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Auscultation has long been the primary test for initial assessment of the patient's 

heart conditions and early detection of anomalies. However, the reliability of this 

technique on subjective judgement, expertise, and individual's hearing accounts 

for the inconsistency in the diagnostic among experts. Despite several efforts 

towards the development of autonomous systems, their limited success suggests 

the use of new approaches for signal representation and pattern classifiers. 

This thesis explores the use of hidden Markovian models (HMM) for 

characterisation and classification of heart sounds. 

Inspired on the cardiohemic theory, Cepstral coefficients are proposed as 

suitable heart sound representations for analysis and classification. Their 

performance is evaluated by comparison with sub-band energy representations 

derived from a standard set of filters for clinical phonocardiography (Maass-

Weber filters), and line spectral pairs, proposed as an alternative to linear 

prediction coefficients. 

Using hidden Markov models and cepstral representations, an autonomous 

algorithm that requires no external signal reference is proposed for PCG signal 

segmentation. 

Using a database of paediatric heart sounds, a screening test is devised to 

asses the performance of the HMM as signal classifier for systolic murmur 

identification. Measures of diagnostic accuracy for the algorithm are obtained 

using different input representations. The best results, obtained using cepstral 

representations, are compared to those provided by paediatric cardiologist's 

diagnosis based on X-ray plates and electrocardiograpy. Both results are 

combined in a sequential tests to assess the use of the HMM classifier as a clinical 

diagnosis aid. 
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1 Introduction 

7 have been able to hear very plainly the beating of 

a Man's heart ...Who knows, I say, but it may be 

possible to discover the Motions of the Internal 

Parts of Bodies... by the sound they make' 

Robert Hooke (1637-1703) 

1,1 Background 

Auscultation is a non-invasive technique in which a stethoscope is used to listen 

to the sounds in the body. The vibromyogram; a manifestation of contraction of a 

skeletal muscle, and the vibroarthrogram; recorded from an articulation in 

movement, are two good examples of the various applications of this technique to 

gain information about the physiology of the body. When this technique is used to 

listen to the heart, the sounds received provide valuable information concerning 

the integrity and function of the heart valves and on the hemodynamics of the 

system. Auscultation has a high potential for detecting various heart diseases. It 

has long been the primary test for initial assessment of the patient's heart 

conditions and early detection of anomalies. 

The usefulness of auscultation for diagnosis has been recognised for a long time. 

I)iuing thie HipfiocraLtic pericKl (4(50 to 370 ISC]) fcor example, SHisciiWadicHi \vaa 

practised by the direct application of the ear to the patient's chest and abdomen, a 

process known as immediate auscultation. Hippocrates described a succussion 

splash' a noise heard when a body cavity containing air and water is shaken 

briskly. He provided simple descriptions of the sounds that would let one know by 

means of direct auscultation when the chest contained water but no pus. 

(Mckusick, 1958). 

This form of immediate auscultation remained unchanged until Rene Laennec 

invented the stethoscope in 1816 (the word stethoscope derives from the Greek 

words stethos meaning chest and skopein that means to view or to see). Rolling a 
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piece of paper into a sort of cylinder and applying one end of it to the region of 

the heart and the other to his ear Laennec invented the first stethoscope and the 

use of mediate auscultation. 

The invention of the stethoscope, although driven by convenience and propriety 

rather than for a technical need, focused the attention of the scientific community 

on a scientific approach to physical examination. Laennec himself carried on his 

research on diseases of the chest, carefully auscultating close to 3000 patients 

between May 1817 and May 1819, while correlating his antemortem observations 

with necropsy findings. His ability to play a variety of musical instruments 

enhanced his appreciation of the acoustic discoveries. His work ^Traite de 

pddwhai m 1819 pmvicks n%my of rdakd 

terminology still used like the terms crepitations, bruit, rales, egophony, and 

rhonchi (McKusick, 1958). 

Since then, many illustrious physicians have contributed to the understanding of 

cardiac auscultation by providing an explanation for the sounds and noises that are 

heard in the normal and diseased heart. Such has been the impact of this technique 

in medicine that nowadays the most renowned medical instrument is the 

stethoscope. 

The information obtained by the clinician fi-om the sounds produced by the heart 

is used to recognise different heart diseases; however, the use of the stethoscope is 

limited by several factors. The expertise of the practitioner, subjective judgement, 

the limitations of the terminology used, hearing constraints, and constraints of the 

instrument itself, can account for the inconsistency among experts (Rushmer, 

1968). Referring to the instrument for example, from a technical point of view, 

sounds are damped and distorted by stethoscopes. Various types of stethoscopes 

exhibit marked differences in their efficiency at transmission of cardiovascular 

sounds as determined by length of transmission pathway, diameter, and stiffiiess 

of tubing, and especially, the sealing at the chest wall and in the ear canal (Groom, 

1964). 



Despite its limitations, cardiac auscultation remains an important tool for initial 

diagnosis. Many pathological conditions of the cardiovascular system cause 

murmurs and aberrations in heart sounds much before they are reflected as other 

symptoms, such as changes in the Electrocardiogram signal (Rushmer, 1970). The 

cost, ease of operation, and non-invasive nature of cardiac auscultation are 

irreplaceable by other techniques. 

Nevertheless, with the advent of new technologies particularly the use of m-mode, 

bi-dimensional, and Doppler echocardiography, the use of auscultation as a 

aagmxak tool hM been rdegdai The compkxky of Ihis Ac 

incomplete knowledge about the mechanisms generating the heart sounds, and its 

implicit limitations have also contributed to changing it from a diagnostic 

procedure to a pre-diagnostic assessment, which in the vast majority of cases 

needs to be supported by more complex techniques. 

Nevertheless, the evolution of technology also provides the means to overcome 

many of the limitations associated with traditional auscultation technique: 

• The use of means to record heart sounds provides a basis for comparison 

among experts. Phonocardiography is useful to obtain specific measurements 

on the timing of heart sounds and murmurs, and provides a means to archiving 

auscultated sounds for a better follow-up of patients. Simultaneous recording 

of phonocardiograms, electrocardiograms, and carotid pulse provide a better 

tool for diagnosis. Those recordings are also extremely useful for the training 

of future cardiologists. 

• The use of electronic stethoscopes expands the range of frequencies that can 

be used in the analysis of heart sounds beyond the frequency range that can be 

perceived by humans. Electronic stethoscopes can amplify low-level sounds 

and help to minimise the sources of error due to the variability of auditory 

capabilities associated with ageing and differences among individuals. An 

electronic stethoscope can be used as a stand-alone instrument or as input 

stage for an electronic system for processing and displaying. 



» The use of digital signal processing techniques provides different 

representations suitable for objective analysis, comparison, and classification. 

Signal processing techniques can be applied to the heart sound signals 

providing visual representations that could ease the interpretation of the 

physical phenomena involved. The use of time frequency representations 

helps in the detection of murmurs according to their frequency content. 

Changes in the spectrum of the first heart sound component are consistent 

with reduced ventricular elasticity associated with myocardial infarct (Adolph, 

1970). Several efforts have been focused towards the development of an 

autonomous system in order to provide heart sound classification aiming to 

aid diagnosis (Iwata, 1980; Baranek, 1989; Barschdorff, 1995; Leung, 2000b; 

Reed, 2001; Olmez, 2003). 

• Specialised interactive training software offers the opportunity to capture and 

share the expertise required for an accurate diagnosis. Software developed at 

the Institute of Sound and Vibration Research (Brown, 2002) aimed at future 

cardiologists allows the user to listen to a recording and either eliminate or 

enhance the different components until they are confident that the sounds are 

correctly identified. This software is used for teaching auscultation to students 

and junior doctors on the Wessex Cardiothoracic Unit in Southampton. The 

use of this training aid also helps to familiarise the user with the modified 

spectral composition of the heart sounds and murmurs heard with electronic 

stethoscopes. The difference between the sounds obtained with an electronic 

de&os(Mpe aM the fami&c aarnd of the bell and &aplHa&n awmsdc 

stethoscope has been stressed as one of the main difficulties in introducing the 

electronic stethoscope into clinical practice (Durand, 1995). 

Relatively recent technical developments, such as the use of electronic 

stethoscopes and computers have largely contributed towards the renaissance of 

this ancient valuable technique leading to what is now called digital 

phonocardiology'. 



1.2 Digital Phonocardiography 

The use of electronic stethoscopes, the increasing processing power of digital 

computers and the development of signal processing techniques have renewed the 

interest of the scientific community in the improvement and diversification of the 

phonocardiogram analysis techniques. Research in this area can be classified into 

the following main categories: (1) Studies on the genesis, transmission and 

propagation of heart sounds (Fergulio, 1963; Zalter, 1963; Agress, 1964; 

Kingsley, 1974; Van Vollenhoven, 1971; Yoganathan, 1976; Kozmann, 1977; 

Stein, 1980; Durand, 1982, 1985, 1986; Baracca, 1990; Donnerstein, 1994; Wood, 

1995; (2) Detection of cardiomyopathies, ventricular dysfunction and pulmonary 

hypertension by analysis of heart sounds (Rangayyan, 1979; Iwata, 1980; 

Baranek, 1989; Obaidat, 1992; Barschdorff, 1995; White, 1994; Leung, 1997, 

1998a, 1998b, 2000a, 200b; Reed, 2001; Olmez, 2003); (3) Condition monitoring 

of prostethic heart valves (Stein, 1980; Durand, 1986, 1990); (4) Detection of 

coronary artery disease (Akay, 1990a, 1990b, 1991, 1993, 1994). 

1.2.1 Study on the genesis transmission and propagation of heart sounds 

The heart sounds are a consequence of the dynamic events associated with the 

contraction and relaxation of the atria and the ventricles, the valve movements, 

and blood flow; however, the exact mechanisms producing such sounds are still 

not fully understood. 

There are many theories regarding the causes of heart sounds among which two 

main explanations are predominant. The valvular theory (McKusky, 1958) 

hypothesises that heart sounds are transient vibrations resulting from the abrupt 

tension of the valve leaflets at the end of opening and closure of the four heart 

valves, although opening and closure are considered to be silent. The Cardiohemic 

theory introduced by Rushmer (1970) attributes the heart sounds to vibrations of 

the whole heart structure caused by acceleration and deceleration of intracardiac 



blood mass following the opening and closure of the heart valves. Although the 

latter is the most accepted theory there is still some controversy. 

The development of intracardiac phonocardiography, signal processing, and 

echocardiography, has provided new approaches to investigate the basic 

mechanisms involved in the genesis of heart sounds and murmurs. Some of the 

basic controversies between theories were solved, but some others, especially 

those associated with the genesis of the first and third heart sounds and some 

functional murmurs, like the Still's murmur, are still debated (Miao, 1987). 

The application of the fast Fourier transform (FFT) to the spectral analysis of 

heart sounds has improved the basic understanding of the phonocardiogram 

(PCG) and its relationship to the cardiovascular events. 

Several researchers have used FFT analysis of PCG signals. For instance, 

Yoganathan (1976) used FFT to analyse the first (SI) and second (S2) heart 

sounds. They found significant peaks in the 80-400 Hz range in the aortic and 

pulmonary areas and concluded that those peaks are related to the elastic 

properties of the heart muscles and the dynamic events causing SI and S2. 

Stein (1980) investigated the frequency spectrum of S2 and related the frequency 

with the highest amplitude with the stiffriess of the aortic valve. This work 

initiated studies on condition monitoring of prosthetic valves. 

Application of the spectrogram in normal children showed a decrease of the 

frequency content of Still's innocent murmur with an increase in age and heart 

dimensions (Donnerstein, 1994). This study also suggested that the difficulty of 

detecting this murmur in older children is probably due to its decrease in 

frequency content, since the ear is less sensitive to lower frequencies, making this 

murmur difficult to detect by auscultation but not by phonocardiography. 

Baracca (1990) used the spectrogram to evaluate the contributions of various heart 

structures to the time frequency distribution of SI by correlating its energy in 
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various frequency bands with geometrical parameters of the heart structures 

obtained by echocardiography. The best correlation was obtained with the 

diameter of the left atrium, the volume of the left ventricle, the mitral valve area, 

and the aortic diameter. 

Wood (1994, 1995) studied the local time-frequency response of SI recorded on 

the epicardium of dogs during 2 hours of coronary ischemia to determine if 

changes in myocardial properties would affect the time frequency distribution of 

S1 due to a local change in the resonant properties (stifriess) of the myocardium. 

Their results showed inconsistency with the theory supporting a resonant origin of 

the first heart sound. It was thus suggested that SI appears to be a superposition of 

low-frequency vibrations arising from myocardial contraction and high frequency 

transients initiated by valvular activity. 

The exact mechanisms of transmission of the heart sounds and murmurs within 

the heart-thorax structures and on the surface of the thorax are still unknown. The 

transmission characteristic of the thorax, and the various thoracic sites used to 

record the heart sounds and murmurs often generate major difficulties in the 

comparison of the results obtained from different studies. 

The physical, mechanical and vibrational aspects of heart sounds and sound 

transmission through human tissues have been studied in detail by many 

researches using different methodologies (Agress, 1964; Van Vollenhoven, 1971; 

Kingsley, 1974; Kozmann, 1977; Durand, 1985). 

Intracardiac sound generators and transducers were used to evaluate the 

transmission characteristics of the thorax by inside to outside fransmission and 

vice-versa (Fergulio, 1963; Zalter, 1963). The studies indicate that the nature of 

the recorded external sounds depends upon cardiac action characteristics, site of 

sound production, and properties of the conducting tissues. 

Using a multi-channel acquisition system and an array of 25 microphones 

Rangayyan (1987) studied the distribution of the PCG on the surface of the 
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thorax. This study has been used to identify optimal sites of radiation of stenotic 

and regurgitan murmurs by generating reference isocontour maps of the heart and 

murmurs. 

Computer models have been developed in order to characterise the heart thorax 

acoustic system from the point of view of heart sound transmission (Durand, 

1982,1985,1986). 

1.2.2 Detection of cardiomyopathies, ventricular dysfunction, valvular heart 
disease, and pulmonary hypertension by analysis of hearts sounds 

With the aim of overcoming the limitations imposed by traditional auscultation 

techniques, several efforts have been made to use electronic stethoscopes, 

computers, and advanced digital signal processing techniques to analyse heart 

sounds and W rekde quaKkdrwdy PCXj kabiRa vwdithe contapondHyr 

physiological and pathological conditions. 

Most of the research is focused towards the identification of murmurs, i.e. 

abnormal heart sounds caused by turbulent blood-flow in the heart. From the 

localisation of the murmurs, duration, loudness, timing, pitch, quality and shape, it 

is possible to identify anomalies in heart valves, ventricular dysfunction, heart 

defects, and pulmonary hipertension, among other pathological conditions 

(Guadalajara, 1998). 

Initial works were orientated into finding representations that overcome human 

hearing constrains and could provide more information related to the physical 

phenomena. The search of the best feature representation was mainly based either 

on frequency or on time domain analysis (Rangayan, 1979; Obaidat, 1992; Leung, 

1997). 

Subsequent efforts have focused towards the development of autonomous systems 

for heart sound diagnosis in order to avoid the dependence on the skill and 

expertise of the listener and to extend the human hearing system capabilities 



(Iwata, 1980; Baranek, 1989; Barschdorff, 1995; Leung, 2000a; Reed, 2001; 

Olmez, 2003). Some attempts to perform automatic classification explore the use 

of parametric classifiers or neural networks (Leung, 2000; DeGroff, 2001; Reed, 

2001). 

Time frequency methods have been applied to the analysis of signatures of 

paediatric heart murmurs (Leung, 1997,1998a). The murmurs were considered as 

approximately cyclostationary and as a result the signal to noise ratio enhanced by 

averaging the time frequency distributions across cycles of heartbeats. 

The use of signal processing techniques for heart sound analysis and recognition 

will be further explained in chapter 3. 

1.2.3 Condition monitoring of prostethic heart valves 

The primary function of the cardiac valves is to allow unidirectional flow of blood 

through the cardiac chambers. The normal valve performs this function without 

causing obstruction (stenosis) or reversal of flow (insufficiency), which ensures 

efficient transformation of energy from myocardial contraction into blood flow 

circulation throughout the body. When the valves malfunction sometimes 

compensatory mechanisms initially allow the heart to function efficiently, 

however, after some time these mechanisms become inadequate and the heart fails 

to meet the metabolic requirements of the body. 

Either mechanical prosthetic valves or bioprosthetic valves extracted from pigs 

may replace native valves. Although the incidence of mechanical prosthetic valve 

fracture is low, mechanical prostheses are prone to sudden failure due to fracture 

of their components with major consequences and often leading to the death of the 

padicait. ]3i()pr()sth€:tic i/alviss mar/ last from sei/eri k) twelve )%:ars tmt gpnadiwlty 

fail due to tissue degeneration and calcification. The inevitable patient risk 

associated with both mechanical and biological prostheses requires periodical 

evaluations of prosthetic integrity. 



Based on the theory that the opening and closure of heart valves contributes 

directly to heart sounds, PCG analysis offers a non-invasive and passive approach 

to the evaluation of prosthetic heart valves. Stein (1980) were the first to 

demonstrate that the dominant frequency of closure sounds produced by native 

and prosthetic valves was increased by stiffening of the valve leaflets due to 

calcification and fibrosis. 

Durand (1990) studied the spectra of the first heart sound in order to determine the 

contribution of bio-prosthetic valves implanted in the mitral position in humans. 

He demonstrated that the band width of spectrum of the first heart sound broadens 

when the valves degenerate. Durand derived spectral parameters from the first 

heart sound spectra and used them to discriminate normal fi-om degenerated bio-

prosthetic valves achieving classification accuracy as high as 98%. 

Durand (1986) studied the sounds of bioprosthetic valves in the aortic position. 

The comparison among the basic periodogram, Welch's averaged periodogram, 

all pole modelling, and pole zero modelling, showed that the basic periodogram 

provides the best compromise between spectral distribution and localisation of 

spectral frequency peaks of bioprosthetic valve sounds. 

1.2.4 Detection of coronary artery disease 

Coronary artery disease (CAD) is caused by the obstruction of coronary arteries 

by atheromatous plaques. Blood vessels are normally flexible, elastic, and pliant, 

with smooth internal surfaces. When a segment of blood vessel is hardened due to 

the deposition of calcium and other minerals, the segment becomes rigid. 

Furthermore, the development of plaque inside the vessels causes narrowing or 

constriction of the vessel, which impedes the flow of blood. Coronary artery 

disease is the leading cause of death in the western word. 
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The occlusion of coronary arteries is usually detected by Coronary angiography, 

which is an X-ray examination of the blood vessels or chambers of the heart. A 

very small tube (catheter) is inserted into a blood vessel in a groin or an arm. The 

tip of the tube is positioned either in the heart or at the beginning of the arteries 

supplying the heart. Then a special fluid visible by X-ray (called a contrast 

medium or dye) is injected. The X-ray pictures obtained (angiograms) are 

required in order to assess further treatment. Coronary angiography is a time 

consuming and expensive technique. 

An alternative method consists of the development of non-invasive acoustic 

techniques for detection and characterisation of coronary artery disease. Akay et 

al. (1990a, 1990b, 1991, 1992, 1993, and 1994) conjectured that coronary artery 

disease could present high frequency sounds due to turbulence caused by the 

narrowing or constriction of the vessel. The study of the spectra of mid diastolic 

segments of the PCG over 20-30 beats of normal subjects and patients with 

coronary artery disease (confirmed by angiography) showed greater portions of 

the energy above 300 Hz when coronary artery disease was present. Subsequent 

studies demonstrated that relatively high power levels of resonance frequencies in 

the range 400-600 Hz, evident in patients with CAD, were reduced after 

angioplasty (Akay, 1990b). 

In an attempt to improve the diagnosis ability of the technique wavelet transforms 

(Akay, 1994), min-max neural classifiers (Simpson, 1992, 1993), high resolution 

spectKd esdmakKS 1990a, 1990b, 1991), amd ixkqdive line enhancer 

techniques have been used (Akay, 1992,1993). 

1.3 Objective 

Increased concern over the long term effects of radiation of various forms used in 

diagnosis medical imaging has reinforced the need for the development of passive 
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and non-invasive techniques (Verbug, 1979). This concern is particularly 

important in paediatrics due to the frail nature of the infants being examined. 

Moreover, premature births compounded by congenital defects strengthens the 

need for passive observation procedures. 

Auscultation as a passive technique is specially suited for assessment of heart 

pathologies in infants. The technique has the potential to determine the presence 

of a heart murmur and hence, a pathological condition. Nevertheless, some 

limitations of this technique and its demand for high expertise from general 

practitioners means that often a non pathological murmur is not recognised as 

such and the patient needs to be referred for further analysis, bringing unnecessary 

concern, limitation of activity and needless antibiotic prophylaxis (Rushmer 

1968). 

The development of digital phonocardiology and the use of advanced signal 

processing techniques provide the means to overcome many of the limitations 

associated with classical auscultation. Autonomous systems to aid PCG diagnosis 

have been the focus of the latest research. However, the limited success of the 

different signal processing techniques applied to PCG analysis and classification 

has made evident the non-triviality of the problem and suggests the use of new 

approaches. 

This work explores the use of a statistical pattern classification technique able to 

account for the inherent variability of the biomedical signals. Starting from a 

necessarily limited signal sample space available the method presented derives 

statistical models able to represent unseen data. The thesis also explores the use 

autonomous system-orientated representations to extract information based on the 

bio-dynamics of the system rather than the traditional features that provide visual 

meaningfiil representations. The main objective is to identify abnormal heart 

conditions through the analysis of the recordings of sounds produced by the heart 

(PCG) by means of a statistical pattern classification technique: Hidden 

Markovian Models (HMM). 
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The research is based on the classification of paediatric heart sounds 

corresponding to the following categories: Aortic Stenosis (AS), Atrial Septal 

Defects (ASDs), Ventricular Septal Defects (VSDs), Innocent Pulmonary Flow 

Murmurs, and normal heart sounds. These categories represent the most common 

conditions encountered in paediatric cardiology. The signals have been obtained 

from subjects in an age range between 3 months and 16 years old with the support 

of the Wessex Cardiac Unit of Southampton General Hospital. 

1.4 Synopsis 

This thesis starts with a brief introduction the traditional technique of auscultation 

presented in Chapter 1. The importance of the technique for diagnosis is presented 

in an historical context and in relation to contemporary techniques. Recent 

technological developments that lead to the development of digital 

phonocardiography have started new areas of research and diagnosis-oriented 

applications based on analysis of cardiovascular sounds. Those areas are briefly 

described before justifying the objective of this research: the identification of 

murmurs in paediatric PCG signals by means of statistical pattern classification 

techniques. 

Chapter 2 introduces the biomedical background required for a good 

understanding of the study. Despite the controversy about the origin of heart 

sounds, the anatomy and physiology of the heart are presented in relation to the 

most generally accepted theory of the genesis of the heart sounds and murmurs. 

the Cardiohemic theory. The chapter also presents an overview of the 

characteristics described by physiologists for the classification of heart sounds and 

the specific signature for the systolic heart sounds studied in this research. 

Chapter 3 introduces the use of signal processing techniques for PCG signal 

classification. Autonomous heart sound identification aimed to aid differential 

diagnosis is conceptualised as a signal classification task. After a review of the 

main approaches applied to phonocardiography, a technique of statistical signal 
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processing, namely the use of hidden Markovian models is proposed for this 

application. 

Chapter 4 presents a brief introduction to hidden Markovian models. Basic 

concepts of the technique are explained through a practical example. The hidden 

Markovian model developed, although not related with the analysis of heart 

sounds, is useful to clearly show the relationship between the components of the 

model and the applications of this statistical technique. Finally, references to 

tutorials and details of the algorithms are provided. 

Feature representations for analysis and classification of the phonocardiogram 

signal is the subject of Chapter 5. The most common techniques are mentioned 

and two of the main approaches are presented: linear prediction analysis and 

Mass-Weber filters. Neverthless, the use of line spectral frequencies is proposed 

as alternative representations for linear prediction coefficients. Inspired by the 

cardiohemic theory, a third approach for PCG signal representation using cepstral 

analysis is proposed. The viability of the latter technique for differentiation of 

PCGs characteristic of certain medical conditions is explored through examples. 

The problem of PCG signal segmentation is addressed in Chapter 6. Since the 

identification of the main components of the heart sounds is considered the first 

step towards the automatic classification of heart sounds, a review of available 

techniques is presented. Segmentation is usually performed with the aid of the 

ECG signal. An algorithm for PCG segmentation using Cepstral analysis and 

HMM without an ECG reference signal is proposed. These techniques were 

selected in chapters 5 and 3 for signal classification and PCG representation 

respectively, and therefore, their use for signal segmentation is logical 

consequence. Finally, results obtained from the application of the algorithms on a 

database of hearts sound signals collected in collaboration with the cardiology unit 

of Southampton General Hospital are presented. 
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Chapter 7 explains the model selected for the classification of systolic murmurs. 

The algorithms are applied to real signals and the performance of the classifier is 

presented. 

Chapter 8 presents a summary of the research and suggestions for future work. 

1.5 Novel Contributions 

• Use of hidden Markovian classifiers for PCG recognition. 

• Cepstral representations of PCG based on the cardiohemic theory. 

• Automatic PCG segmentation by hidden Markovian models without an 

external reference signal. 

• Line spectral frequencies PCG representations for classification. 

• Comparison of Mass-Weber filter PCG representations, line spectral 

frequencies, and cepstral coefficients for PCG analysis. 
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2 Biomedical Background 

2.1 Overview 

Basic knowledge of the related biological events is required in order to understand 

the problems involved in automatic phonocardiogram classification. This section 

describes the basic principles of the anatomy and physiology of the heart and the 

most accepted theory proposed for the genesis of heart sounds and murmurs. 

Principles of auscultation are also presented in relation to the analysis of 

phonocardiograms including an overall description of the general criteria used by 

cardiologists to identify a possible pathology from the heart sounds perceived. 

The main auscultation areas are briefly described before a short description of the 

physiological characteristics and particular signatures of the pathologies involved 

in this research and their related phonocardiographic signals. This section is only a 

brief introduction presenting the basic concepts needed, for a more detailed 

explanation refer to the medical literature (Rushmer, 1970; Sahver, 1985; 

Guadalajara, 1998; Kusumoto, 1999; Brown, 2002). 

2.2 The Heart 

The cardio-vascular system comprises the heart and blood vessels. The heart is the 

central organ of the entire system, and consists of a hollow muscle; by its 

contraction the blood is pumped to all parts of the body through a complicated 

series of tubes, termed arteries. The arteries have multiple ramifications and end 

in very minute vessels called arterioles, which in turn open into a mesh network of 

microscopic vessels called capillaries. In this passage through the capillaries of 

the body, the blood gives to the tissues the materials necessary for their growth 

and nourishment. In the capillaries the blood receives from the tissues the waste 

products result from metabolism and afterwards, it is collected into a series of 

larger vessels called veins and returned to the heart. 
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The heart is divided by a septum into two halves, right and left, and can be 

regarded as a four-chamber pump with the two upper auricle chambers receiving 

blood and two lower ventricles that pump blood away to organs. All the chambers 

are connected by valves, which allow blood to move in one direction from one 

chamber to the next. Figure 2.1 shows the basic anatomy of the heart. 

Pui/fidi t 

Figure 2.1. Heart Chambers. The Sourcebook of Medical Illustration, P. Cull, ed.. 

The Parthenon Publishing Group, 1989. 

In a normal cardiac cycle the right atrium receives blood from all the organs, 

except the lungs, through the vena cava. The tricuspid valve controls the passage 

of this oxygen-poor blood to the right ventricle, which in turn pumps blood to the 

pulmonary artery through the pulmonary valve. The pulmonary artery takes blood 

to the lungs where it is oxygenated, the oxygen-rich blood is then returned to the 

left atrium by the pulmonary veins. The mitral valve confrols the passage of blood 

from the left atrium to the left ventricle. Finally, during ventrical contraction, the 

aortic valve lets the blood pass to the aorta and from there, it passes to the rest of 

the body. 
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2,3 Heart Sounds 

There is a wide diversity of opinion concerning the theories attempting to explain 

the origin of heart sounds and murmurs. More than 40 different theories have been 

proposed to explain the origin of the first heart sound (Rushmer, 1970; 

Rangayyan, 1988). Although the controversy continues about the exact origin of 

the heart sounds (especially for the first and the third sounds), the concepts around 

the most accepted theory, which is used for cardiology teaching, are presented 

here (Rushmer, 1970; Kusumoto, 1999; Brown, 2002). 

The cardiohemic theory proposed by Rushmer in 1970 assumes that since the 

chambers of the heart are filled with blood, none of these structures can vibrate 

independently without producing movements of blood. Similarly, vibrations in the 

blood must be transmitted to surrounding structures. Therefore, all structures: 

heart cavities, valves, and blood constitute an interdependent system vibrating at 

the same time. Heart sounds are regarded as vibrations or sounds due to the 

acceleration or deceleration of blood within the elastic system triggered by 

pressure gradients (Rushmer, 1970). The elasticity of a chamber completely filled 

with fluid is analogous to a spring whereas the fluid and supporting mass are 

analogous to a vibrating mass. Any sudden movement such as acceleration and 

deceleration throws the system into vibration. 

A normal cardiac cycle contains two major sounds: the first heart sound (SI) and 

the second heart sound (S2). Figure 2.2 shows the main heart sounds and their 

relation to the electrical events of the cardiac cycle. The systolic and diastolic 

components are defined in relation to SI and S2. The systolic component is 

usually shorter than the diastolic; a fact that is generally used during auscultation 

to distinguish the second heart sound from the first one. 

Figure 2.3 shows the main components of an ideal heart sound. The first heart 

sound has four components associated with the movement of blood during the 

contraction of the ventricles. As the ventricles contract (systolic phase), blood 

shifts towards the atria, closing the atrioventricular valves (mitral and tricuspid) 
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with a consequential oscillation of blood generating the first component of SI. 

The second component of SI begins with abrupt tension of the closed 

atrioventricular valves, decelerating the blood. Then, the semilunar (aortic and 

pulmonary) valves open and the blood is ejected out of the ventricles. A third 

component of the first heart sound further originates from oscillations of blood 

between the descending root of the aorta and ventricle, and a fourth component 

may arise from vibrations due to blood turbulence at the aortic and pulmonary 

valves. The first heart sound begins immediately after the peak of the QRS 

complex of the ECG. 

Systolic • Diastolic 

SI S2 
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Figure 2.2. Correlation of the Components of the Heart Sounds with the Electrical 

Events. PCG Recorded at mitral area, ECG lead I, Fs =4 KHz. 

Following the systolic pause in a normal cardiac cycle, a second heart sound 

occurs. S2 is coincident with the end of the T wave of the ECG since both events 

are related to the end of ventricular contraction. Nevertheless, the T wave is 

commonly referred to as the wave corresponding to ventricular relaxation through 

repolarisation. While this is indeed correct, relaxation through repolarization is 

just the final phase of contraction, but contraction and relaxation are indicated by 

the upstroke and downstroke of the same action potential. The T wave therefore 

may be said to relate to a non-specific event (Rangayyan 2002) whereas the S2 is 

related to the specific events of closure of the aortic and puknonary valves. This 

fact and the low amplitude of the T wave (0.1 - 0.3 mV) which is almost absent in 
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many recordings suggest the use of another auxiUary signal: the carotid pulse for 

S2 identification in autonomous systems as explained in chapter 6. 

A. COMPONENTS OF F IRST HEART SOUND 

I ' B . SECOND HEART / 
I SOL^O, 

D. FOURTH HEART 
SOUND 

^ ^"'"sOUND*"^ 

Figure 2.3. Components of an ideal heart sound. From R. F. Rushmer Cardiovascular 
dynamics, W. B. Saunders, Philadelphia, PA, 1976. 

S2 is a low frequency vibration associated with the deceleration and reversal of 

flow in the aorta and pulmonary artery and with the closure of the semilunar 

valves (aortic and pulmonary). While the primary vibrations occur in the arteries 

due to deceleration of blood, the ventricles and atria also vibrate, due to 

transmission of vibrations through the blood, valves, and the valve rings. 

Normal PCG 

Normal 

Atrial Septal Defect 

inspiration 

Figure 2.4. Normal and fixed split o f S2. In a normal PCG the split of S2 during inspiration 
(pink square) last longer than during expiration (green square). In an ASD condition both last the 

same and the split is said to be fixed. Normal PCG Recorded at mitral area, ASD recorded at 
Pulmonary area, Fs =4KHz. 
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The second sound is composed of two components (A2 and P2) corresponding to 

the closure of the aortic and pulmonary valves respectively. Under normal, 

conditions during expiration, P2 appears from 10 to 30 ms after A2. With 

inspiration, overload of the right ventricle due to venous return causes a longer 

delay in the closure of the pulmonary valve and thus of P2. Consequently, it is 

easier to perceive both components. Pathological conditions could cause this gap 

to widen, may reverse the order of occurrence of A2 and P2, or fix the delay as in 

the case of atrial septal defect conditions as shown in figure 2.4 and explained in 

section 2.6.2. 

The third sound is attributed to the sudden termination of the rapid filling phase of 

the ventricles from the atria and the associated vibration of the ventricular muscle 

walls, which are relaxed. The fourth or atrial heart sound occurs when the atria 

contracts and propels blood into the ventricles. These sounds are generally much 

quieter than the first and second ones. In addition to these sounds, valvular clicks 

and snaps are occasionally heard. 

2.4 Murmurs 

The intervals between SI and S2 during ventricular systole, and S2 and SI during 

ventricular diastole are normally silent, but murmurs may occur during those 

intervals. According to Rushmer heart murmurs are prolonged sounds arising 

from turbulent blood flow from one of four causes: 

1) High rates of flow through normal valves. 

• Pathological related: Murmurs may be present in pathological conditions 

like anemia and thyrotoxicosis, for example, where the patients have 

structurally and fimctionally normal hearts, but the high-blood flow 

indicates an underlying disease. 
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• Non pathological related: As in the case of innocent pulmonary flow 

murmurs, where the cardiac anatomy is normal, common in childhood 

and young adults and also in hyperdinamic states such as pregnancy. 

2) Forward flow through a narrowed or irregular shaped valve. May occur for 

example when a valve does not open completely due to a calcium deposit 

(acquired stenosis), or in congenital malformation such as bicuspid aortic 

stenosis. 

3) Backward flow through a leaking heart valve. Regurgitation or insufficiency 

occurs when valves fail to occlude completely. It can be associated with a 

rheumatic origin, congenital malformation, atrophy of the tendons or muscles 

involved in its function, or functional origins in an anatomically normal valve 

due to annular dilatation such as in the case of functional mitral regurgitation. 

4) Flow through an abnormal cardiac or extracardiac connection. Such as in 

ventricular septal defect where a hole in the ventricular septum allows blood 

to flow from the left ventricle to right ventricle. 

2.5 Auscultation 

Features of heart sounds and murmurs like intensity, frequency content, and 

timing are affected by many physical and physiological factors such as the 

recording site on the thorax, intervening thoracic structures, left ventricular 

contractility, position of the cardiac valves at the start of the systolic cycle, the 

degree of the defect present, the heart rate, and blood velocity. Despite the 

variations introduced by all this facts, it is possible to distinguish between 

different murmurs by their particular morphology. 

To identify a specific abnormal condition the information obtained from the heart 

sound is described in terms of frequency patterns (pitch and quality), intensity 

(loudness and patterns of sound intensity), timing (systolic and diastolic cycles), 
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localisation (where the murmur is best heard and spread pattern) and whether the 

murmur changes during respiration. Table 2.3 shows the information utilised in 

evaluating the significance of the heart sounds and murmurs (Rushmer, 1968). 

A. Frequency patterns 
1. Pitch (high or low) 
2. Quality (presence of dominant frequencies or 

harmonics) 
B. hitensity 

1. Loudness of heart sounds 
Grade I: very faint, difficult to hear 
Grade II: faint, but easily heard 
Grade III: moderately loud 
Grade IV; very loud 
Grade V very loud, can be heard with the edge of the 

stethoscope to the skin 
Grade VI: extremely loud, can be heard with the 

stethoscope off the skin 
2. Patterns of sound intensity of murmurs 

a. Crescendo 
b. Decrescendo 
c. Crescendo-Decrescendo ("Diamond shaped") 
d. other 

C. Timing 
1. Splitting of sounds 
2. Systolic murmurs 
3. Diastolic murmurs 

a. Early diastolic 
b. Mid-diastolic 
c. Protodiastolic 

4. Intervals between sounds and murmurs 
5. Gallop rhytms and similar 
6. Identification of opening snap 

D. Localisation on precordium 
1. "Mitral" area 
2. "Aortic" area 
3. "Pulmonary" area 
4. "Tricuspid" area 

Table 2.3. Types of Information Employed in Auscultation 
Diagnosis. 

23 



The limitations of auscultation are indicated by the common tendency to classify 

heart murmurs according to a few general types (Table 2.4) based primarily on 

timing and intensity characteristics shown in Table 2.3 (Rushmer, 1968). 
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Figure 2.5. 'Diamond shaped' murmur. Named by its Crescendo - Decrescendo 
characteristics and well defined start and end points PCG Recorded at pulmonary area, 

Fs=4KHz. 

Accordingly to this time and intensity classification Figure 2.5 shows a grade II 

crescendo - decrescendo or 'diamond' shaped mid-systolic murmur. Note that 

high frequency information is not evident in this time-domain plot since low 

frequency components have higher amplitude. Filters such as the Maass-Weber 

set are therefore required to extract the information provided by high Irequency 

components. 

It is important to note that murmurs vary in intensity and an increase in loudness 

does not necessarily indicate an increase in the severity of the disease. 

If physicians were forced to rely on interpretations of heart murmurs without other 

clues (i.e., only by the recorded signals) they would be able to distinguish several 

general types of murmurs but could not specify confidently the kind of disease. To 
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the extent that a particular kind of murmur can be caused by a variety of 

pathological conditions, its diagnostic specificity is limited. The practitioner 

differentiates those conditions and provides a diagnosis based not only on the 

heart sounds, but considering the entire clinical scenario. 

I. Systolic murmurs 
A. Ejection murmurs 

1. Aortic valvular stenosis 
2. Pulmonary valvular stenosis 
3. Infundibular stenosis 
4. Dilatation of aorta or pulmonary artery 
5. Increased ej ection outflow rates 

II. Diastolic murmurs 
A. Early diastolic decrescendo murmurs 

1. Aortic regurgitacion 
2. Pulmonary regurgitacion 

B. Atrioventricular diastolic murmur 
1. Mitral stenosis 
2. Tricuspid stenosis 

III. Continuous murmurs 
A. Patent ductus arteriosus 
B. Intrathoracic arteriovenous fistulae 

1. Coronary A-V fistulae 
2. Ruptured sinus of Valsalva 
3. Intrapulmonary A-V fistulae 

C. Coarctation (systemic collaterals) 
D. Venous hum 
E. Other anomalies 

IV. Musical murmurs 
A. Everted aortic cusp 
B. Chiari nets 
C. Moderator bands 

Table 2.4. Categories of Murmurs. 

2.5.1 Auscultation areas 

Externally, particular heart sound components are best heard at certain locations 

on the chest, and this localisation has led to the concept of secondary sources on 

the chest. 
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Figure 2.5 shows the anatomical position of the auscultatory areas and their 

localisation with reference to the heart valves. Notice that the particular location 

of sounds on the surface probably represents the most effective transmission paths 

and not necessarily the shortest path. 

Murmurs from the region of the pulmonary valve are most intense in the 

pulmonary auscultatory area, centred at the third intercostal space at the left 

parasternal line. The aortic area Ues to the right of the sternum in the second 

intercostal space where the ascending aorta curves forward and most closely 

approaches the anterior chest wall. The tricuspid area is near the right sternal 

border in the fourth intercostal space, and the mitral area is near the apex of the 

heart where the heart is in direct contact with the anterior wall of the thorax 

(Rushmer, 1970). 

2.6 Paediatric heart sounds 

This research will be focused on the classification of paediatric heart sounds into 

one of five categories, two non-pathological conditions; normal and irmocent 
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Figure 2.5. Auscultation Areas. From 'Cardiovascular 
Dynamics' Rushmer, 1970. 

murmurs, and three pathological systolic murmurs caused by aortic stenosis, atrial 

septal defect, and ventricular septal defect. 
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2.6.1 Valvular Aortic Stenosis 

The aortic valve is composed of three cusps of equal size attached symmetrically 

around the circumference of the valve orifice. The normal function of the aortic 

valve is to allow blood flow from the left ventricle to the body without obstruction 

or reversal of flow. The normal aortic valve closes completely and when open has 

a triangular orifice considerable smaller than its cross-sectional area; however, it 

is sufficiently large so the pressure gradient required to force blood through it is 

negligible. Stenosis occurs when a valve does not open completely. The causes of 

aortic stenosis can be divided into congenital and acquired forms. 

A patient with a congenital bicuspid aortic stenosis has a valve with only two 

cusps. Two cusps of equal size are equally effective in completely closing but a 

bicuspid valve can not open widely and obstructs the flow of blood. Other forms 

of congenital disease include the formation of a unicuspid valve and a tricuspid 

valve with fused commissures. Persons bom with an abnormal bicuspid valve are 

particular susceptible to calcification in later life. 

Acquired stenosis may arise from secondary conditions such as rheumatic heart 

disease or idiopathic calcification of the valves. The valve may become hardened 

or stiff with calcium deposits or scarring, and thus, it is hard to push open. Blood 

has to flow through a smaller opening, and therefore less blood gets through the 

valve into the next chamber. The origins of aortic stenosis in infants and children 

are always congenital. In teenagers, this condition would be congenital when 

found alone, and rheumatic whenever it is accompanied with mitral stenosis 

although the latter patterns are characteristic of adults. Aortic stenosis in patients 

over 65 years old is generally due to senile, degenerative or calcific origins, 

resulting from mechanical wear and tear, and calcium deposits. 
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The normal aortic valve area is approximately from 3 to 4 cm and starts to 

produce a pressure gradient when reduced to 1.5 cm^ and below. The expulsion 

time of the left ventricle is prolonged accordingly to the severity of the stenosis in 

order to compensate for the obstruction of blood flow out of the left ventricle to 

the aorta. The left ventricular pressure increases due to the restriction and the 

ventricle compensates for this pressure overload by becoming hyperthorphic. The 

wall thickness increases to provide the necessary force to open the stenotic valve. 

Due to this compensatory mechanism patients with aortic stenosis remain 

asymptomatic during the long latent phase of the disease. Symptoms develop as 

the valve orifice narrows and the hyperthorpy is not enough to compensate. 

Angina (chest pain or discomfort that occurs when the heart muscle does not get 

enough blood), syncope (transient loss of consciousness) and congestive heart 

failure (a condition in which the heart can not pump enough blood to the body's 

other organs) are among the symptoms of advanced aortic stenosis. 

Aoric Stenosis 

0 .8 -

0 . 6 -

0.4 -

0,2 

0 . 2 -

-0.4 

-0.6^ 

- 0 . 8 -

Murmur 

S I S2 

I i_ _i . .—I-
0.05 0.1 0.15 0.2 0.25 0,3 0.35 0.4 0.45 0.5 

Time (seconds) 

Figure 2.6. Aortic Stenosis Murmur. PCG recorded at aortic area, Fs =4 KHz. 
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Figure 2.6 shows a phonocardiogram (PCG) of a heart sound with a murmur due 

to aortic stenosis. These murmurs are typically a mid-systolic (occurring in the 

middle of the systolic cycle) ejection (discrete start and end points) murmurs 

heard best over the aortic area. The aortic stenosis murmur has a harsh quality, 

medium pitch, coarse, crescendo-decrescendo quality. The murmur peaks later in 

systole as the stenosis worsens since a larger pressure gradient with a longer 

ejection period are required to open the aortic valve. When the left ventricle 

begins to fail the murmur becomes softer and therefore, the intensity of the 

murmur does not necessarily correlate with the severity of stenosis. 

An aortic ejection sound (ejection click) may also be present early in the natural 

history of aortical stenosis. The ejection click is caused by the sudden opening of 

a stiff aortic valve in ventricular systole and depends on valve mobility. This 

sound is high pitched and occurs approximately 60 ms after SI. The ejection click 

is heard better at the apex than in the aortic area (where the murmur is loudest but 

the cUck may be inaudible). 

Because the second heart sound is largely generated by the sudden closing of the 

aortic valve, a poorly mobile and stenotic aortic valve may cause the second 

sound (S2) to become quieter or even be absent. S2 is normally created by the 

closure of the aortic valve originating the A2 component, followed by the 

pulmonary valve that originates the P2 component. In aortic stenosis, the aortic 

component A2 becomes progresively delayed as the degree of stenosis worsens 

and the left ventricular period becomes consequently simultaneously longer. If the 

closure of the aortic valve is delayed sufficiently, it may close after the pulmonary 

and therefore, two distinct sounds can be heard at expiration rather than 

inspiration, this condition is called abnormal paradoxical spht of S2 (Isselbacher, 

1984). 
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2.6.2 Atrial Septal Defect 

An atrial septal defect (ASD) is a hole in the wall (septum) between the atria. 

ASD accounts for approximately 7% of all congenital heart lesions (Kusumoto, 

1999). 

Figure 2 .7 . Atrial Septal Defect. Copyright 2003 Lippincott Williams & 
Wilkins, 530 Walnut Street, Philadelphia, PA 19106-3621 U.S.A. 

Depending on the site of the defect four categories can be identified, namely: 

secondum ASD, the most common type of congenital disease, endocardial 

cushion defect, sinus venosus type and common atrium. In all cases, due to higher 

compliance of the right atrium and slightly higher pressure in the left one, the 

shunt allows blood to seep from the left into the right atrium, as shown in Figure 

2.7. Since the flow rate through the defect is slow, turbulent flow is unlikely due 

to this shunt, however, the higher volume of blood ejected by the right ventricle 

through a normal pubnonary valve produces a prominent mid-systolic flow 

murmur. To compensate for this increased volume, the right atrium and right 

ventricle hypertrophy and subsequently dilate. Additionally, pulmonary blood 

flow increases with subsequent enlargement of the pulmonary arteries and veins. 

Over time, this continued overload produces pulmonary vascular disease and 

puhnonary hypertension. With increased right pressure the shunt of blood left to 

right decreases and the shunt reverses allowing the entrance of non oxygenated 

blood to the systemic circulation causing the development of cyanosis. 
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Patients with ASD are generally asymptomatic until the third or fourth decade of 

life. The first symptoms are dyspnea (an unpleasant sensation of difficulty in 

breathing), fatigue, chest discomfort, cyanosis, and hemoptysis (coughing up of 

blood from the respiratory tract). 

Figure 2.8 shows a typical ASD murmur. This mid-systolic ejection murmur, 

usually grade II, is produced by hyperflux in the pulmonary valve and 

consequently is best heard over the pulmonic area of the chest. With larger shunts, 

a mid-diastolic tricuspid murmur may also be audible. 

The most characteristic feature of an ASD is the fixed split S2 as shown in figure 

2.4. hi a normal heart, a split S2 is caused physiologically during inspiration 

because the increase in venous return (due to a compliance decrease of the 

pulmonary arterial bed) overloads the right ventricle and delays the closure of the 

pulmonary valve. With an ASD, the right ventricle can be thought of as being 

continuously overloaded because of the left to right shunt, producing a widely 

split S2. Because the atria are linked via the defect, inspiration produces no net 

pressure change between them, and has no effect on the splitting of S2. Thus, S2 

is split to the same degree during inspiration and expiration, and the split is said to 

be fixed. 

Atrial S e p t a l D e f e c t 
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Figure 2.8. Atrial Septal Defect Murmur. PCG recorded at pulmonary area, Fs -4 KHz 
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2.6.3 Ventricular Septal Defect 

Ventricular septal defects (VSDs) are the most common congenital malformation 

in infant and children, accounting for 25% of all congenital cardiac 

malformations. This is a type of heart defect (congenital heart disease) in which 

there is a hole in the septum between the ventricles. Figure 2.9 ' shows a 

ventricular septal defect (VSD). 

Ventricular septal defects are classified form an anatomical point of view in 

relation to their relative position in either the membranous, muscular or outlet 

portions of the septum. From a physiological point of view VSD are classified 

according to the relative size of the opening related to the aortic diameter and 

hemodynamical repercussions. 

Figure 2.9. Ventricular Septal Defect. Copyright 2003 Lippincott Williams & 
Wilkins, 530 Walnut Street, Philadelphia, PA 19106-3621 U.S.A. 

In a foetus, during the last stages of partitioning of the heart, an aperture in the 

interventricular septum exists. Endocardial cushion tissue proliferates in this 

aperture and later forms the membrmous portion of the interventricular septum. 

Incomplete closure of this opening lead to perimembranous VSD (that usually 
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extends to adjacent muscular septum) which is the most common ventricular 

septal defect: accounting for 65% of cases. 

The least common muscular septal defects (accounting for 18% of cases) may 

appear anywhere in the muscular portion of the septum. The defect is probably the 

result of excessive resorption of the myocardial tissue during the formation of the 

interventricular septum. 

The third type of defect is located in the outlet septum. This defect accounts for 

8% to 12% of cases, and can be associated with prolapse of the aortic valve (out 

of its usual position) and aortic regurgitation. The fourth type relates to defects of 

the inlet septum accounting for approximately 7% to 10% of VSD. 

The pressure in the left ventricle during the systolic cycle is significantly higher 

than that present in the right ventricle by a ratio of four to one and therefore an 

aperture between cavities propels oxygenated blood from the left ventricle into the 

right. The degree of flow through the shunt is related to the size of the defect and 

the relative resistances of the pulmonary and systemic circulation. With a small 

defect, there is a significant resistance to flow with a pressure gradient between 

ventricles. In case of large defect there is no restriction of flow between ventricles 

and equilibration of pressure within ventricles occurs. Large defects with 

significant pulmonary vascular resistance result in bi-directional shunting with a 

predominant right to left shunt leading to cyanosis. 

Figure 2.10 shows a typical VSD murmur. These murmurs are characteristically 

holosystolic (completely filling the systolic phase of the cycle) since the pressure 

difference between the ventricles is generated almost instantly at the onset of 

systole, with a left to right shunt continuing throughout ventricular contraction. 

Small and medium shunts tend to generate harsh decrescendo murmurs. With 

large shunts, an intense holosystolic constant murmur is present and an apical 

mid-diastolic murmur may be appreciated secondary to increased flow through the 

mitral valve. The P2 component may be reinforced as a consequence of 

hypertension. VSDs murmurs are usually best heard over the tricuspid area. Since 
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the flow-pattern usually goes from left to right, the right ventricle suffers from 

volume overloads and takes longer to eject the stroke volume. This causes a sUght 

delay in the closing of the pulmonary valve, and widely split S2 may result. 

Patients with small VSD may be asymptomatic, while those with large shunts may 

complain of dyspnea and exercise intolerance. In some cases the defect 

spontaneously decreases in size or closes completely, spontaneous closure occurs 

in approximately 45% of patients by 3 years of age. Patients with small VSD are 

managed medically while large VSD often undergo surgical closure of the defect. 

Long term left to right shunts may lead to shunt reversal producing Eisenmenger's 

syndrome. These patients develop cyanosis, markedly diminished exercise 

tolerance, severe dyspnea, angina and dysrhythmias. 

Ventricular S e p t a l D e f e c t 
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Figure 2.10. Ventricular Septal Defect Murmur. PCG recorded at middle left sternal 
edge area, Fs =4 KHz. 

2.6.4 Innocent pulmonary flow murmur 

Innocent murmurs are very common in children; 60% of all school-age children 

will have a murmur on random auscultation, and the majority will present an 

innocent murmur (Guadalajara, 1998). From the different classes of innocent 

murmurs innocent pulmonary flow murmurs are the most common. This kind of 
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murmur is actually registered in all normal subjects by intracardiac 

phonocardiography (Guadalajara, 1998). 

Innocent pulmonary flow murmurs are non-pathological murmurs caused by the 

ejection of blood through a normal pulmonary valve. Since children have a more 

dynamic flow of blood, turbulent blood flow sometimes develops in the 

pulmonary artery and causes the murmur. Since the cardiac anatomy and 

physiology of the heart is normal there will be no cardiac symptoms associated 

with an innocent pulmonary flow murmur, however, children with symptoms such 

as chest pain which are actually non-cardiac in origin, may have co-existing 

innocent murmurs. 

Figure 2.11 shows an innocent pulmonary flow murmur. This murmur is mid-

systolic and is best heard in pulmonary auscultation area. It is seldom more than 

grade II (faint but easily heard, according to table 2.3), without spread and 

occupies approximately two thirds of systole. In children with particularly thin 

chest walls the murmur, and in general all the heart sounds, will be louder since a 

negligible amount of energy is lost in transmission to the surface. 

Innocvit Pidmonary Flow 

Murmur 

Time (second?) 

Figure 2.11. Innocent Pulmonary Flow Murmur. PCG recorded at pulmonary area, 
Fs =4 KHz. 
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The murmur has a diamond shape (a crescendo-decrescendo intensity pattern), is 

generally of soft quality, and has predominant mid-frequency components. The 

murmur tends to decrease during inspiration and also decreases when the child 

sits. The second heart sound splits and varies normally, and no diastolic murmur 

exists over the right ventricle at the lower left sternal border. Absence of all of 

these pathologic findings provides confidence that the pulmonic flow murmur is 

not associated with an atrial left to right shunt or pulmonic valve stenosis. 

It should be stressed that although a description of the murmur can be provided 

there are no phonocardiographic findings that identify an innocent murmur with 

certainty. Differential diagnosis is made based on the absence of features 

characteristic of other possible causes and with the help of clinical manoeuvres. 

2.7 Summary 

A brief overview of the biomedical aspects related to the genesis of the heart 

sounds and murmurs has been presented as an introduction to the problem of 

phonocardiogram classification for the diagnosis of heart clinical conditions. 

The main classification of heart murmurs, the systolic murmurs to be studied in 

this research and the pathological conditions related to them were presented. 

This chapter also introduced the terminology employed in auscultation diagnosis 

to describe the frequency patterns, intensity, timing, and localisation of murmurs. 

These terms reflect the kind of information that the specialist looks for in order to 

identify abnormal heart sounds. 

The next chapter presents a discussion about the signal processing techniques 

applied to PCG analysis and classification aimed to aid diagnosis. 
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3 Classification of PCG Signals to Aid Diagnosis 

3.1 Overview 

As described in previous chapters, the use of digital stethoscopes and advanced 

signal processing techniques can help to overcome some of the intrinsic 

limitations inherent to the traditional auscultation technique. 

One of the most promising areas in the use of these techniques is the automatic 

identification of specific cardiopathologies that have proven to be difficult to 

define by differential diagnosis through traditional auscultation methods, such as 

the case of innocent murmurs and pathological related murmurs. Based only on 

the sound signal, a trained cardiologist can easily distinguish a pulmonary 

regurgitaton murmur from an aortic stenosis murmur. However, the distinction 

between, an innocent pulmonary flow murmur and an atrial septal defect murmur 

may be very difficult. An autonomous system that could ease the identification of 

similar murmurs would constitute a valuable tool to aid diagnosis. 

From the signal processing point of view, the problem can be defined as a 

classification task. An autonomous system could assign a heart sound with a 

murmur to a specific class representative of a certain medical condition by 

objective analysis of its characteristics. Therefore, an innocent flow murmur 

would be correctly identified if the system were able to assign it to the innocent 

class rather than to the atrial septal defect class. 

The identification problem can be simplified to a classification task if the signal in 

question belongs to one of the categories available. This approach could be 

helpful to differentiate murmurs with similar signatures that are known to belong 

to one of the available classes. However, a murmur not belonging to any of the 

classification groups will be wrongly assigned to one of the classes available. 

Consequently, this approach is only valid to confirm differential diagnosis of a 

specific group of pathologies with similar acoustic signatures. Other murmurs that 

may have similar acoustic signatures, and do not belong to the classes available, 
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should be previously discarded with the help of non-acoustical clues, symptoms 

and clinical manoeuvres. For example, the murmur of a rheumatic stenotic aortic 

valve of arterosclerotic nature, although similar to the murmur of a functional 

congenital aortic stenosis, can be differentiated simply using the age of the 

patient. 

3.2. Signal classification 

As shown in Figure 3.1, the recognition of the time sequences of the recorded 

PCG signals for classification is divided into four major components, namely: 

signal conditioning, segmentation, feature extraction, and classification of the 

features associated with that pattern. The performance of a signal classification 

procedure depends on the selection of the feature representations of the signal and 

the use of a convenient classifier technique for such representations. Matching 

these procedures eases the classification task. The work in the field has considered 

various combinations of these steps; although not necessarily exhaustively. 

PCG Database — > Pre-processing — • 
Feature extraction — • Glassilication 

Figure 3.1. Main Stages for the Classification of PCG. 

3.3 Classification approaches 

The first step in any pattern-classification system is to select some representation 

of the input pattern. Although in some cases this is the raw input data, in general, 

compressing the data into a few salient features improves overall system 

performance. 

The aim of feature extraction is to represent the signal by a choice of features that 

reduce variability between samples associated with the same class, whilst 

increasing the variability between samples belonging to different classes. In some 
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sense, the pattern classification can be solved trivially if the selected features are 

good enough (Gold, 2000, p. 105). 

Given a feature vector choice, pattern classification primarily consists of the 

development, or training, of a system for classification of a large number of 

examples of the different classes. In a supervised learning process a database of 

patterns, labelled with the correct class, is provided for the training; whereas in an 

unsupervised process the data feature itself defines the classes, hi the case of PCG 

classification, the classes are predefined by the cardiopathologies associated with 

the acoustical signals and therefore a training set of labelled signals, 

representative of each medical condition, is provided for the supervised learning 

process. 

The computed features of each heart beat period are interpreted as a multiple 

dimensional feature vector within a corresponding feature space. Using this 

feature vector as the input to the classifier, an automatic decision is achieved 

generally by computing a suitable predefined distance between test and reference 

patterns or by assuming that separate clusters are formed in the feature space and 

that a decision function can be used to distinguish the boundaries. Nevertheless, 

decision functions are highly dependent upon the set of training samples provided. 

Their success when applied to new cases will depend on the accuracy of 

representation of the various pattern classes by the training samples. 

If distinctive class distributions in the feature space are attained and the 

classification problem can be described algorithmically, deterministic or statistical 

classifiers could be utilised. The deterministic methods exploit some known 

specific properties of the signal. Specification of the signal model is generally 

straightforward; it is only required to estimate the values of the parameters of the 

signal model. The statistical approach, conversely, tries to characterise only the 

statistical properties of the signal. The underlying assumption is that the signal 

can be characterised as a parametric random process and that the parameters 

inherent to the stochastic process can be estimated (Rabiner, 1989). 

39 



Linear discriminant analysis is an approach that tries to maximise variance among 

classes and minimise variance within classes, given the constraint of a linear 

transformation of the input features. Discriminant analysis has been used in the 

PCG classification problem. Atrial septal defect murmurs, ventricular septal 

defect murmurs, and normal PCG paediatric signals were analysed by Leung 

(1998a) in a study conducted at the Institute of Sound and Vibration Research 

(ISVR) with the aim of classifying them. The systolic signals were characterised 

in the time-frequency domain by a representation based on the averaged 

spectrogram from which the spectral features were extracted to form feature 

vectors. Discriminant analysis was then performed to project the higher 

dimensional spectral features onto a two-dimensional space, in which the three 

groups form natural clusters that were linearly classified. Although the study 

shows three distinctive clusters, some samples for VSD and ASD lay near to the 

Normal cluster (Leung, 1998a). 

An example of the use of statistical classifiers is the work conducted by Joo 

(1983) to study heart valve function. He proposes the use of pole-zero modelling 

to provide a high-resolution spectral estimate from which the frequency domain 

features were derived. The two maximum spectral peak locations are the features 

selected for the classifier. The design of the classifier was based on a statistical 

model for the dependence of the peak's frequencies upon the state of the valve. 

For PCG analysis, the probability density ftinction is assumed to be Gaussian. A 

Gaussian classifier is then used to define a quadratic decision surface in the 

feature space. A set of twenty PCG signals from abnormal and normal aortic 

valves was used for training, whereas another set of the same magnitude was 

designed for testing. Seventeen of the twenty signals presented were correctly 

classified. Only one of the misclassified signals had a feature vector that was not 

near the decision boundary in the feature space. However, the need of a large 

patient population to prove the effectiveness of the method is acknowledged. 

If the class related clusters in the feature space are not arranged in distinctive 

areas, nonlinear decision ftinctions would be needed for classification. For simple 

cases of non-linear decision surfaces, quadratic surfaces can be derived. 
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Nevertheless, for more complex cases, artificial neural networks can be utilised to 

attain more general surfaces. 

3.4 Neural networks 

Artificial neural networks (ANN) have long been a subject of research interest for 

many pattern recognition tasks, including classification of phonocardiograms. 

Trimmed mean spectrograms and self organising maps (Leung, 1999) trimmed 

mean spectrograms and probability neural networks (Leung, 2000b) FFT 

representations and multiple layer perceptrons (DeGorf, 2001) Mass-Weber filter 

bands and multiple layer perceptrons (Barschoff, 1995) wavelets and multiple 

layer perceptrons (Reed, 2001) wavelets and grow and Learn networks (Olmez, 

2002) among others have been used in this context. 

ANN have proven to be powerful tools in signal classification as well as 

modelling numerical data. The main advantage of ANNs is their learning 

capability. Listead of applying time-consuming methods for analytical description 

of a problem, neural networks are able to represent even non-linear relationships 

with good accuracy by learning fi-om examples. 

The basic neural network model includes a large number of highly interconnected 

units, whose coupling weights can be modified by a learning process. The 

response of the units is a non-linear function of the combined input stimulation 

(by analogy with the firing threshold of neurons). Training a network involves 

supplying example patterns to the input units together with the desired output 

patterns. A learning algorithm is used to modify the connection weights in a 

direction that forces the model to give a closer approximation to the desired 

output. 

The simplest ANN is the perceptron, for which the input units are connected 

directly to the output units. Each output unit computes a single output as a 

function of one or more inputs (fig 3.2.a). There is only one layer performing any 
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computation: the output layer, as the input layer is only used to store the input 

values to the system. Although this single layer can perform linear classification, 

this topology performs well only on very limited scenarios. To overcome such 

limitations, present day systems include more layers containing hidden units. This 

multi-layer perceptron (MLP) is capable of learning arbitrarily complex decision 

boundaries between different classes (fig 3.2. b). 

Outputs 

Outputs 

Hidden 
layer 

Inputs 

(a) Single perceptron 

Inputs 

(b) Multi-layer perceptron 

Figure 3.2 Neural Networks. 

There are straightforward training procedures for this MLP. An error function 

(such as the mean-squared error) is defined, and this function is differentiated with 

respect to each of the network weights. These derivatives can then be used to find 

values of the weights that minimise the error function. By propagating the errors 

back through the network, it is possible to optimise these weights (error back 

propagation). 

The main drawbacks of neural networks are their inability to capture temporal 

properties of time varying signals, their difficulty in dealing with signals of 

different length, and the fact that the modelling is hidden in the network and 

therefore it provides no insight into the classification process. 
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Time domain modelling: In the heart sound context before the data can be 

presented to the classification algorithm, individual heart cycles should be initially 

extracted to specify the necessary boundaries. Each cycle is then framed at regular 

intervals to set sub-unit boundaries and feature vectors are obtained for such 

frames. This approach is also used for the majority of the classification 

approaches. Multilayer perceptrons are feed forward networks and are unable to 

capture temporal properties of time varying signals directly because connections 

are all in one direction from input to output. There are no implicit relations 

established among the time sequence of input vectors, only unidirectional 

channels that are assumed to compute in parallel connecting the input units 

(features) to the outputs (classes). 

Time scale variations: Li order to train a connectionist network, it is necessary to 

specify the correspondence between the input feature vectors, from a signal pre-

segmented to identify unit boundaries, and the output classes to be recognised. In 

the heart sound analysis context these boundaries are not usually precisely known 

in advance. 

In some medical conditions the occurrence of murmurs is not time-fixed in the 

heart cycle for a specific heart condition. For example, in the case of pulmonic 

stenosis, during inspiration the pulmonic murmur occurs earlier in the cardiac 

cycle than it does during expiration. (Shaver, 1985). hi aortic valvular ejection 

sounds the ability of the deformed valve to move plays an important role in the 

sound production. In patients with severe calcific fixation of the valve, when no 

excursion of the valve is possible, valvular ejection sounds are not recorded 

(Shaver, 1985). When valvular excursion is possible, the amplitude of the ejection 

sound correlates with valve mobility. In mobile nonstenotic bicuspid valves, the 

ejection sound is not only loud but is widely separated from SI, both being a 

function of a mobile valve with a prolonged excursion. 

The use of constant length input vectors for the neural networks obtained through 

a linear time-length normalisation (to account for heart rate variability) increases 

the mismatch between sound events and linear spaced input features presented to 
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the network. These methods also rely on a precise segmentation algorithm and 

some problems may arise when signals of different heart rate have to be 

compared. 

These time correspondence problems (segmentation and time occurrence of events 

within a cycle) are more important when neural networks are combined with 

discrete wavelets representations for their lack of time-shift invariant properties. 

In a recent study (Reed, 2001) a neural network was trained using ten shifted 

versions (over a range of one hundred time samples) of a single heart beat cycle 

from each type in an attempt to provide a degree of shift invariance. Such shifts 

are attributed in their research to variations in the heartbeat starting time found in 

the segmentation process. In this study the effect of noise levels in the 

classification process was also investigated, and although the study reveals a 

100% accuracy for a SNR above 31 dB, it is worth to consider that the sample set 

consists of only one patient per heart condition. 

Barschdorff (1995) proposes a model with no time normalisation of the input 

vectors for the systolic cycles, leaving the network to determine boundaries of the 

cycle as part of the learning process. An artificial neural network was trained 

using normalised power spectral densities as input features in a study to compare 

the performance of neural and statistical classifiers. Using this approach, the 

network could cope with time variations of up to 20% the length of a systolic 

cycle. Nevertheless, connectionist models do not cope with time scale variations 

very easily (Holmes, 2001). This can be partly overcome by the use of posterior 

neural network models, which apart from using feed forward connections, may 

also allow the use of recurrence by means of feed back or a set of previous 

activation values as part of the input. 

Hidden Structure. Another practical problem in developing ANN systems is that, 

since all the modelling is hidden within the network, it tends to be very difficult to 

understand what is actually happening in that network and thus, to gain insights 

into how a signal recognition is performed (Holmes, 2001, p 216). As described in 

the biomedical background section, there are more than 40 different theories about 
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the heart sound genesis. A classification system that could provide some insights 

on the structure of the classification task may provide some clues for 

understanding the generation process. 

3,5 Proposed technique: use of HMM for PCG classification 

Several techniques have been proposed for the classification of phonocardiograms 

with different amounts of success. Notwithstanding, the importance of the 

application and the complexity of the problem demand the use of new approaches. 

A technique able to account for the high variability seen in biomedical signals and 

with the capacity to learn, infer, and generalise from an incomplete (but 

representative) data set is needed. Preferably, a technique reflecting the dynamics 

of the system efficiently, dealing with time scale variations and with a clear 

structure that may provide insight in the physical phenomena. 

Statistical methods seem suitable since they only require a general structure whose 

parameters are trained automatically using a large amount of training data, hi an 

autonomous system the structured succession of events in time of a PCG signal 

could be modelled as a sequence of events with a specific pattern by means of a 

statistical model. Such models are a good mechanism to represent the 

dependencies of each sound component on the previous and posterior, providing 

time modelling. Furthermore, statistical distributions are a reasonable way to 

formally represent the variability observed in real heart sound samples. 

Hidden Markov modelling is a powerful technique for modelling the temporal 

structure and variability of a signal, and to generalise a model through statistical 

distributions to include unseen data. This technique is based on a probabilistic 

pattern matching approach, which models a sequence as the output of a random 

process. 
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One of the main advantages of these models is their ability to deal with time scale 

variability (Holmes, 2001); HMMs are popular in speech because the model can 

cope with changes in the length of sounds. This ability to deal with time scale 

variability is particularly important in the case of PCGs where the systolic and 

diastolic cycle lengths present both inter-subject and intra-subject variability. 

Moreover, as described before, particular events in the cardiac cycle may exhibit 

relative variations within a cycle for different stages of the pathology. 

The HMM methodology provides a tractable mathematical framework with 

straightforward algorithms for recognition and for training to create models of 

time sequences. The features used to represent a signal and the temporal sequence 

relationships are treated separately but within a consistent framework. As a 

consequence segmentation of particular events within a signal is possible based on 

their own statistical characteristics. This methodology can also be used for the 

segmentation of phonocardiogram signals (Romero, 2002). 

The use of mathematical models to represent the signal may provide a better 

insight into the physical phenomena involved. The parameters of the models can 

be proposed based on physical phenomena or can be used as a tool for the 

discovery of structure in a time series. In the latter case, the significance of the 

states of the model is based on the parameters estimated by the model. By 

revealing structures in the feature representations of PCG signals, hidden 

Markovian models may contribute to our understanding of the genesis of the heart 

sounds by relating these signal defined states with the physical events. The idea of 

replacing priori labelling of the states of the model by a probabilistic labelling has 

been used to model text (Cave, 1980), phonetics (Neuburg, 1971) and speech 

(Poritz, 1982). 

Hidden Markov Models have been successfully applied to speech signals (Gold, 

2000), DNA sequences (Mount, 2004), and ECG signals for automatic pattern 

recognition problems (Throval, 1994). In these applications, the HMM is used as 

a powerful model to characterise temporal nonstationary, spatially variable, but 

leamable and regular patterns of the signal. One particular aspect of this model is 
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its sequentially arranged Markov states that allow the use of piecewise stationarity 

for approximating the nonstationary properties of a signal. Hidden Markovian 

models are supported by a strong mathematical background, and their dynamic 

and time variability modelling properties make them a good candidate technique 

for PCG classification. 

3.6 Summary 

The problem of PCG signal identification was discussed from the perspective of 

signal classification techniques. The main steps involved in the classification 

process were briefly explained and the principal general techniques applied to 

heart sound analysis were described along with some relevant examples. 

Particularly, the advantages and disadvantages of the use of neural networks for 

classification of PCG signals were evaluated. Finally after a brief discussion, 

hidden Markovian models were suggested as an alternative technique that may 

improve the classification of phonocardiograms. 

The following chapter explains the theory of the hidden Markovian models. 
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4 Hidden Markovian Models 

4.1 Overview 

This section presents a brief introduction about the classification method to be 

used: the Hidden Markovian Models. The theory of the HMM is presented at a 

conceptual level by means of an example. 

The problem selected is a real phenomena that can be represented by hidden 

Markovian models. Although it is not related with heart sound analysis, it is 

useful to clearly show the relation between the states of the model representing the 

generation mechanism and the consequences it has on the observations. In a 

HMM the physical significance of the states are not required to be know for it is a 

mathematical model, however, in practice the characteristics of the HMM are 

preferably chosen according to some insight regarding the generation mechanism. 

In the example presented, the states are not completely hidden since they can be 

measured, but in practical terms they are not easily monitored in a representative 

manner and their complex relation to the observations make them suitable to be 

treated as a hidden generation mechanism. 

Using this example, the relationship between the components of a HMM can be 

easily conceptualised and the variations between models can be illustrated 

intuitively. The concepts acquired through the development of this chapter are 

sufficient to understand the details of subsequent chapters, although the treatment 

of the topic is not rigorous. 

A more in depth explanation of the concepts and techniques can be found in 

Rabiner (1989) and Jelinek (1999). 
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4.2 Example: Paralytic Shellfish Poisoning 

Consider the example of the relationship between toxic algae blooms and the 

poisonous toxins in shellfish that humans consume. 

Paralytic Shellfish Poisoning (PSP) is a life-threatening syndrome caused 

predominantly by the consumption of contaminated shellfish, with both 

gastrointestinal and neurologic symptoms. Cases of PSP have been reported 

worldwide. 

Gymnodinium catenatum is a single cell alga species (dinoflagellate) that is the 

source of PSP marine toxins that can affect humans, birds, and fish. 

Gymnodinium dinoflagellates move up and down the oceanic water column, being 

closer to the surface in daytime and deeper during the night. Its life cycle, growing 

rate, and toxicity depend on several environmental factors such as temperature, 

salinity, and variations in nutrimental sea components. These unicellular 

dinoflagellates develop into an algae blooms throughout the world for unknown 

reasons, although a variety of factors have been studied, including change in 

weather, upwellings, temperature, turbulence, salinity, and transparency. 

Paralytic Shellfish Poisoning is caused by a group of chemicals called the 

saxitoxins and gonyautoxins. These chemicals are produced by the algae and 

released into the shellfish when the algae are eaten. The chemicals all differ in 

their toxicity to humans, and change depending on the species of shellfish. After 

the consumption of raw or cooked contaminated shellfish (the toxins are heat 

stable so cooking the shellfish will not remove them) stomach acids in animals 

and humans also alter the chemical's toxicity. 

Ingestion of molluscs contaminated results in the following clinical scenario (Kao, 

1993): From five to thirty minutes after consumption, there is slight perioral 

tingling progressing to numbness, which spreads to face and neck when present in 

moderate cases. In severe cases, these symptoms spread to the extremities causing 

lose of co-ordination and respiratory difficulty. There are medullary disturbances 
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in severe cases evidenced by difficulty swallowing, sense of throat constriction, 

speech incoherence or complete loss of speech, as well as brain stem dysfunction. 

Approximately 75% of severely affected people die within two to twelve hours by 

complete paralysis and death from respiratory failure in the absence of ventilatory 

support. After twelve hours, assisted victims start to recover gradually and have 

no residual symptoms within a few days (Halstead 1984). 

Large-scale proactive monitoring programs (assessing toxin levels in mussels, 

oysters, scallops, clams, etc.) prevent PSP and rapid closures to harvest of suspect 

or toxic areas is a common practice throughout the world. 

Consider the problem of modelling the possible occurrence of PSP events (due to 

algae blooming) from the levels of toxins measured in shellfish. 

The species that appears to take the highest amounts of toxins are green-lipped 

mussels although other species have been found with toxins that are in the range 

where illness is possible. These include tuatua, toheroa, oysters, scallops, and 

cockles. 

In order to provide practical guidance to the public, food safety authorities can set 

various ranges according to the levels of toxins measured in green-lipped mussels. 

For instance, a safe range can be defined for levels below 30 iig/100 g saxitoxin 

equivalent. A caution range could be defined from 31p.g/100 g to 80 pg/lOO g. At 

this level it is expected that the toxins will not affect most people since the upper 

limit in this action level is around ten times lower than the lowest level associated 

with outbreaks. Close monitoring should be advised when toxin levels fall within 

this range. A warning range defined from 81 îg/lOO g to 800 |ig/100 g would lead 

to closure of commercial farms. A danger range is defined from 801 p-g upwards 

and relates to outbreaks of PSP in humans. Previous events have reported levels as 

high as 4000 p.g/100g. 

Although the generation mechanism is the algae blooming, to obtain a close 

correlation between the number of Gymnodinium catenatum cells and shell fish 
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toxicity truly representative water sampling is required. On exposed coasts this is 

difficult to achieve. Most of the samples are collected from the shore and within 

the surf zone, and are therefore not truly representative of cell abundance in the 

adjacent water column. One approach is to model the algae process using a hidden 

generation mechanism. Therefore, in this example, the shellfish toxin level 

samples constitute the observations and an underlying hidden process, the algae 

toxicity, generates these observations. 

If we consider for example three levels of toxicity in the algae, namely a low, 

medium, and high level, we can relate these algae toxin levels with the levels of 

shellfish toxins and therefore, to the warnings issued by the food safety authorities 

about the risks of PSP. 

The Markov assumption presumes that the present level of algae toxicity can 

always be predicted solely given knowledge of the past levels; other 

environmental factors are not considered. In this example, and many others, such 

assumptions are obviously unreahstic. Nevertheless, since such simplified systems 

can be subjected to analysis, we often accept the assumption in the knowledge that 

it may generate information that is not fully accurate. 

In a first order system, the actual state depends only on the previous state, and 

therefore, in a first order Markov model for the algae levels the current level of 

algae toxicity depends only on the immediate previous level. 

Figure 4.1 shows all first order state transitions for the underlying Markov model 

of this example. Three levels of algae toxicity are defined and arrows represent 

the transition between them. Notice that transitions to the same state are possible. 

This characteristic gives the HMM the flexibility to deal with time scale variations 

since long lasting event can be modelled through a sequence of self transitions. 
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Algae Saxitoxin Levels 

Figure 4.1. Underlying Markov Model for the Algae Toxicity. 

The probability of the current level of toxicity (current state) depending on the 

previous level (previous state) can be expressed in a transition matrix, called the 

state transition matrix. Figure 4.2 shows a set of possible transition probabilities 

for the changes in toxicity levels in the alga Gymonodinium catenatum. 

Current Algae Saxitoxins Level 

Previous 
Algae 
Saxitoxins 
Level 

Low Medium High 

Low 0.42 0.39 0.19 
Medium 0.12 0.43 0.45 
High I 0.09 0.40 0.51 J 

Figure 4.2. State Transition Matrix. 

For the model represented by this set of probabilities, given that the previous 

sample of shell fish toxins level was low then there is a slightly higher probability 

that the levels remain low than there is that the levels to increase to a medium 

level. There is also a low probability it jumps straight to a high status from a low 

level of algae toxicity, hi this way the matrix reflects the dynamics the generation 

process for a specific model. 
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Notice that since the numbers are probabilities the sum of the entries for each row 

is one; i.e. given a previous algae state, for example a low state, the current state 

can only be low again, medium or high. 

To initialise such a system, we need to state what the level was (or probably was) 

on the first sample; we define this in a vector of initial probabilities. An example 

of an initial vector is shown in Figure 4.3, it corresponds to the case where the 

first sample is known to have had a low level of algae saxitoxins. 

Until now, the model presents predetermined probability values to relate the states 

in the underlying process. However, given a suitable algorithm, the real values for 

the hidden Markov process have to be inferred from the sample sequences of 

observations. The observations are related to the states by a further set of 

probabilities, contained in the confusion matrix. 

Low Medium High 
( 1 . 0 0 o ) 

Figure 4.3. Vector of Initial Probabilities. 

The confusion matrix in Figure 4.4 and further ilustrated in Figure 4.5, represents 

the connections between the hidden states and the observable states for this 

example. 

Alga Low ( 

Saxitoxins Medium 
Level High \ 

Shellfish 

Poisoning Alert 

Safe Caution Warning Danger 

0.58 0.27 0.10 0.05 
0.17 0.34 0.33 0.16 
0.03 0.07 0.28 0.62 

Figure 4.4. Confusion Matrix between States and Observations. 
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The confusion matrix describes the probability of having a particular range of 

shellfish toxins and therefore, being in a particular state of alert, given a level of 

algae saxitoxins. In the example matrix there is a high probability that it is safe to 

consume shellfish for a low level of algae saxitoxins 

There is also a higher probability that a danger alert level (a high level of toxins 

measured in the shellfish) can be associated with high levels of toxins present in 

Gymonodinium algae. Nevertheless, since the toxicity present in the shellfish is 

influenced by other factors besides the toxicity levels in the algae, there is also 

probability relating lower toxic levels of algae with high levels of toxicity in the 

shellfish population. 

OBSERVABLE 
STATES Safe 

/ O 
Caution Warning 

HIDDEN 

STATES 

Shellfish 
Poisoning Alert 

Alga 
Saxitoxins 

Level 

Figure 4.5. Relation between Hidden States and Observations. 

4.3 Uses associated with HMMs 

Learning -The sets of probability values in the matrices characterising this model 

are learned form sets of observations reflecting specific phenomena. In the case of 

PSP, this may be for example a model for summer harmfiil algae blooming events 

in a specific geographical location with observation sets obtained for events 
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occurring in different years. Using the same structural model of three levels of 

algae toxicity and four alert levels, other probability values are expected to be 

obtained for models of seasons without harmful algae proliferation. Similar 

models with characteristic probability values can be obtained for different 

seasons, and or geographical locations. 

Evaluation- To evaluate the risk of PSP, different HMM models can be used to 

characterise the relationship between the alga toxicity and the associated shellfish 

poisoning risk in relation to different seasonal ecosystem conditions. A set of 

observations of the levels of toxicity in the shellfish could then be used to identify 

models during initial stages of the phenomena and therefore to forecast the 

harmful algae blooming. 

Decoding - As mentioned before, the acquisition of truly representative samples 

of cell abundance by water sampling in exposed coasts is not practical in most 

cases. This is not easily attainable since it implies identifying and counting micro 

organisms in discrete samples that harbour a great diversity of species where a 

rapid analysis of a large number of samples would be routinely desired. 

Nevertheless, through the models obtained it is possible to estimate the most 

probable sequence of algae toxicity level states from a specific set of shellfish 

toxicity observations, i.e. to find the hidden states that generated the observed 

output. Analysis of the models allows the interaction of both sets of variables to 

be examined. 

4.4 Variations of the hidden Markovian model 

The values obtained for the levels of saxitoxins measured in the shellfish are 

continuous, but for practical guidance the food safety authorities establish an alert 

system comprised of four discrete levels as described before. This set of discrete 

levels provides immediate guidance about the risk of shellfish consumption by 

contrast to providing continuous values that require interpretation. Nevertheless, 

firom a biological perspective, continuous values may be more appropriate to track 

the fluctuations that characterise the process. 
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In this particular hidden Markov model, continuous values of shellfish saxitoxin 

were converted to discrete values by setting labelled ranges. The observations 

were characterised as discrete symbols chosen from a finite alphabet: the four 

alert levels, and therefore a discrete probability could be used to relate the states to 

the observations of this model. Such a model is called a discrete hidden Markov 

model. 

In order to model the process using direct shellfish saxitoxin values, the relation 

between the states and the continuous observations can be defined by a 

probabilistic distribution. Assuming a parametric distribution, such as a Gaussian 

distribution, the necessary values can be estimated from the data by a recursive 

process. Many natural processes involve variable quantities that approximate 

reasonably well to the normal or Gaussian distribution. A weighted sum, or 

mixture, of Gaussian distributions is generally used to model other distributions. 

Provided that there is a sufficient number of Gaussian mixture components, any 

distribution shape can be approximated closely. The models generated are called 

single Gaussian hidden Markovian models and Gaussian mixture hidden 

Markovian models (GMHMM) respectively. 

Neural networks can also be used to compute the probability for any given 

correspondence between states and observations generating a hybrid hidden 

markov neural network model (HMM/ANN model). 

4.5 Solutions to the HMM Problems (Rabiner, 1989) 

Once a system can be described as a HMM, three problems can be solved. The 

first two are pattern recognition problems: Finding the probability of an observed 

sequence given a HMM (evaluation) and finding the sequence of hidden states 

that most probably generated an observed sequence (decoding). The third problem 

is generating a HMM given a sequence of observations (learning). 
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4.5.1 Definitions 

The example in section 4.2 shows how a Hidden Markovian Model is 

characterized by two model parameters (the number of states and the number of 

distinct observation symbols), specification of observation symbols, and the 

specification of three probability measures. Lets formally define these symbols. 

Lets S= {81,82,..,Sn} be the finite set of states of the model and V= {Vi,V2,..,Vm} 

the finite set representing the individual (observable) symbols. Aditionally, let qt 

represent the state at time t. 

A corresponds to the state transition probability matrix with entries 

aij = P(qt+i = Sjiqt = 80, i 

B denotes the observation symbol probability distribution vector B={bj(k)}, where 

bj(k) = P(Vk at t|qt = Sj). ii 

n represents the initial state distribution vector n={ni} where 

n[i = P[q, = &]. ni 

Given appropiate values of N, M, A, B, and H, the HMM can be used as a 

generator to give an observation sequence 

0 = { o i , O2 , . . . , 0T} , i v 

where each observation Ot is one of the symbols fi-om V, and T is the number of 

observations in the sequence, and 
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is used to indicate the complete parameter set of the model. 

The application of this model to real signals generally involves the solution of 

some or all of three basic problems: Evaluation, Decoding and Learning. 

4.5.2 Evaluation: Finding the probability of an observed sequence given a 

HMM 

The aim is to compute the probability of occurrence of a particular observation 

sequence, O = {OI, . . . ,OT}, given the model X, i.e., P ( 0 | ? I ) . 

The most straightforward procedure to solve this problem is to enumerate every 

possible state of the T-length sequence. Consider the following state sequence 

Q = {qLq%... qy}, 

VI 

where ql is the initial state. Assuming that observations are independent, given 

the hidden states, the probability of the observation sequence O for the state 

sequence Q is 

f(016, A) = YJ f(o, I g,, A) = (o,)6,2 (O2 ) 
vii 

The probability of such state sequence Q is given by 

PiQ I ^q\̂ q\q2'̂ q2qi---̂ qT-\qT 
viii 

The probability that O and Q occur simultaneously is the product of the above 
terms 
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IX 

The probability of O given the model 1 is obtained by adding this joint probability 

over all possible state sequences q is giving by 

f ( 0 | A ) = ^ f ( 0 | g , A ) f ( g | A ) 
X 

The calculation of P(0|X) in this direct form involves 2TN^ arithmetic procedures, 

which make it computationally unfeasible. However, alternative and more 

efficient procedures (that requires only N^T elemental mathematical operations) 

are available, and they are explained below: 

4.5.2.1 Forward procedure 

The problem of computing the probability of a particular observation sequence 

given a HMM can be solved by dividing the problem into computing the 

probability of partial observation sequences. 

Consider the forward variable at(i) defined as 

cf,(z) = = 5,1 /L) 

This is the probability of the partial sequence until a given time t and state Si at 

the same time t, for a given model X. A recursive algorithm can be used to obtain 

the probability of the whole sequence P(0, X). This procedure consists of three 

stages: 

a) Initialise 

hi this step the probability for the first observation (a partial sequence with one 

element) is computed using the set of initial probabilities of the model. 

Of, (()== ar,6', (o,) 1 3 

xii 

b) Calculate 
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( ; )=[Z ((̂ '+1) 1 < f < r -1 
l < ; < 7 f 

xiii 

Thus, the probability for the next partial observation sequence will be computed 

considering the values obtained in the previous one. This process continues 

(forward) until the last observation is reached. 

c) Obtain 

(=1 

xiv 

The probability for the whole sequence is the result of adding the probabilities of 

all the partial observation sequences. 

4.5.2.2 Backward procedure 

Once again, the problem of computing the probability of a particular observation 

sequence given a HMM is solved by dividing the problem into computing the 

probability of partial observation sequences. But in this case starting from the last 

observation and going backwards. 

hi a similar manner a backward variable can be defined as 

AO) = .Or I 

XV 

This is the probability of the partial observation sequence from t+1 to the end, 

given state Si at time t and the model X. Solving for pT(i) 
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a) Initialise 

A-(0 — ^ 

Starting from the last observation 

b) Calculate 

XVI 

;=i 

c) Obtain 

p ( o j i ) = i ; A ( o 
f=l 

r = r - i , r - 2 i , i<z<Ar 

xvii 

xviii 

Adding all the partial sequence probabilities, the probability for the whole 

sequence is obtained. Again, the computation requires only N^T calculations 

making this procedure more computationally feasible than the procedure 

described first enumerating all possibilities. 

4.5.3 Decoding: Finding the sequence of hidden states that most probably 
generated an observed sequence 

The aim is to find the single most likely state sequence, Q = {ql,q2,...qT}, for the 

given observation sequence O = { 0 1 , 0 2 , . . . 0 T } . This can be computed using the 

Viterbi algorithm (Viterbi, 1 9 6 7 ) . Defining the auxiliary variable 5t(i) 

1 
xix 
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which is the highest probability along a single path, at time t, accounting for the 

first t observations and ends in state Si, therefore 

XX 

To retrieve the state sequence, it is necessary to keep track of the argument that 

maximised the previous equation for each t and j. This can be done using the array 

v|/t(i)- The procedure can be stated as follows 

a) hiitialise 

^ i (0 = o 

b) Compute 

l<z<JV 

XXI 

xxii 

c) Obtain 

P' =max&(z) 

q* =argmax&(z) 
' l<i<N 

d) State sequence backtracking 

xxiii 

xxiv 

XXV 

XXVI 

9* r + r - i , r - 2 i 

xxvii 

Therefore, backtracking the pointer q \ the single most likely state sequence can 

be retrieved. The Viterbi algorithm is similar (except for the backtracking) in 

implementation to the forward calculation previously described. The mayor 
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difference is the maximization (xxiii) over previous states instead of the 

summation (xiii). 

4.5.4 Learning: Generating a HMM given a sequence of observations 

The aim is to find the model parameters X, = (A,B,n) such that P(0|X) is locally 

maximised. This can be done through an iterative procedure 

a) Mitialise X,o 

b) Compute new model X using Xq and the observations O 

c) X,o —̂ X 

d) Repeat steps b and c until 

lojsJP(01 A)-logrjofO I Jo) < (f 
xxvni 

Using the Baum-Welch procedure (Rabiner, 1989) to compute the new model 

parameters, we define ^ i j ) , the probability of being in state Si at time t and at 

state Sj at time t+1, given the model X and the observation sequence O as 

PiOW xxix 

)A+,0) 
N N 

Z E (̂ '+1) A+i ( ; ) 
i=i i=i 

Let Yt(i) be the probability of being in state Si at time t, given the observation 

sequence O and the model X 

y=i 

XXX 

Summing YT(i) over the time index t the number of transitions made from state Si 

is obtained. Similarly summation of ^t(ij) over t can be interpreted as the 

expected number of transitions from state S, to state Sj. That is 
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r-1 
/t (0 - expected number of transitions from S, 

/=i 

XXXI 

% ^ - expected number of transitions from Sj to Sj 

xxxn 

Consequently, the following formulas provide the new values for 11, A, and B 

;r = /,(;) 

a.. 

xxxin 

xxxiv 

If we define the current model Xq and use it along with the observations to 

compute the auxiliary variables yt(i) and §t(ij), then a new model X can be 

obtained using xxxiii, xxxiv, and xxxv. Baum (1970) proved that if the new model 

parameters are different to the old ones, the observation sequence is more likely to 

have been produced by the new model. 

4.6 Continuous observation densities in HMM 

In order to use continuous values for the observations, some restrictions have to 

be imposed on the form of the probability density fraction (pdf) to guarantee that 

the parameters can be computed in a consistent way. The most general 

representation is a mixture of the form 
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M 

m=l 

XXX vi 

Where Cjm is the mixture coefficient for the mixture in state j and r| is any log-

concave or elliptically symmetric density (e.g., Gaussian), with mean vector pjm 

and covariance matrix Ujm for the m̂ '̂  mixture component in state Sj. Usually, a 

Gaussian density is used. The mixture gains cjm satisfy 

M 

m=l 

xxxvii 

c ^ , > 0 

and thus, the pdf is normalised i.e.. 

j" bj {x)dx = 1 \< j <N 

xxxviu 

The re-estimation formulas for the coefficients of the mixture density are 

(=1 
^jk T M 

ZUr.U.k) 
/=1 k=l 

XXXIX 

Mji = — r 

'Zr,U.k)-o, 
1 

t=l 

Xl 
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f=l 
xli 

where YtO k̂) is the probability of being in state j at time t with the k'*" mixture 

component accounting for Ot 

0^,0) A O ) ^jk V(Pf>P-Jk-> ^ jk ) 

M 

Uj^. ) 
m=\ 

xlii 

The re-estimation formula for ay is identical to that used for discrete observation 

densities. 

a,, 
xliii 

For more details on the algorithms refer to the tutorial paper presented by Rabiner 

(1989). 

4.7 Multiple Observation Sequences 

To use multiple observation sequences mutual independence is assumed. The set 

of k observation sequences is defined as 

xliv 

where Ok= [" O i \ ,•••, Oyk'̂ ] is the kth observation sequence. The parameters 

of the HMM needs to be adjusted to maximize 
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f ( o I A ) = n ? ( o * I A)= 
W k=\ 

xlv 

The formulas for the estimation of the new parameters are 

d-: = 

X {O'̂ M (7) 
k=\ /=1 

V * 1 

ik-\ ^k f=l 

A:=l ^k 
bm 

ik=\ t=\ 

Using the scaling factor 

c, = 
t N 

(*,(0 = 

AO) = 

xlvi 

xlvii 

xlvii 

xhx 

xlx 

4.8 Summary 

The statistical model assumes an underlying process (hidden) generating a set of 

discrete or continuous observations. The hidden process is a Markovian chain 
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representing the different possible states. At regularly spaced times the system 

undergoes a change of state (possibly returning to the same state) according to a 

set of probabilities associated with the current one. The model assumes that the 

actual state depends only on the previous ones (Markov assumption), and the 

probabilities associated with the states do not change with time. The observations 

are related to the states by a discrete probability function for discrete observations, 

a parametric probability function for continuous observations, or using a neural 

network (Rabiner, 1989). 

The next chapter introduces the use of cepstral analysis in the context of 

phonocardiogram representation. 
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5 PCG Feature Extraction 

5.1 Introduction 

Hidden Markovian models have been proposed as an advantageous technique for 

the classification of PCG signals; however, the performance of a classifier also 

depends highly on the features selected to represent the heart sounds. 

In order to perform the automatic analysis of a PCG signal, a simplified 

representation is necessary to ease the computation required. An overly detailed 

representation may also take into account characteristics of the particular training 

set that will not be present for independent data sets. For signal classification 

problems, the features selected aim to represent the signal in a manner that 

minimises variability within a class and retains class differences (Gold, 2000). 

The PCG time domain signal is usually transformed to other domains by applying 

specific operations to it. Although the main purpose may be data reduction, 

transformation of the signal to other domains may be required to emphasise some 

signal patterns, due to the statistical properties of the new variables, or because of 

computational advantages. In some specific domains the transformation is a one to 

one mapping and therefore, an inverse transformation exists and can be used to 

recover the original time signal. When this is not the case, and the raw signal is 

not recoverable any longer, the transformation is still useful as long as the pattern 

in the new domain is still descriptive of the main signal characteristics. 

The most important features of the PCG signal are the intensity and timing 

sequence of the components of the heart sounds and their location, fi*equency 

content, and envelope shape of murmurs, if any (Rushmer, 1970). Based on these 

characteristics, several methods have been employed for the analysis of PCG, 

among them the use of time fi-equency representations (Leung, 1997; Ritola, 

1996) linear prediction analysis (Iwata, 1977), cepstral analysis (Rangayyan, 

1978a, 1979), and wavelets (Barschdorff, 1995; Obaidat, 1992; Zhang, 1998; 

Olmez, 2003). 
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In the literature available, two different classes of feature representations can be 

distinguished. 

• Features developed initially for analysis of the PCG. Such features aim to find 

an alternative representation that may emphasise certain patterns of the signal 

to ease visual diagnosis. Generally, these representations have a counterpart in 

the characteristics sought by auscultation techniques. Examples of this 

technique are the Maass-Weber set of filters (Holldack, 1965) and most of the 

time-fi-equency representations. Some of these representations have been later 

used as input features for classification algorithms. 

• Feature representations specifically aimed at classification. These 

representations may not have a straightforward interpretation although related 

to a model of the physical phenomena. Nevertheless, they are selected for their 

computational advantages, their data reduction capabilities, and/or due to their 

mathematical properties. Examples of these techniques are linear prediction 

and pole - zero modelling. 

In this research, based on a model in accordance with the most accepted theory for 

the genesis of heart sounds, cepstral coefficients are proposed as the preferred 

feature representations for the classification models. Nevertheless, there are other 

approaches that also provide a simplified representation of the PCG signal and are 

suitable to be used as input features for the signal classifier. Consequently, two 

other main approaches have been selected as alternative representations and for 

performance comparison: an energy integration method based on the use of 

Maass-Weber filters and linear prediction analysis. 

Maass-Weber filters were selected as a simple sub band energy representation 

(basically a simplified spectrogram), which nevertheless, embraces the practical 

approach for clinical analysis of heart sounds: The use of this technique for 

clinical phonocardiography is considered standard practice in countries like 

Germany or Mexico (Holldack, 1974; Guadalajara, 1998). 
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Linear prediction analysis, was selected not only due to its wide success as a 

feature representation technique in the signal processing literature, but also 

because it is the main candidate to substitute the use of cepstral representations as 

inputs to the hidden Markovian Models. 

The reminder of this chapter explores the use of these feature extraction methods 

for PCG representation in the context of signal classification. 

5.2 Proposed technique: cepstral representations 

The most accepted theory for the genesis of heart sounds (the cardiohemic theory) 

regards the generation of heart sounds as a consequence of a system set into 

vibration by the acceleration and deceleration of blood flux. These variations of 

blood flux are related to the sequence of the opening and closing of the heart 

valves and the contraction and expansion of its chambers during a cardiac cycle. 

The PCG signal can be assumed to be the convolution of a system's impulse 

response and an excitation component. The excitation component is generated by 

the blood acceleration and deceleration components of SI and S2, the noise signal 

caused by flow turbulence, or both, whereas the impulse response of the system 

would be defined by the heart structure. Accordingly, the PCG signal would be 

the result of the convolution of the heart structure and the vibrations induced by 

blood flow regardless of its generating mechanism. 

Following this model, cepstral analysis can potentially be used to separate the 

components of the sound representing the system's response dominated by the 

heart structure fi-om the components due to the blood flux excitation. 

Cepstral analysis is a signal processing technique in which a measurable signal is 

conceived as the result of a convolution of an excitation and a system response. 

The aim of the technique is to transform this convolution to a linear addition so 
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that the high order components related to the excitation can be separated from the 

low order components related to the system response. Accordingly, abnormalities 

in the heart structure will be reflected in the lower order coefficients, whereas the 

contribution of the excitation due to blood flux variations will be reflected in 

higher order coefficients (see appendix B). 

The following section explores the feasibility of using cepstral representations for 

the differentiation of pathological and non pathological PCGs. 

5.2.1 Methodology 

Cepstral analysis is a special case within a general class of methods known as 

'homomorphic' signal processing. There are two main variants of cepstral 

analysis, namely complex cepstum and power cepstrum. The basic difference 

between them is that real cepstrum discards phase information about the signal 

while the complex cepstrum retains it. Complex cepstral is preferred in phase 

sensitive applications when it is required to return to a time waveform. However, 

since phase processing adds complexity, power cepstrum is employed more 

widely for practical applications, hi automatic speech recognition for instance, a 

filter bank designed according to some model of the auditory system is used in the 

computation of a power cepstrum to obtain a mel-ceptrum that compensates for 

the unequal sensitivity of human hearing at different frequencies (Gold, 2000). 

Power cepstrum is selected for this research since a simplified representation of 

the phonocardiograms is required. Figure 5.1 illustrates the steps involved in 

computing the cepstrum of the phonocardiograms. The signal is firstly divided 

into frames of 20 ms overlapped by 50%. The length of the window has been 

selected within the range proposed by Jamous (1992) for frequency analysis of 

heart sounds (see appendix B). Secondly, a Hamming window and a discrete 

Fourier transform are applied to each frame to obtain its spectrum. Afterwards, an 

inverse discrete Fourier transform is appUed to the logarithm of each spectrum 

frame in order to obtain its cepstrum. The last step involves a cepstral truncation: 
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the higher order coefficients (assumed to represent the excitation) are discarded 

and only the values near to the origin (corresponding to the resonance structure) 

are retained since as illustrated in appendix B this low order coefficients provide a 

simplified spectrum representation. This set of operations is performed for each 

frame until the cepstrum for the whole PCG signal is computed. 

Discrete 
Fourier 
Transform 

LOG[] 

Inverse 
Discrete 
Fourier 
Transform 

Data 
Window 

1 

Low order 
5 ® — ^ cepstral 

coefficients 

Cepstrum 
Truncation 

Figure 5.1. Cepstral Analysis. 

Figure 5.2 shows a normal PCG signal and the evolution of the first ten cepstral 

coefficients. Each plot shows the evolution of one cepstral coefficient in time. The 

signals have been normalised to its maximum amplitude. 

Considering that HMMs with more features need more training data, the 

limitations imposed by the size of the database lead us to set the number of input 

features to be small, but should still be sufficient to provide visual differentiation. 

Based upon the rule of thumb that the number of training samples should be five 

or more times the number of features used (Rangayyan, 2002, pp. 474), five 

coefficients were initially proposed to represent the signals. By inspection of the 

plots representing the samples in our database it was confirmed that these 

coefficients were able to provide visual differentiation. Later in the research the 

limitations on the number of samples available led us to use only one coefficient 

for heart sound segmentation. 

Comparing the PCG trace and the plots corresponding to the cepstral coefficients 

it is possible to identify the relation between the cepstral coefficients and the 

mechanical events during a normal cardiac cycle. The fifth coefficient for 

example, shows a peak of higher magnitude for the second sound S2 that may 
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differentiate it from SI. The value of this representation becomes even more 

evident when comparing the phonocardiograms related to different pathological 

conditions. 

Figure 5.3 shows the plots of the first five cepstral coefficients for three 

phonocardiograms representing a normal PCG heart sound, a ventricular septal 

defect (VSD) murmur and an aortic stenosis (AOS) murmur. The data in the first 

column of the plot represents the normal data, the second column the VSD data 

whilst the final column contains the AOS data. The first row shows the PCG 

PCG 

Cepstral. 

1st 

2nd 

3rd 

4th 

5th 

6th 

7th 

8th 

10th 

0.7 

0.3 0.4 

nme[s] 

Figure 5.2. Cepstral Representation of a Normal PCG. PCG recorded at pulmonary area, 
Fs =4 KHz. 
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The first cepstral coefficient, which is essentially related to the power of the signal 

(see appendix B), clearly shows the difference between normal and abnormal 

PCGs. The first coefficient in the second column shows the distinctive pansystolic 

murmur characteristic of a ventricular septal defect. The murmur presents a 

decrescendo characteristic towards S2. Although the initial strength of this 

murmur is obscured by the first sound in this plot, S1 and S2 are clearly seen in 

the second coefficient. The murmur's characteristic contribution is more evident 

in the third and fourth coefficients. 

PCG Normal Ventricular Septal Defect Aortic Stenosis 

Cepstral 

1st 

2nd 
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5th 

0 ,2 0.2 0.4 
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Time [s] 
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1 

Figure 5.3. Comparison among Cepstral Representations of PCGs for Normal, 

Ventricular Septal Defect and Aortic Stenosis Conditions. Recorded at pulmonary, 

lower left sternal edge and aortic areas, Fs =4 KHz. 

The third row shows the early systolic murmur caused by aortic stenosis. The 

plots show a pronounced increase in the third and fifth cepstral coefficients at the 
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time of the murmur. Note that as in the PCG, the contribution of the S2 

component in the fifth coefficient appears diminished compared to the other two 

conditions. 

The aim of figure 5.3 is to show that the cepstral coefficients obtained from the 

PCG display different characteristics depending on the pathologies associated 

with the heart sound and therefore, to show that the cepstral representations are 

suitable to be used in a classification algorithm. 

5.2.2 Advantages of cepstral representations 

The procedure to obtain the cepstral coefficient to represent PCGs was described 

and it was shown that this representation could be used to visually differentiate 

medical conditions. 

Cepstral analysis has been applied before to PCG analysis by analogy to its use on 

speech analysis for vocal tract - excitation models (Rangayaan 1978b). In these 

studies, the whole cardiac cycle was used to compute the complex cepstra and 

after low and high liftering (filtering in the cepstral domain), the process was 

inverted to obtain a system response and an excitation sequence respectively. The 

excitation sequences were found to differ between normal and abnormal PCG 

(aortic stenosis and mitral stenosis); however, the system responses were 

discarded since it was argued that they lacked of useful information. 

The concept of cepstral analysis is further expanded in this work proposing the 

tracking of the variations of the short-term real cepstral coefficients for 

classification. Instead of using the computationally demanding approach of 

complex cepstral deconvolution with its phase unwrapping complications, the 

signal is represented as pattern variations in the power cepstral domain. In the 

same manner as a time series is better represented in the time firequency plane to 

enhance frequency patterns, the PCG signal is chosen to be represented in the new 

plane. 
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Cepstral truncation is required to keep the number of input features low, and 

therefore, the slow varying low-quefrency coefficients related to the system 

response are used. However, most of the faster varying high-quefrency 

coefficients relating to the excitation are discarded. In an opposite approach to 

Rangayaan (1978a), who discards the reconstructed system response, we propose 

to track the variations in the low order coefficients associated with the system 

response. The viability of these representations to discern patterns of PCG 

characteristic of specific pathologies has been shown. 

The use of these representations may be useful for the differentiation of 

turbulence induced murmurs due to abnormal communications from murmurs 

produced by non physiological hyperflux conditions. For example, atrial septal 

defect murmurs and innocent pulmonary flow murmurs present a similar grade II 

mid systolic ejection murmur, best heard in the pulmonary area. Both murmurs 

are caused by an increased volume of blood ejected by the right ventricle through 

a normal pulmonary valve. Nevertheless, the increased blood flow is caused by an 

extracardiac connection in the first case, whereas in the second case the increased 

blood flow results from a structural and functionally normal heart (Guadalajara, 

1998). A similar excitation signal may be considered to set the system into 

vibration: the turbulent flow in the pulmonary valve, however, a system response 

from a heart with a hole in the atria, in theory, may be expected to be different 

from a system response of a normal heart. 

The use of cepstral coefficients to represent the PCG has some computational and 

mathematical advantages. Since several coefficients are used to represent the PCG 

signal, the input features for the HMM are multidimensional and therefore, if the 

state observation probabilities are represented by single Gaussian distributions, 

they would form a multivariate Gaussian distribution (Holmes, 2001, page 143). If 

the features do not vary independently, a covariance matrix specifies their 

interdependence. The entries along the main diagonal of such a matrix represent 

the variance of each feature, whilst the remaining entries indicate the extent to 

which the separate feature distributions are correlated with each other. Assuming 
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this set to be of highly uncorrelated features simpUfies the computation of the 

parameters in the hidden Markovian model since the covariance matrix can be 

reduced to a matrix with only diagonal elements, the variances (Jelinek, 1999). 

5.3. Maass-Weber filters 

During auscultation, a physician as an experienced expert, performs a subjective 

diagnosis of heart murmurs by an analysis of frequency and intensity patterns, 

relative intensity levels, timing, and localisation. 

hi the recording of phonocardiograms, relatively high-energy components in the 

low frequency regions often obscure high frequency components of relative low 

energy. Therefore, in clinical phonocardiography, a standard set of filters is 

usually required to ease the visual analysis of the PCG signals. The filters required 

have been empirically defined and the set comprises a low-frequency band filter 

t35, two medium frequency filters mlyo and m2i4o, two high frequency filters 

and h24oo, and a logarithmic filter mg to mimic the response of the human ear, 

although this last filter is of low clinical value. This set of filters, known as the 

Maass-Weber filters, are standard for clinical phonocardiography analysis 

(Holldack, 1965, 1974; Barschdorff, 1995; Guadalajara, 1998). 

Figure 5.4 shows the frequency response of the Maass-Weber set of filters. The 

cut-off frequencies are defined at 10% below nominal amplitude (unitary gain). 

The critical frequency of the low pass filter tss (from the German tiefe) is set at 35 

Hz with a 7.5 dB/octave roll-off The first medium frequencies band pass filter 

ml7o has a cut-on frequency at 70 Hz, an 18 dB/octave roll-on and a 24 dB/octave 

roll-off The gain of this filter reinforces the frequencies within the band centred 

at 140 Hz (this reinforcement is a common characteristic of the subsequent 

filters). The filters m2i4o, hhso and h2400 have cut-on frequencies at 140 Hz, 250 

Hz and 400 Hz respectively with symmetric roll-on and roll-off slopes of 24 

dB/octave. Note the different maximum gains, since the filters are specified by the 

cut on frequencies at 0.9 gain and the central frequencies. This set was empirically 
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defined in the early days for PCG plotters where the gain was manually adjusted 

to enhance specific features on the clinical findings. 

Figure 5.4. Frequency Response of the Maass-Weber Filters tis, ml70, ml,40, 

Frequency response of the Maass-Weber filters 

140 250 400 
Frequency 

800 

hi250, h2400-

Figure 5.5 shows a normal PCG recorded at the LLSE position with this set of 

filters. The first and the second sound can be identified in all the fi-equency bands; 

however, the initial and final segments of SI, which are of low fi-equency (around 

30 Hz), are better seen on tss and are not visible on m2,4o or hlaso- The main group 

of SI with frequencies between 100 Hz and 150 Hz is better seen on ml,40 and 

hi250. The first half of the second sound (aortic) has higher amplitude and higher 

frequency components than the second half (pulmonic). Their respective 

contributions can be easily recognised on ijs, m2i4o, and hi250. As an example of 

the use of these filters to ease the identification of pathologies. Figure 5.6 shows 

an innocent systolic murmur recorded with the Maass-Weber set of filters. The 

murmur is predominant in ml70 and m2,4o and the split in S2 is more evident in 
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Figure 5.5. Normal Phonocardiogram Filtered with the Maass-Weber Set. PCG 
recorded at lower left sternal edge area, Fs =4 KHz. 
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Figure 5.6. PCG with an Innocent Systolic Murmur Filtered with the Maass-

Weber Set. PCG recorded at pulmonary area, Fs =4 KHz. 
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5.3.1. Feature representations based on Maass-Weber filters 

To obtain a simple set of features, the PCG signal is segmented into frames of 20 

ms overlapped by 50%. The short time Fourier spectra of each frame is computed 

and weighted by the five band Maass-Weber filter characteristics. A single value 

for each band is obtained by computing the normalised average spectral power 

yielding five coefficients per frame (Barschdorff, 1995). 

PCG Normal Ventricular Septal Defect Aortic Stenosis 

0.2 0.4 

Maas-Weber 

m1 70 0.5 

m2140 0.5 

hi 250 0.5 

h2400 Oi 

0.2 0.4 
Time [s] 

Figure 5.7. Coefficients Obtained for Each Band of the Maass-Weber Filter for 

Different Conditions. Recorded at pulmonary, lower left sternal edge and aortic areas, 

Fs =4 KHz. 

Figure 5.7 compares the features obtained for signals characteristic of three 

clinical conditions, namely: a normal PCG, a heart sound signal with a 

characteristic murmur caused by a ventricular septal defect and a PCG with a 
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systolic murmur, typical of aortic stenosis. The first row shows the unfiltered 

record of the PCG, whereas the subsequent rows represent the normalised energy 

coefficients obtained for each fi-equency band in a time-frame axis. As expected, 

in the normal heart sound, no particular signature is present during the systolic 

cycle. The particular signature of a pansystolic VSD murmur is easily identified in 

the bands m2i4o, hhso and h24oo. The mid-systolic ejection murmur, characteristic 

of aortic stenosis, is clearly seen in the bands ml,40 and hlaso. Its medium-high 

fi-equency component contributions are not as remarkable in h24oo as in the 

previous bands. 

Note the similarity between the Mass-Weber representations shown in figure 5.7 

and the cepstral representations shown in figure 5.3. In the case of the ventricular 

septal defect murmur, for example, the signal fi-om the filter hi 250 is remarkably 

similar to the signal obtained for the fifth cepstral coefficient. The fourth cepstral 

coefficient for the VSD murmur exhibits the strong systolic murmur and 

diminished SI and S2 components, those characteristics are reflected also in the 

signal obtained for the filter h2 400 in figure 5.7. 

If there were a restriction on the use of only one coefficient for each 

representation, the best choice would be the first cepstral coefficient since it better 

represents the distinctive shape of the murmurs and the relative amplitudes of SI, 

S2 and the murmur. For the Maass-Weber coefficients the hi 250 signal would be 

a good candidate although the relative amplitudes of the components are not 

maintained. 

The Maass-Weber filter set has been defined through experience to aid in visual 

differentiation, and consequently, it is not surprising that the features obtained are 

a good descriptor for a visual assessment of the differences between pathologies 

(at least for the typical signals presented). Nevertheless, the differences that 

discriminate between similar murmurs are not always discernible by visual 

inspection of these graphs, and therefore, their performance as feature 

representations for an automatic classification algorithm have to be evaluated 

within the context of the method selected and the database available. 
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5.4. Linear prediction coefficients 

The linear prediction model forecasts the amplitude of a signal at certain times 

using a linear weighted combination of a number of past samples (they are also 

referred to as autoregressive models). If a predictor error is defined as the 

difference between the actual sample value and its predicted value, a set of the 

best prediction coefficients can be defined by minimising a mean square error 

criterion. 

The success with which a signal can be predicted from previous samples depends 

on the autocorrelation function, or equivalently, on the bandwidth and the power 

spectrum of the signal. A predictable signal has a smooth and correlated 

fluctuation in time, and the energy will be concentrated in narrowbands of 

frequencies, whereas the energy of an unpredictable signal is spread over a wide 

band of frequencies. Most signals are partially predictable and partially random. 

These signals can be modelled as the output of a filter excited by an uncorrelated 

input. The aim of hnear prediction is to model the mechanism from introducing 

correlation in a signal; i.e. the filter characteristics, and therefore in the frequency 

domain LP analysis can be regarded as a method of spectral modelling. For details 

of the technique see Makhoul (1975), Vaseghi (2000, pp. 227 - 261). 

LP analysis has been used before as input feature representations for PCG 

parametric classifiers (Itawa, 1977). The technique is based on a model of 

resonances in which the distribution of poles provides the information of interest, 

such as high frequency poles corresponding to murmurs and low frequency poles 

representing the heart sounds. A feature space formed with prominent poles of the 

models (with bandwidth < 80 Hz) can be used for classification (Itawa, 1980). 

Figure 5.8 shows an example of the FFT spectrum of a section of the PCG signal 

comprising a second heart sound and the spectrum obtained by modelling with an 

eighth order linear predictor. A better estimate of the underlying spectrum can be 
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achieved by increasing the order of the filter. The signal also shows the time 

domain signal and the all pole diagram of the filter model. 
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Figure 5.8. PCG Time Signal of the Second Heart Sound, Z Plane Diagram of 

the All-pole Filter, FFT Spectrum and LP Spectrum. PCG recorded at pulmonary 

area, Fs =4 KHz. 

For the analysis of PCGs, Itawa (1997) suggest an eight-pole filter to model the 

spectral contours of 25 ms time fi-ame windows overlapped by 50%. In practice, 

the prediction coefficients are not a good representation to use for most 

applications. In cases in which the digital word length is critical, the polynomial 

coefficients tend to be too sensitive to numerical precision. The coefficients are 

not orthogonal, which potentially creates other difficulties for classifiers that 

might use these features (Gold, 2000). Interpolating between parameters 

corresponding to two different filters will not vary the fi-equency response 

smoothly fi-om one to the other: stability is not even guaranteed. 
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For all of these reasons LPC coefficients are generally transformed into one of a 

number of representations including pole positions, reflection coefficients, log 

area ratios and line spectral frequencies (Makhoul, 1975; Itakura, 1975; Deller, 

2000). 

The pole positions are obtained finding the roots of the polynomial defined by the 

set of LPC features. The polynomial roots are either real or occur in complex 

conjugate pairs. The main disadvantage of using the pole positions is that the 

frequency response is sensitive to pole positions near the unit circle. 

To obtain the reflection coefficients the LPC polynomial is transformed into a set 

of coefficients that represent the fraction of energy reflected at each section of a 

non-uniform tube with as many sections as the order of the polynomial. These 

reflection coefficients lie between - 1 and +1 (for totally open and totally closed 

boundary conditions), however, the coefficients also become very sensitive to 

noise when they are near to +1. 

Log area ratios, defined as the inverse hyperbolic tangent of the reflection 

coefficients, are used to wrap the amplitude scale of the reflection coefficients to 

decrease their sensitivity to quantization errors when their magnitude is near to 

unit. 

5.4.1 Proposed representation: line spectral pairs 

Line spectral pairs are an alternative to LPC representations, hi this technique, the 

predictor polynomial computed by the auto-correlation method of linear 

prediction is split into a symmetric and an anti-symmetric polynomial by 

extending the order of the filter (without introducing any new information). 

Letting the added reflection coefficient be 1 or - 1 is equivalent to setting the 

corresponding acoustic tube model to be completely closed or completely open at 

the added stage (Itakura, 1975). The poles of the resulting symmetric and anti-

symmetric polynomials are interlaced with each other and are on the unit circle 
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and therefore these pairs of poles can be uniquely represented only by their phase 

i.e. providing a set of line spectral frequencies. 

Figure 5.9 shows the line spectral frequencies computed from the LP spectrum of 

figure 5.8. The vertical lines represent the line frequency pairs. The peaks in the 

spectra are defined by the position of the pairs and the distance between them. As 

shown in the figure, the first pair of LSF which are close to each other result in a 

sharp peak in the frequency response curve. The frequency response is relatively 

flat around a pair of LSF far from each other as is the case in the last pair for 

example. A spectrum where the signal amplitude is low in all frequency bands 

will be represented by equally spaced LSF. 
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Figure 5.9. PCG Time Signal of the Second Heart sound, Z Plane Diagram. 

PCG recorded at pulmonary area, Fs =4 KHz. 

Figure 5.10 shows a PCG with a murmur typical of aortic stenosis and the 

representation of the line spectrum frequencies computed form time windows of 

25 ms overlaped by 50%. 
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The figure shows the time evolution of the four Hne spectral pairs. The first line 

spectral pair (bottom two lines) is closely spaced and just below 50 Hz indicating 

a low frequency peak persisting across time. The fourth pair (uppermost lines) are 

general far-spaced lines characteristic of a flatter spectrum; however, within the 

range from 0.1 to 0.3 seconds the lines become closer with a shift of frequency 

showing peaks in the spectra. Although the interpretation of this line frequency 
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Figure 5.10. PCG with an Aortic Stenosis Murmur and its Line Frequency 

Spectral Representation. PCG recorded at aortic area, Fs =4 KHz. 

spectrum is not straightforward, the presence of the murmur in the systolic cycle 

can be seen in the line frequency spectrum. To ease its interpretation, Figure 5.11 

shows the spectrogram of the same signal and the line frequency spectrum 

superimposed. 

Figures 5.11 and 5.12 show how line frequency spectral pairs can represent the 

spectrogram of the signal in a simplified form. Each line spectral pair represents 

the location of the spectral peaks by their position and the sharpness of the peak 

by their proximity. In Figure 5.11 closely spaced line pairs in the range from 200 
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to 400 Hz and 0.1 to 0.25 seconds indicate the presence of a systolic murmur. By 

comparison, in Figure 5.12 where no murmur is present the line pairs are far 

spaced. 
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Figure 5.11. Spectrogram and Line Frequency Spectrum of a PCG with a Sytolic 

Murmur Typical of Aortic Stenosis. PCG recorded at aortic area, Fs =4 KHz. 
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Figure 5.12. Spectrogram and Line Frequency Spectrum of a Normal PCG. PCG 
recorded at pulmonary area, Fs =4 KHz. 
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5 . 5 S u m m a r y 

The viability of using power cepstral analysis, line spectral pairs and Maass-

Weber derived energy features to provide a simplified representation of the 

phonocardiograms has been demonstrated. In those techniques the variations of 

the time signal that reflect the occurrence of pathologies lead to traceable 

differences in those feature representations. It has been shown that some of them 

may be especially suitable to ease computational demands. Nevertheless the 

viability of the use of those representations as inputs for the classifier needs to be 

assessed for the particular models selected and the database available. The next 

chapters will assess their performance within this context. 

The following chapter shows how those representations can be used to solve a 

related problem: the segmentation of heart sounds. 
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6 Heart Sound Segmentation by Hidden Markovian Models 

6.1 Introduction 

During auscultation, one of the main clues to differentiate similar murmurs 

corresponding to different pathologies is their position with respect to the main 

components of the heart sound. For instance, murmurs are initially classified into 

systolic and diastolic murmurs depending on their timing within the heart cycle 

and further labelled as early, middle and late murmurs by their occurrence within 

the systolic and diastolic cycles. Components of the PCG are also required to be 

identified since they also present changes due to cardiac abnormalities, for 

example, the wide fixed split of S2 associated with atrial septal defects or the 

accentuation of the third heart sound in some ventricular septal defects. 

It is therefore of prime importance for an autonomous system to be able to 

identify the main components of the PCG and the relative position of abnormal 

sound events within the heart cycle. Once the main components are identified, 

individual portions of the PCG signal can be extracted for a more detailed analysis 

and modelling. Accordingly, the segmentation of heart sounds into its components 

is commonly regarded as the first step towards the automatic classification of 

heart sounds (Iwata, 1980; Liang, 1997; Lehner, 1987). 

A summary of the techniques available for the segmentation of the 

phonocardiogram is presented in this chapter before a new approach is proposed. 

Since previous techniques for heart sound signal segmentation make extensive use 

of other biomedical signals such as the electrocardiogram and the carotid pulse, 

the relation between these events is briefly explained. Using the cepstral 

coefficients derived from the PCG as input features, a hidden Markovian model is 

then proposed to identify the main components of the phonocardiogram and 

consequently perform the heart sound signal segmentation. 
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6.2 Heart sound segmentation using the electrocardiogram and carotid pulse 

signals 

In a normal PCG (at normal heart rate), the first and the second heart sounds can 

be identified by visual inspection, but the presence of murmurs and high heart 

rates makes their localisation within the cardiac cycle difficult. Moreover, the 

non-specific nature of vibration signals, the various transmission paths from the 

heart to the chest surface, and superimposed background noises including 

ambient, instrumental, and extra-cardiac noise, further hinders their detection. For 

these reasons, several proposed systems make use of auxiliary signals like the 

electrocardiogram and the carotid pulse for automatic identification of heart sound 

components (Rangayyan, 2002). 

Figure 6.1 shows the main components of the heart sound signal namely: first 

sound (SI), second sound (S2), the systolic and diastolic phases, and their relation 

to events in the electrocardiogram (ECG) and the carotid pulse (CP). 

In the ECG, the sino-atrial node, a basic natural pacemaker triggering its own 

action potentials starts the cycle. Electrical activity is propagated through the 

atrial muscle causing contraction of the atria. This slow activity and the small size 

of the atria results in a low-amplitude slow P wave on the ECG. The excitation 

delayed at the atrio-ventricular node results in a normally iso-electric segment 

known as the PQ segment. This pause assists in the completion of blood transfer 

from the atria to the ventricles. The His bundle, the bundle branches, and the 

Purkinje system of specialised conduction fibers propagates the stimulus to the 

ventricles at high rate. 

The electric stimulus is spread from the apex of the heart upwards causing rapid 

contraction of the ventricles, this results in the QRS wave of the ECG. As the 

ventricles contract, the tension in the chordae tendineae, and the pressure of 

retrograde blood flow towards the atria seals the mitral and tricuspid valves 

causing the initial vibrations of the first heart sound (SI) appearing immediately 

after the QRS complex. 
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Ventricular muscle cells have a relative long action potential duration, which 

causes the ST segment. Finally, relaxation of the ventricles causes the slow T 

wave and the second heart sound S2 appears slightly afterwards, due to the 

closure of the aortic and pulmonary valves (see chapter 2). 
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Figure 6.1. Correlation of the Components of the Heart Sounds with the 
Electrical Activity Represented by the ECG and the Carotid Pulse. From 
Rangayyan (2002). 

The QRS complex is a reliable indicator of the beginning of SI, and since its 

detection is fairly easy, PCG segmentation into cardiac cycles is usually 

accomplished aided by the ECG trace. There are several signal processing 

techniques for QRS complex detection, among them the Pan-Tompkins algorithm 

(Pan, 1985), and several studies related to PCG analysis where the signal is first 

segmented using the ECG as an auxiliary signal (Barschdorff, 1995; Haghigi-

Adood,1995y 

The time relationship between the T wave of the electrocardiogram and the 

second heart sound suggests the possibility of using the former for identification 

of the latter. However, as explained in chapter 2, the T wave can not be referred to 

a specific event per se, is often of low amplitude, and almost negligible in many 
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ECG records. For this reason, the identification of S2 is usually performed with 

the aid of another signal reference: the carotid pulse. 

The carotid pulse is a signal recorded at the neck over the carotid artery providing 

indication of the variation in arterial blood pressure and volume within each heart 

beat. The percussion wave (P) in the carotid pulse shows the increase of pressure 

due to the abrupt ejection of blood from the left ventricle to the aorta. 

A secondary wave caused by a reflected pulse returning from the upper body 

causes the tidal wave (T). Closure of the aortic valve is accompanied by 

deceleration and reversal of flow in the aorta causing a sudden drop of pressure. 

The dicrotic notch (D) is consequence of the latter and may be followed by a 

dicrotic wave (DW). 

The dicrotic notch, measured at the carotid artery, has a delay of 4.26 ms with a 

standard deviation of 5 ms with respect to the second heart sound signal (S2) 

(Tavel, 1978) and can be used as a rehable indicator of the end of systole 

(Lehener, 1987). 

Summarising, in order to perform the PCG segmentation the ECG signal is 

generally used to detect the first heart sound (Barschdorff, 1995; Haghigi-Mood, 

1995; Iwata, 1980), whereas the carotid pulse is generally used as a reference to 

detect the second heart sound (Lehner, 1987). Nevertheless, the use of these 

external references involves the use of extra equipment, which may not be 

desirable or feasible. Furthermore, the timing between electrical and mechanical 

activities in a cardiac cycle will not be exactly constant among patients in some 

pathological conditions like Bundle branch block, severe aortic or mitral disease, 

and hypertropic left ventricle (Haghigi-Mood, 1995). Under these circumstances, 

an alternative approach is the use of the inherent characteristics of the PCG signal 

to perform the segmentation. 
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6.3 Signal processing techniques for PCG segmentation without an external 
reference signal 

The need for an autonomous system able to identify the PCG signal component 

without use of an external reference has been recognised and acknowledged in the 

literature (Itawa, 1980, Haghigi-Mood, 1995, Rangayyan, 2002). Typical 

examples of methods that rely only on the PCG signal are spectral tracking at a 

single frequency (Itawa, 1980), spectral tracking over a frequency band (Haghigi-

Mood, 1995), methods using a measure of the signal energy (Liang, 1997) and 

methods using matching pursuit techniques (Sava, 1998). 

Itawa (1980) uses linear prediction analysis techniques as described in Chapter 5 

to represent the spectra of a high pass filtered PCG signal recorded at the apex. 

The filter defined by standards of the Japanese Society of Medical Electronics and 

Biomedical Engineers has a 26 dB per octave roll-off with a cut off frequency of 

250 Hz. This filter band was selected as the most representative for murmur 

detection. A group of sixty nine subjects was analysed to establish statistically the 

peak frequencies of the first and second heart sound, and consequently two 

tracking frequencies were chosen: 100 Hz for detection of SI and 150 Hz for S2. 

Peaks in the spectral level in these frequency bands represents the occurrence of 

heart sounds. No carotid pulse is needed for S2 detection, and only one PCG filter 

sub-band (defined in a similar manner as the Maass-Weber filters described in 

chapter 5) is required. 

Haghighi-Mood (1995) presents a similar algorithm in which instead of tracking a 

single predefined frequency, he tracks the energy in a certain PCG dependent 

frequency band and uses a length weighting fiinction to distinguish the relatively 

short SI and S2 peaks from longer peaks corresponding to murmurs. The 

frequency band used to track is defined for each PCG signal using the first heart 

cycle which is individually evaluated to obtain the first peak in the spectra 

considered to be either SI or S2. Consequently, a - 3 dB threshold around this 

peak defines the bandwidth. The method is less sensitive to recording quahty and 
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the overall frequency response of the system since the frequency band selection 

depends on each PCG. No ECG signal is required to segment the PCG signal. 

Liang (1997) proposes a segmentation method based on the envelope of the PCG 

signal calculated using the normalised average Shannon energy. The squared time 

signal is multiplied by its logarithm and averaged; therefore, medium intensity 

signals are emphasised whilst low intensity ones are more attenuated than the high 

intensity ones. The Shannon energy shortens the difference between the envelope 

intensity of the low intensity sounds and the high intensity ones, making low 

intensity signals easier to detect. A threshold level of this envelogram is firstly 

used to select the peaks. A time interval set of rules is then defined to exclude 

additional peaks. After examining time intervals, the threshold is adjusted to 

include possible missing peaks. Finally, considering that the diastolic interval is 

longer, and that the systolic interval remains relatively constant, SI and S2 peaks 

are identified by their relative time occurrence. For PCG signals that include 

interfering signals like ambient noise or artifacts the method provides incorrect 

identification, and although these can be avoided by improving the recording 

techniques, cases of murmurs that overlap either SI or S2 make the identification 

impossible. 

Sava (1998) proposes to decompose the PCG signal in basic units arranged in an 

energy decreasing order. The coherent structure of the first and second sounds is 

expected to be represented in the first unit components since the heart sound 

signals convey more energy than the random murmurs, consequently the number 

of units is restricted to extract the main components SI and S2. The length of the 

units is also limited in order to detect short transit events like the first and second 

sounds and to exclude long random murmurs. Once the most energetic units have 

been determined, they are ordered according to their time position creating a 

template. Subsequent events are found cross-correlating this template with the 

PCG signal. Considering the time characteristics of the systolic and diastolic 

cycles, SI and S2 are identified. The main deficiency of this matching pursuit 

method is the setting of a threshold level for the cross-correlation since the 
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performance depends not only on the accuracy with which the template is 

represented, but also on the similarities of consecutive SI and S2. 

6.4 Proposed technique: PCG segmentation by hidden Markovian models 

and cepstral representations 

Chapter three proposes that the identification of specific cardiopathologies 

through the automatic analysis of heart sounds can be simplified to a classification 

task to support differential diagnosis. Consequently, hidden Markovian models 

were proposed as a suitable technique to perform PCG signal classification. As 

part of the main stages of the process, simplified representations of the input 

signals are required, and therefore. Chapter four explored some techniques for 

feature extraction. Accordingly with the cardiohemic theory, cepstral coefficients 

were proposed and may provide suitable representations for the PCG signals. 

To perform the automatic segmentation of the heart sound signal, a simplified 

representation of the PCG is also required to ease the computations. Using such 

representations and a sequence recognition algorithm, the main components of the 

PCG can be identified. Cepstral analysis and hidden Markovian models satisfy 

these requirements and since they will be used in a posterior stage for signal 

classification, it is worth exploring their use at this point for PCG segmentation. 

6.4.1 Cepstral representations for SI and S2 identification 

In the previous chapter, it has been shown how the spectral envelope of the signal 

can be represented by the first cepstral coefficients. Figure 6.2 shows the PCG 

signal of a subject with normal cardiac function and the first-five cepstral 

coefficients computed as described in Chapter 5, see for example Figure 5.3. From 

the picture, it is easy to identify the portions related to the first and second sound 

in the first representations. Figure 5.3 shows that SI and S2 heart sound 

components can also be identified in cepstral representations of PCG reflecting 

pathological conditions. Therefore, for the aim of signal segmentation of the PCG, 
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the first cepstral coefficients may provide suitable simplified representations of 

the signal in which the main components can be identified. 

PCG 
Normal Heart Sound 

Cepstral 

1st 

2nd 

3rd 

4th 

5th 

nl\ 

Time [s] 

Figure 6.2. Cepstral Representation of a Normal PCG. PCG recorded at 
pulmonary area, Fs =4 KHz. 

6.4.2 Hidden Markovian models 

The cepstral representations described above can ease the visual identification of 

the main PCG components. Nevertheless, Cepstral coefficients and a simple 

technique, such as a threshold function, may not be enough to perform the 

segmentation considering the variability of the PCG signal, since abnormal heart 

conditions are reflected not only as extra sounds but also on alterations of the first 

and second heart sound (see figures 6.6 to 6.14). The cepstral representation of the 

first heart sound in figures 6.12 and 6.13 provide a good example in which a 

simple technique such as a threshold function may not work. 
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More over, for a multiple set of representations such as the Maass-Weber 

representations, a simple threshold would not suffice since the main contribution 

of different components of the signal may appear in different bands depending on 

its frequency content. An automatic algorithm able to distinguish these 

components is therefore still required. 

According to the cardiohemic theory, the phonocardiogram signal recorded on the 

chest is the acoustical manifestation of a succession of mechanical events 

including variations of blood flow related to a sequence of opening and closing of 

heart valves and contractions of the heart chambers. 

This succession of events can be modelled as a Markov process on the assumption 

that each of the events only depends on the previous one, and the sequence can be 

considered as hidden since it is not directly observable. Nevertheless, the 

phonocardiogram, generated by this underlying process, is available and can be 

modelled as the observation signal following the structure of a hidden Markov 

model. 

The mechanical events generating each of the main PCG signal components can 

be represented by a single state, and consequently, each of the main components 

of the PCG signal, namely SI, S2, systolic and diastolic cycles can be modelled as 

acoustic observations related to a specific hidden state. 

Using this structure and a set observation sequences (heart sounds) a model 

relating the hidden sequence of mechanical events to the PCG observation 

sequences can be trained. The parameters of the HMM namely: the state transition 

probabilities, the state observation probabilities and the initial conditions will be 

adjusted in a training stage via a recursive algorithm to represent the most 

probable set of values generating the training sequences. 

The identification of the main components of a new PCG signal can be regarded 

as a decoding stage where the aim is to find the most probably sequence of hidden 

stages that generated the sequence of observations. The problem can be addressed 
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by using the Viterbi algorithm (Rabiner, 1989). Once the main components SI 

and S2 are identified, the segmentation of the PCG signal can be performed 

accordingly. 

6.4.3 The model 

Due to the fact that a complex model requires more realisations of the signal in 

order to learn the parameters involved, it is desirable to find the simplest model 

that could achieve the segmentation. It is likely that the most basic model of a 

normal PCG is constructed by assuming that there are only two main conditions: 

either, a sound that could be SI or S2, or there is a relatively silent period such in 

the case of systolic and diastolic events. Therefore, for simplicity, a tv^o state 

HMM is initially proposed for the segmentation of normal sounds. The first state 

is assigned to the SI and S2 components, whereas the second state accounts for 

either the systolic or diastolic cycles. 

Figure 6.3 shows the two-state model for the segmentation process and an 

example of how the normal PCG signal can be represented as a succession of 

these states. The arrows indicate the possible transitions. Notice that transitions 

are permitted from each state to itself and to the other, this permits variations in 

the duration of the events. Since there are only two states there are no restrictions 

in the possible state transitions, nevertheless, a left-right structure HMM is shown 

in the diagram to represent the time succession of events embedded in the heart 

signal. 

At this point, the model does not discriminate SI from S2. However, the timing 

between events is a key parameter in the identification of the onset of the first and 

second sound, and the differentiation of systole from diastole can be realised by 

noting that the former period is shorter and its duration is relatively constant 

compared with the latter (Liang, 1997). Using this information, a time interval set 

of rules can be implemented to identify the main events of the PCG signal, which 

also helps to avoid false event detection. 
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Figure 6.3 shows the states of the model in relation to the PCG. From Figure 6.2 it 

can be seen that for normal PCG signals, the use of exclusively the first cepstral 

coefficient seems to provide a good representation for the identification of SI, S2, 

systolic and diastolic cycles. 

The PCG signal is divided in overlapping frames of constant duration and from 

each frame the cepstral coefficients are computed using the methods described in 

Chapter 5. The continuous valued cepstral representations will be related to the 

states by a single Gaussian probability distribution and their characteristic 

parameters will be learnt from the training set of PCG signals. 

Systolic 
Diastolic 

SI, S2 SI, 82 S1.S2 

Figure 6.3. State Model for the PCG Segmentation. 

6.4.4 Database 

The research involves the use of an initial database of identified heart sounds 

collected in a previous study (Leung, 1998a) and a second set of signals acquired 

at the cardiology unit of Southampton General Hospital. Both studies were 
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approved by the Southampton and South West Health Commission Joint Ethical 

Committee, UK. 

In the first set of heart sounds and electrocardiogram signals from children 

attending a paediatric outpatient clinic were digitised using a 16-bit analogue to 

digital converter at a sampling frequency of 4 kHz. The electronic stethoscope (e-

steth range 20 Hz to 20 kHz) was positioned by a cardiologist in the standard 

auscultation positions, recording each heart sounds in the areas of the chest were it 

was best heard. The heart sounds recorded are classified according to the clinical 

conditions confirmed by a specialist. The second set only includes heart sound 

signals collected with a modem electronic stethoscope (Welchallyn 5079-405 

range 20 to 20 KHz) providing higher quality signals (better signal to noise ratio). 

Heart Sounds database 
• initial database # 2 0 0 2 0 2 0 0 3 

h e a r t c o n d i t i o n 

Figure 6.4. Database of Heart sounds. Normal, Innocent Pulmonary Flow Murmur, 

Innocent Vibartory Murmur, Innocent Still's Murmur, Muscular Ventricular Septal Defect, 

Perimembranous Ventricular Septal Defect, Aortic Stenosis, Sub Aortic Stenosis, Mitral 

Stenosis and Sub Aortic Stenosis, Double Inlet Left Ventricle, Mitral Regurgitation, 

Pulmonary Stenosis, Pulmonary Stenosis and Pulmonary Regurgitation, Aortic 

Regurgitation, Aortic Stenosis and Aortic Regurgitation, Dextrocardia, Artificial Mitral 

Valve, Artificial Aortic Valve, Mitral Valve Prolapse. 
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Figure 6.4 summarises the content of the database, the abscissa shows the 

categories corresponding to the medical conditions, whereas the ordinate defines 

the number of patients for each condition. The number of patients rather than the 

number of recordings is considered since a higher variability is expected to be 

found between subjects than between recordings of the same subject. 

6.4.5 Training the HMM 

Initially, to evaluate the proposed HMM based segmentation scheme only the set 

of normal PCG signals, the simplest case, was considered. The initial database, 

which contains PCG signals and simultaneous EGG recordings from five 

paediatric patients with normal structural and functional heart conditions, was 

used since an external reference is available to evaluate the performance of the 

segmentation algorithm. Table 6.5 presents a summary of the signals. In three 

cases PCG signals were recorded from two auscultation locations namely: the 

pulmonary and the mitral area. The first heart sound is best heard near to the apex 

whilst in this position the second sound appears diminished, the mitral 

auscultation area, located at the apex, is preferred for SI recordings. Conversely, 

the pulmonary area is recommended for recordings of the second heart sound, 

where SI is less intense and the splits of S2 are more noticeable (MSD, 2004). In 

all patients only the signals fi-om the pulmonary auscultation area were used for 

the test. 

Considering the size of the database, the leave-one-out method was selected to 

define the training and testing sets (Rangayyan, 2002). Therefore, trials were run 

using four out of the five PCG signals for the training stage and one for testing the 

segmentation algorithm until all the available signals were tested. 

Each PCG time signal was normalised to have unit amplitude at its maximum 

point, and for each trial, five heart cycles of the four PCG training signals were 
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manually segmented, their first cepstral coefficient was computed and presented 

to the training algorithm. 

Patient Age Condition HR Auscultation Length 

Nl 8 yrs Normal 74 bpm 
Pulmonary 30 s 

Nl 8 yrs Normal 74 bpm 
Mitral 30 s 

N2 
12 

Normal 78 bpm 
Pulmonary 30 s 

N2 
yrs 

Normal 78 bpm 
Mitral 30 s 

N3 7 yrs Normal 86 bpm Pulmonary 30 s 

N4 2 yrs Normal 102 bpm Pulmonary 30 s 

N5 
11 

Normal 60 bpm 
Pulmonary 30 s 

N5 
yrs 

Normal 60 bpm 
Mitral 30 s 

Table 6.5. Normal PCG Signals. Fs=4 KHz 

For the two states to be trained, five cardiac cycles for each patient were 

considered representative since a low intra-subject variability is expected 

compared to a higher inter-subject variability. Nevertheless, first cepstral 

coefficient of the whole length of the time signal to be tested (30 seconds) was 

presented to the hidden Markovian model to assess the performance of the 

segmentation process^ The evaluation was based on the identification of the main 

components of the PCG cycles. 

Notice that since only five normal patient's signals are available, if as suggested 

in the literature (Rangayyan, 2002), the number of samples required for a 

classification method is generally expected to be five times or more than the 

number of features used, only one cepstral coefficient was to be used. If more data 

were available it would be recommended to assess the performance of the 

' Consequently, for the first trial 30 seconds of N1 (at 74 ppm) were used for testing (37 heart 

cycles), and 5 heart cycles of N2, N3, N4, and N5 (20 heart cycles in total) were used for training. 

For the second trial 30 seconds of N2 (at 78 ppm) were used for testing (39 heart cycles), and 5 

heart cycles of N l , N3, N4 and N5 were used for training, and so on. 
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algorithms using more coefficients, but since for a fixed number of samples the 

addition of more features will eventually lead to a poorer performance, a balance 

has to be found. Nevertheless, keeping the number of coefficients low is advised 

to avoid an overly detailed representation. 

Table 6.6 shows the values obtained for the HMM parameters on different trials. 

The model shows a higher probability to start in state 2 (corresponding to either 

the first or the second heart sound) since it was trained with segmented PCG 

starting with the first heart sound. The state transition matrix shows that self-

transitions have a higher probability that change of states. A Gaussian probability 

density distribution was selected to represent the state-observations probability 

distributions. This distribution is completely defined by the first and second order 

statistics, and consequently, the values for the mean and the variance are shown in 

the table. 

Test 
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Hi 
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4 1 0 8 8 9 

& 4 6 0 2 

( ) .0351 

0 J ^ 3 0 

N 2 N 1 , N 3 , 
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0.1411 

& 8 5 4 9 

0 . 9 0 8 0 0 . 0 9 2 0 

0 . 2 2 1 6 0 . 7 7 8 4 

-0.1112 

0 . 2 1 7 3 

0 . 0 3 1 9 

0 T 4 9 2 

N 3 N 1 , N 2 , 

N 4 , N 5 

0 . 2 4 2 4 

0 . 7 5 7 9 

& 9 2 3 4 & 0 7 6 6 

0 . 2 0 1 9 0 . 7 9 8 1 

- 0 ^ 0 3 6 

0 . 4 9 3 2 

0XW30 

0 T 0 3 0 

N 4 N 1 , N 2 , 
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0 T 7 4 0 

0 . 8 2 6 0 

0 . 9 1 3 3 0 . 0 8 6 7 

0 . 2 2 4 6 0 . 7 7 5 4 

- 0 I W 2 8 

0 . 5 0 2 5 

0 1 8 8 1 

0 T 0 3 6 

N 5 N 1 , N 2 , 

N 3 , N 4 

0.1104 

0 . 8 8 9 6 

0 . 9 0 6 5 0 . 0 9 3 5 

0 . 2 2 4 2 0 . 7 7 5 8 

- & 0 9 3 1 

0 . 4 8 4 8 

0.0401 
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Table 6.6. Parameters for the HMM obtained during the leave-one-out training 

process. Hx Initial state distribution vector, S** state transition probabilities, Mu^ and Sigma* are 

the mean and variance that characterize the Gaussian observation symbol distribution. 1 SI or S2, 

2 systolic or diastolic cycle 
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Given a training set of cepstral coefficients derived from normal 

phonocardiograms the parameters of the HMM were computed for each trial by 

means of a learning algorithm. 

For instance, signals N2, N3, N4, and N5 are used in the first trial to iteratively 

adjust the two probability functions of the HMM (training) so as to maximize the 

likelihood that the sequences of values for the first cepstral coefficient could be 

produced by that model. 

Once the model parameters are obtained, the test PCG signal N1 was used to 

compute the most likely sequence of states generating the sequence of 

observations (decoding), and therefore to segment the signal, since each state 

defines different portions of the PCG. 

This sequence of states is obtained using the Viterbi algorithm (Rabiner, 1989) by 

mean of the forward probabilities, i.e. the joint probability of obtained a certain 

value for the cepstral coefficient, and being in a certain state (considering the 

transition from the previous one). 

The first two values for the forward variable (one for each state) are obtained 

using the initial probabilities and the state observation probabilities computed 

from both Gaussian probability density functions. The highest forward probability 

value also defines the most probably state. 

For the next cepstral value, the two forward probabiUties are computed using the 

previous forward probabilities, the states transitions, and the state observation 

probabilities. Again, the highest forward probability will define the most probably 

state for this point. 

Each new computation of the forward variable accounts for the previous ones. 

Consequently, when the last point of the cepstrum values sequence is reached, the 
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maximum forward probability represents the Viterbi probability for this particular 

HMM of producing the whole observation sequence; i.e. of generating this 

cepstral pattern. Back-tracking the maximum forward variables it is possible to 

find the most likely state sequence emitting this pattern. 

The hidden states can be related to the PCG time signal through the cepstral 

coefficients, and since the first state represents the occurrence of either the first or 

the second heart sound, using this HMM it is possible to identify those events in 

the PCG. 

The intervals between occurrences of the first state will differentiate a systolic 

period fi-om a diastolic one. The former is considered relatively constant whilst the 

later is considered larger and with more variability. Starting from the largest, the 

intervals are examined forwards and backwards to maintain consistency with 

systolic and diastolic cycles. 

Details of the algorithms for training and decoding can be found in Chapter 4 and 

appendix A. 

6.4.6 Results and discussion 

Figure 6.7 shows the graphical result of the segmentation of a normal PCG using 

the proposed hidden Markovian model. 

The first graph shows a normalised PCG signal from an eight year old patient 

recorded in the pulmonary auscultation area. Marks for the first and second heart 

sound components for a single cardiac cycle are included for reference. The most 

probable sequence of state changes as obtained form the hidden Markovian model 

is depicted in the second graph. The first state (labelled 1 in the y-axis) represents 

either the systolic or diastolic cycle, whilst the second state (labelled 2 in the y-

axis) represents either the SI or S2. 
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The input feature for the model namely, the evolution of the first cepstral 

coefficient, is depicted in the third graph. Although the algorithms does not 

require external signals for the segmentation process, the fourth graph shows the 

ECG signal only as a reference to validate the identification of SI and S2. 

Vertical lines have been added to the graphs to relate the occurrence of the time-

sample events in the PCG and ECG signals, and the time-window sequence used 

to represent the state changes and the progression of the cepstral coefficient. 

Around 0.3 s for instance, a change from the first state to the second represents the 

transition from either the systolic or diastolic cycle to either the first or second 

heart sound. 
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Figure 6.7. PCG Segmentation Using Hidden Markovian Models. 
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Considering the correct identification of the state representing either SI or S2 

specific events can be defined to assess the performance of the algorithm using 

standard diagnostic test (Petrie, 2000; Rangayyan, 2002). 

• A true positive (TP) is obtained when SI or S2 appear in the PCG and the 

HMM correctly displays the corresponding state, hi Figure 6.7, the second 

state represents the heart sounds SI or S2. 

• A true negative (TN) represents the case when neither S1 nor S2 appear in the 

PCG and the HMM is in the state representing either the diastolic or the 

systolic cycle. The first state is used in Figure 6.7 to represent the silent 

periods in the PCG signal. 

• A false positive (FP) is defined as the situation when either SI or S2 is 

detected although they are not present in the PCG. This situation may arise 

from a signal imbedded in noise for example and represents the inclusion of an 

additional sound detected. Figure 6.8 shows an example of a false positive 

detected in a normal PCG. The additional detection is bounded by the vertical 

lines drown in the Figure. Notice that the previous S2 was correctly identified, 

and that the additional sound detected has a similar magnitude. 

• A false negative (FN) is defined as the case where either a first or a second 

sound is present in the PCG but it is not detected by the HMM. In this case, 

the model would remain in the state representing either the diastoKc or systohc 

cycle. Figure 6.10 shows an example of this case. 

Following this convention, for the first five cycles in Figure 6.8, commencing at 

the first SI, the signal has the following features: 

• Ten true positives: all the si and S2 sounds correctly identified. 

• One false positive; the additional signal detected around 1.5 s. 

• Nine true negatives: corresponding to the systolic and diastolic cycles 

correctly identified. 
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• Zero false negatives since there are no SI or S2 sounds missed. 

The same criterion is appHed to the normal PCG signals available and the results 

are summarised in table 6.9. Following the leave-one-out procedure, to test the 

signal N1 for example, the parameters obtained for N2, N3, N4, and N5 are used. 

Since each PCG is divided into SI, S2, diastolic and systolic cycles, four events 

were considered for each of the cardiac cycles of the five patients; and therefore, 

eight hundred and four samples are considered for the evaluation. 
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Figure 6.8. False Positive Event Detection. 

Heart 

beats 

No of 

samples 
FP 1 TN TP FN S+ S-

201 804 21 j 381 399 3 99.25% 94.77 % 

Table 6.9. Evaluation Results. FP false positives, TN true negatives, TP true positives, FN 

false negatives, S+ sensitivity, S- Specificity. 
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As shown in table 6.9, the algorithm presented excellent values for both 

sensitivity and specificity (these terms and their significance are further explained 

in the next chapter). Consequently, the algorithm is highly efficient in detecting 

the presence or absence of either the first or the second sounds. Time rules used to 

differentiate systolic cycles from diastolic can be used to correct false positive 

detection cases. 

PCG 
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Cepstral 

EGG 

Segmentation of a Normal PCG 
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Figure 6.10. False Negative Event Detection. 

6.4.6.1 Segmentation of abnormal PCGs using a HMM model of normal signals 

Systolic and diastolic murmurs provide essential information in the finding and 

evaluation of many common heart diseases; however, abnormal cardiac conditions 

also introduce additional sounds and changes in other components of the PCG. 

The wide split of S2 in atrial septal defects or the accentuation of the third heart 

sound in some ventricular septal defects are good examples. These changes can be 

110 



of major diagnostic importance when differentiating certain types of murmurs 

through auscultation. For example, the abnormal split of S2 distinguishes aortic 

stenosis from innocent pulmonary flow. 

Consequently, pathological conditions are not only characterised by the presence 

of murmurs but also reflected as changes in SI and S2. Therefore, using a model 

for normal SI and S2 states and normal systolic and diastolic states to identify 

their equivalents in abnormal PCG signals may present some difficulties. When a 

strong murmur is present in the systolic, the diastolic cycles, or both, the model 

for the state representing corresponding to normal silent cycles does not hold and 

consequently, poor performance of the algorithm is expected. 

In these cases, the best approach to perform the signal segmentation would be to 

use hidden Markovian models trained with signals representative of similar 

pathological conditions, but this would require one to classify the murmur prior to 

performing the segmentation. This apparent contradiction implies that models of 

the whole cardiac cycle for different pathologies can be used to classify and 

segment the signal simultaneously. 

Nevertheless, for conditions presenting either soft murmurs, minor SI and S2 

modifications, or both, the models trained using normal signals could be expected 

to perform satisfactorily. To assess the validity of this hypothesis, the hidden 

Markovian model obtained for segmentation of normal PCG signals was also 

tested using PCG signals characteristic of pathological conditions. 

PCG signals representative of different medical conditions were presented to the 

hidden Markovian model trained with the five normal PCG signals. Only the 

recordings which also included simultaneous ECG signals were considered. Only 

five heart cycles of each of the normal signals were used for training, whilst 30 

seconds of each of the abnormal signals were used for testing. Table 6.11 presents 

a summary of the signals. 
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Figures 6.12, 6.13, 6.14, and 6.15 present results for the segmentation of PCGs 

corresponding to atrial septal defect, innocent pulmonary flow, valvular aortic 

stenosis, and muscular ventricular septal defect conditions. 

Figure 6.12 presents results for the segmentation of a PCG containing an atrial 

septal defect murmur. Notice that due to the state self transitions of the HMM, 

despite the wide fixed splitting of S2 characteristic of large defects and a high 

heart rate of the two years old patient (110 bpm), the algorithm continues to 

correctly identify SI and S2. 

Patient Age Condition HR Auscultation Length 

A1 8 yrs ASD 80 bpm Pulmonary 30 s 

A2 2 yrs ASD 110 bpm Pulmonary 30 s 

A3 16 yrs ASD 84 bpm MLSE 30 s 

A4 2 yrs ASD 122 bpm Pulmonary 30 s 

11 6 yrs IPF 88 bpm Pulmonary 30 s 

12 17 yrs IPF 70 bpm Pulmonary 30 s 

13 11 yrs IPF 52 bpm Pulmonary 30 s 

Asl 14 yrs As 74 bpm Aortic 30 s 

As2 17 yrs As 60 bpm Aortic 30 s 

As3 8 yrs As & Ar 74 bpm Pulmonic 30 s 

As4 11 yrs As 84 bpm Aortic 30 s 

As5 9 yrs Sub As 76 bpm LLSE 30 s 

As6 12 yrs Sub As 66 bpm Aortic 30 s 

VI 8 yrs VSD 82 bpm Pulmonary 30 s 

V2 8 yrs VSD 102 bpm LLSE 30 s 

V3 8 dys VSD 126 bpm LLSE-Apex 30 s 

V4 19 yrs VSD 78 bpm MLSE 30 s 

Table 6.11. Subset of abnormal PCGs. ASD atrial septal defect, IPF innocent pulmonary 

flow, As aortic stenosis, Ar aortic regurgitation, VSD ventricular septal defect. Fs = 4 KHz. 
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The PCG signal characteristic of an innocent puhnonary flow murmur is shown in 

Figure 6.13. Since the hyper-flow condition occurs in an anatomically and 

physiologically normal heart, the model trained with normal signals correctly 

identifies the first and second heart sounds. As explained in Chapter 2, the signals 

for this condition are normally acquired in the pulmonary area. The fact that the 

normal signals used for the training of the HMM were recorded in the same 

auscultation area contributes to the excellent performance of the segmentation 

algorithm. 
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Figure 6.12. Segmentation of a PCG Characteristic of an Atrial Septal Defect 
Condition. 
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Figure 6.13. Segmentation of an Innocent Pulmonary Flow Murmur PCG. 
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Figure 6.14. Segmentation of a PCG Characteristic of an Aortic Stenosis 
Condition. 
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Figure 6.15. Segmentation of a PCG with a Soft Ventricular Septal Defect 
Murmur. 
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Figure 6.14 shows the segmentation of a PCG with a murmur due to an aortic 

stenotic valve. From the figure, it can be seen that the hidden Markovian model 

trained with normal heart sounds at the pulmonary area is able to detect the main 

components of the signal with a mild systolic murmur recorded in the aortic 

auscultation area. 

Figures 6.15 and 6.16 show PCG signals with systolic murmurs reflecting 

ventricular septal defect conditions. The former shows a soft murmur recorded in 

the pulmonary area whilst the later, shows a strong murmur recorded in the LLSE 

auscultation area. The algorithm is able to identify the first and the second heart 

sound in the first case. However, in the second case, the strong murmur in the 

systolic cycle is considered as part of the first sound as shown in the first two 

cycles, or completely missed leading to a single state comprising the first sound, 

the systolic cycle, and the second sound. 

Segmentation of a Muscular Ventricular Septal Defect PCG 
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Figure 6.16. Segmentation of a PCG with a Strong Ventricular Septal Defect 
Murmur. 
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Table 6.17 summarises the performance of the segmentation algorithm for each 

condition and the over all performance. The model trained using normal PCG 

signals presents excellent results for the segmentation of PCGs representative of 

conditions containing mild or soft systolic murmurs and a decreased performance 

in the case of pathological conditions presenting very strong murmurs. 

Condition Heart 

beats 

No of 

samples 

FP TN TP FN S+ S-

ASD 198 792 11 385 382 14 96.46% 97.22% 

IPF 105 420 2 208 207 3 9&57% 99.04% 

VSD 194 776 5 383 324 64 83J0% 98.71% 

AS 217 868 8 426 416 18 95.83% 9&15% 

Abnormal 714 2856 26 1402 1329 99 93.06% 9&17% 

Table 6.17. Evaluation Results for Abnormal PCGs. ASD atrial septal defect, IFF 

innocent pulmonary flow, VSD ventricular septal defect, AS aortic stenosis, FP false positives, TN 

true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity. 

6.4.7Noise in Phonocardiograms 

The robustness of the algorithm to noise in the phonocardiogram signals can be 

shown in figure 6.18. This phonocardiogram was recorded at the apex auscultation 

area and is know to correspond to a patient presenting a bicuspid aortic valve 

condition. The murmur in the PCG can not be seen from the recording, neither the 

first nor the second heart sound can be clearly distinguished. More over, an ECG 

reference signal is not available. However, despite the noise and the clipping of 

the signal, the main components S1 and S2 are audible and can be recognized. 

Figure 6.18 shows the noisy PCG, the state transition of the HMM, and the first 

cepstral coefficient representation. By comparison to all the previous figures 

presented in this chapter the reader may be able to detect the main components of 

the PCG in the cepstral representation. 
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An ECG auxiliary signal was not available to visually confirm the segmentation. 

However, each portion of the PCG was played in order verify the process. The 

segments seem to correspond to the events defined for SI and S2. 

Segmentation of , a noisy Aortic Stenosis PCG 

1 HI 

!flf|li 

Cepstral 0 

Ti.me;[s] 

Figure 6.18. Segmentation of a noisy PCG. 

In some cases low pass filtering of the signal before segmentation may help since 

murmurs contain relatively high frequencies, but in some others it may not be 

ideal. Figure 6.19 shows the same PCG, but in this case the signal was filtered 

using a butterworth 2"*̂  order filtered with a cut off frequency of 70 Hz since the 

heart sound spectral distributions of SI and S2 show predominant peaks belowVO 

Hz (Rangayyan, 2001, pp 279; Yoganathan, 1976). 

The figure shows in descending order the noisy PCG signal, the state sequence of 

the HMM, the first cepstral coefficient of the low pass filtered signal, and the low 

pass filtered PCG signal itself. 
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Despite the low pass filtering, there was a lot of noise in the signal, and the HMM 

state sequence obtained using this first cepstral coefficient representation was not 

able to identify the SI and S2 components properly. 
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Figure 6.19. Segmentation of a noisy PCG (low pass filtered). 

6.5 Summary 

A systematic approach to the study of heart sounds demands the identification of 

the main components of the phonocardiogram signal. Cepstral coefficients and 

hidden Markovian models were proposed for the PCG segmentation. 

This simple statistical model proves to be effective to account for the PCG 

intersubject variability within the normal heart sound set, and provides accurate 

detection even for the abnormal condition sets of PCG containing low and 

medium grade murmurs. In the case of high-grade murmurs the intensity of the 
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murmur may obscure the recognition of the first or second heart sound in the first 

cepstral coefficient. This can be solved either by using a higher number of cepstral 

coefficients in which the SI and S2 component are clearly identified, as shown in 

figure 5.3c, by adding time constraints to the model, or perhaps in some cases by 

filtering off the high firequency murmurs from the PCG. 

Considering that for the abnormal heart sounds the HMM was trained with 25 

heart beats fi-om 5 patients with normal PCGs, and tested with 714 heart beats 

from 17 patients representing 4 medical conditions, the high values obtained for 

sensitivity and specificity are promising. Nevertheless a study involving more 

patients and more conditions would be necessary for the evaluation to be 

conclusive. It is also recognised that more complex models may lead to better 

results although the added complexity demands more data. 

The next chapter will present the use of hidden Markovian models for the 

classification of systolic murmurs related to the most common pathologies found 

in paediatric patients. The algorithms developed are aimed to implement an 

automatic system to aid diagnosis. 
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7 Systolic Murmur Classification by HMM 

7.1 Introduction 

Auscultation of paediatric patients using passive and non-invasive techniques is of 

prime importance due to the frail nature of infants. Moreover, the implications of 

referral for further analysis in the case of unrecognised, non-pathological heart 

sound murmurs in paediatric patients demand further development of passive 

methodologies. One of the directions to follow consists of the development of 

autonomous systems able to provide valuable support for medical diagnosis. 

The autonomous identification of pathologies through the analysis of heart sounds 

can be regarded as a classification problem where the sound to be identified can 

be assigned to one of several known categories representing the associated 

pathologies. This approach is especially valid to aid differential diagnosis where 

signals are perceived as having similar acoustic patterns and the physiological 

findings are not conclusive, such as in the case of differentiation between innocent 

and pathological murmurs in early conditions where the patient may be otherwise 

asymptomatic. 

The previous chapter has shown how HMM can be used to perform what is 

regarded as the first step towards the development of an autonomous system for 

classification, namely the segmentation of a PCG signal into its main components. 

The relative time appearance of the components provides essential information to 

discriminate between pathologies. Furthermore, once the main components have 

been identified, each segment of the signal can be analysed and modelled in more 

detail. 

The heart sounds representative of the most common abnormal heart conditions 

found in paediatric patients, namely aortic stenosis, atrial septal defect, ventricular 

septal defect, and innocent pulmonary flow murmurs are all associated with 

characteristic murmurs present in the systolic cycle of the PCG. Consequently, by 
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analysis of the systolic segments of the PCGs, it may be possible to identify the 

associated pathologies and to differentiate between the pathological and non-

pathological conditions. 

As mentioned in Chapter 3, HMM is a suitable technique for the classification of 

phonocardiograms. Hidden Markovian models provide a strong mathematical 

basis to determine the probability with which a pattern could have been generated 

firom a model of a specific category. Consequently, by assigning the pattern to the 

class providing the highest probability, a PCG signal can be identified. 

Following this approach, a HMM would be trained for each one of the five 

medical conditions under study. To classify a new PCG, the probability of each 

HMM to have generated this new sequence would be computed and the signal 

would be classified according to the highest score. However, if the new PCG does 

not belong to any of these classes it would be wrongly assigned to the closest 

match. Nevertheless, in clinical practice, other physiological findings narrow the 

number of possible classes. This algorithm is designed to aid the specialist (not to 

substitute him/her) in differential diagnosis for specific medical conditions that 

present similar acoustic signals and similar physiological findings. 

The following section will show how systolic murmurs, characteristic of specific 

heart conditions, can be identified by using HMM. 

7.2 Selection of the HMM 

As stated by Rabiner (1989) there is no simple, theoretically correct, way of 

selecting the model, or to choose the initial parameters. Nevertheless, as a general 

rule for a finite training set, a simple model requires fewer training sequences to 

obtain a good estimate of the model parameters. 

The medical conditions in this study are associated with characteristic murmurs in 

the systolic cycle of the PCG, or by the absence of any in the case of normal 
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conditions. Therefore, as a first approach only the systolic segments of the PCG 

are going to be modelled by the HMM. A model comprising all components of the 

heart sound would be more appropriate for the classification process since the 

pathologies are reflected not only by the presence of murmurs but also by changes 

in the morphological characteristics of other components of the phonocardiogram 

signal. Nevertheless, a model of the whole PCG signal requires more utterances to 

capture the particularities of each pathology. Consequently, a detailed model of 

the systolic cycles is preferred over a more general model of the cardiac cycle to 

overcome limitations imposed by the size of the database. 

The systolic signals are chosen to be modelled by a left-right HMM. This 

structure is selected for the characterisation of temporal or sequential structures 

since time may be visualised as having a direction from left to right. Self-loop 

transitions are allowed to account for variations in the duration and time scales of 

the signals in each state. Since a left-right model has been chosen, the initial state 

probability for state one is set to one, and therefore, every time a new set of 

observations representing a systolic cycle is evaluated the model is reset to this 

state. 

Considering the benefits of keeping the model to the minimum number of 

parameters, a simple model for the systolic cycles consisting of only three hidden 

states is proposed. From a morphological point of view the states are selected to 

represent the onset, a steady state for the murmur and an exiting transition, which 

seems suitable to model ejection murmurs. From a time-reference point of view, 

the same structure may be intuitively related to the time occurrence of the murmur 

relative to the systolic cycle. This latter approach is useful to model pansystolic 

murmurs in which no marked onset and exiting transitions are exhibited. For 

ejection murmurs the states may be a reference for early, middle, or late ejection 

murmurs. It is important at this point to recall that the hidden states of the model 

represent an unknown generation process, and since it is a mathematical model, 

the duality of the state representation as a morphological or time occurrence based 

is only an abstraction. 
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A single Gaussian probability density function has been selected to represent the 

observation symbol probability distributions for the model in order to use the 

continuous valued observations (provided by cepstral coefficients, line spectral 

fi-equencies, or Maass-Weber filter representations). The univariate Gaussian 

functions are therefore specified by their mean and standard deviation parameters. 

Figure 7.1 shows the representation of the three-state HMM proposed for the 

analysis of the systolic cycles. State transitions are represented by arrows. In this 

left-right model the sequence always start in state one, allows for self state 

transitions and forbids back state transitions. 

Typical systolic signals for aortic stenosis and ventricular septal defect are shown 

in the figure along with their first cepstral coefficient representation. This 

simplified representation constitutes the set of observations. 

The continuous values obtained from the cepstral observations are related to the 

hidden states by single Gaussian probability density distributions. This is 

graphically represented by faded shadows of values around the darkest mean 

value. 

7.3 Binary classification: normal versus aortic stenosis classes 

The implications of classification decisions made in the context of medical 

diagnosis go beyond statistical measures of accuracy and validity. Therefore, the 

effectiveness of a diagnosis technique has to be determined using standardised 

methods (Rangayyan, 2002). hi this context, a simple screening test has been 

developed in order to assess the performance of the hidden Markovian models for 

murmur classification. 
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Figure 7.1. Hidden Markovian Model for Systolic Classification of PCGs. 

A screening test is useful to detect the presence or absence of a specific disease in 

a certain study population: the decision to be made is binary. In particular, for 

systolic murmur classification once a signal is presented to the algorithms the 

decision has to be made as to whether the signal has the specific cardiopathology 

represented by the model, or it is more likely to be a PCG representative of a 

normal heart sound. Consequently, two models have to be constructed: one for 
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normal heart sounds and one for signals representing the medical condition on 

test. Considering the size of the database, the pathology represented with the 

higher number of samples available was selected to be modelled by the HMM, 

and thus the classes of aortic stenosis and normal sounds were formed. 

7.3.1 Training and testing procedure 

The normal class set of phonocardiogram described in Chapter 6 was used for the 

screening test. In the interest of optimising the use of the database, signals from 

the same patient recorded at different auscultation areas were considered as 

independent samples, and therefore, eight sample signals were used for the test. 

Due to limitations of the database, the aortic stenosis set comprised not only PCG 

signals representing pure congenital valvar aortic stenosis but also other related 

pathologies were included. As in the case of normal set, signals from the same 

patient taken at different auscultation areas were considered as independent 

samples. Consequently, a total of eight sample signals, obtained from six patients, 

were contemplated in order to match the size of the set associated with normal 

class. 

The aortic stenosis class was represented by the following signals: 

• Two PCGs representative of sub-aortic stenosis for patients aged five and 

fourteen years old. This is a non-valve related pathology that, although having 

a similar murmur as congenital aortic stenosis, can be differentiated from the 

latter through analysis of the PCG (Guadalajara, 1998). One of the indications 

to differentiate the sub-aortic stenosis from its valvar counterpart is that the 

epicentre is located in the auxiliary aortic auscultation area. The signals were 

therefore acquired at the lower sternal edge and the third right intercostal edge 

instead of the second edge where the primary aortic auscultation area is 

defined. 
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• Two PCG signals from a patient aged nine years presenting a congenital aortic 

stenosis valve recorded at two locations. The characteristic click of this 

pathology was recorded first at the lower left sternal edge, and secondly the 

mild systolic murmur was recorded at the aortic area where it is heard best. 

• A signal recorded at the pulmonary auscultation area from an eight-year old 

patient presenting both a systolic murmur due to valvular aortic stenosis and 

an early diastolic murmur due to aortic regurgitation. 

• Two PCGs from a patient aged one year presenting congenital aortic stenosis. 

The signals were acquired at two different auscultation areas, namely the 

mifral area for the chck and the aortic area for the murmur. This patient had 

had a previous cord repair. 

• A signal containing a systolic murmur characteristic of valvar aortic stenosis 

and early diastolic murmur representative of aortic regurgitation recorded at 

the aortic area from a patient aged fourteen years old. 

Notice that the best theoretical position to record the characteristic protosystolic 

click of congenital aortic stenosis is the mitral area at the apex, and that the best 

position to record the valvar murmur is the aortic area. Nevertheless, some 

recordings in the database were obtained from different locations, either the lower 

left sternal edge instead of the mitral area for the protosystolic click, or the 

pulmonary area instead of the aortic area for the systolic murmur. This represents 

a sub-optimal sensor placement with the exception of the recordings of sub-aortic 

stenosis for which the epicentre is not located in the aortic area. The decision 

nevertheless is based on practical considerations found during the auscultation by 

the consultant. 

The leave-one-method, recommended when the number of available samples is 

small (Rangayyan, 2002), was selected for the estimation of the classification 

accuracy of the HMMs. Following this procedure, from the sixteen PCG signals 

available, eight for each medical condition, only the PCG signal of one patient 

126 



was used for each testing event. The rest of the signals, divided in two sets 

according to its class, were used to train the HMM for each condition. 

The training sets are formed of cepstral coefficients of five systolic cycles of PCG 

signals representing the medical conditions under study. Although the set 

consisted of eight signals, these were obtained fi-om only five or six patients. 

Since it is expected to find higher inter-subject than intra-subject variability in the 

PCG signals, five systolic cycles were considered as a reasonable number to 

represent the variability among systolic cycles fi-om the same patient. Each cycle 

of the PCG signal to test was considered as an independent event though, and 

therefore, eighty systolic cycles were used for the screening test. 

To train the hidden Markovian models, uniform values were provided as initial 

estimates for the parameters and these values were refined using an estimation-

maximization algorithm (Rabiner, 1989; Murphy, 2001; Charbit, 1999) to capture 

the statistical parameters modelling a training set of PCGs for each of the medical 

conditions. 

Initial Prob. Sate transitions Mean Variance 

H i Si, S 1 2 Sl3 Mui Sigmai 
HMM 

H i 

S 2 1 S 1 2 S 2 3 MU2 Sigma2 

n s S 3 1 S 3 2 S 3 3 MU3 Sigma] 

Normal 1 0.9165 0.0835 0 (18887 0.0076 

0 0 0.9427 0.0573 &7096 (10013 

0 0 0 1 &7845 0XW26 

Aortic stenosis 1 0.8024 0J^76 0 0.9075 (10053 

0 0 a8971 0J^29 0.9751 (10086 

0 0 0 1 &7303 (10026 

Table 7.2. Values obtained for the HMM for the normal and the aortic stenosis 

classes during the training process, fix Initial state distribution vector, Sxx state transition 

probabilities, Mu^ and Sigma^ are the mean and variance that characterize the Gaussian 

observation symbol distribution. 
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Initial Sate transitions Mean Variance 

Prob. Sii S 1 2 Sl3 Mui Sigmai 

Testing Training Hi S 2 1 S 1 2 S23 MU2 Sigma2 

Ui S 3 1 S 3 2 S 3 3 MU3 Sigma3 

03 

Asl As2, As3, 1 &8358 0.1642 0 0.9122 0IW54 

As4, As5, 0 0 0.8584 0J^T6 0.8862 0.0058 

As6 0 0 0 1 0.6797 0.0017 

As2 Asl, As3, 1 0.8866 0.1134 0 0.9071 0XW56 

As4, As5, 0 0 a8775 0J^25 0.7828 oxm3i 

As6 0 0 0 1 0.6653 oimi3 

As3 Asl, As2, 1 Oj#78 &3022 0 0.9093 0.0055 

As4, As5, 0 0 0.8873 0JT27 0.9657 0.0074 

As6 0 0 0 1 0.7373 0.0043 

As4 Asl, As2, 1 OJ ia* 0.2878 0 0.9062 0XW53 

As3, As5, 0 0 0.8895 0JT05 0.8376 0.0056 

As6 0 0 0 1 0.7123 01^66 

As5 Asl, As2, 1 &8259 0.1741 0 0.9193 0.0043 

As3, As4, 0 0 0.8521 0T488 0^)715 0XW87 

As6 0 0 0 1 0.7462 0.0025 

As6 Asl, As2, 1 0.7151 0.2849 0 0.9076 &0052 

As4, 0 0 &8976 0.1024 0.9817 0XW86 

As5 0 0 0 1 0.7244 0XW30 

Table 7.3. Values obtained for the HMM for the aortic stenosis classes for 

different training sets. Ox Initial state distribution vector, Sxx state transition probabilities, 

MUx and Sigma^ are the mean and variance that characterize the Gaussian observation symbol 

distribution. 

Table 7.2 shows the parameters of the HMM representing the normal and aortic 

stenosis classes. Note how the model presented in figure 7.1 is reflected in the 
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parameters. The model chosen always starts in state 1, and this is reflected in the 

set of initial probabilities. The model is forced to end in state three, and therefore, 

the transition probability S33 is one. The left-right characteristic of the model is 

reflected in the fact that all backwards transitions S21, S31 and S32 are cero. 

The transition matrix for the normal signal shows higher self transition 

probabilities compared with the aortic HMM. The mean value of the normalized 

cepstral coefficient for the aortic stenosis class shows the same transition pattern 

as shown in figure 7.1. From a mean value of 0.9075 for state one, to a higher 

value of 0.9751 for state 2 and afterwards to the lowest value of 0.7303. A higher 

variance for the second state is probably related to the mid-systolic murmur, 

whilst the high mean and variance for state one of the normal class is probably 

related to inclusion of the end of SI into the systolic cycle. 

The values shown in table 7.2 were obtained using all the training signals, but in 

order to test the algorithm, the leave-one-out method was used. Table 7.3 shows 

how the parameters change depending on the set of training and testing signals. 

Table 7.3 shows the strong dependence that the parameters of the HMM have on 

the small training set. Given the trained HMMs, the probability for each systolic 

cycle of being produced for a particular HMM was computed. Note that each 

HMM has an initial state probability, and therefore, every time a new set of 

cepstral observations (representing a systolic cycle) is evaluated, the most 

probable initial state is defined considering this probability. 

Each systolic cycle (represented by its cepstral coefficients) was scored 

individually as successfully identified or otherwise, as misclassified. An overall 

score for a single patient's PCG was scored from the individual cycles. 

The training and testing sets were renewed to obtain another testing event. This 

procedure was followed until all the sixteen PCG signals were tested. 
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7.4 Screening test results 

In Chapter 5, cepstral coefficients and two alternative methods to extract feature 

representations namely Maass-Weber representations and Une spectral frequencies 

were presented along with their viability to visually represent the explicit 

variations in PCG signals typical of specific diseases. 

Although all the methods proved to be able to represent these variations, their 

ability to reflect the key parameters that would simplify the classification process 

needs to be evaluated within the context of a specific classifier. Some feature 

representations may be more suitable for certain classifiers than others. 

Redundancy of the information, parameter interdependence, the compromise 

between the length and number of parameters required for the representations 

versus the size of the data-base available, and implicit assumptions of the 

classifier are some of the factors that contribute to this interdependence between 

the representations and the classifier performance. Moreover, the classification 

performance is also highly dependent on the accuracy with which the phenomena 

of interest is represented in the subspace of sample signals available for training 

and evaluation. 

A technique for phonocardiogram signal analysis and classification has to be 

evaluated considering both the signal representations and the classifier since they 

are strongly related. 

Neural networks and Maass-Weber filter representations have been used before 

for the classification of phonocardiograms (Barschdorff, 1995) and results have 

been published for LPC coefficients used for heart sound analysis and 

classification (Itawa, 1997). 

As explained in Chapter 4, the line spectral features are an alternative 

representation derived from LPC coefficients, although no studies have been 

found on the use of line spectral frequencies applied to PCG analysis. 
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Considering these factors, the performance of the hidden Markovian models as 

classifiers using cepstral cefficients, line spectral frequencies, and Maass-Weber 

filters as feature representations will be evaluated in the next section. 

7.4.1 Hidden Markovian models and cepstral representation 

Normal Aortic Stenosis 

Systolic 

Cycles 

Overall 

Score 

I 

FP TN 

Patient Patient 

1 9 

2 10 

3 11 

4 12 

5 13 

6 14 

7 15 

8 16 

SystoUc 

Cycles 

TP FN 

Table 7.2. Results of the Classification using Cepstral Representation. The black 

boxes represent incorrectly classified signals (false positives Fp for normal samples, false 

negatives FN for aortic systolic cycles), whereas white boxes represent signals correctly classified 

(true negatives TN for normal samples, true positive TP for aortic systolic cycles). 

Table 7.2 presents the results obtained for the classification of the signals using 

cepstral representation and the HMMs for aortic stenosis and normal systolic 

cycles. 

The black boxes in the figure represent the signals that were incorrectly classified. 

For patient one for example, although the signal corresponds to a normal PCG the 

second systolic cycle was classified as aortic stenosis. Similarly, the black boxes 
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for patient 11 means that all the systolic cycles were classified as normal which is 

incorrect. 

Table 7.2 is useful to relate the performance of the classifier to the signals 

evaluated and therefore, it is valuable for identifying probable sources of error and 

possible improvements. 

Analysing the performance of the HMM for aortic stenosis, from table 7.2 it can 

be seen that the model could not detect any murmur in the PCG of patient 15. 

Referring to the medical records, the signals from patient fifteen and fourteen are 

in fact signals from the same person, but recorded in different auscultation areas. 

The signals of patient fourteen correctly identified were recorded in the aortic area 

whereas the signals of recording fifteen were recorded in the mitral position. The 

mitral position is usually preferred to register the ejection click since the murmur 

is very soft or inaudible in this area, whereas the aortic stenosis murmur is loudest 

in the aortic area (Brown, 2002). Therefore, the decision of the algorithm to 

classify as aortic stenosis only the signals recorded in the aortic area may be 

correct. Nevertheless, for signals 11 and 12, both from the same person and 

recorded in different auscultation areas, the model could not identify the systolic 

murmur in the signals recorded in the aortic area. 

Figure 7.3 shows PCG for the same patient recorded at different auscultation 

areas. The PCG signal recorded at the lower left sternal edge exhibits the 

characteristic click of a congenital aortic stenotic valve, whereas the systolic 

murmur is better seen at the recordings from the aortic auscultation area. 

The results can also be represented using standard definitions for the screening 

test; 

• A true positive (TP) is defined as the case when the systolic segment contains 

an aortic stenosis murmur and the algorithm acknowledges that the sequence 

of corresponding observations have been most probably generated by the 

hidden Markovian model of aortic stenosis, hi Table 7.2 for example, the 
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systolic segments for the PCG signal of patient 9 were all correctly identified 

as containing aortic stenosis murmurs, and were therefore represented by a 

white box. 

PCG characteristic of Aortic Stenosis recorded at tlie LLSE 
I r 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

PCG characteristic of Aortic Stenosis recorded atthe Aortic Area 

_1 L_ 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Figure 7.3. PCG Characteristic of a Congenital Aortic Stenotic Valve Recorded 
at the Lower Left Sternal Edge and at the Aortic Area. Fs = 4 KHZ. 

A true negative (TN) in this case represents the condition where the systolic 

signal segment contains no murmur and the algorithm classifies the signal as 

most probably generated by the hidden Markovian model of the normal PCG 

signals. The white boxes assigned to each systolic cycle of patient 2 exemplify 

this situation, i.e. the segments correspond to a normal PCG and are assigned 

to the HMM for normal signals. 

A false negative (FN) for this screening test is the situation when the 

algorithm assigns to the normal class a systolic cycle which contains a 
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murmur characteristic of an aortic stenosis condition. This situation is 

exemplified by the signal of patient 15 in Table 7.2. All the systolic cycles 

from a patient presenting a form of aortic stenosis were incorrectly classified 

as normal, and consequently they were represented by black boxes. 

• A false positive (FP) occurs when a systolic signal from a normal PCG is 

incorrectly classified as belonging to the aortic stenosis murmur group. This 

false alarm is represented by black boxes in Table 7.2 as in the second systolic 

cycle of the signal from patient 3. 

Considering the previous definitions the performance of the classification 

algorithm can be stated in terms of sensitivity and specificity. 

• The sensitivity (S+) of a test represents its capability to detect the presence of 

the disease. In this case, it provides the proportion of PCG signals containing a 

murmur of an aortic stenosis condition that are correctly identified by the 

algorithm. Therefore, it can be defined as the number of true positive 

decisions divided by the number of signals with the disease. 

S+= TP . 

TP+FN 

• The specificity (S-) of a test indicates its accuracy in identifying the absence 

of the disease of concern, hi this case, it provides the proportion of normal 

PCG signals correctly identified by the test. It can be defined as the number of 

true negative decisions divided by the number of subjects presenting the 

normal class sample. 

TN 

TN+FP 

The sensitivity and specificity values provide useful indication of whether a test is 

useful in making diagnosis. Once the test has been performed, the sensitivity and 
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specificity do not indicate whether a positive result truly means the presence of a 

disease. That information is given by the predictive values. 

• The positive predictive value (PPV) represents the percentage of the cases 

labelled as positive by the test that are actually positive. For this example, it 

represents the percentage of signals classified as aortic stenosis that are 

actually derived from an aortic stenosis related condition. 

PPV=1Q0 TP • 

(TP+FP) 

• The negative predictive value (NPV) represents the percentage of cases 

labelled negative by the test that are actually negative. For this example it 

represents the percentage of signals clasiffied as normal that are actually 

representative of an anatomically and functionally normal heart condition. 

NPV= 100 TN • 

(TN+FN) 

The predictive values are clinically useful but depend very strongly on the 

prevalence (Prev), that is the proportion of cases with the abnormality (Altman, 

1991). A test with a constant sensitivity and specificity may have different 

predictive values for different groups making necessary a correction when tests 

conducted on different populations are compared (Chu, 1999). 

PPV= rs+ yprev) 

(S+)(Prev) 4- (l.S-)(l-Prev) 

1 -NPV= ri-S+¥Prev^ , 

(l-S+)(Prev) + (S-)(1-Prev) 
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For the screening test the prevalence is set to fifty percent since for all the 

medical conditions in this study the same probability of occurrence is assumed. 

Consequently, both classes are represented by the same number of samples. 

Likelihood ratios (LR) are an alternative, newer method of judging the accuracy 

of a test. The likelihood ratio positive (LRP) compares the proportion of patients 

with the disease that have positive test results with the proportion of patients 

without the disease that have positive test results. The LRP is the ratio of these 

two proportions (Chu, 1999). 

LRP= S+ • 

(1-S-) 

LRN= 1-S+ . 

This approach may give further insight into the interpretation of diagnostic test 

data although it does not add new information since it uses the same quantities 

explained before. A likelihood ratio may demonstrate that the test is useful. 

However, it does not necessarily indicate that a positive test is a good indicator of 

the presence of disease (Altman, 1991). The likelihood ratio is especially useful to 

assess a sequence of tests. Table 7.4 shows the interpretation of likelihood ratios 

for the estimation of post-test probabilities. Values of LRP higher than 10 and 

values of LRN lower than 0.1 are considered to indicate that a test is of great 

diagnostic importance (Flores, 2002). 

Following these standard diagnostic tests (Petrie, 2000; Rangayyan, 2002), Table 

7.5 summarises the performance of the classifier based on the results presented in 

Table 7.2. 
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Likelihood ratio Changes from pre-test to post-test probabilities 

>10 or < 0.1 Large, often conclusive 

5-10 or 0.1-0.2 Moderate 

2-5 or 0.5-0.2 Small but sometimes important 

1-2 or 0.5-1 Small, rarely important 

Table 7.4. Interpretation of Likelihood Ratios. 

No of 

samples 
FP TN TP FN S+ S- PPV NPV LRP 1 LRN 

80 5 35 1 26 14 1 65% 875% 83.8% j 71.4% 1 5.2 | 0.4 

Table 7.5. Evaluation results using Cepstral Representation. FP false positives, TN 

true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity, PPV positive 

predictive value, NPV negative predictive value, LRP likelihood ratio positive, LRN likelihood 

ratio negative. 

Table 7.5 is useful to evaluate the performance of the classifier in numerical 

figures suitable for comparison to other methods. In particular, the values of 

likelihood ratio are useful to value the classifier for clinical diagnosis. 

From Table 7.5, it can be seen that the classifier is better at identifying the 

absence of an aortic stenosis murmur (specificity 87.5%) than at actually detecting 

the murmur (sensitivity 65%). From the signals classified as aortic stenosis, 

83.8%) are effectively aortic stenosis (positive predictive value), whereas 71.4 % 

of the labelled normal signals are effectively normal (negative predictive value). 

The likelihood positive ratio of 5.2 indicates that it is approximately five times 

more likely to label as "aortic stenois" a cycle with an aortic stenosis murmur, 

than a normal systolic cycle. In interpreting these results it has to be considered 

that signals recorded at sub optimal positions where the murmur is not at its 

loudest were included in the training process. The PCG recorded at the LLSE 
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shown in Figure 7.3 for example although it is from an aortic stenosis condition, it 

does not present the characteristic systolic murmur. 

7.4.2 Hidden Markovian models and line spectral frequency representation 

For the line spectral frequency representation the systolic signals are divided into 

frames of 25 ms overlapped by 50%. An 8-pole model provides the LP 

coefficients as described by Iwata (1977). However, instead of representing the 

signal by the 'significant' poles (bandwidth < 80 Hz) line spectral pairs and line 

spectral frequencies are obtained from the LP coefficients as described in Chapter 

5. 

Normal Aortic Stenosis 

Systolic 

Cycles 

Overall 

Score 

FP TN 

Patient Patient 

1 9 

2 10 

3 11 

4 12 

5 13 

6 14 

7 15 

8 16 

Overall 

Score 

Systolic 

Cycles 

TP FN 

Table 7.6. Results of the Classification using Line Spectral Frequency 

Representation. The black boxes represent incorrectly classified signals (false positives Fp for 

normal samples, false negatives FN for aortic systolic cycles), whereas white boxes represent 

signals correctly classified (true negatives TN for normal samples, true positive TP for aortic 

systolic cycles). 

The line spectral frequencies form a feature vector and a single Gaussian 

probability density distribution is assumed for each feature. Consequently the 
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model uses a weighted sum, or mixture, of several normal distributions and the 

parameters are calculated using the equations shown in section 4.6 (m= number of 

line spectral frequencies). 

Table 7.6 and Table 7.7 present the results obtained for the screening test when 

line spectral frequency features are used as representations for the PCG. As in the 

case of the cepstral representations, no murmur is identified in signal 15 since the 

signals recorded in the mitral area are preferred for detection of the characteristic 

ejection click of congenital aortic stenosis where the systolic murmur is very soft 

or not present at all. By contrast, all the systolic murmurs are detected for signal 

14 from the same patient but recorded in the aortic area since this position is 

preferred for murmur detection. 

Signals 11 and 12 are recorded in different auscultation areas firom the same 

patient presenting a mild valvular aortic stenosis. As in the case of the cepstral 

representations the classifier fails to detect the systoUc murmurs of signal 11 

recorded in the optimal aortic auscultation area. Nevertheless, murmurs are 

detected in two cycles of signal 12 recorded in the lower left sternal edge. Notice 

that this position is in between the optimal area for aortic stenosis murmur 

recording (aortic area) and the optimal position for the ejection click recording 

(mitral area). 

The main difference on performance between representations is reflected on the 

identification of the systolic cycles of signal 16. While in the case of the cepstral 

representation all the cycles were correctly identified, in the case of the hne 

spectral frequency all were wrongly classified. 

The line spectral frequency representation showed a very small difference for 

wrong classification of normal systolic cycles. In this case only four systolic 

cycles were labelled abnormal compared with five cycles obtained previously 

using cepstral representation. 
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The performance of the hidden Markovian model using line spectral frequency 

representation is summarised in table 7.7. Using LSF the sensitivity decreases to 

55% compared to 65% obtained using cepstral representations. The specificity 

slightly increased from 87% to 90% since only four normal cycles were wrongly 

classified compared to five cycles for the cepstral representation. 

No of 

samples 
FP TN TP FN 1 S+ S- 1 PPV NPV LRP LRN 

80 1 4 36 1 22 18 1 55% 90% 1 84.6% 1 66.6% 5.5 0.5 

Table 7.7. Evaluation Results Using Line Frequency Representation. FP false 

positives, TN true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity, 

PPV positive predictive value, NPV negative predictive value, LRP likelihood ratio positive, LRN 

likelihood ratio negative. 

Normal Aortic Stenosis 

Systolic 

Cycles 

Overall 

Score 

FP TN 

Patient Patient 

1 9 

2 10 

3 11 

4 12 

5 13 

6 14 

7 15 

8 16 

Overall 

Score 

Systolic 

Cycles 

TP FN 

Table 7.8. Results of the Classification Using Maass-Weber Filter Representation. 

The black boxes represent incorrectly classified signals (false positives Fp for normal samples, 

false negatives FN for aortic systolic cycles), whereas white boxes represent signals correctly 

classified (true negatives TN for normal samples, true positive TP for aortic systolic cycles). 
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Positive predictive value and likelihood ratio positive are consequently slightly 

incremented, but negative predictive values and likelihood negative ratios reflect a 

decreased performance. 

7.43 Hidden Markovian models andMaas-Weberfilter representation 

Table 7.8 and Table 7.9 show the results obtained for the HMM classifier using 

Maass-Weber filter representations as input features. The decreased performance 

of the algorithm is better reflected in the likelihood ratio values since the main 

difference in performance is given by the misclassification of the first normal 

signal. 

No of 1 

samples 
FP TN TP FN S+ S- PPV NPV LRP 1 LRN 

80 1 8 32 21 1 19 52% 80% 72.4% j 62.7% 2^ 1 &6 

Table 7.9. Evaluation Results Using Maass-Weber Filter Representation. FP false 

positives, TN true negatives, TP true positives, FN false negatives, S+ sensitivity, S- Specificity, 

PPV positive predictive value, NPV negative predictive value, LRP likelihood ratio positive, LRN 

likelihood ratio negative. 

7.4.4 General results 

The graphical and analytical results show a better performance of the cepstral 

representations than that of the line spectral frequencies or Maass-Weber features 

as inputs for the HMM classifier. Nevertheless, conclusions have to be reached 

with some caution. The models for the screening test were representative of only 

two medical conditions. For other pathologies, other representations may surpass 

the performance of the cepstral representations. Moreover, it has to be taken into 

account that only a small set of PCG signals was available. If the three methods of 

signal representation have a quite similar performance, a larger database is 

required to truly differentiate their capabilities. 
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7.5 Comparison to cardiologist 

Table 7.10 compares the performance of the HMM classifier and the cepstral 

representations with the results obtained by paediatric cardiologists. The study 

finds the sensibility and specificity of the cUnical diagnosis of congenital heart 

disease, made by two paediatric cardiologists, taking as "a gold standard" an 

echocardiographic report (Flores, 2002). A study done in 150 children (younger 

than 15 years), the clinical diagnosis carried out by paediatric cardiologists with 

support of an electrocardiographic study and an X-ray plate of the thorax was 

contrasted with results obtained form the echocardiogram (continuous colour 

Doppler echo). 

No of 

samples 
FP TN TP FN s+ 1 S- PPV NPV LRP LRN 

HMM 80 5 j 35 26 14 65% 1 87.5% 83.8% j 71.4% 5.2 0.4 

PC 150 20 38 78 14 84.8% 65.6% 7L1%4 8L18% 2.46 0.23 

Table 7.10. Comparative Results Between the Decisions Made by a Paediatric 

Cardiologist and the HMM Classifier. HMM hidden markovian model classifier, PC 

paediatric cardiologist, FP false positives, TN true negatives, TP true positives, FN false negatives, 

S+ sensitivity, S- Specificity, PPV positive predictive value, NPV negative predictive value, LRP 

likelihood ratio positive, LRN likelihood ratio negative. 

The comparison between the performance of the HMM classifier and the 

performance of cardiologists is not entirely valid. The classifier was trained only 

for only two classes with very few training samples, whereas cardiologists were 

presented with ten classes, and although in both cases the decision was binary 

(detected or not), some conditions are harder, or easier, to be detected. 

Nevertheless, the comparison is made only to show reference levels to see how 

useful the classifier may be as a diagnosis tool. 
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The published predictive values for paediatric cardiologist (PPV=79.6% and 

NPV=73.1%) were obtained for a prevalence of 92/150. The values shown in 

table 7.9 (PPV=71.1% and NPV=81.18%) have been recomputed considering the 

prevalence of the abnormal conditions for the screening test (40/80) to ease the 

comparison (Chu, 1999). 

As it can be seen from table 7.10 the paediatric cardiologist performs much better 

to detect the presence of the murmurs (higher sensitivity: S+=84.8% vs S+=65%) 

although the lower specificity (S-=65.6% vs S-=87.5%) may indicate a 

conservative approach to discarding a suspicious signal. The algorithm shows a 

higher certainty to an abnormal signal identified (higher PPV: 83.8% vs 71.1%) 

and lower certainty to a normal PCG identification (lower NPV: 71.4% vs 

81.18%). Nevertheless, it should be notice that these figures were obtained for the 

low number of samples available. 

As explained before, the likelihood positive and the likelihood negative ratios can 

be used as indicators of how useful is a classifier for clinical diagnosis. The results 

of the HMM classifier (LRP=5.2 and LRN=0.4), and the results obtained from the 

cardiologist with the help of ECG and X-ray plates (LRP=2.46 and LRN=0.23) 

are considered respectively of "moderate" and "small but sometimes important" 

clinical value for diagnosis (Flores, 2002). 

7.6 Sequential test results 

The results presented in table 7.10 compare the performance of either the 

cardiologist or the HMM classifier for diagnosis. Nevertheless, as an aid, it is 

important to assess how usefiil the HMM classifier is as a combined test to 

improve diagnosis. The results obtained by the cardiologist through the analysis of 

X-ray plates and electrocardiogram analysis can be used as pre-test values to asses 

the significance of the HMM classifier. More over, the use of these combined tests 

for diagnosis may prove to be usefiil in small communities where there is no 
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access to ultrasonic equipment or in cases where the access to ultrasonic services 

is inadequate\ 

Likelihood ratios can also be used to combine the results of multiple diagnosis 

tests (Chu, 1999). Lets consider a prevalence of 50% for a PCG signal containing 

a murmur such as in the screening test presented before. The patient's probability 

of a positive diagnosis after the paediatric cardiologist analysis of the X-ray plates 

and electrocardiogram can be obtained using the likelihood ratio positive value 

shown in table 7.10. 

The pre-test odds for this prevalence of 50% is: 

Pre-test odds = Pre-test probability = 0.5 = 1 

1 - Pre-test prob ability 1-0.5 

Since both conditions have the same probability of occurrence. To compute the 

post-test odds: 

Post-test odds - Pre-test odds x Likelihood Ratio Positive == Ix 2.46 =2.46 

This value can be converted to post test probabilities: 

Post-test probability = Post-test odds = 2.46 = 0.711 

1+Post test odds 1+2.46 

This is the positive predictive value (71.1%) for the test as presented in table 7.10. 

Therefore, after the diagnosis of the cardiologist the probability of disease 

changes from 50% to 71.1%. Notice that this value corresponds to the values 

computed for a prevalence of 50%. 

' 'In the UK, increasing demand for ultrasound services and inadequate resources have led to long 
waiting lists with subsequent frustration of hospital clinicians, general practitioners and their 
patients' British Medical Ultrasound Society (Bates, 2003) 

144 



This case corresponds to a controlled test where the cardiologist is presented with 

equal number of abnormal and normal signals. The value for the prevalence 

(92/150) published by Flores (2002) differ since it reflects the particular case of 

the retrospective study (PPV-79.6%). This is one of the reasons explaining why 

the likelihood ratio, which is independent of the prevalence of the disease, is 

preferred over the positive predictive ratio for assessment of clinical value of a 

diagnosis test (Chu, 1999). 

Once the paediatric cardiologist has assessed the probability of a positive 

diagnosis through the analysis of the ECG and X-ray plates, a sequential test using 

the HMM classifier would be useful if it significantly increases the pre-test to 

post-test probability of disease. 

For the sequential test the post-test odds are given by: 

Post-test odds = previous test positive odds x likehhood ratio positive 

= 2.4 X 5.2 = 12.48 

Converted to probability: 

Post-test probabilitv = Post-test odds = 12.48 = 0.9258 

1+Post-test odds 1+12.48 

From the initial assessment of the cardiologist a probability of disease of 71.1% is 

obtained, if the HMM classifier is then used as an aid for diagnosis the probability 

increases to 92.5%. This means that 92.5% of the patients with a positive 

diagnosis effectively present the abnormality. 

The probability of the opposite situation, a patient with a negative diagnosis that 

actually presents the abnormality, is given by the combine negative predictive 

value. 

For the sequential test the post-test odds are given by: 
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1- Post-test odds = previous test negative odds x likelihood ratio negative 

= 0.23 X 0.4 = 0.092 

Converted to probability: 

1-Post-test probabilitv- Post-test odds = 0.092 = 0.084 

1+Post-test odds 1+0.092 

Post test negative probability = 1- 0.084= 0.9157 

Consequentially, after performing both tests, a negative diagnosis will be correct 

in 91.57% of cases. 

Increasing the initial probability of a positive disease diagnosis from 50% to 

92.58% and the probability of a negative diagnosis from 50% to 91.5% through 

the sequential use of both test proves the significance of the HMM classifier as an 

aid tool to support diagnosis. 

An implicit assumption in the previous computation is that both tests are 

independent since different populations were screened. Nevertheless, in practice 

the sequential test will be applied to the same population, and although the post 

test probability may not be as high as the values presented, the specificity will be 

increased above that of any of the individual tests (Chu, 1999). 

7.7 Summary 

In this Chapter, the feasibility of using hidden Markovian models to classify 

systolic murmurs was explored. A binary screening test was designed to obtain 

valuable numerical figures reflecting the clinical value of the classifier. 

146 



The performance of the hidden Markovian model classifier using cepstral 

representations as input features was compared with the performance of a clinical 

cardiologist providing diagnosis based on the analysis of the electrocardiogram 

and x-ray plates in a similar test. Assuming similar conditions for both tests, the 

performance of the hidden Markovian model approach as a sequential test to aid 

the pre-diagnosis of the cardiologist was evaluated. Using likelihood ratios for the 

multiple testing, it was shown that the use of the hidden markovian model 

classifier is clinical useful. 

The performance of the hidden Markovian model classifier using cepstral 

representations for PCG signals was compared against its performance using line 

spectral frequencies. A better performance was obtained for the former, although a 

larger database is required to confirm these results. 

The classifier was trained only for two classes with a very limited number of 

samples. Nevertheless, the results obtained are promising. The validity of the 

method was demonstrated although the performance of the classifier is expected 

to improve with the addition of more training data. 
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8. Summary, Conclusions and Future Work 

8.1 Summary 

This research starts with an introduction to auscultation particularly focused on 

the use of the stethoscope for assessment of heart conditions and early detection of 

anomalies. The advantages of this non-invasive technique are highlighted in 

particular its value for paediatric cardiology, in which the frail nature of infants 

demands the use of passive observation procedures. The use of electronic 

stethoscopes and digital signal processing techniques to overcome inherent 

limitations of the traditional auscultation technique have lead to new areas of 

research. To exemplify this, the study of the genesis, transmission and 

propagation of heart sounds, the detection of cardiopathies, ventricular 

dysfunction and pulmonary hypertension, condition monitoring of prosthetic heart 

valves, and detection of coronary artery disease are briefly described in their 

relation to digital heart sound analysis. 

The study is oriented into one of these areas of research, namely the detection of 

cardiopathies through the analysis of heart sounds. Centred on the paediatric 

population, five conditions are initially considered in this study namely: atrial 

septal defects, aortic stenosis, ventricular septal defect, innocent pulmonary flow 

murmurs, and normal heart sounds. The identification of these conditions is 

simplified to a classification task in which the signal is assigned to the most 

probable category according to its acoustic features. 

After reviewing previous approaches, statistical techniques are proposed for PCG 

signal classification. They are considered as advantageous over parametric 

classifiers since inter-subject and intra-subject variations are better represented by 

statistical parameters and advantageous over neural networks due to their 

mathematical tractability. Thus, hidden Markovian models are recommended. One 

of the main advantages of this method is its adaptability to different signal 
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lengths. This feature is particularly important for the analysis of paediatric heart 

sound signals where a wide range of heart rates is expected. 

Cepstral coefficients are proposed to provide a simplified signal representation of 

the phonocardiogram to serve as input for the classifier. A similar approach has 

been suggested before based in the similarities between speech signals and the 

heart sound production (Rangayyan, 1978b). In that study single cardiac cycles 

were analysed and the higher coefficients were proposed to reflect the differences 

between pathologies. In this research, cepstral analysis is proposed based on a 

model of the cardiohemic theory, and consequently, the phonocardiogram is 

modelled as a heart system response excited by either, the acceleration and 

deceleration of blood in the case of normal sounds, or turbulence in the case of 

murmurs (see appendix B). 

Once a short time cepstrum is obtained the representation relies on the tracking of 

the low order coefficients reflecting the system response of the structure. Sensor 

movement artifacts and other noises commonly encountered in the PCG are 

mainly reflected in high order coefficients (assuming they are fast varying short 

time signals, see appendix B) and therefore the low order coefficients offer a 

certain degree of noise immunity. This cepstral truncation also provides certain 

degree of generalisation, since it reflects the statistical variations between signals 

of the same class without reflecting too much detail of a particular signal. 

The graphical representations of the heart sounds, representative of the conditions 

under study, proved that the cepstral coefficients reflect changes in the 

phonocardiogram that could lead to discrimination between murmurs and 

ultimately to classification. Nevertheless, in order to compare the performance of 

the cepstral coefficients as feature representations, two other representations were 

applied to our experimental data. 

Firstly, a sub-band energy level representation was obtained from a standard set of 

filters (Maass-Weber filters) used in clinical phonocardiology in other countries 

such as Germany and Mexico. The frequency response of these filters have been 
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defined through experience in clinical practice. Once the PCG signal is filtered, 

the energy in each band is computed. This is a sub optimal representation for the 

classification algorithm since features obtained using these filters are highly 

correlated due to the overlap of the frequency responses. Nevertheless, fi-om a 

graphical perspective this representation proved to be very practical for visual 

identification of the pathologies under study. 

A second alternative representation in which the system response is modelled as a 

product of resonances is proposed. In this approach, linear prediction is used to 

represent resonances as poles in the complex plane: high fi-equency poles 

correspond to murmurs and low fi-equency poles represent the heart sounds. A 

corresponding filter modelling the frequency response of the system is obtained. 

Representations derived from linear prediction analysis have been used before as 

input feature representations for PCG parametric classifiers (Itawa, 1977). In 

practice, numerical precision and other characteristics make linear prediction 

coefficients an unsuitable representation for classifiers. Itawa (1980) for instance, 

proposes a feature space formed with prominent poles of the models (with 

bandwidth < 80 Hz) for classification. 

The coefficients obtained through linear prediction coefficients should not be 

used in the statistical classifier to capture the variability among murmur samples 

from different subjects, since interpolation between parameters corresponding to 

different set of filters neither leads to a smooth frequency change nor ensures 

stability. For this research, line specfral frequencies were proposed as a more 

suitable representation to be used in the hidden Markovian model. They are more 

useful to represent inter subject and intra subject variability since the variations 

can be regarded as shifts of the position of the lines specfral frequencies on axis, 

and therefore, continuous and smooth transitions are possible. Nevertheless, the 

features are highly correlated since each of the resonances is modelled as a pair. 

The graphical representation of the PCG signals under study confirms the validity 

of using line spectral frequencies to differentiate between pathological conditions. 
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Since all the pathologies of interest present systolic murmurs, subtraction of the 

systolic cycles allows more detailed modelling. Segmentation is generally 

considered as the first stage towards PCG signal classification and is usually done 

using auxiliary signals like the ECG and carotid pulse. In paediatric cardiology, 

the simultaneous acquisition of these signals is not always convenient or practical. 

Therefore, an algorithm to segment the PCG form without the need of an external 

reference is required. Cepstral coefficients and hidden Markovian models were 

proposed for PCG segmentation. 

A simple but effective model was proposed to identify the occurrence of either, 

the first and second heart sound, or the systolic and diastolic cycles. The time 

characteristics of the PCG signal provided the reference to isolate the systolic 

cycles. Using the leave one out method, a single Gaussian hidden Markovian 

model trained with the set of normal signals was proposed to perform the 

segmentation. The first low order cepstral coefficient conformed the input for the 

signal classifier. This continuous observation was related to a two-state hidden 

Markov process through a Gaussian distribution. The first state represented the 

generation mechanism for either the first or the second heart sound, the second 

state was related to the occurrence of either a systolic or diastolic cycle. Decoding 

of the state sequence provided the reference for the segmentation. 

Considering the detection of the main components, the algorithm was evaluated 

for normal heart sounds. True positive events were defined in relation to the 

correct state detection and standard diagnostic tests were applied. High values of 

sensitivity (100%) and specificity (98%) resulted from the detection model. 

The generality of the model trained using normal signals was demonstrated when 

used to segment PCG signals representative of other pathologies. The model 

resolved the main components for most of the signals using of only one cepstral 

coefficient. The use of cepstral truncation and a statistical model retained the main 

features of the signals for different auscultation areas, pathologies, and varying 

signal length corresponding to different heart rates. 
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In both cases: normal and abnormal PCGs, the identification of segments was 

checked visually aided by the ECG as a reference for SI. Ideally this could have 

been done using an autonomous system since there are several algorithms for 

detection of SI using the QRS complex of the ECG, but a reUable detection of S2 

requires the carotid pulse signal which was not available. 

SI and S2 were not allways correctly identified when very strong murmurs 

obscured the main features in the first cepstral coefficient representations as one 

might anticipate. The use of more coefficients is recommended in these cases 

since the main components are less likely to be obscured. Although a good option 

for the segmentation process, filtering off the high frequency murmurs fi-om the 

PCG was not implemented since initially the identification of the main 

components (state decoding) and the classification of the murmurs (likelihood of a 

specific model) was conceived as a single process, and in this case the murmur 

needs to be kept as it is. 

Once the signals were segmented, an abstract model was proposed using temporal 

and morphological characteristics of the systolic murmurs. A three-state 

Markovian model was selected as the generating mechanism related to the 

Cepstral observations by single Gaussian distributions. 

A screening test was designed to assess the performance of the algorithm in a 

clinical context. For this binary test, the algorithm had to differentiate between 

normal and abnormal conditions. From the signals available, the class of aortic 

stenosis was selected since a higher number of samples represented it. 

Consequently, HMM models for normal and aortic stenosis classes were trained. 

The leave-one out method was used during the test procedure. Standard tests were 

applied to assess the performance of the algorithm. Sensitivity and specificity 

values of 65% and 87%, positive and negative predictive values of 83% and 71%, 

and likelihood ratios of 5.2 and 0.4 were obtained. For the set used, the algorithm 

showed good performance although the algorithm proved better to detect the 

absence of the disease rather than its presence. The normal systolic cycles 
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presented less variability and therefore, the normal class was better represented 

with the reduced number of samples available. 

To complete the database for the aortic model, signals recorded from sub-optimal 

areas were used for the training and testing. The inclusion of these signals 

diminished the performance of the model since the intensity of the murmur varies 

according to the auscultation area: it may be very low or even not present in some 

locations. 

The performance of the algorithm was compared to the performance of paediatric 

cardiologists aided by an electrocardiographic study and X-ray plates in a similar 

study. The paediatric cardiologists were better able to detect the presence of a 

murmur (higher sensitivity: 84% vs 65%) although the HMM showed a higher 

certainty to an abnormal signal identified (higher PPV: 83% vs 71%). These 

results suggested the use of the HMM as a sequential test to follow the pre 

assessment of the paediatric cardiologist. Using both tests, an initial probability of 

a positive disease diagnosis increased from 50% to 92% whereas the probability 

of a negative diagnosis to be correct increased from 50% to 91%, which shows the 

significance of the HMM as a tool to support diagnosis. 

A signal classification algorithm depends strongly on the feature representations, 

if the distinctive features are captured, the classification problem becomes trivial. 

There is also a match between feature representations and the classification 

algorithm, therefore the performance of the HMM and cepstral coefficients was 

compared to the performance of the HMM and line spectral frequencies. For the 

specific screening test, the performance of the HMM using cepstral coefficients 

was better, although it is considered that more signals are required to differentiate 

the performance of both representations. 
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8.2. Conclusions 

Cepstral coefficients showed to be suitable representations for PCG analysis and 

classification. The features obtained using this technique are able to provide a 

simplified representation for the PCG and to reflect variations in the signal due to 

abnormalities. 

Hidden Markovian models are valuable statistical methods for the analysis and 

classification of PCGs. Their merit as useful mathematical abstractions was 

demonstrated through the use of particular models proposed to undertake the 

practical problems of segmentation of PCG signals and classification of systolic 

murmurs. 

Line spectral frequencies were proposed as an alternative representation for linear 

prediction coefficients. Although they were able to track changes in the PCG they 

showed poorer performance as the input for a HMM classifier when compared to 

the cepstral coefficients for our database. Nevertheless, in order to determine the 

extent of this, more signals are needed. 

The use of a HMM classifier and cepstral coefficients as input features proved to 

be of clinical value particularly when used as a sequential test to aid diagnosis. 

Nevertheless, although the usefiilness of the technique was demonstrated, more 

sample training signals are required to develop a system for clinical practice. 

A considerable amount of effort has been devoted to the analysis of the influence 

of both training and testing sample size on the design and performance of pattern 

recognition systems. Although there are some recommendations for practitioners 

and rules-of-thumb in the literature (Rangayyan, 2002; Raudys, 1991), these are 

related to specific classification methods, under certain strong assumptions. 

The performance of the algorithm as an aid for clinical diagnosis is ultimately 

compared to the performance of a human expert, and against a gold standard such 

as an echocardiographic report. Consequently the number of sampling signals 
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required to train the HMM for clinical use should be comparable to the sample 

size required in these studies. Flores (2002) defined a set of 150 cases for his 

study, and Gottdiener (2004) suggest a range from 100 to 200 subjects for the 

application of echochardiography for cUnical trials. A set of similar size would be 

recommended for the training of the HMM. 

8.3. Future work 

8.3.1 Comparison to published techniques 

The performance of a classification algorithm is strongly related to the database 

used for the training and testing procedures. For this reason, in order to determine 

the benefits of this approach, it is necessary to compare its performance with that 

of other classification algorithms using the same set of data. 

8.3.1 Acquisition of more signals 

Although the database collected contains a relevant number of PCGs, the number 

of signals representative of the conditions of interest for this study is very limited 

from the point of view of a statistical classifier. Some signals grouped in the same 

class, although relative to the same general pathology, have distinctive acoustical 

features that differentiate them according to the specialised literature in 

phonocardiology. In the case of aortic stenosis, for example, the study of the 

phonocardiogram is usefiil to distinguish among valvular aortic stenosis, a 

calcified valvular aortic stenosis, supravalvular aortic stenosis, fixed sub-valvular 

fibrous aortic stenosis, and dynamic aortic stenosis (Guadalajara, 1998). 

Consequently, more training signals of each condition are required in order to 

provide enough data to the models to capture the variations between sub-classes. 

8.3.2. More complex models 

HMM provide a structure that is broadly appropriate to represent the spectral and 

temporal variations of the PCG. However, it is assumed that the sound pattern is 
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produced in a process with instantaneous transitions between stationary states. 

This assumption is in direct contradiction with the fact that the heart sound signals 

are produced by a continuously moving physical system. However, this drawback 

may be diminished by a generous allocation of states to make a fair approximation 

of a dynamic system. More complex models with continuous state transition 

probabilities can also be used to represent dynamical systems. In both cases, 

larger sets of training data are required to account for the addition of more states 

or more parameters to model the dynamics of the system, hi the model proposed 

in this study, the size of the training data limited the addition of more discrete 

states. 

At this stage the PCG systolic signals have been modelled by HMM with a single 

Gaussian emission probability density. More complex models can be used to 

estimate the emission probability density functions, for instance, HMM with tied 

mixture of Gaussians, independent mixture of Gaussians, or neural networks, 

however, a more complex approach requires more training sequences to estimate 

the model parameters. 

8.3.3 Full heart cycle model 

Pathologies are reflected in the PCG not only with the presence of murmurs and 

extra heart sounds but also by changes in the components of the signal like the 

diminished first sound of an aortic stenosis due to left ventricular hypertrophy or 

the delay of A2 as the stenosis worsens. Therefore, a model that could comprise 

all the components of the heart sound would be highly valuable particularly in the 

cases of combined pathologies. 

8.3.4 Alternative feature representations 

The selection of cepstral analysis for feature representation was based in the 

cardiohemic theory for the genesis of heart sounds. Nevertheless, cepstral 

coefficients are not necessarily meaningful representations in the sense that the 
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visual features can not be directly related to the physical phenomena. 

Notwithstanding this, they are features possessing embedded information and are 

therefore useful for classification, letting the computer extract the subtle patterns 

characterising a specific condition. This is in contrast to the standard approach 

where the representations are derived to analyse the underlying physical 

phenomena, and the changes in the signal are visually traceable to the conditions. 

The second approach may provide a better visual representation but not 

necessarily a better feature extractor for an automatic classification system. 

It is therefore recommended to try feature representations other than the classical 

time frequency representations, which provide easy to follow visual identification. 

8.3.5 Multiple area acquisition 

One of the main auscultation findings for differentiating between similar murmurs 

is the localisation and radiation pattern of murmurs. Simultaneous PCG 

acquisition for different auscultation areas will provide important information for 

the identification of pathologies. 

8.3.6 Non-contact phonocardiology 

The mass of the stethoscope used in traditional phonocardiology affects the 

frequency response and amplitude of the heart sound signals recorded at the chest. 

Moreover, handling noise and the added complexity for multiple signal 

acquisition suggest the use of non-contact methods for heart sounds recording. 

Laser phonocardiography has been used to measure foetal heart activity 

(Morgenstren, 1989) and to detect coronary artery disease (Furukawa, 2004). This 

technique, based on a Michaelson interferometer, provides higher sensitivity, 

wider frequency response, and may be usefril for the implementation of a system 

for multiple point PCG acquisition. 
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Appendix A: Flow diagrams 

Implementation 

The programs were initially implemented using Matlab version 5.3.1 (Rl l . l ) 

running in a computer with a Pentium II processor and windows 98 system. It 

took 5 minutes to run the segmentation algorithms, and around 4 minutes to run 

the classification program for each signal under test. Considering that there were 

17 signals for abnormal PCG segmentation and 16 for systoUc murmur 

classification, this was a problem specially for debugging and features 

comparison. However, using the same Matlab version 5.3.1 but on a computer 

with an Intel Centrino M at 1.60 GHz and windows XP the segmentation and 

classification algorithms now run in 23 and 20 seconds per set respectively. 

The next section shows the flow diagrams for the programs making reference to 

the equation defined in chapter 4. 
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Heart Sound Segmentation by HMM 

Learning: 
Training HMM using Normal PCGs ; 
20 signals (using leave one out) for normal PCG 
segmentation (25 for abnormal PCG segmentation) 

Baum-Welch 

No 

Yes 

Trained HMM 
In ={n, Mu, Sigma, A} 

Compute cepstral coefficients 
Obtain observations sequence O 

Obtain new parameters: 
New Xn ={nn,Mun, Sigman, An} 

Initialize the HMM: 
Structure and initial values 

1 Gaussian, 2 States, 
lo ={n. A, Mu, Sigma}, 
threshold d 

Make database of training signals 
Extracts 5 cycles of normal PCG signals 

Normalize 
Extract cycles using ECG 

QRS detection 

Using function 'ess_nihmm' from 'hmm_leam' Murphy's (2001) HMM toolbox 
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Segmentation: i 

Viterbi algorithm 

Load new PCG ( ) 
Normalize ( ) 

1 f 

Compute cepstral coefficients ( ) 
Obtain observations sequence 0 

1 f 

Load the trained HMM ( ) 
h) ={n, A, Mu, Sigma} 
and compute B 

1 
a) initialize (using OQ) 

6i (i) and (i) 

r 

b) compute (using 0 ) 
6t(j) and\|/tG) 

1 r 

c) obtain 
P* and q*t 

1 f 

d) sequence 
backtracking 

P* and q*t 

1 r 

Most probable state sequence aligned to the new PCG 

' Using viterbi_path from Murphy's (2001) HMM toolbox 
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Systolic Murmur Classification by HMM 

Create sets: 

8 Normal PGCs 
8 Aortic stenosis PCGs 

Split into training and testing sets 
leave-one-out method 

Extracts 5 systolic cycles of 8 normal 
PCG = 40 systolic 

Extract 5 systolic cycles of 8 Aortic 
Stenosis =40 systolic 

Testing: 

Training: 
Normal class: 

8 Normal (40 systolic) 
Aortic stenosis class: 

7 Aortic (35 systolic) 

Aortic 8 (5 systolic) 

16" set: 1^ set: 
Testing: 

Normal 1 (5 systolic) 

Training: 
Normal class: 

7 Normal (35 systolic) 
Aortic stenosis class: 

8 Aortic (40 systolic) 
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For each Set: 

Training the HMM 
for the Normal class 

Baum-Welch 

i 
Normal training PCGs 

Extract systolic cycles ( ) 

Compute cepstral coefficients ( ) 

r 

Initialize the HMM ( ) 
Structure and initial values 
1 Gaussian, 3 States, left-right 

Xq ={n, A, Mu, Sigma}, 
threshold d 

Using 0 compute: 
B, at(i), P:<i) 

Yt(i), 
m ZYt, 

Obtain new parameters: 
New In ={nn,MUn, Sigman, An} 

Trained HMM 
Normal Class 
Ix ={n, Mu, Sigma, A} 

Same procedure for Aortic Stenosis Class. 

' Modified function 'hmmtrain' to force left right model from Charbit's (1999) HMM toolbox. 
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Classification: 

Testing PCG 

Extract systolic cycles ( ) 
Evaluate one at time 

Compute cepstral coefficients ( ) 
Obtain observations sequence 0 

Trained HMM Normal class 
A,n ={n , A, Mu, Sigma} 
and compute B 

Trained HMM Aortic stenosis class 
X-A ={n, A, Mu, Sigma} 
and compute B 

Forward procedure 

a) initialize (using o o ) 
5i (i) and Yi (i) 

a) initialize (using oo) 
5i (i) and V|/i (i) 

b) compute (using O) 
6t(i) andv)/t(j) 

b) compute (using O) 
6t0) and Yt(j) 

c) obtain 
P ( 0 | w 

Yes 

PCG Normal \ 

c) obtain 
P(0|XA) 

P ( O W > P ( O W 

^ PCG Aortic 
I Stenosis 

' Function 'forback' from Charbit's (1999) HMM toolbox. 
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Appendix B 

Cepstral analysis for PCG signals 

This appendix shows the steps involved to obtain the input representations for the 

HMM using simulated and real PCG signals. Details of the implementation, such 

as the window size selected for the FFT, and the choice of the number of 

coefficients to represent the signal, are also provided. The concept of impulse 

response and excitation separation through cepstral liftering is explored, and the 

cepstral coefficients are related to the spectrogram to explain their meaning. 

PCG Signals 

Synthetic and real PCG signals are going to be used in this appendix in order to 

explain the concepts involved in the application of cepstral analysis to 

phonocardiogram signals. The synthetic signals are used to explain the theoretical 

concepts of the technique, whilst the real PCGs are used to ilustrate the details of 

the implementation. The validity of these synthetic signals to represent real data 

may be questionable, but using simulated data it is possible to show the concepts 

and the details that may not be so easy to visualize using only real signals.' 

Synthetic PCG 

Simulation of the first heart sound 

The synthesis of the first heart sound is based on a model proposed by Chen 

(1997) in which SI is composed of two types of vibration: a valvular component 

and a muscular component from the myocardium. The valvular component is 

produced by resonance of the valve leaflets at constant frequencies, whereas the 

Only real PCG signals were used to develop the algorithms in the thesis. 
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myocardial response generates a rising frequency component with instantaneous 

frequency proportional to the tension of the cardiohemic system (Chen, 1997b). 

The sounds produced by the valves are composed of transient signals of short 

duration and decaying amplitude, and therefore are modelled by a set of 

exponentially decaying sinusoids. 

1=1 

Where A is the amplitude, k is the damping factor, f is the frequency and ^ is the 

phase of the i-th sinusoid. 

Li this model, the heart sound signal is the response of a frequency selective 

acoustic system which consists of the structures in the chest, the heart, and the 

major vessels to the impulse excitation of the rapidly decelerating flow on the 

valve leaflets. This model is adopted for the simulation of SI since it agrees with 

the theory for the genesis of the heart sounds used in this research. 

A modulated frequency component associated with the myocardial tension 

generated during left ventricular contraction constitutes the second type of 

vibration. This is represented by a deterministic signal with frequency and 

amplitude modulation. The frequency is increased during contraction and then 

remains constant as the force plateau is reached. The amplitude increases rapidly, 

stays constant for an interval, and then fades to zero. 

The myocardial component is thus represented by 

= 4 . W s m ( 2 n ( / , + 

Where Am is the amphtude modulating wave, fo is the carrier frequency, frn is the 

frequency modulating wave, and <j) is the phase. 
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The first heart sound is thus represented by 

0 < f < L 

Where to is the delay between the onset of the two components, since the mitral 

valve closes after the myocardium contracts. 

Oai 002 0̂ 4 oas oae oa? P46 
Time [s] 

Figure B.l. Synthetic SI. 

Figure B.l show the synthetic signal representing the first heart sound. The signal 

has two valvular components (N=2) with frequencies of 50 and 150 Hz, 

amplitudes of 1 and 0.5, a damping factor of 60, and a delay of 10 ms (Chen, 

1997X 

The myocardial component has an amplitude modulation 

4 . =0.275(1.1-0.9 cos(83.4M)) 

/L =()55 

=0.275(1-cos(3W)) 

0<t < 12ms 

\2ms <t< 30ms 

30ms <t < 60ms 
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A„ =0 t >60ms 

The frequency modulating wave is 

/m(0 = -40cos(3W),y^ = 6()Hz,<l)^{t) = 0 Q<t < hOms 

f„(t) = 0 ,/o = lOOHz,^„(t) = 30ms < t < 60ms 

The study conducted by Chen (1997) shows that this simulated SI signal has 

temporal and spectral characteristics similar to SI recorded in humans. 

Simulation of a systolic murmur 

The synthesis of the systolic murmur is base on the work of Debiais (1997a). 

Using a database of 153 patients, the spectrogram of the PCG signals was 

computed using a 25 ms Manning window to find the basic amplitude and 

frequency characteristics of several murmurs. Murmurs were then modelled by 

random signals modulated in frequency and amplitude to simulate the random 

vibrations of blood due to turbulence. 

To simulate the crescendo-decresendo shape typical of aortic stenosis murmur, 

random noise is windowed in time by a Hamming window of 300 ms. The 

frequency pattern is obtained weighting the frequency response using a Hamming 

window centred in the origin in order to obtain the patterns described by Debiais 

(1997). 

Figure B.2 shows the synthetic aortic stenosis murmur obtained by this procedure. 

Note the 'diamond shape' mid systolic murmur. 
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AOS Murmur 

0.15 
Time IS] 

Figure B.2. Synthetic Aortic Stenosis Murmur. 

Simulation of the second heart sound 

Following the research of Leung (1998b) the two components of the second heart 

sound A2 and P2 are modelled using sinusoids and a Gaussian modulation 

function: 

A(0 = ^ cos(2;^f - (!),) 

Where h is the second heart sound, N is the number of components, A, is the 

amplitude, o, is the width factor, tj is the time delay, fj is the frequency, and ^ is 

the phase of the i-th sinusoid. 

Figure B.3 shows the S2 generated using this mode. The components A2 and P2 

are separated by 30 ms, the second component is half the amplitude of the first 

one, and the sinusoid frequencies are 170 and 100 Hz respectively. 
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0.01 0.02 0.03 0.04 
Time [s] 

Figure B.3. Synthetic S2. 

This model has been used to investigate the split in S2 for diagnosis of paediatric 

heart disease (Leung, 1998b). 

Figure B.4. shows the synthetic PCG obtained adding all these components. 

Synthetic PGG 

Time IS] 

Figure B.4. Synthetic PCG. 
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Real signals 

Real PCG signals form the database described in chapter 6 and 7 will be used to 

demonstrate the technique. 

Cepstrum analysis 

This section describes the steps involved in obtaining the cepstral representations 

used in the thesis. Synthetic signals and real signals are used to explain the 

concepts and to obtain critical parameters. In order to ease the interpretation, the 

analysis is described using one frame analysis first, and then the concepts are 

extended to short-time multiple window analysis. 

One frame analysis 

The PCG signal is a non-stationary signal and therefore, to obtain the cepstral 

representations presented in Chapter 5, short time analysis is required. This 

involves segmenting the signal into overlapped windows in which the signal is 

assumed to be stationary, and consequently the techniques developed for 

stationary signals can be used. 

The next section shows the output at the various stages of the process of obtaining 

the power cepstral coefficients over a single time window. Once the basic 

concepts are explained, a posterior section will show the multiple window 

analysis. 

Following the steps described in section 5.2.1 the PCG signal is first divided in 

frames of 20 ms and a Hamming window is applied. 

The choice of window length will be justified later using real signals, but for now 

assume a 20 ms frame analysis as optimal. Figure B.5a shows the first 20 ms of 
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the synthetic PCG signal shown in figure B.4 whilst B.5.b shows the same signal 

but a Hamming window has been applied. 

a) Synthetic P C G 

^ 0 .002 0XX)4 0 .006 0.008 0.01 0.012 0.014 0 ^ 1 6 C.018 0.02 

Time [sj 
b) Windowed Synthetic P C G 

0.06 

•o 0.04 

0.002 0:004 0.00& 0.008 0.01 0 .012 0.014 0 .016 0 .018 0.02 

Time [s] 

Figure B.5. 20 ms of the Synthetic PCG. 

a) Raw Signal, b) Hamming Windowed Signal. 

Figure B,6 show the spectrum of the signal shown in figure B.5.b, and the log 

spectrum computed using a discrete Fourier transform. 

f f t o f S I 

0 2^ 1M0 two fMO 1W0 1MO 2MO 
Frequency [Hz: 

b) log m o f 8 1 

200 400 WO ^ 1#M 1#w 1^g 1M0 1MW 2MO 
Frequency [Hz] 

Figure B.6. Spectrum, 

a) FFT, b) Log FFT. 
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An inverse Fourier transform applied to the signal obtained in B.5.b will provide 

the ceptrum shown in figure B.7. 

Coef f ic ien t s 

Figure B.7. Cepstral Obtained for the First 20 ms Window of the Synthetic 

PCG. 

Figure B.7 shows the cepstral coefficients computed for the first window of 20 ms 

of the synthetic PCG signal. 

Liftering 

It is possible to go back one step in the process in order to understand how the 

cepstral coefficients are related to the spectrum. 

Filtering the cepstrum (a process referred as liftering) can be applied to remove 

certain components and show the relative influence of the remaining coefficients. 

A simple filter is one which simply truncates the cepstral sequence by giving a 

weight of one to the low coefficients up to a certain index, and a weight of zero to 

the high order coefficients. 

Figures B.8 and B.9. show the log spectrum computed firom the low order 

coefficients. 
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log fft of SI 20 ms 

coefficient zero 

Log spectrum computed from the coefficients 

coefficient one coefficient two 

coefficient four coefficient five coefficient ttiree 

0 1000 2000 0 1000 2000 0 1000 2000 
Frequency {Hz] Frequency [Hz] Frequency [Hz] 

Figure B.8. Log Spectrum Computed From the Cepstral Coefficients. 

The top left plot in figures B.8 and B.9 show the log spectrum obtained fi-om the 

time signal. The next plots show the log spectrum obtained applying an inverse 

Fourier transform to the low order liftered cepstral coefficients. 

Since the log magnitude spectrum is symmetrical, the FFT can be simplified to a 

discrete cosine transform. For a spectral representation with N channels with log 

magnitudes Ai to An, the cepstral coefficients can be computed as follows: 

N 
for 0< j <N 

Figure B.8 shows that the low order cepstral coefficients provide a simplified log 

spectrum representation, i.e. a smoothed log spectrum. As the number of 
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coefficients included in the computation is increased more detail is added to the 

log spectrum shape. When j=0, the Equation simplifies so cepstral coefficient zero 

Co is a constant value equal to the mean of the log spectral signal computed from 

the time signal, and provides an indication of overall amplitude level for the 

frame. 

Figure B.8 shows that five coefficients seem to provide a good representation of 

the overall shape of the log spectrum, specially comparing to figure B.9 that 

shows that doubling the number of coefficients does not provide much more 

detail. Note as a signal representation, the smoothing action on the spectrum also 

provides a degree of noise and artefacts immunity as shown in section 6.4.7. 

Depending on the application, a smoothed spectrum obtained from a few low 

order cepstral coefficients may be enough to represent the signal whilst in other 

applications a more detailed spectrum may be required. 

In this thesis, initially, five cepstral coefficients were considered sufficient to 

represent the PCG for classification purposes, since the time evolution of these 

coefficients seems to provide enough detail to differentiate the pathological 

conditions (see figure 5.3 for example). From figure B.9 it can be see that the 

inclusion of more coefficients provides a more detailed representation, but the 

small database limited the numbers of features since a balance between sample 

size and feature representation has to be kept. 

Multiple Frame Analysis 

The procedure to obtain the power cepstral coefficients described before is applied 

to each window for the whole length of the PCG signals. A single value is 

obtained for each cepstral coefficient, per window. 

The cepstral representations used in the thesis are therefore the time evolution of 

each of the cepstral coefficients (over all the windows). 
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Figure B.9. Log Spectrum Computed From the Cepstral Coefficients. 

Figure B.IO shows the time evolution of the cepstral coefficients (normalized) 

computed for the synthetic phonocardiogram. This representation is similar to 

figures 5.2, 5.3 or 6.2 for instance. 

Window size considerations 

Considering that the cepstrum is obtained from the spectrum, the literature related 

to the optimum window size for PCG analysis using this time-firequency 

representation was used as a guideline to select the window size for the cepstrurm. 

Because of the non-stationarity of the PCG signal it is important to maintain an 

analysing time window as short as possible to guarantie the stationarity hypothesis 

over the analysed segments. On the other hand, a short time window will reduce 

the frequency resolution of the resulting spectrogram. 
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Figure B. 10. Cepstral Representations of a Synthetic PCG. 

The optimal duration of the time-window used to compute the time-frequency 

representation (spectrogram) of the phonocardiogram was studied by Jamous 

(1992) in four dogs by using intracardiac and thoracic measurements of the PCG. 

The power and cross-spectrograms of the intracardiac and thoracic PCGs were 

computed using a fast Fourier transform algorithm and a sine-cosine window with 

10 per cent decaying time weighting functions. A coherence spectrogram was 

also computed for each dog to study the linear relationship between the two 

signals and determine the optimal time-window duration. Results show that the 

optimal range of the time-window duration is between 16 and 32 ms. A time-

window shorter than 16 ms spreads out low-frequency components into the higher 

frequencies and generates a spectrographic representation with poor frequency 

resolution. A window larger than 32 ms increases the frequency resolution but 

smears the spectrographic representation of the signal in the time domain and thus 

cannot correctly reflect the time-varying properties of the signal. 

Using synthetic murmurs, Debias (1997b) adjust the basic parameters of 

spectrograms, Choi-Williams, and Bessel distributions to provide the best time-

frequency representations. The adjustment of the parameters is performed by 
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computing and minimising the relative averaged absolute error between the 

frequency contours at -3 dB and -10 dB of each time frequency representation of 

the simulated murmurs and those of the theoretical distributions found in their 

previous study (Debias, 1997a). They propose a 30 ms Hamming window as an 

acceptable compromise for the spectrogram to detect their simulated heart 

murmurs. 

Different authors propose different window lengths for the computation of the 

spectrogram of PCGs (Djebari, 2000; Debias, 1979, Jamous, 1992) depending on 

which resolution is more important for their particular research. 

Although this thesis focuses on the analysis of murmurs rather than the analysis of 

the second heart sound for diagnosis, the importance that the split of S2 has for 

the diagnosis of atrial septal defect through auscultation suggested that the PCG 

representations should consider the time occurrence of the A2 and P2 components 

ofS2. 

Under normal conditions, during expiration P2 appears from 10 to 30 ms after A2 

(Guadalajara, 1998; Leung 1998b) and from 30 to 40 ms during inspiration. A 

time window of 20 ms, in the middle of this range, and within Jamous (1997) 

proposed range, was selected. Note that since windows are overlapped by 50 % 

this means that the analysis is actually performed every 10 ms. 

Figure B. l l shows a PCG presents a ventricular septal defect form a 8 day old 

baby, recorded between the lower left external edge and the apex (HR =126 bpm, 

Fs = 4kHz). Figure B.12 and B.13 show the surface plot of the spectrogram of S2 

computed using a 20 ms window as proposed and a 32 ms time window. 

In the spectrogram computed using a 20 ms window (Figure B.12) the two 

components of S2 namely A2 and P2 are clearly separated, whilst in the 

spectrogram of Figure B.13 computed using the 32 ms upper range value 

proposed by Jamous (1997) both components are smeared by the low time 

resolution. 
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Real PCG 

02 
Time [s] 

Figure B. 11. Real PCG signal. Ventricular Septal Defect Murmur, HR = 126 bpm, Fs= 4 

kHz, redorded at LLSE-Apex. 

The 20 ms window size was used to run the algorithms of Chapter 6 and 7 for our 

database. The results obtained were compared to similar results obtained changing 

the window size around this value and within the range proposed by Jamous. 

Window size = 20ms. HR = 126 bpm 

Frequency bands 

6 8 10 
Time Windds 

Figure B.12. Spectrogram of S2 Computed Using a 20 ms Window. 
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Since this value is just one of the many choices that have to be made in the 

implementation of the algorithm, this window size was kept because it provided 

good results. 

Window size = 32 ms, HR = 126 bpm 

40 

Frequency bands 

5 6 7 
Time Windos 

Figure B.13. Spectrogram of S2 Computed Using a 32 ms Window. 

Normal HS 

Time, [s] 

Figure B. 14. Real PCG signal. Normal condition, HR = 60 bpm, Fs= 4 kHz, Recorded at 

Pulmonary Area. 
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Figure B.14 show a normal PCG recorded in the pulmonary area at a sampling 

frequency of 4 kHz. 

cepstrum 

Figure B.15. Cepstral Obtained the First 20 ms Window of the Real PCG. 
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Figure B.16. Log Spectrum Computed From the Cepstral Coefficients. 

Real PCG. 
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Figures B.15 and B.16 show the cepstram of the first 20 ms window, and the 

spectrum obtained from the first five coefficients. These figures are equivalent to 

the one frame analysis described before for synthetic signals. 

Real Heart Sound 
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Figure B.17. Cepstral Representation of the Real PCG. 

System response and excitation model 

For the segmentation and classification of heart sounds a simplified representation 

of the PCG was required as input to the Hidden Markovian Models. 

Consequently, power cepstrum, that discards the phase information, was proposed 

over complex cepstrum since inversion to the excitation and system response time 

signals was not required and the phase complications of complex cepstrum made 

it unsuitable as a simplified representation (Rangayyan, 2002). 

It is important to note that all that is required for the classifier is a signal 

representation that follows the changes in the PCG. There are clearly many 

possible signal feature that could be used, but in the current work cepstral 

coefficients are investigated 

1 9 4 



Representations derived from cepstral coefficients were proposed since the 

concept of cepstral analysis corresponds to the most accepted theory about the 

genesis of heart sounds. Separation of excitation from the system response is a 

theoretical capability of this technique (see assumptions discussed below), but the 

technique may also be usefiil when these assumptions are not justified. 

Nevertheless, the following discussion explores the considerations that may lead 

to the separation of system response and excitation in the cepstral domain. 

Assumptions 

The model presented makes the following assumptions: 

1) The heart sound signal is assumed to be the convolution of a slowly time 

varying system response with a relatively fast varying excitation. Under these 

conditions the contribution of the system response to the cepstram will be limited 

to the low order coefficients. 

Oppenheim (1975) demonstrated this separation for speech signals assuming a 

slowly time varying vocal tract response with a relatively fast varying glottal 

pulse train. Following the same assumption of a slowly time varying system 

response Rangayyan (1978b) proposed to use this technique for PCG signals and 

extracts the system response sequence of the PCG using the low order coefficients 

(1978a). More recently Phua (2006) proposes the use of PCG cepstral 

representations for biometrics, the high order coefficients are also considered to 

be contributions from the fast time varying excitation. 

2) Slowly time varying system response 

The characteristics of vibrations can be described in terms of a mass supported by 

a spring, hi an elastic chamber completely filled with fluid, the elasticity of the 

wall is analogous to the spring, and the fluid plus the supporting walls are 
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analogous to the supporting mass. The frequency at which a system vibrates 

depends upon the mass in motion in relation to its elasticity. 

In the cardiohemic model the heart walls, blood, and valves vibrate as a whole. 

The character of the vibration is influenced by the nature of the specific 

cardiohemic system which is vibrating (Rushmer, 1970). 

hi the heart, the combined mass of the body and the walls of the chambers is very 

large in relation to the elasticity of the walls, so it tends to vibrate at low 

frequencies (Rushmer, 1970). When the ventricles are contracting, the elasticity of 

the heart walls should be greater and the vibration frequency is therefore 

increased. 

The soft tissues of the body tend to damp the vibrations, and consequently heart 

sounds excited by sudden acceleration and deceleration of blood flow consist of 

relatively few vibrations. Nevertheless, when a turbulence flow is present the 

induced vibration persists as long as energy is supplied to the vibrating system 

(Rushmer, 1970). 

Due to its inertial mass and elasticity the structure system response changes 

slowly to a fast varying flow excitation. 

3) Fast varying excitation 

The excitation in the cardiohemic model is related to sudden accelerations and 

decelerations of blood flow, conceptualized as short time fast varying impulses 

(compared to the slower time varying system response), or due to blood flow 

turbulence. In both cases the excitation is varying relatively fast compared to the 

system response. 

The contribution to the spectrum from the excitation impulses can be considered 

flat for an ideal impulse since it is a spectrally rich signal containing all 

frequencies in equal amounts (Vasegi, 2000). For short impulsive forces their 
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spectrum falls to a low level at a frequency equal to the inverse of the pulse length 

(Fahy, 1998). Assuming the sudden accelerations and decelerations of blood flow 

to be impulses that last less than a millisecond, the amplitude spectra would 

spread up to a thousand Hertz. The frequencies of the normal heart sounds 

probably extend from below 20 Hertz to above 200 Hertz (Rushmer, 1970) and 

therefore the assumption of a flat spectrum over that range can be valid. 

At a highly increased blood flow velocity red cells move at different velocities 

and directions creating blood flow turbulence (Guadlajara, 1998), this is reflected 

in a random excitation. A model based on a white noise random excitation force 

for turbulence (Debias, 1997) is assumed for the generation murmur generation. 

It is important to note that the assumption of excitations with a flat spectrum is not 

required for the cepstrum to separate them from system response. Only a fast 

varying characteristic compared to a slow varying response of the system is 

required. Excitation signals that depart from this short time impulse and white 

random noise excitation assumptions (and therefore from a flat response) will 

have contributions on the low order ceppstrum coefficients, although the main 

contributions are still considered to be mainly due to the slow varying system 

response. 

The mechanisms that lead to the genesis of the heart sounds are so complex that 

the basic nature and the contribution of each of its components is still unknown 

(Xu, 2000). Since it is not known what exactly generates heart sounds is not 

possible to demonstrate the validity of this model. 

Representations in the frequency domain 

Assuming the model presented in the previous section for the system and the 

excitation, in the frequency domain they will have the following characteristics. 
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1) System frequency response. The frequency response of this system is 

defined by its mass and elasticity, and can be represented as a cascade of 

damped resonators. The response below natural frequencies of the damped 

resonators is controlled by the static stiffness, and above these frequencies 

is dominated by the mass (Fahy, 1998). Due to its inertial mass and 

elasticity the structure system response does not changes abruptly, and 

therefore, the system response within the analysing window is smooth. 

2) Excitation spectrum. The excitation spectrum is a rapidly changing flat 

spectra produced by white noise or short impulses 

Consequently, if the system is set into vibration by an impulse or a random white 

noise wide band excitation, the envelope shape of the convolved signal in the 

frequency domain would be mainly defined by the resonances in the system's 

response since the excitation signals have a flat spectrum. The total response is 

therefore a wobbly version (due to the rapidly varying excitation spectral 

contributions) of the system's response spectrum. 

Illustrating the Cepstrum domain and frequency domain relationship 

The aim of the simulations was to show that the low order cepstral coefficients 

represent a smoothed spectrum, i.e. the over-all shape of the frequency response. 

As the high order cepstral coefficients are included, the corresponding spectrum 

includes finer detail. 

Low order cepstral coefficients can be therefore related to the envelope shape of 

the spectrum and consequently related to the systems response whilst high order 

cepstral coefficients representing finer detail on the spectra can be related to the 

comparatively very short impulses generated by abrupt acceleration and 

deceleration of blood, or turbulence. 
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In order to show how the system response shapes the spectrum of the excitation, 

the synthetic signals proposed by Chen (1997) and Debias (1997) to simulate the 

system response related to the closure of the tricuspid valve and the model for the 

excitation due to turbulence, can be used. 

Figure B.18 shows the tricuspid component of SI as proposed by Chen (1997) and 

its log spectrum. Figure B.19 shows the excitation signal model for the turbulence 

as described by Debias (1997) and its log spectrum. 

Figures B.20 shows the time signal result of convolving these system response 

and excitation signals and the log spectrum of the resulting signal. As shown in 

the figure the resulting log spectrum is mainly defined by the system response 

with random variations imposed by the excitation. 

Tricuspid component of 81 
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Figure B.18. Tricuspid Component of SI and its Spectrum. 
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Turbulence-Excitation 
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Figure B.19. Turbulence-Excitation and its Spectrum. 
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Figure B.20. System Response and Excitation Convolved and its Log 
Spectrum. 
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Cepstrum 
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Figure B.21. Cepstrum of the Resulting Signal. 
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Figure B.22. Log Spectrum of the System Response, Convolved Signal and the 
log Spectrum Computed From the Low Order Cepstral Coefficients. 
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Figure B.21 shows the cepstrum of the signal result of the convolution of the 

system response and the excitation. Figure B.22 shows for comparison the log 

spectrum of the system response, the convolved signal and the log spectrum 

computed from the low order ceptral coefficients. The spectrum obtained using 

the first twenty cepstral coefficients clearly reflect the shape of the frequency 

response. 
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