded at the apex auscultation
area and is know to correspond to a patient presenting a bicuspid aortic valve
condition. The murmur in the PCG can not be seen from the recording, neither the
first nor the second heart sound can be clearly distinguished. More over, an ECG
reference signal is not available. However, despite the noise and the clipping of

the signal, the main components S1 and S2 are audible and can be recognized.

Figure 6.18 shows the noisy PCG, the state transition of the HMM, and the first
cepstral coefficient representation. By comparison to all the previous figures
presented in this chapter the reader may be able to detect the main components of

the PCG in the cepstral representation.
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murmur may obscure the recognition of the first or second heart sound in the first
cepstral coefficient. This can be solved either by using a higher number of cepstral
coefficients in which the S1 and S2 component are clearly identified, as shown in
figure 5.3¢, by adding time constraints to the model, or perhaps in some cases by

filtering off the high frequency murmurs from the PCG.

Considering that for the abnormal heart sounds the HMM was trained with 25
heart beats from 5 patients with normal PCGs, and tested with 714 heart beats
from 17 patients representing 4 medical conditions, the high values obtained for
sensitivity and specificity are promising. Nevertheless a study involving more
patients and more conditions would be necessary for the evaluation to be
conclusive. It is also recognised that more complex models may lead to better

results although the added complexity demands more data.

The next chapter will present the use of hidden Markovian models for the
classification of systolic murmurs related to the most common pathologies found
in paediatric patients. The algorithms developed are aimed to implement an

automatic system to aid diagnosis.
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7 Systolic Murmur Classification by HMM

7.1 Introduction

Auscultation of paediatric patients using passive and non-invasive techniques is of
prime importance due to the frail nature of infants. Moreover, the implications of
referral for further analysis in the case of unrecognised, non-pathological heart
sound murmurs in paediatric patients demand further development of passive
methodologies. One of the directions to follow consists of the development of

autonomous systems able to provide valuable support for medical diagnosis.

The autonomous identification of pathologies through the analysis of heart sounds
can be regarded as a classification problem where the sound to be identified can
be assigned to one of several known categories representing the associated
pathologies. This approach is especially valid to aid differential diagnosis where
signals are perceived as having similar acoustic patterns and the physiological
findings are not conclusive, such as in the case of differentiation between innocent
and pathological murmurs in early conditions where the patient may be otherwise

asymptomatic.

The previous chapter has shown how HMM can be used to perform what is
regarded as the first step towards the development of an autonomous system for
classification, namely the segmentation of a PCG signal into its main components.
The relative time appearance of the components provides essential information to
discriminate between pathologies. Furthermore, once the main components have
been identified, each segment of the signal can be analysed and modelled in more

detail.

The heart sounds representative of the most common abnormal heart conditions
found in paediatric patients, namely aortic stenosis, atrial septal defect, ventricular
septal defect, and innocent pulmonary flow murmurs are all associated with

characteristic murmurs present in the systolic cycle of the PCG. Consequently, by

120



analysis of the systolic segments of the PCGs, it may be possible to identify the
associated pathologies and to differentiate between the pathological and non-

pathological conditions.

As mentioned in Chapter 3, HMM is a suitable technique for the classification of
phonocardiograms. Hidden Markovian models provide a strong mathematical
basis to determine the probability with which a pattern could have been generated
from a model of a specific category. Consequently, by assigning the pattern to the

class providing the highest probability, a PCG signal can be identified.

Following this approach, a HMM would be trained for each one of the five
medical conditions under study. To classify a new PCG, the probability of each
HMM to have generated this new sequence would be computed and the signal
would be classified according to the highest score. However, if the new PCG does
not belong to any of these classes it would be wrongly assigned to the closest
match. Nevertheless, in clinical practice, other physiological findings narrow the
number of possible classes. This algorithm is designed to aid the specialist (not to
substitute him/her) in differential diagnosis for specific medical conditions that

present similar acoustic signals and similar physiological findings.

The following section will show how systolic murmurs, characteristic of specific

heart conditions, can be identified by using HMM.

7.2 Selection of the HMM

As stated by Rabiner (1989) there is no simple, theoretically correct, way of
selecting the model, or to choose the initial parameters. Nevertheless, as a general
rule for a finite training set, a simple model requires fewer training sequences to

obtain a good estimate of the model parameters.

The medical conditions in this study are associated with characteristic murmurs in

the systolic cycle of the PCG, or by the absence of any in the case of normal
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conditions. Therefore, as a first approach only the systolic segments of the PCG
are going to be modelled by the HMM. A model comprising all components of the
heart sound would be more appropriate for the classification process since the
pathologies are reflected not only by the presence of murmurs but also by changes
in the morphological characteristics of other components of the phonocardiogram
signal. Nevertheless, a model of the whole PCG signal requires more utterances to
capture the particularities of each pathology. Consequently, a detailed model of
the systolic cycles is preferred over a more general model of the cardiac cycle to

overcome limitations imposed by the size of the database.

The systolic signals are chosen to be modelled by a left-right HMM. This
structure is selected for the characterisation of temporal or sequential structures
since time may be visualised as having a direction from left to right. Self-loop
transitions are allowed to account for variations in the duration and time scales of
the signals in each state. Since a left-right model has been chosen, the initial state
probability for state one is set to one, and therefore, every time a new set of
observations representing a systolic cycle is evaluated the model is reset to this

state.

Considering the benefits of keeping the model to the minimum number of
parameters, a simple model for the systolic cycles consisting of only three hidden
states is proposed. From a morphological point of view the states are selected to
represent the onset, a steady state for the murmur and an exiting transition, which
seems suitable to model ejection murmurs. From a time-reference point of view,
the same structure may be intuitively related to the time occurrence of the murmur
relative to the systolic cycle. This latter approach is useful to model pansystolic
murmurs in which no marked onset and exiting transitions are exhibited. For
ejection murmurs the states may be a reference for early, middle, or late ejection
murmurs. It is important at this point to recall that the hidden states of the model
represent an unknown generation process, and since it is a mathematical model,
the duality of the state representation as a morphological or time occurrence based

is only an abstraction.
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A single Gaussian probability density function has been selected to represent the
observation symbol probability distributions for the model in order to use the
continuous valued observations (provided by cepstral coefficients, line spectral
frequencies, or Maass-Weber filter representations). The univariate Gaussian

functions are therefore specified by their mean and standard deviation parameters.

Figure 7.1 shows the representation of the three-state HMM proposed for the
analysis of the systolic cycles. State transitions are represented by arrows. In this
left-right model the sequence always start in state one, allows for self state

transitions and forbids back state transitions.

Typical systolic signals for aortic stenosis and ventricular septal defect are shown
in the figure along with their first cepstral coefficient representation. This

simplified representation constitutes the set of observations.

The continuous values obtained from the cepstral observations are related to the
hidden states by single Gaussian probability density distributions. This is
graphically represented by faded shadows of values around the darkest mean

value.

7.3 Binary classification: normal versus aortic stenosis classes

The implications of classification decisions made in the context of medical
diagnosis go beyond statistical measures of accuracy and validity. Therefore, the
effectiveness of a diagnosis technique has to be determined using standardised
methods (Rangayyan, 2002). In this context, a simple screening test has been
developed in order to assess the performance of the hidden Markovian models for

murmur classification.
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normal heart sounds and one for signals representing the medical condition on
test. Considering the size of the database, the pathology represented with the
higher number of samples available was selected to be modelled by the HMM,

and thus the classes of aortic stenosis and normal sounds were formed.

7.3.1 Training and testing procedure

The normal class set of phonocardiogram described in Chapter 6 was used for the
screening test. In the interest of optimising the use of the database, signals from
the same patient recorded at different auscultation areas were considered as

independent samples, and therefore, eight sample signals were used for the test.

Due to limitations of the database, the aortic stenosis set comprised not only PCG
signals representing pure congenital valvar aortic stenosis but also other related
pathologies were included. As in the case of normal set, signals from the same
patient taken at different auscultation areas were considered as independent
samples. Consequently, a total of eight sample signals, obtained from six patients,
were contemplated in order to match the size of the set associated with normal

class.

The aortic stenosis class was represented by the following signals:

e Two PCGs representative of sub-aortic stenosis for patients aged five and
fourteen years old. This is a non-valve related pathology that, although having
a similar murmur as congenital aortic stenosis, can be differentiated from the
latter through analysis of the PCG (Guadalajara, 1998). One of the indications
to differentiate the sub-aortic stenosis from its valvar counterpart is that the
epicentre is located in the auxiliary aortic auscultation area. The signals were
therefore acquired at the lower sternal edge and the third right intercostal edge
instead of the second edge where the primary aortic auscultation area is

defined.
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e Two PCG signals from a patient aged nine years presenting a congenital aortic
stenosis valve recorded at two locations. The characteristic click of this
pathology was recorded first at the lower left sternal edge, and secondly the

mild systolic murmur was recorded at the aortic area where it is heard best.

e A signal recorded at the pulmonary auscultation area from an eight-year old
patient presenting both a systolic murmur due to valvular aortic stenosis and

an early diastolic murmur due to aortic regurgitation.

e Two PCGs from a patient aged one year presenting congenital aortic stenosis.
The signals were acquired at two different auscultation areas, namely the
mitral area for the click and the aortic area for the murmur. This patient had

had a previous cord repair.

e A signal containing a systolic murmur characteristic of valvar aortic stenosis
and early diastolic murmur representative of aortic regurgitation recorded at

the aortic area from a patient aged fourteen years old.

Notice that the best theoretical position to record the characteristic protosystolic
click of congenital aortic stenosis is the mitral area at the apex, and that the best
position to record the valvar murmur is the aortic area. Nevertheless, some
recordings in the database were obtained from different locations, either the lower
left sternal edge instead of the mitral area for the protosystolic click, or the
pulmonary area instead of the aortic area for the systolic murmur. This represents
a sub-optimal sensor placement with the exception of the recordings of sub-aortic
stenosis for which the epicentre is not located in the aortic area. The decision
nevertheless is based on practical considerations found during the auscultation by

the consultant.

The leave-one-method, recommended when the number of available samples is
small (Rangayyan, 2002), was selected for the estimation of the classification
accuracy of the HMMs. Following this procedure, from the sixteen PCG signals

available, eight for each medical condition, only the PCG signal of one patient
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was used for each testing event. The rest of the signals, divided in two sets

according to its class, were used to train the HMM for each condition.

The training sets are formed of cepstral coefficients of five systolic cycles of PCG
signals representing the medical conditions under study. Although the set
consisted of eight signals, these were obtained from only five or six patients.
Since it is expected to find higher inter-subject than intra-subject variability in the
PCG signals, five systolic cycles were considered as a reasonable number to
represent the variability among systolic cycles from the same patient. Each cycle
of the PCG signal to test was considered as an independent event though, and

therefore, eighty systolic cycles were used for the screening test.

To train the hidden Markovian models, uniform values were provided as initial
estimates for the parameters and these values were refined using an estimation—
maximization algorithm (Rabiner, 1989; Murphy, 2001; Charbit, 1999) to capture

the statistical parameters modelling a training set of PCGs for each of the medical

conditions.

Initial Prob. | Sate transitions Mean Variance
HMM [T S Sz S Muy, Sigma,
Ik S Sz Sas Mu, Sigma,
I Ss1 Sza2 Sss Mu; Sigma;

Normal 1 0.9165 0.0835 0 0.8887 | 0.0076

0 0 0.9427 0.0573 | 0.7096 | 0.0013

0 0 0 1 0.7845 | 0.0026

Aortic stenosis | 1 0.8024 0.1976 0 0.9075 0.0053

0 0 0.8971 0.1029 | 0.9751 0.0086

0 0 0 1 0.7303 | 0.0026

Table 7.2. Values obtained for the HMM for the normal and the aortic stenosis

classes during the training process. [], Initial state distribution vector, S, state transition
probabilities, Mu, and Sigma, are the mean and variance that characterize the Gaussian

observation symbol distribution.
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Initial | Sate transitions Mean | Variance
Prob. S Siz Si3 Muy, Sigma,
Testing | Training I St Sz Sx Mu, Sigma,
[k St S;2 Sy Mu; | Sigma,
[JE
Asl As2, As3, | 1 0.8358 0.1642 0 0.9122 | 0.0054
As4, As5, 10 0 0.8584 0.1416 | 0.8862 | 0.0058
As6 0 0 0 1 0.6797 | 0.0017
As2 Asl, As3, | 1 0.8866 0.1134 0 0.9071 | 0.0056
As4, As5, 10 0 0.8775 0.1225 |0.7828 | 0.0031
As6 0 0 0 1 0.6653 |0.0013
As3 Asl, As2, |1 0.6978 0.3022 0 0.9093 | 0.0055
As4, As5,10 0 0.8873 0.1127 |0.9657 | 0.0074
As6 0 0 0 1 0.7373 | 0.0043
As4 Asl, As2, | 1 0.7124 0.2878 0 0.9062 | 0.0053
As3, As5,10 0 0.8895 0.1105 | 0.8376 | 0.0056
As6 0 0 0 1 0.7123 | 0.0066
AsS Asl, As2, |1 0.8259 0.1741 O 0.9193 | 0.0043
As3, As4, 10 0 0.8521 0.1488 |0.9715 | 0.0087
As6 0 0 0 1 0.7462 | 0.0025
Asb6 Asl, As2, |1 0.7151 0.2849 0 0.9076 | 0.0052
As3, As4, |0 0 0.8976 0.1024 | 0.9817 | 0.0086
AsS 0 0 0 1 0.7244 | 0.0030

Table 7.3. Values obtained for the HMM for the aortic stenosis classes for

different training sets. [], Initial state distribution vector, S, state transition probabilities,

Mu, and Sigma, are the mean and variance that characterize the Gaussian observation symbol

distribution.

Table 7.2 shows the parameters of the HMM representing the normal and aortic

stenosis classes. Note how the model presented in figure 7.1 is reflected in the
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parameters. The model chosen always starts in state 1, and this is reflected in the
set of initial probabilities. The model is forced to end in state three, and therefore,
the transition probability Ss; is one. The left-right characteristic of the model is

reflected in the fact that all backwards transitions S,;, S3; and S3; are cero.

The transition matrix for the normal signal shows higher self transition
probabilities compared with the aortic HMM. The mean value of the normalized
cepstral coefficient for the aortic stenosis class shows the same transition pattern
as shown in figure 7.1. From a mean value of 0.9075 for state one, to a higher
value of 0.9751 for state 2 and afterwards to the lowest value of 0.7303. A higher
variance for the second state is probably related to the mid-systolic murmur,
whilst the high mean and variance for state one of the normal class is probably

related to inclusion of the end of S1 into the systolic cycle.

The values shown in table 7.2 were obtained using all the training signals, but in
order to test the algorithm, the leave-one-out method was used. Table 7.3 shows

how the parameters change depending on the set of training and testing signals.

Table 7.3 shows the strong dependence that the parameters of the HMM have on
the small training set. Given the trained HMMs, the probability for each systolic
cycle of being produced for a particular HMM was computed. Note that each
HMM has an initial state probability, and therefore, every time a new set of
cepstral observations (representing a systolic cycle) is evaluated, the most

probable initial state is defined considering this probability.
Each systolic cycle (represented by its cepstral coefficients) was scored
individually as successfully identified or otherwise, as misclassified. An overall

score for a single patient’s PCG was scored from the individual cycles.

The training and testing sets were renewed to obtain another testing event. This

procedure was followed until all the sixteen PCG signals were tested.
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7.4 Screening test results

In Chapter 5, cepstral coefficients and two alternative methods to extract feature
representations namely Maass-Weber representations and line spectral frequencies
were presented along with their viability to visually represent the explicit

variations in PCG signals typical of specific diseases.

Although all the methods proved to be able to represent these variations, their
ability to reflect the key parameters that would simplify the classification process
needs to be evaluated within the context of a specific classifier. Some feature
representations may be more suitable for certain classifiers than others.
Redundancy of the information, parameter interdependence, the compromise
between the length and number of parameters required for the representations
versus the size of the data-base available, and implicit assumptions of the
classifier are some of the factors that contribute to this interdependence between
the representations and the classifier performance. Moreover, the classification
performance is also highly dependent on the accuracy with which the phenomena
of interest is represented in the subspace of sample signals available for training

and evaluation.

A technique for phonocardiogram signal analysis and classification has to be
evaluated considering both the signal representations and the classifier since they

are strongly related.

Neural networks and Maass-Weber filter representations have been used before
for the classification of phonocardiograms (Barschdorff, 1995) and results have
been published for LPC coefficients used for heart sound analysis and

classification (Itawa, 1997).
As explained in Chapter 4, the line spectral features are an alternative

representation derived from LPC coefficients, although no studies have been

found on the use of line spectral frequencies applied to PCG analysis.
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Considering these factors, the performance of the hidden Markovian models as
classifiers using cepstral cefficients, line spectral frequencies, and Maass-Weber

filters as feature representations will be evaluated in the next section.

7.4.1 Hidden Markovian models and cepstral representation

Normal Aortic Stenosis
Systolic Overall Patient | Patient Overall Systolic
Cycles Score score Cycles
:. 1|9
2 10
3 11
4 12
5 13
6 14
:l 8§ |16
FP . TN | | TP [ |FN .

Table 7.2. Results of the Classification using Cepstral Representation. The black
boxes represent incorrectly classified signals (false positives Fp for normal samples, false
negatives FN for aortic systolic cycles), whereas white boxes represent signals correctly classified

(true negatives TN for normal samples, true positive TP for aortic systolic cycles).

Table 7.2 presents the results obtained for the classification of the signals using
cepstral representation and the HMMs for aortic stenosis and normal systolic

cycles.
The black boxes in the figure represent the signals that were incorrectly classified.

For patient one for example, although the signal corresponds to a normal PCG the

second systolic cycle was classified as aortic stenosis. Similarly, the black boxes
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for patient 11 means that all the systolic cycles were classified as normal which is

incorrect.

Table 7.2 is useful to relate the performance of the classifier to the signals
evaluated and therefore, it is valuable for identifying probable sources of error and

possible improvements.

Analysing the performance of the HMM for aortic stenosis, from table 7.2 it can
be seen that the model could not detect any murmur in the PCG of patient 15.
Referring to the medical records, the signals from patient fifteen and fourteen are
in fact signals from the same person, but recorded in different auscultation areas.
The signals of patient fourteen correctly identified were recorded in the aortic area
whereas the signals of recording fifteen were recorded in the mitral position. The
mitral position is usually preferred to register the ejection click since the murmur
is very soft or inaudible in this area, whereas the aortic stenosis murmur is loudest
in the aortic area (Brown, 2002). Therefore, the decision of the algorithm to
classify as aortic stenosis only the signals recorded in the aortic area may be
correct. Nevertheless, for signals 11 and 12, both from the same person and
recorded in different auscultation areas, the model could not identify the systolic

murmur in the signals recorded in the aortic area.

Figure 7.3 shows PCG for the same patient recorded at different auscultation
areas. The PCG signal recorded at the lower left sternal edge exhibits the
characteristic click of a congenital aortic stenotic valve, whereas the systolic

murmur is better seen at the recordings from the aortic auscultation area.

The results can also be represented using standard definitions for the screening

test:

e A true positive (TP) is defined as the case when the systolic segment contains
an aortic stenosis murmur and the algorithm acknowledges that the sequence
of corresponding observations have been most probably generated by the

hidden Markovian model of aortic stenosis. In Table 7.2 for example, the
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systolic segments for the PCG signal of patient 9 were all correctly identified
as containing aortic stenosis murmurs, and were therefore represented by a

white box.

PCG characteristic of Aortic Stenosis recorded at the LLSE
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T T T 1 7

4 L i i L I i L
] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

PCG characteristic of Aortic. Stenosis recorded at the Aortic Area

1.5

05

(=)

-0.5

H H
0 500 1000 15000 2000 2500 3000 3500 40000 4500 5000

Figure 7.3. PCG Characteristic of a Congenital Aortic Stenotic Valve Recorded
at the Lower Left Sternal Edge and at the Aortic Area. Fs =4 KHZ.

e A true negative (TN) in this case represents the condition where the systolic
signal segment contains no murmur and the algorithm classifies the signal as
most probably generated by the hidden Markovian model of the normal PCG
signals. The white boxes assigned to each systolic cycle of patient 2 exemplify
this situation, i.e. the segments correspond to a normal PCG and are assigned

to the HMM for normal signals.

o A false negative (FN) for this screening test is the situation when the

algorithm assigns to the normal class a systolic cycle which contains a
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murmur characteristic of an aortic stenosis condition. This situation is
exemplified by the signal of patient 15 in Table 7.2. All the systolic cycles
from a patient presenting a form of aortic stenosis were incorrectly classified

as normal, and consequently they were represented by black boxes.

e A false positive (FP) occurs when a systolic signal from a normal PCG is
incorrectly classified as belonging to the aortic stenosis murmur group. This
false alarm is represented by black boxes in Table 7.2 as in the second systolic

cycle of the signal from patient 3.

Considering the previous definitions the performance of the classification

algorithm can be stated in terms of sensitivity and specificity.

e The sensitivity (S+) of a test represents its capability to detect the presence of
the disease. In this case, it provides the proportion of PCG signals containing a
murmur of an aortic stenosis condition that are correctly identified by the
algorithm. Therefore, it can be defined as the number of true positive

decisions divided by the number of signals with the disease.

S+ = TP .
TP+FN

e The specificity (S-) of a test indicates its accuracy in identifying the absence
of the disease of concern. In this case, it provides the proportion of normal
PCG signals correctly identified by the test. It can be defined as the number of
true negative decisions divided by the number of subjects presenting the

normal class sample.

S-=__TN .
TN+FP

The sensitivity and specificity values provide useful indication of whether a test is

useful in making diagnosis. Once the test has been performed, the sensitivity and
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specificity do not indicate whether a positive result truly means the presence of a

disease. That information is given by the predictive values.

e The positive predictive value (PPV) represents the percentage of the cases
labelled as positive by the test that are actually positive. For this example, it
represents the percentage of signals classified as aortic stenosis that are

actually derived from an aortic stenosis related condition.

PPV=100__ TP .
(TP+FP)

e The negative predictive value (NPV) represents the percentage of cases
labelled negative by the test that are actually negative. For this example it
represents the percentage of signals clasiffied as normal that are actually

representative of an anatomically and functionally normal heart condition.

NPV=100__TN .
(TN+FN)

The predictive values are clinically useful but depend very strongly on the
prevalence (Prev), that is the proportion of cases with the abnormality (Altman,
1991). A test with a constant sensitivity and specificity may have different
predictive values for different groups making necessary a correction when tests

conducted on different populations are compared (Chu, 1999).

PPV= (St )(Prev)
(S+)(Prev) + (1-S-)(1-Prev)

1-NPV= (1-S+)(Prev)
(1-S+)(Prev) + (S-)(1-Prev)
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For the screening test the prevalence is set to fifty percent since for all the
medical conditions in this study the same probability of occurrence is assumed.

Consequently, both classes are represented by the same number of samples.

Likelihood ratios (LR) are an alternative, newer method of judging the accuracy
of a test. The likelihood ratio positive (LRP) compares the proportion of patients
with the disease that have positive test results with the proportion of patients
without the disease that have positive test results. The LRP is the ratio of these

two proportions (Chu, 1999).

LRP= _S+ .
(1-S-)
LRN=_1-S+
S-

This approach may give further insight into the interpretation of diagnostic test
data although it does not add new information since it uses the same quantities
explained before. A likelihood ratio may demonstrate that the test is useful.
However, it does not necessarily indicate that a positive test is a good indicator of
the presence of disease (Altman, 1991). The likelihood ratio is especially useful to
assess a sequence of tests. Table 7.4 shows the interpretation of likelihood ratios
for the estimation of post-test probabilities. Values of LRP higher than 10 and
values of LRN lower than 0.1 are considered to indicate that a test is of great

diagnostic importance (Flores, 2002).
Following these standard diagnostic tests (Petrie, 2000; Rangayyan, 2002), Table

7.5 summarises the performance of the classifier based on the results presented in

Table 7.2.
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Likelihood ratio Changes from pre-test to post-test probabilities
>10 or<0.1 Large, often conclusive

5-10 or 0.1-0.2 Moderate

2-5 or 0.5-0.2 Small but sometimes important

1-2 or 0.5-1 Small, rarely important

Table 7.4. Interpretation of Likelihood Ratios.

No of

FP | TN | TP | FN | S+ S- PPV | NPV | LRP | LRN
samples
80 5 | 35126 14 | 65% |87.5% | 83.8% |71.4% | 52 | 04

Table 7.5. Evaluation results using Cepstral Representation. FP false positives, TN

true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity, PPV positive
predictive value, NPV negative predictive value, LRP likelihood ratio positive, LRN likelihood

ratio negative.

Table 7.5 is useful to evaluate the performance of the classifier in numerical
figures suitable for comparison to other methods. In particular, the values of

likelihood ratio are useful to value the classifier for clinical diagnosis.

From Table 7.5, it can be seen that the classifier is better at identifying the
absence of an aortic stenosis murmur (specificity 87.5%) than at actually detecting
the murmur (sensitivity 65%). From the signals classified as aortic stenosis,
83.8% are effectively aortic stenosis (positive predictive value), whereas 71.4 %
of the labelled normal signals are effectively normal (negative predictive value).
The likelihood positive ratio of 5.2 indicates that it is approximately five times
more likely to label as “aortic stenois” a cycle with an aortic stenosis murmur,
than a normal systolic cycle. In interpreting these results it has to be considered
that signals recorded at sub optimal positions where the murmur is not at its

loudest were included in the training process. The PCG recorded at the LLSE
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shown in Figure 7.3 for example although it is from an aortic stenosis condition, it

does not present the characteristic systolic murmur.

7.4.2 Hidden Markovian models and line spectral frequency representation

For the line spectral frequency representation the systolic signals are divided into
frames of 25 ms overlapped by 50%. An 8-pole model provides the LP
coefficients as described by Iwata (1977). However, instead of representing the
signal by the ‘significant’ poles (bandwidth < 80 Hz) line spectral pairs and line
spectral frequencies are obtained from the LP coefficients as described in Chapter
5.

Normal Aortic Stenosis
Systolic Overall Patient | Patient Overall Systolic
Cycles Score _ Score Cycles
] 1 9
"l: 2 10
3 11
4 12
5 13
6 14
7 15
ﬂ 8 16
FP . TN [ TP D FN .

Table 7.6. Results of the Classification using Line Spectral Frequency

Representation. The black boxes represent incorrectly classified signals (false positives Fp for

normal samples, false negatives FN for aortic systolic cycles), whereas white boxes represent
signals correctly classified (true negatives TN for normal samples, true positive TP for aortic

systolic cycles).

The line spectral frequencies form a feature vector and a single Gaussian

probability density distribution is assumed for each feature. Consequently the

138



model uses a weighted sum, or mixture, of several normal distributions and the
parameters are calculated using the equations shown in section 4.6 (m= number of

line spectral frequencies).

Table 7.6 and Table 7.7 present the results obtained for the screening test when
line spectral frequency features are used as representations for the PCG. As in the
case of the cepstral representations, no murmur is identified in signal 15 since the
signals recorded in the mitral area are preferred for detection of the characteristic
ejection click of congenital aortic stenosis where the systolic murmur is very soft
or not present at all. By contrast, all the systolic murmurs are detected for signal
14 from the same patient but recorded in the aortic area since this position is

preferred for murmur detection.

Signals 11 and 12 are recorded in different auscultation areas from the same
patient presenting a mild valvular aortic stenosis. As in the case of the cepstral
representations the classifier fails to detect the systolic murmurs of signal 11
recorded in the optimal aortic auscultation area. Nevertheless, murmurs are
detected in two cycles of signal 12 recorded in the lower left sternal edge. Notice
that this position is in between the optimal area for aortic stenosis murmur
recording (aortic area) and the optimal position for the gjection click recording

(mitral area).

The main difference on performance between representations is reflected on the
identification of the systolic cycles of signal 16. While in the case of the cepstral
representation all the cycles were correctly identified, in the case of the line

spectral frequency all were wrongly classified.

The line spectral frequency representation showed a very small difference for
wrong classification of normal systolic cycles. In this case only four systolic
cycles were labelled abnormal compared with five cycles obtained previously

using cepstral representation.
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The performance of the hidden Markovian model using line spectral frequency
representation is summarised in table 7.7. Using LSF the sensitivity decreases to
55% compared to 65% obtained using cepstral representations. The specificity
slightly increased from 87% to 90% since only four normal cycles were wrongly

classified compared to five cycles for the cepstral representation.

No of
FP | TN | TP | FN | S+ S- PPV | NPV | LRP | LRN
samples

80 4 |36 |22 18 | 55% | 90% | 84.6% | 66.6% | 5.5 | 0.5

Table 7.7. Evaluation Results Using Line Frequency Representation. FP false
positives, TN true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity,
PPV positive predictive value, NPV negative predictive value, LRP likelihood ratio positive, LRN

likelihood ratio negative.

Normal Aortic Stenosis

Systolic Overall Patient | Patient Overall Systolic

Cycles Score Score Cycles

B
Rl

10
11
12
13
14
15
16

FP .TN”— TP DFN.

Table 7.8. Results of the Classification Using Maass-Weber Filter Representation.

00| ~Jf O] Wi B W N~

The black boxes represent incorrectly classified signals (false positives Fp for normal samples,
false negatives FN for aortic systolic cycles), whereas white boxes represent signals correctly

classified (true negatives TN for normal samples, true positive TP for aortic systolic cycles).
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Positive predictive value and likelihood ratio positive are consequently slightly
incremented, but negative predictive values and likelihood negative ratios reflect a

decreased performance.

7.4.3 Hidden Markovian models and Maas-Weber filter representation

Table 7.8 and Table 7.9 show the results obtained for the HMM classifier using
Maass-Weber filter representations as input features. The decreased performance
of the algorithm is better reflected in the likelihood ratio values since the main

difference in performance is given by the misclassification of the first normal

signal.
No of
FP | TN | TP | FN| S+ S- PPV | NPV | LRP | LRN
samples
80 8 132121 |19 |52% | 80% |724% |62.7% | 2.6 | 0.6

Table 7.9. Evaluation Results Using Maass-Weber Filter Representation. FP false
positives, TN true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity,
PPV positive predictive value, NPV negative predictive value, LRP likelihood ratio positive, LRN

likelihood ratio negative.

7.4.4 General results

The graphical and analytical results show a better performance of the cepstral
representations than that of the line spectral frequencies or Maass-Weber features
as inputs for the HMM classifier. Nevertheless, conclusions have to be reached
with some caution. The models for the screening test were representative of only
two medical conditions. For other pathologies, other representations may surpass
the performance of the cepstral representations. Moreover, it has to be taken into
account that only a small set of PCG signals was available. If the three methods of
signal representation have a quite similar performance, a larger database is

required to truly differentiate their capabilities.
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7.5 Comparison to cardiologist

Table 7.10 compares the performance of the HMM classifier and the cepstral
representations with the results obtained by paediatric cardiologists. The study
finds the sensibility and specificity of the clinical diagnosis of congenital heart
disease, made by two paediatric cardiologists, taking as “a gold standard” an
echocardiographic report (Flores, 2002). A study done in 150 children (younger
than 15 years), the clinical diagnosis carried out by paediatric cardiologists with
support of an electrocardiographic study and an X-ray plate of the thorax was

contrasted with results obtained form the echocardiogram (continuous colour

Doppler echo).
No of
FP| TN | TP | FN| S+ S- PPV | NPV | LRP | LRN
samples :
HMM 80 5 35 |26 | 14 | 65% |87.5% | 83.8% | 71.4% | 52 | 04
PC 150 20| 38 | 78 | 14 | 84.8% | 65.6% | 71.1% | 81.18% | 2.46 | 0.23

Table 7.10. Comparative Results Between the Decisions Made by a Paediatric
Cardiologist and the HMM Classifier. HMM hidden markovian model classifier, PC

paediatric cardiologist, FP false positives, TN true negatives, TP true positives, FN false negatives,
S+ sensitivity, S- Specificity, PPV positive predictive value, NPV negative predictive value, LRP
likelihood ratio positive, LRN likelihood ratio negative.

The comparison between the performance of the HMM classifier and the
performance of cardiologists is not entirely valid. The classifier was trained only
for only two classes with very few training samples, whereas cardiologists were
presented with ten classes, and although in both cases the decision was binary
(detected or not), some conditions are harder, or easier, to be detected.
Nevertheless, the comparison is made only to show reference levels to see how

useful the classifier may be as a diagnosis tool.
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The published predictive values for paediatric cardiologist (PPV=79.6% and
NPV=73.1%) were obtained for a prevalence of 92/150. The values shown in
table 7.9 (PPV=71.1% and NPV=81.18%) have been recomputed considering the
prevalence of the abnormal conditions for the screening test (40/80) to ease the

comparison (Chu, 1999).

As it can be seen from table 7.10 the paediatric cardiologist performs much better
to detect the presence of the murmurs (higher sensitivity: S+=84.8% vs S+=65%)
although the lower specificity (S-=65.6% vs S-=87.5%) may indicate a
conservative approach to discarding a suspicious signal. The algorithm shows a
higher certainty to an abnormal signal identified (higher PPV: 83.8% vs 71.1%)
and lower certainty to a normal PCG identification (lower NPV: 71.4% vs
81.18%). Nevertheless, it should be notice that these figures were obtained for the

low number of samples available.

As explained before, the likelihood positive and the likelihood negative ratios can
be used as indicators of how useful is a classifier for clinical diagnosis. The results
of the HMM classifier (LRP=5.2 and LRN=0.4), and the results obtained from the
cardiologist with the help of ECG and X-ray plates (LRP=2.46 and LRN=0.23)
are considered respectively of “moderate” and “small but sometimes important”

clinical value for diagnosis (Flores, 2002).

7.6 Sequential test results

The results presented in table 7.10 compare the performance of either the
cardiologist or the HMM classifier for diagnosis. Nevertheless, as an aid, it is
important to assess how useful the HMM classifier is as a combined test to
improve diagnosis. The results obtained by the cardiologist through the analysis of
X-ray plates and electrocardiogram analysis can be used as pre-test values to asses
the significance of the HMM classifier. More over, the use of these combined tests

for diagnosis may prove to be useful in small communities where there is no
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access to ultrasonic equipment or in cases where the access to ultrasonic services

is inadequate’'.

Likelihood ratios can also be used to combine the results of multiple diagnosis
tests (Chu, 1999). Lets consider a prevalence of 50% for a PCG signal containing
a murmur such as in the screening test presented before. The patient’s probability
of a positive diagnosis after the paediatric cardiologist analysis of the X-ray plates
and electrocardiogram can be obtained using the likelihood ratio positive value

shown in table 7.10.
The pre-test odds for this prevalence of 50% is:

Pre-test odds = Pre-test probability = 0.5 =1

1- Pre-test probability 1-0.5

Since both conditions have the same probability of occurrence. To compute the

post-test odds:

Post-test odds = Pre-test odds x Likelihood Ratio Positive = 1x 2.46 =2.46

This value can be converted to post test probabilities:

Post-test probability = Post-test odds = 2.46 = 0.711
1+Post test odds  1+2.46

This is the positive predictive value (71.1%) for the test as presented in table 7.10.
Therefore, after the diagnosis of the cardiologist the probability of disease
changes from 50% to 71.1%. Notice that this value corresponds to the values

computed for a prevalence of 50%.

! “In the UK, increasing demand for ultrasound services and inadequate resources have led to long
waiting lists with subsequent frustration of hospital clinicians, general practitioners and their
patients’ British Medical Ultrasound Society (Bates, 2003)
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This case corresponds to a controlled test where the cardiologist is presented with
equal number of abnormal and normal signals. The value for the prevalence
(92/150) published by Flores (2002) differ since it reflects the particular case of
the retrospective study (PPV=79.6%). This is one of the reasons explaining why
the likelihood ratio, which is independent of the prevalence of the disease, is
preferred over the positive predictive ratio for assessment of clinical value of a

diagnosis test (Chu, 1999).
Once the paediatric cardiologist has assessed the probability of a positive
diagnosis through the analysis of the ECG and X-ray plates, a sequential test using

the HMM classifier would be useful if it significantly increases the pre-test to
post-test probability of disease.

For the sequential test the post-test odds are given by:

Post-test odds = previous test positive odds x likelihood ratio positive
=24x%x52=12.48

Converted to probability:

Post-test probability = Post-testodds = _ 1248 = 0.9258
1+Post-test odds 1+12.48

From the initial assessment of the cardiologist a probability of disease of 71.1% is
obtained, if the HMM classifier is then used as an aid for diagnosis the probability
increases to 92.5%. This means that 92.5% of the patients with a positive

diagnosis effectively present the abnormality.
The probability of the opposite situation, a patient with a negative diagnosis that
actually presents the abnormality, is given by the combine negative predictive

value.

For the sequential test the post-test odds are given by:

145



1- Post-test odds = previous test negative odds x likelihood ratio negative
=(0.23 x 0.4 =0.092

Converted to probability:

1- Post-test probability = _Post-testodds = _0.092 = 0.084
1+Post-test odds 1+0.092

Post test negative probability = 1- 0.084= 0.9157

Consequentially, after performing both tests, a negative diagnosis will be correct

in 91.57% of cases.

Increasing the initial probability of a positive disease diagnosis from 50% to
92.58% and the probability of a negative diagnosis from 50% to 91.5% through
the sequential use of both test proves the significance of the HMM classifier as an

aid tool to support diagnosis.

An implicit assumption in the previous computation is that both tests are
independent since different populations were screened. Nevertheless, in practice
the sequential test will be applied to the same population, and although the post
test probability may not be as high as the values presented, the specificity will be
increased above that of any of the individual tests (Chu, 1999).

7.7 Summary

In this Chapter, the feasibility of using hidden Markovian models to classify
systolic murmurs was explored. A binary screening test was designed to obtain

valuable numerical figures reflecting the clinical value of the classifier.
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The performance of the hidden Markovian model classifier using cepstral
representations as input features was compared with the performance of a clinical
cardiologist providing diagnosis based on the analysis of the electrocardiogram
and x-ray plates in a similar test. Assuming similar conditions for both tests, the
performance of the hidden Markovian model approach as a sequential test to aid
the pre-diagnosis of the cardiologist was evaluated. Using likelihood ratios for the
multiple testing, it was shown that the use of the hidden markovian model

classifier is clinical useful.

The performance of the hidden Markovian model classifier using cepstral
representations for PCG signals was compared against its performance using line
spectral frequencies. A better performance was obtained for the former, although a

larger database is required to confirm these results.

The classifier was trained only for two classes with a very limited number of
samples. Nevertheless, the results obtained are promising. The validity of the
method was demonstrated although the performance of the classifier is expected

to improve with the addition of more training data.
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8. Summary, Conclusions and Future Work

8.1 Summary

This research starts with an introduction to auscultation particularly focused on
the use of the stethoscope for assessment of heart conditions and early detection of
anomalies. The advantages of this non-invasive technique are highlighted in
particular its value for paediatric cardiology, in which the frail nature of infants
demands the use of passive observation procedures. The use of electronic
stethoscopes and digital signal processing techniques to overcome inherent
limitations of the traditional auscultation technique have lead to new areas of
research. To exemplify this, the study of the genesis, transmission and
propagation of heart sounds, the detection of cardiopathies, ventricular
dysfunction and pulmonary hypertension, condition monitoring of prosthetic heart
valves, and detection of coronary artery disease are briefly described in their

relation to digital heart sound analysis.

The study is oriented into one of these areas of research, namely the detection of
cardiopathies through the analysis of heart sounds. Centred on the paediatric
population, five conditions are initially considered in this study namely: atrial
septal defects, aortic stenosis, ventricular septal defect, innocent pulmonary flow
murmurs, and normal heart sounds. The identification of these conditions is
simplified to a classification task in which the signal is assigned to the most

probable category according to its acoustic features.

After reviewing previous approaches, statistical techniques are proposed for PCG
signal classification. They are considered as advantageous over parametric
classifiers since inter-subject and intra-subject variations are better represented by
statistical parameters and advantageous over neural networks due to their
mathematical tractability. Thus, hidden Markovian models are recommended. One

of the main advantages of this method is its adaptability to different signal
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lengths. This feature is particularly important for the analysis of paediatric heart

sound signals where a wide range of heart rates is expected.

Cepstral coefficients are proposed to provide a simplified signal representation of
the phonocardiogram to serve as input for the classifier. A similar approach has
been suggested before based in the similarities between speech signals and the
heart sound production (Rangayyan, 1978b). In that study single cardiac cycles
were analysed and the higher coefficients were proposed to reflect the differences
between pathologies. In this research, cepstral analysis is proposed based on a
model of the cardiohemic theory, and consequently, the phonocardiogram is
modelled as a heart system response excited by either, the acceleration and
deceleration of blood in the case of normal sounds, or turbulence in the case of

murmurs (see appendix B).

Once a short time cepstrum is obtained the representation relies on the tracking of
the low order coefficients reflecting the system response of the structure. Sensor
movement artifacts and other noises commonly encountered in the PCG are
mainly reflected in high order coefficients (assuming they are fast varying short
time signals, see appendix B) and therefore the low order coefficients offer a
certain degree of noise immunity. This cepstral truncation also provides certain
degree of generalisation, since it reflects the statistical variations between signals

of the same class without reflecting too much detail of a particular signal.

The graphical representations of the heart sounds, representative of the conditions
under study, proved that the cepstral coefficients reflect changes in the
phonocardiogram that could lead to discrimination between murmurs and
ultimately to classification. Nevertheless, in order to compare the performance of
the cepstral coefficients as feature representations, two other representations were

applied to our experimental data.
Firstly, a sub-band energy level representation was obtained from a standard set of

filters (Maass—Weber filters) used in clinical phonocardiology in other countries

such as Germany and Mexico. The frequency response of these filters have been
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defined through experience in clinical practice. Once the PCG signal is filtered,
the energy in each band is computed. This is a sub optimal representation for the
classification algorithm since features obtained using these filters are highly
correlated due to the overlap of the frequency responses. Nevertheless, from a
graphical perspective this representation proved to be very practical for visual

identification of the pathologies under study.

A second alternative representation in which the system response is modelled as a
product of resonances is proposed. In this approach, linear prediction is used to
represent resonances as poles in the complex plane: high frequency poles
correspond to murmurs and low frequency poles represent the heart sounds. A

corresponding filter modelling the frequency response of the system is obtained.

Representations derived from linear prediction analysis have been used before as
input feature representations for PCG parametric classifiers (Itawa, 1977). In
practice, numerical precision and other characteristics make linear prediction
coefficients an unsuitable representation for classifiers. Itawa (1980) for instance,
proposes a feature space formed with prominent poles of the models (with

bandwidth < 80 Hz) for classification.

The coefficients obtained through linear prediction coefficients should not be
used in the statistical classifier to capture the variability among murmur samples
from different subjects, since interpolation between parameters corresponding to
different set of filters neither leads to a smooth frequency change nor ensures
stability. For this research, line spectral frequencies were proposed as a more
suitable representation to be used in the hidden Markovian model. They are more
useful to represent inter subject and intra subject variability since the variations
can be regarded as shifts of the position of the lines spectral frequencies on axis,
and therefore, continuous and smooth transitions are possible. Nevertheless, the
features are highly correlated since each of the resonances is modelled as a pair.
The graphical representation of the PCG signals under study confirms the validity

of using line spectral frequencies to differentiate between pathological conditions.
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Since all the pathologies of interest present systolic murmurs, subtraction of the
systolic cycles allows more detailed modelling. Segmentation is generally
considered as the first stage towards PCG signal classification and is usually done
using auxiliary signals like the ECG and carotid pulse. In paediatric cardiology,
the simultaneous acquisition of these signals is not always convenient or practical.
Therefore, an algorithm to segment the PCG form without the need of an external
reference is required. Cepstral coefficients and hidden Markovian models were

proposed for PCG segmentation.

A simple but effective model was proposed to identify the occurrence of either,
the first and second heart sound, or the systolic and diastolic cycles. The time
characteristics of the PCG signal provided the reference to isolate the systolic
cycles. Using the leave one out method, a single Gaussian hidden Markovian
model trained with the set of normal signals was proposed to perform the
segmentation. The first low order cepstral coefficient conformed the input for the
signal classifier. This continuous observation was related to a two-state hidden
Markov process through a Gaussian distribution. The first state represented the
generation mechanism for either the first or the second heart sound, the second
state was related to the occurrence of either a systolic or diastolic cycle. Decoding

of the state sequence provided the reference for the segmentation.

Considering the detection of the main components, the algorithm was evaluated
for normal heart sounds. True positive events were defined in relation to the
correct state detection and standard diagnostic tests were applied. High values of

sensitivity (100%) and specificity (98%) resulted from the detection model.

The generality of the model trained using normal signals was demonstrated when
used to segment PCG signals representative of other pathologies. The model
resolved the main components for most of the signals using of only one cepstral
coefficient. The use of cepstral truncation and a statistical model retained the main
features of the signals for different auscultation areas, pathologies, and varying

signal length corresponding to different heart rates.
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In both cases: normal and abnormal PCGs, the identification of segments was
checked visually aided by the ECG as a reference for S1. Ideally this could have
been done using an autonomous system since there are several algorithms for
detection of S1 using the QRS complex of the ECG, but a reliable detection of S2

requires the carotid pulse signal which was not available.

S1 and S2 were not allways correctly identified when very strong murmurs
obscured the main features in the first cepstral coefficient representations as one
might anticipate. The use of more coefficients is recommended in these cases
since the main components are less likely to be obscured. Although a good option
for the segmentation process, filtering off the high frequency murmurs from the
PCG was not implemented since initially the identification of the main
components (state decoding) and the classification of the murmurs (likelihood of a
specific model) was conceived as a single process, and in this case the murmur

needs to be kept as it is.

Once the signals were segmented, an abstract model was proposed using temporal
and morphological characteristics of the systolic murmurs. A three-state
Markovian model was selected as the generating mechanism related to the

Cepstral observations by single Gaussian distributions.

A screening test was designed to assess the performance of the algorithm in a
clinical context. For this binary test, the algorithm had to differentiate between
normal and abnormal conditions. From the signals available, the class of aortic
stenosis was selected since a higher number of samples represented it.

Consequently, HMM models for normal and aortic stenosis classes were trained.

The leave-one out method was used during the test procedure. Standard tests were
bapplied to assess the performance of the algorithm. Sensitivity and specificity
values of 65% and 87%., positive and negative predictive values of 83% and 71%,
and likelihood ratios of 5.2 and 0.4 were obtained. For the set used, the algorithm
showed good performance although the algorithm proved better to detect the

absence of the disease rather than its presence. The normal systolic cycles
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presented less variability and therefore, the normal class was better represented

with the reduced number of samples available.

To complete the database for the aortic model, signals recorded from sub-optimal
areas were used for the training and testing. The inclusion of these signals
diminished the performance of the model since the intensity of the murmur varies
according to the auscultation area: it may be very low or even not present in some

locations.

The performance of the algorithm was compared to the performance of paediatric
cardiologists aided by an electrocardiographic study and X-ray plates in a similar
study. The paediatric cardiologists were better able to detect the presence of a
murmur (higher sensitivity: 84% vs 65%) although the HMM showed a higher
certainty to an abnormal signal identified (higher PPV: 83% vs 71%). These
results suggested the use of the HMM as a sequential test to follow the pre
assessment of the paediatric cardiologist. Using both tests, an initial probability of
a positive disease diagnosis increased from 50% to 92% whereas the probability
of a negative diagnosis to be correct increased from 50% to 91%, which shows the

significance of the HMM as a tool to support diagnosis.

A signal classification algorithm depends strongly on the feature representations,
if the distinctive features are captured, the classification problem becomes trivial.
There is also a match between feature representations and the classification
algorithm, therefore the performance of the HMM and cepstral coefficients was
compared to the performance of the HMM and line spectral frequencies. For the
specific screening test, the performance of the HMM using cepstral coefficients
was better, although it is considered that more signals are required to differentiate

the performance of both representations.
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8.2. Conclusions

Cepstral coefficients showed to be suitable representations for PCG analysis and
classification. The features obtained using this technique are able to provide a
simplified representation for the PCG and to reflect variations in the signal due to

abnormalities.

Hidden Markovian models are valuable statistical methods for the analysis and
classification of PCGs. Their merit as useful mathematical abstractions was
demonstrated through the use of particular models proposed to undertake the
practical problems of segmentation of PCG signals and classification of systolic

murmaurs.

Line spectral frequencies were proposed as an alternative representation for linear
prediction coefficients. Although they were able to track changes in the PCG they
showed poorer performance as the input for a HMM classifier when compared to
the cepstral coefficients for our database. Nevertheless, in order to determine the

extent of this, more signals are needed.

The use of a HMM classifier and cepstral coefficients as input features proved to
be of clinical value particularly when used as a sequential test to aid diagnosis.
Nevertheless, although the usefulness of the technique was demonstrated, more

sample training signals are required to develop a system for clinical practice.

A considerable amount of effort has been devoted to the analysis of the influence
of both training and testing sample size on the design and performance of pattern
recognition systems. Although there are some recommendations for practitioners
and rules-of-thumb in the literature (Rangayyan, 2002; Raudys, 1991), these are

related to specific classification methods, under certain strong assumptions.
The performance of the algorithm as an aid for clinical diagnosis is ultimately

compared to the performance of a human expert, and against a gold standard such

as an echocardiographic report. Consequently the number of sampling signals
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required to train the HMM for clinical use should be comparable to the sample
size required in these studies. Flores (2002) defined a set of 150 cases for his
study, and Gottdiener (2004) suggest a range from 100 to 200 subjects for the
application of echochardiography for clinical trials. A set of similar size would be

recommended for the training of the HMM.

8.3. Future work

8.3.1 Comparison to published techniques

The performance of a classification algorithm is strongly related to the database
used for the training and testing procedures. For this reason, in order to determine
the benefits of this approach, it is necessary to compare its performance with that

of other classification algorithms using the same set of data.

8.3.1 Acquisition of more signals

Although the database collected contains a relevant number of PCGs, the number
of signals representative of the conditions of interest for this study is very limited
from the point of view of a statistical classifier. Some signals grouped in the same
class, although relative to the same general pathology, have distinctive acoustical
features that differentiate them according to the specialised literature in
phonocardiology. In the case of aortic stenosis, for example, the study of the
phonocardiogram 1s useful to distinguish among valvular aortic stenosis, a
calcified valvular aortic stenosis, supravalvular aortic stenosis, fixed sub-valvular
fibrous aortic stenosis, and dynamic aortic stenosis (Guadalajara, 1998).
Consequently, more training signals of each condition are required in order to

provide enough data to the models to capture the variations between sub-classes.

8.3.2. More complex models

HMM provide a structure that is broadly appropriate to represent the spectral and

temporal variations of the PCG. However, it is assumed that the sound pattern is
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produced in a process with instantaneous transitions between stationary states.
This assumption is in direct contradiction with the fact that the heart sound signals
are produced by a continuously moving physical system. However, this drawback
may be diminished by a generous allocation of states to make a fair approximation
of a dynamic system. More complex models with continuous state transition
probabilities can also be used to represent dynamical systems. In both cases,
larger sets of training data are required to account for the addition of more states
or more parameters to model the dynamics of the system. In the model proposed
in this study, the size of the training data limited the addition of more discrete

states.

At this stage the PCG systolic signals have been modelled by HMM with a single
Gaussian emission probability density. More complex models can be used to
estimate the emission probability density functions, for instance, HMM with tied
mixture of Gaussians, independent mixture of Gaussians, or neural networks,
however, a more complex approach requires more training sequences to estimate

the model parameters.

8.3.3 Full heart cycle model

Pathologies are reflected in the PCG not only with the presence of murmurs and
extra heart sounds but also by changes in the components of the signal like the
diminished first sound of an aortic stenosis due to left ventricular hypertrophy or
the delay of A2 as the stenosis worsens. Therefore, a model that could comprise
all the components of the heart sound would be highly valuable particularly in the

cases of combined pathologies.

8.3.4 Alternative feature representations

The selection of cepstral analysis for feature representation was based in the
cardiohemic theory for the genesis of heart sounds. Nevertheless, cepstral

coefficients are not necessarily meaningful representations in the sense that the
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visual features can not be directly related to the physical phenomena.
Notwithstanding this, they are features possessing embedded information and are
therefore useful for classification, letting the computer extract the subtle patterns
characterising a specific condition. This is in contrast to the standard approach
where the representations are derived to analyse the underlying physical
phenomena, and the changes in the signal are visually traceable to the conditions.
The second approach may provide a better visual representation but not

necessarily a better feature extractor for an automatic classification system.

It is therefore recommended to try feature representations other than the classical

time frequency representations, which provide easy to follow visual identification.

8.3.5 Multiple area acquisition

One of the main auscultation findings for differentiating between similar murmurs
is the localisation and radiation pattern of murmurs. Simultaneous PCG
acquisition for different auscultation areas will provide important information for

the identification of pathologies.

8.3.6 Non-contact phonocardiology

The mass of the stethoscope used in traditional phonocardiology affects the
frequency response and amplitude of the heart sound signals recorded at the chest.
Moreover, handling noise and the added complexity for multiple signal
acquisition suggest the use of non-contact methods for heart sounds recording.
Laser phonocardiography has been used to measure foetal heart activity
(Morgenstren, 1989) and to detect coronary artery disease (Furukawa, 2004). This
technique, based on a Michaelson interferometer, provides higher sensitivity,
wider frequency response, and may be useful for the implementation of a system

for multiple point PCG acquisition.
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Appendix A: Flow diagrams

Implementation

The programs were initially implemented using Matlab version 5.3.1 (R11.1)
running in a computer with a Pentium II processor and windows 98 system. It
took 5 minutes to run the segmentation algorithms, and around 4 minutes to run
the classification program for each signal under test. Considering that there were
17 signals for abnormal PCG segmentation and 16 for systolic murmur
classification, this was a problem specially for debugging and features
comparison. However, using the same Matlab version 5.3.1 but on a computer
with an Intel Centrino M at 1.60 GHz and windows XP the segmentation and

classification algorithms now run in 23 and 20 seconds per set respectively.

The next section shows the flow diagrams for the programs making reference to

the equation defined in chapter 4.
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Heart Sound Segmentation by HMM

Learning:
Training HMM using Normal PCGs :
20 signals (using leave one out) for normal PCG
segmentation (25 for abnormal PCG segmentation)

\ 4

Make database of training signals
Extracts 5 cycles of normal PCG signals
Normalize
Extract cycles using ECG
QRS detection

A 4

Compute cepstral coefficients
Obtain observations sequence O

Initialize the HMM.:

Structure and initial values
1 Gaussian, 2 States,
ho ={IT, A, Mu, Sigma},
threshold d

-
-

A A

Using O compute:
Bsat(i)aBT(i)s
ét(iaj)ﬂt(i)a
XEu 2mt

Baum-Welch!

Y

Obtain new parameters:
New A, ={I1,,Mu,, Sigma,, A,}

1ogP0| )~logP(0| 4,)<d

Trained HMM
An ={I1, Mu, Sigma, A}

!

! Using function ‘ess_mhmm’ from ‘hmm_learn’ Murphy’s (2001) HMM toolbox
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Segmentation: l

Load new PCG ()
Normalize ()

\ 4

Compute cepstral coefficients ()
Obtain observations sequence O

Y
Load the trained HMM ()
Ao ={I1, A, Mu, Sigma}
and compute B

A 4
a) initialize (using og)
8, (i) and y (i)

A 4
b) compute (using O)
8; (j) and . (j)

Viterbi algorithm®

A 4

¢) obtain
P* and q*t

A
d) sequence
backtracking

P* and q*;

A

Most probable state sequence aligned to the new PCG

2 Using viterbi_path from Murphy’s (2001) HMM toolbox
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Create sets:

Systolic Murmur Classification by HMM

8 Normal PGCs

8 Aortic stenosis PCGs

A 4

Extracts 5 systolic cycles of 8 normal
PCG = 40 systolic

Extract 5 systolic cycles of 8 Aortic
Stenosis =40 systolic

A 4

Split into training and testing sets

leave-one-out method

A

A 4

J 3

\ 4

1% set:
Testing:
Normal 1 (5 systolic)

Training:
Normal class:
7 Normal (35 systolic)
Aortic stenosis class:
8 Aortic (40 systolic)

/

..................

h 4

16™ set:
Testing:
Aortic 8 (5 systolic)

Training:
Normal class:
8 Normal (40 systolic)
Aortic stenosis class:
7 Aortic (35 systolic)

!
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For each Set: l
Normal training PCGs

Training the HMM
for the Normal class y

Extract systolic cycles ()

l

Compute cepstral coefficients ()

A 4

Initialize the HMM ()

Structure and initial values

1 Gaussian, 3 States, left-right
Ao ={I1, A, Mu, Sigma},
threshold d

»

A4 5
Using O compute:
B, (1), Br(i)
gt(iaj)a Yt(l)a
th: Zyta

Baum-Welch®

\ 4
Obtain new parameters:
New A, ={I1,,Mu,, Sigma,, An}

No

1ogR0| H)-logPO| 4,)<d

Trained HMM
Normal Class

An ={I1, Mu, Sigma, A}

Same procedure for Aortic Stenosis Class.

3 Modified function ‘hmmtrain’ to force left right model from Charbit’s (1999) HMM toolbox.
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Classification:

1

Testing PCG

Y

Extract systolic cycles ()
Evaluate one at time

A 4

Compute cepstral coefficients ()
Obtain observations sequence O

v »

Trained HMM Normal class Trained HMM Aortic stenosis class
An ={I1, A, Mu, Sigma} Aa ={IT, A, Mu, Sigma}
and compute B and compute B

Forward procedure4
4 A
a) initialize (using og) a) initialize (using og)
81 (1) and y; (1) 81 (1) and v, (i)
h 4 Y
b) compute (using O) b) compute (using O)
8; (j) and y: (j) 8¢ (j) and ¢ (j)
A 4 Y
c) obtain c) obtain
P(O}Ax) P(O[ra)

P(O[Ax) > P(O[Ra)

PCG Aortic
Stenosis

PCG Normal

* Function “forback’ from Charbit’s (1999) HMM toolbox.
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Appendix B

Cepstral analysis for PCG signals

This appendix shows the steps involved to obtain the input representations for the
HMM using simulated and real PCG signals. Details of the implementation, such
as the window size selected for the FFT, and the choice of the number of
coefficients to represent the signal, are also provided. The concept of impulse
response and excitation separation through cepstral liftering is explored, and the

cepstral coefficients are related to the spectrogram to explain their meaning.

PCG Signals

Synthetic and real PCG signals are going to be used in this appendix in order to
explain the concepts involved in the application of cepstral analysis to
phonocardiogram signals. The synthetic signals are used to explain the theoretical
concepts of the technique, whilst the real PCGs are used to ilustrate the details of
the implementation. The validity of these synthetic signals to represent real data
may be questionable, but using simulated data it is possible to show the concepts

and the details that may not be so easy to visualize using only real signals.’

Synthetic PCG

Simulation of the first heart sound

The synthesis of the first heart sound is based on a model proposed by Chen
(1997) in which S1 is composed of two types of vibration: a valvular component
and a muscular component from the myocardium. The valvular component is

produced by resonance of the valve leaflets at constant frequencies, whereas the

! Only real PCG signals were used to develop the algorithms in the thesis.
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myocardial response generates a rising frequency component with instantaneous

frequency proportional to the tension of the cardiohemic system (Chen, 1997b).

The sounds produced by the valves are composed of transient signals of short
duration and decaying amplitude, and therefore are modelled by a set of

exponentially decaying sinusoids.
N

S, ()= Ae™ sin(2I1ft +4,)
i=1

Where A is the amplitude, k is the damping factor, f is the frequency and ¢ is the

phase of the i-th sinusoid.

In this model, the heart sound signal is the response of a frequency selective
acoustic system which consists of the structures in the chest, the heart, and the
major vessels to the impulse excitation of the rapidly decelerating flow on the
valve leaflets. This model is adopted for the simulation of S1 since it agrees with

the theory for the genesis of the heart sounds used in this research.

A modulated frequency component associated with the myocardial tension
generated during left ventricular contraction constitutes the second type of
vibration. This is represented by a deterministic signal with frequency and
amplitude modulation. The frequency is increased during contraction and then
remains constant as the force plateau is reached. The amplitude increases rapidly,

stays constant for an interval, and then fades to zero.

The myocardial component is thus represented by
S,(1) = 4, (0)sin2II(f, + £, () + ¢, (1))

Where Ay, is the amplitude modulating wave, f; is the carrier frequency, fin is the

frequency modulating wave, and ¢ is the phase.
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The first heart sound is thus represented by

S =S5, 0<t<t,
S,(0) = S,(1)+S,(t~1,) (1,

Where t, is the delay between the onset of the two components, since the mitral

valve closes after the myocardium contracts.

$1

0.8+ ~

\/ N\

Normilized amplitude
(=]
\

1 / 1 | 1 1 1 i A i
(o} 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 C.09 0.1
Time [s]

Figure B.1. Synthetic S1.

Figure B.1 show the synthetic signal representing the first heart sound. The signal
has two valvular components (N=2) with frequencies of 50 and 150 Hz,
amplitudes of 1 and 0.5, a damping factor of 60, and a delay of 10 ms (Chen,
1997).

The myocardial component has an amplitude modulation

A, =0.2751.1-0.9cos(83.4m)) 0<t<12ms
A, =0.55 12ms <t <30ms
A, =0.275(1-cos(34nt)) 30ms <t < 60ms
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A =0 t>60ms

The frequency modulating wave is

£.(t) = —40cos(34m), f, = 60Hz, ¢ (£) = 0 0 <t < 30ms

£, (@)=0,f, =100Hz,¢m(t)=———§—ﬂ' 30ms <t < 60ms

The study conducted by Chen (1997) shows that this simulated S1 signal has

temporal and spectral characteristics similar to S1 recorded in humans.

Simulation of a systolic murmur

The synthesis of the systolic murmur is base on the work of Debiais (1997a).
Using a database of 153 patients, the spectrogram of the PCG signals was
computed using a 25 ms Hanning window to find the basic amplitude and
frequency characteristics of several murmurs. Murmurs were then modelled by
random signals modulated in frequency and amplitude to simulate the random

vibrations of bloed due to turbulence.

To simulate the crescendo-decresendo shape typical of aortic stenosis murmur,
random noise is windowed in time by a Hamming window of 300 ms. The
frequency pattern is obtained weighting the frequency response using a Hamming
window centred in the origin in order to obtain the patterns described by Debiais
(1997).

Figure B.2 shows the synthetic aortic stenosis murmur obtained by this procedure.

Note the ‘diamond shape’ mid systolic murmur.
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Figure B.2. Synthetic Aortic Stenosis Murmur.

Simulation of the second heart sound

Following the research of Leung (1998b) the two components of the second heart
sound A2 and P2 are modelled using sinusoids and a Gaussian modulation

function:
N 2 2

h(t) = Ae D cos(2nfit — ¢,)
=1

Where h is the second heart sound, N is the number of components, A; is the

amplitude, o; is the width factor, t; is the time delay, f; is the frequency, and @1is

the phase of the i-zh sinusoid.
Figure B.3 shows the S2 generated using this mode. The components A2 and P2

are separated by 30 ms, the second component is half the amplitude of the first

one, and the sinusoid frequencies are 170 and 100 Hz respectively.
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Figure B.3. Synthetic S2.

This model has been used to investigate the split in S2 for diagnosis of paediatric

heart disease (Leung, 1998b).

Figure B.4. shows the synthetic PCG obtained adding all these components.
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Figure B.4. Synthetic PCG.
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Real signals

Real PCG signals form the database described in chapter 6 and 7 will be used to

demonstrate the technique.

Cepstrum analysis

This section describes the steps involved in obtaining the cepstral representations
used in the thesis. Synthetic signals and real signals are used to explain the
concepts and to obtain critical parameters. In order to ease the interpretation, the
analysis is described using one frame analysis first, and then the concepts are

extended to short-time multiple window analysis.

One frame analysis

The PCG signal is a non-stationary signal and therefore, to obtain the cepstral
representations presented in Chapter 5, short time analysis is required. This
involves segmenting the signal into overlapped windows in which the signal is
assumed to be stationary, and consequently the techniques developed for

stationary signals can be used.

The next section shows the output at the various stages of the process of obtaining
the power cepstral coefficients over a single time window. Once the basic
concepts are explained, a posterior section will show the multiple window

analysis.

Following the steps described in section 5.2.1 the PCG signal is first divided in

frames of 20 ms and a Hamming window is applied.

The choice of window length will be justified later using real signals, but for now

assume a 20 ms frame analysis as optimal. Figure B.5a shows the first 20 ms of
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the synthetic PCG signal shown in figure B.4 whilst B.5.b shows the same signal

but a Hamming window has been applied.

a) Synthetic PCG
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Figure B.5. 20 ms of the Synthetic PCG.
a) Raw Signal, b) Hamming Windowed Signal.

Figure B.6 show the spectrum of the signal shown in figure B.5.b, and the log

spectrum computed using a discrete Fourier transform.
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Figure B.6. Spectrum.
a) FFT, b) Log FFT.
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An inverse Fourier transform applied to the signal obtained in B.5.b will provide

the ceptrum shown in figure B.7.
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Figure B.7. Cepstral Obtained for the First 20 ms Window of the Synthetic
PCG.

Figure B.7 shows the cepstral coefficients computed for the first window of 20 ms

of the synthetic PCG signal.

Liftering

It is possible to go back one step in the process in order to understand how the

cepstral coefficients are related to the spectrum.

Filtering the cepstrum (a process referred as liftering) can be applied to remove
certain components and show the relative influence of the remaining coefficients.
A simple filter is one which simply truncates the cepstral sequence by giving a
weight of one to the low coefficients up to a certain index, and a weight of zero to

the high order coefficients.

Figures B.8 and B.9. show the log spectrum computed from the low order

coefficients.
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Figure B.8. Log Spectrum Computed From the Cepstral Coefficients.

The top left plot in figures B.8 and B.9 show the log spectrum obtained from the
time signal. The next plots show the log spectrum obtained applying an inverse

Fourier transform to the low order liftered cepstral coefficients.

Since the log magnitude spectrum is symmetrical, the FFT can be simplified to a
discrete cosine transform. For a spectral representation with N channels with log

magnitudes A; to Ay, the cepstral coefficients can be computed as follows:

N (1 —
¢, = %ZA,. COS(E(Z—N—@) for 0<j<N

i+1

Figure B.8 shows that the low order cepstral coefficients provide a simplified log

spectrum representation, i.e. a smoothed log spectrum. As the number of
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coefficients included in the computation is increased more detail is added to the
log spectrum shape. When j=0, the Equation simplifies so cepstral coefficient zero
co is a constant value equal to the mean of the log spectral signal computed from
the time signal, and provides an indication of overall amplitude level for the

frame.

Figure B.8 shows that five coefficients seem to provide a good representation of
the overall shape of the log spectrum, specially comparing to figure B.9 that
shows that doubling the number of coefficients does not provide much more
detail. Note as a signal representation, the smoothing action on the spectrum also
provides a degree of noise and artefacts immunity as shown in section 6.4.7.
Depending on the application, a smoothed spectrum obtained from a few low
order cepstral coefficients may be enough to represent the signal whilst in other

applications a more detailed spectrum may be required.

In this thesis, initially, five cepstral coefficients were considered sufficient to
represent the PCG for classification purposes, since the time evolution of these
coefficients seems to provide enough detail to differentiate the pathological
conditions (see figure 5.3 for example). From figure B.9 it can be see that the
inclusion of more coefficients provides a more detailed representation, but the
small database limited the numbers of features since a balance between sample

size and feature representation has to be kept.

Multiple Frame Analysis

The procedure to obtain the power cepstral coefficients described before is applied
to each window for the whole length of the PCG signals. A single value is

obtained for each cepstral coefficient, per window.

The cepstral representations used in the thesis are therefore the time evolution of

each of the cepstral coefficients (over all the windows).
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Figure B.9. Log Spectrum Computed From the Cepstral Coefficients.

Figure B.10 shows the time evolution of the cepstral coefficients (normalized)
computed for the synthetic phonocardiogram. This representation is similar to

figures 5.2, 5.3 or 6.2 for instance.

Window size considerations

Considering that the cepstrum is obtained from the spectrum, the literature related
to the optimum window size for PCG analysis using this time-frequency

representation was used as a guideline to select the window size for the cepstrurm.

Because of the non-stationarity of the PCG signal it is important to maintain an
analysing time window as short as possible to guarantie the stationarity hypothesis
over the analysed segments. On the other hand, a short time window will reduce

the frequency resolution of the resulting spectrogram.
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Figure B.10. Cepstral Representations of a Synthetic PCG.

The optimal duration of the time-window used to compute the time-frequency
representation (spectrogram) of the phonocardiogram was studied by Jamous
(1992) in four dogs by using intracardiac and thoracic measurements of the PCG.
The power and cross-spectrograms of the intracardiac and thoracic PCGs were
computed using a fast Fourier transform algorithm and a sine-cosine window with
10 per cent decaying time weighting functions. A coherence spectrogram was
also computed for each dog to study the linear relationship between the two
signals and determine the optimal time-window duration. Results show that the
optimal range of the time-window duration is between 16 and 32 ms. A time-
window shorter than 16 ms spreads out low-frequency components into the higher
frequencies and generates a spectrographic representation with poor frequency
resolution. A window larger than 32 ms increases the frequency resolution but
smears the spectrographic representation of the signal in the time domain and thus

cannot correctly reflect the time-varying properties of the signal.
Using synthetic murmurs, Debias (1997b) adjust the basic parameters of

spectrograms, Choi-Williams, and Bessel distributions to provide the best time-

frequency representations. The adjustment of the parameters is performed by
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computing and minimising the relative averaged absolute error between the
frequency contours at -3 dB and -10 dB of each time frequency representation of
the simulated murmurs and those of the theoretical distributions found in their
previous study (Debias, 1997a). They propose a 30 ms Hamming window as an
acceptable compromise for the spectrogram to detect their simulated heart

murmaurs.

Different authors propose different window lengths for the computation of the
spectrogram of PCGs (Djebari, 2000; Debias, 1979, Jamous, 1992) depending on

which resolution is more important for their particular research.

Although this thesis focuses on the analysis of murmurs rather than the analysis of
the second heart sound for diagnosis, the importance that the split of S2 has for
the diagnosis of atrial septal defect through auscultation suggested that the PCG
representations should consider the time occurrence of the A2 and P2 components
of S2.

Under normal conditions, during expiration P2 appears from 10 to 30 ms after A2
(Guadalajara, 1998; Leung 1998b) and from 30 to 40 ms during inspiration. A
time window of 20 ms, in the middle of this range, and within Jamous (1997)
proposed range, was selected. Note that since windows are overlapped by 50 %

this means that the analysis is actually performed every 10 ms.

Figure B.11 shows a PCG presents a ventricular septal defect form a 8 day old
baby, recorded between the lower left external edge and the apex (HR = 126 bpm,
Fs = 4kHz). Figure B.12 and B.13 show the surface plot of the spectrogram of S2

computed using a 20 ms window as proposed and a 32 ms time window.

In the spectrogram computed using a 20 ms window (Figure B.12) the two
components of S2 namely A2 and P2 are clearly separated, whilst in the
spectrogram of Figure B.13 computed using the 32 ms upper range value
proposed by Jamous (1997) both components are smeared by the low time

resolution.
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Figure B.14 show a normal PCG recorded in the pulmonary area at a sampling

frequency of 4 kHz.
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Figure B.15. Cepstral Obtained the First 20 ms Window of the Real PCG.
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Figure B.16. Log Spectrum Computed From the Cepstral Coefficients.
Real PCG.
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Figures B.15 and B.16 show the cepstrum of the first 20 ms window, and the
spectrum obtained from the first five coefficients. These figures are equivalent to

the one frame analysis described before for synthetic signals.
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Figure B.17. Cepstral Representation of the Real PCG.

System response and excitation model

For the segmentation and classification of heart sounds a simplified representation
of the PCG was required as input to the Hidden Markovian Models.
Consequently, power cepstrum, that discards the phase information, was proposed
over complex cepstrum since inversion to the excitation and system response time
signals was not required and the phase complications of complex cepstrum made

it unsuitable as a simplified representation (Rangayyan, 2002).

It is important to note that all that is required for the classifier is a signal
representation that follows the changes in the PCG. There are clearly many
possible signal feature that could be used, but in the current work cepstral

coefficients are investigated
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Representations derived from cepstral coefficients were proposed since the
concept of cepstral analysis corresponds to the most accepted theory about the
genesis of heart sounds. Separation of excitation from the system response is a
theoretical capability of this technique (see assumptions discussed below), but the
technique may also be useful when these assumptions are not justified.
Nevertheless, the following discussion explores the considerations that may lead

to the separation of system response and excitation in the cepstral domain.

Assumptions

The model presented makes the following assumptions:

1) The heart sound signal is assumed to be the convolution of a slowly time
varying system response with a relatively fast varying excitation. Under these
conditions the contribution of the system response to the cepstrum will be limited

to the low order coefficients.

Oppenheim (1975) demonstrated this separation for speech signals assuming a
slowly time varying vocal tract response with a relatively fast varying glottal
pulse train. Following the same assumption of a slowly time varying system
response Rangayyan (1978b) proposed to use this technique for PCG signals and
extracts the system response sequence of the PCG using the low order coefficients
(1978a). More recently Phua (2006) proposes the use of PCG cepstral
representations for biometrics, the high order coefficients are also considered to

be contributions from the fast time varying excitation.
2) Slowly time varying system response
The characteristics of vibrations can be described in terms of a mass supported by

a spring. In an elastic chamber completely filled with fluid, the elasticity of the

wall is analogous to the spring, and the fluid plus the supporting walls are
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analogous to the supporting mass. The frequency at which a system vibrates

depends upon the mass in motion in relation to its elasticity.

In the cardiohemic model the heart walls, blood, and valves vibrate as a whole.
The character of the vibration is influenced by the nature of the specific

cardiohemic system which is vibrating (Rushmer, 1970).

In the heart, the combined mass of the body and the walls of the chambers is very
large in relation to the elasticity of the walls, so it tends to vibrate at low
frequencies (Rushmer, 1970). When the ventricles are contracting, the elasticity of
the heart walls should be greater and the vibration frequency is therefore

increased.

The soft tissues of the body tend to damp the vibrations, and consequently heart
sounds excited by sudden acceleration and deceleration of blood flow consist of
relatively few vibrations. Nevertheless, when a turbulence flow is present the
induced vibration persists as long as energy is sui:plied to the vibrating system
(Rushmer, 1970).

Due to its inertial mass and elasticity the structure system response changes

slowly to a fast varying flow excitation.
3) Fast varying excitation

The excitation in the cardiohemic model is related to sudden accelerations and
decelerations of blood flow, conceptualized as short time fast varying impulses
(compared to the slower time varying system response), or due to blood flow
turbulence. In both cases the excitation is varying relatively fast compared to the

system response.
The contribution to the spectrum from the excitation impulses can be considered

flat for an ideal impulse since it is a spectrally rich signal containing all

frequencies in equal amounts (Vasegi, 2000). For short impulsive forces their
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spectrum falls to a low level at a frequency equal to the inverse of the pulse length
(Fahy, 1998). Assuming the sudden accelerations and decelerations of blood flow
to be impulses that last less than a millisecond, the amplitude spectra would
spread up to a thousand Hertz. The frequencies of the normal heart sounds
probably extend from below 20 Hertz to above 200 Hertz (Rushmer, 1970) and

therefore the assumption of a flat spectrum over that range can be valid.

At a highly increased blood flow velocity red cells move at different velocities
and directions creating blood flow turbulence (Guadlajara, 1998), this is reflected
in a random excitation. A model based on a white noise random excitation force

for turbulence (Debias, 1997) is assumed for the generation murmur generation.

It is important to note that the assumption of excitations with a flat spectrum is not
required for the cepstrum to separate them from system response. Only a fast
varying characteristic compared to a slow varying response of the system is
required. Excitation signals that depart from this short time impulse and white
random noise excitation assumptions (and therefore from a flat response) will
have contributions on the low order ceppstrum coefficients, although the main
contributions are still considered to be mainly due to the slow varying system

response.

The mechanisms that lead to the genesis of the heart sounds are so complex that
the basic nature and the contribution of each of its components is still unknown
(Xu, 2000). Since it is not known what exactly generates heart sounds is not

possible to demonstrate the validity of this model.

Representations in the frequency domain

Assuming the model presented in the previous section for the system and the

excitation, in the frequency domain they will have the following characteristics.

197



1) System frequency response. The frequency response of this system is
defined by its mass and elasticity, and can be represented as a cascade of
damped resonators. The response below natural frequencies of the damped
resonators is controlled by the static stiffness, and above these frequencies
is dominated by the mass (Fahy, 1998). Due to its inertial mass and
elasticity the structure system response does not changes abruptly, and

therefore, the system response within the analysing window is smooth.

2) Excitation spectrum. The excitation spectrum is a rapidly changing flat

spectra produced by white noise or short impulses

Consequently, if the system is set into vibration by an impulse or a random white
noise wide band excitation, the envelope shape of the convolved signal in the
frequency domain would be mainly defined by the resonances in the system’s
response since the excitation signals have a flat spectrum. The total response is
therefore a wobbly version (due to the rapidly varying excitation spectral

contributions) of the system’s response spectrum.

Hlustrating the Cepstrum domain and frequency domain relationship

The aim of the simulations was to show that the low order cepstral coefficients
represent a smoothed spectrum, i.e. the over-all shape of the frequency response.
As the high order cepstral coefficients are included, the corresponding spectrum

includes finer detail.

Low order cepstral coefficients can be therefore related to the envelope shape of
the spectrum and consequently related to the systems response whilst high order
cepstral coefficients representing finer detail on the spectra can be related to the
comparatively very short impulses generated by abrupt acceleration and

deceleration of blood, or turbulence.
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In order to show how the system response shapes the spectrum of the excitation,
the synthetic signals proposed by Chen (1997) and Debias (1997) to simulate the
system response related to the closure of the tricuspid valve and the model for the

excitation due to turbulence, can be used.

Figure B.18 shows the tricuspid component of S1 as proposed by Chen (1997) and
its log spectrum. Figure B.19 shows the excitation signal model for the turbulence

as described by Debias (1997) and its log spectrum.

Figures B.20 shows the time signal result of convolving these system response
and excitation signals and the log spectrum of the resulting signal. As shown in
the figure the resulting log spectrum is mainly defined by the system response

with random variations imposed by the excitation.
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Figure B.18. Tricuspid Component of S1 and its Spectrum.
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Figure B.19. Turbulence-Excitation and its Spectrum.
System response and noise. excitation convolved
2 T ¥ T T 1] T T T T
]
=2
.2 ] 1 I i I 1 t 1 !
) 0.02 0.04 0.08 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time {s]
Spectrum
6 T T T T ¥ T ¥ ¥ 1
‘4 L -
3
=2 ] Yins
Ea 2l M '
or WNWWWMWWWWW
.2 3 i | $ L 1 £ 1 L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency {Hz]

Figure B.20. System Response and Excitation Convolved and its Log
Spectrum.
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Figure B.21. Cepstrum of the Resulting Signal.
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Figure B.22. Log Spectrum of the System Response, Convolved Signal and the
log Spectrum Computed From the Low Order Cepstral Coefficients.
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Figure B.21 shows the cepstrum of the signal result of the convolution of the
system response and the excitation. Figure B.22 shows for comparison the log
spectrum of the system response, the convolved signal and the log spectrum
computed from the low order ceptral coefficients. The spectrum obtained using

the first twenty cepstral coefficients clearly reflect the shape of the frequency

response.

202



