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Abstract—The maturing massive multiple-input multiple-
output (MIMO) literature has provided asymptotic limits for
the rate and energy efficiency (EE) of maximal ratio combining
/maximal ratio transmission (MRC-MRT) relaying on two-way
relays (TWR) using the amplify-and-forward (AF) principle.
Most of these studies consider time division duplexing, and a fixed
number of users. To fill the gap in the literature, we analyze the
MRC-MRT precoder performance of a N -antenna AF massive
MIMO TWR, which operates in frequency division duplex mode
to enable two-way communication between 2M = ⌊Nα⌋ single-
antenna users, with α ∈ [0, 1), divided equally in two groups of
M users. We assume that the relay has realistic imperfect uplink
channel state information (CSI), and that quantized downlink
CSI is fed back by the users relying on B ≥ 1 bits per-
user per relay antenna. We prove that for such a system with
α ∈ [0, 1), the MRC-MRT precoder asymptotically cancels the
multi-user interference (MUI) when the supremum and infimum
of large scale fading parameters is strictly non-zero and finite,
respectively. Furthermore, its per-user pairwise error probability
(PEP) converges to that of an equivalent AWGN channel as both
N and the number of users 2M = ⌊Nα⌋ tend to infinity, with

a relay power scaling of Pr = 2MEr

N
and Er being a constant.

We also derive upper bounds for both the per-user rate and EE.
We analytically show that the quantized MRC-MRT precoder
requires as few as B = 2 bits to yield a BER, EE, and per-user
rate close to the respective unquantized counterparts. Finally, we
show that the analysis developed herein to derive a bound on α
for MUI cancellation is applicable both to Gaussian as well as
to any arbitrary non-Gaussian complex channels.

Index Terms—Asymptotic analysis, limited feedback, multi-
user systems, pairwise error probability.

I. INTRODUCTION

RELAY-based co-operative communication provides re-

liable links for users who do not have a direct link

to communicate among themselves [1], [2]. Conventional

relaying, commonly known as one-way relaying [1], achieves

this objective but requires four distinct time/frequency channel

uses for bi-directional communication between two users. By

contrast, two-way relaying (TWR) only requires two channel

uses for bidirectional communication [3], [4], hence improves

the system’s spectral efficiency compared to one-way relaying.

In the first channel use of TWR, also known as the multiple

access (MAC) phase, the two users who want to exchange

data, transmit their respective signals to the relay, which

receives a sum of these two signals. In the second channel
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use of TWR, also known as broadcast (BC) phase, the relay

amplifies and forwards the sum-signal back to both the users.

Since both users know their own data, they can cancel their

own contribution from the received sum signal to recover the

desired data. Bi-directional communication between two users

is thus completed in just two channel uses.

The TWR concept has also been extended to multi-user

scenarios, where multiple users simultaneously communicate

via a relay. The users now experience multi-user interference

(MUI) along with self interference (SI) [5]–[9]. Various de-

signs have been conceived for canceling the MUI by using a

multiple-input multiple output (MIMO) relay and for optimiz-

ing diverse metrics, such as the sum-rate, and the rate of the

user having the weakest signal-to-interference-plus-noise ratio

(SINR) [5]–[9]. The authors of [5], [6] constructed precoders

for the relay based on the zero-forcing and the linear minimum

mean squared error criteria respectively, for canceling both the

SI and the MUI experienced by the users. Gunduz et al. [7]

characterized the sum-rate of the multi-user Gaussian TWR

while Fang et al. [8] designed a relay precoder for maximizing

the SINR of the weakest user. Yuan [9] considered a clustered

data exchange model and constructed beamforming matrices

both for the relay and for the users with the aid of signal

alignment. Yuan also determined the degrees of freedom for

the system model considered in [9].

A massive MIMO transmitter equipped with a large number

of antennas is also capable of mitigating the MUI by using

low-complexity precoding techniques at the transmitter such

as maximum ratio transmission (MRT) [10], [11]. A massive

MIMO system is potentially capable of improving the sum-

rate and the energy-efficiency (EE) of wireless systems [10],

[11]. Recently, massive MIMO technology has also been in-

corporated in TWR by employing a large number of antennas

at the relay [12]–[18]. Cui et al. [12] constructed a precoder

for the relay based on MRT and maximal ratio combining

(MRC). Dai and Dong [13] studied the impact of imperfect

channel estimation on the sum rate of massive MIMO multi-

user TWR systems. Both [12] and [13] analyze the sum-

rate and EE by fixing the number of users while increasing

the number of relay antennas. Liu et al. [14] constructed a

reduced-feedback-based hybrid precoder for TWR systems,

and showed that if the number of relay antennas and RF

chains satisfy a given constraint, the transmit power of both

the users and relays can be scaled down upon increasing

the number of relay antennas without affecting the sum-

rate. Kong et al. [15] derived closed-form expressions for

the spectral efficiency of massive MIMO TWR networks,

which can also be used for studying power-scaling laws.
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Jin et al. [16] showed that the ergodic user rates increase upon

increasing the number of relay antennas, but decrease with the

number of users. Naghsh et al. [17] maximized the sum-rate of

MIMO-aided TWR amplify-and-forward (AF) networks using

a novel minorization-maximization based iterative algorithm.

Reference [18] recently optimized the energy efficiency of a

two-way AF massive MIMO relay.

All the aforementioned massive MIMO TWR contributions

assume time division duplexing (TDD), where the uplink

channel of the MAC phase and the downlink channel of the BC

phase are assumed to be reciprocal. Based on reciprocity, the

relay of a TDD system can readily infer the downlink channel

state information (CSI) from the uplink CSI. For frequency

division duplex (FDD) systems, where the uplink (UL) and

downlink (DL) channels are non-reciprocal, the users feed

back the quantized DL CSI to the relay.

The existing massive MIMO TWR literature has not yet

analyzed the impact of quantized feedback in FDD systems

on the asymptotic performance of different precoder design

metrics such as the MUI-cancellation capability, pairwise error

probability (PEP), EE, and per-user rate. Furthermore, it is also

crucial to analyze these metrics upon scaling the number of

users with the number of relay antennas noting that [12], [13]

fixed them. Against this backdrop, the main contributions of

this paper are as follows:

1) We consider a massive MIMO FDD multi-user TWR system

having N relay antennas and 2M single-antenna users divided

into two groups of M users. The performance of the relay’s

MRC-MRT precoder is analyzed for the scenario, when it is

designed using the UL CSI estimated by the relay, and DL

CSI, estimated, quantized and fed back by the users.

2) We analytically show that when each of the 2M users

feeds back B ≥ 1 bits per relay antenna, with the total

number of users scaling as 2M = ⌊Nα⌋ with α ∈ [0, 1),
the MRC-MRT precoder asymptotically cancels the MUI,

provided that the power of the relay scales as Pr = 2MEr

N ,

where Er is a constant. We derive the symbol-PEP, and almost-

sure upper-bounds on the per-user rate and the system’s EE.

We show that the symbol-PEP of the quantized MRC-MRT

precoder converges almost surely to the PEP of an AWGN

channel. The current analysis is important because we i)

consider a FDD relay and design the MRC-MRT precoder

for using quantized channel feedback; ii) scale the number

of users, sub-linearly, with N ; and iii) show that the MRC-

MRT precoder designed using these constraints still achieves

AWGN-like bit error rate (BER) for N → ∞. In [12], [13]

the authors designed precoders for a TDD relay (consequently

assumed the availability of unquantized CSI) and analyzed the

performance by fixing the number of users as N → ∞. The

analysis of per-user rate and of the EE of the quantized MRC-

MRT precoder, where the number of users scale sub-linearly

with N , is completely different from that in [12], [13]. We

rely on the moment expansion methods of Tao [19] and on

the limit theorems of [20] for our analysis.

3) We analytically show that the quantized MRC-MRT pre-

coder requires B = 2 bits to approach the BER, the per-user

rate and the EE of its unquantized counterparts in [12], [13].

4) The authors of [12], [13] analyze the asymptotic EE by

assuming that all users have identical large scale fading param-

eters. We, in contrast, calculate the almost sure upper bounds

on the per-user rate and on the EE by assuming different large

scale fading parameters for all users, which makes analysis

more realistic. We show that for ensuring uniform convergence

of the EE upper bound derived, the supremum and infimum of

large scale fading parameters should be finite and non-zero.

5) Although we compute the precoder’s performance

asymptotes for the Gaussian channels, we show that the analy-

sis is also applicable for the zero-mean, complex non-Gaussian

distribution with certain constraints on the probability density

function (pdf) of the channel phases. This is unlike the work

in [12], [13] which is valid only for Gaussian channels and

that too for unquantized MRC-MRT precoder design.

The importance of this work is that the considered system

model can be readily applied to control and telemetry appli-

cations like unmanned aerial vehicles (UAV’s) [21], robotic

cars [22], high-speed trains [23] which demand a very low

BER, but not a very high data rate. These applications are

typically scheduled on a time/frequency resource different

from the remaining non-control applications. Further, these

applications form a small fraction of the total users in the

system. Scheduling such small number of applications in

a massive MIMO system implies low user-antenna ratio, a

scenario considered in this work.

With 2M = Nα constraint, we investigate 1) how should

the relay antennas N scale as the number of nodes i.e., UAV’s,

robotic cars or high-speed trains, increase, such that each node

asymptotically achieves the reliable AWGN BER. 2) For a

given α ∈ [0, 1), the maximum 2M number of nodes that can

experience reliable AWGN BER for a given large N .

The rest of the paper is organized as follows. The system

model is presented in Section II. The quantized MRC-MRT

precoder design is introduced in Section III. For this precoder,

we analytically characterize the asymptotic symbol PEP, per-

user rate and the EE in Section IV. We then numerically

evaluate these metrics in Section V.

Notation: We use boldface lower- and upper-case letters to

denote vectors and matrices, respectively. The symbols | · |,
(·)∗ and ⌊·⌋ denote the magnitude, complex conjugate of a

complex number, and the floor of a real number, respec-

tively. The symbol
a.s.→ denotes the convergence of a random

variable in the almost sure sense. A circularly-symmetric

complex Gaussian random variable with a variance N0 is

denoted as CN (0, N0). The notation [A]kl represents the

(k, l)th entry of the matrix A. For an N × N matrix A,

Tr(A) =
N∑
i=1

[A]ii. The symbol E[·] represents the expectation

operator. The notation f(x) = O[g(x)], means that there exist

constants k1 and k2 such that k1g(x) ≤ f(x) ≤ k2g(x).
Further, blk-diag{P1, · · · ,PM} means the block diagonal

matrix




P1 0 · · · 0

0 P2 · · · 0
...

...
...

...
0 · · · 0 PM


 where 0 is the all zero matrix

of appropriate dimensions. Next, the notation D1/2 implies a

square matrix B such that B2 = D.
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II. SYSTEM MODEL

We consider an AF single-cell massive MIMO TWR net-

work as in [12], [13], where M single-antenna user pairs

communicate with each other via a relay equipped with N
antennas; the total number of users is given by 2M = ⌊Nα⌋.

Without loss of generality, we assume that the (2k − 1)st

and (2k)th user communicate with each other via the relay.

This is accomplished in two phases, each requiring a single

channel use. In the MAC phase, each of the 2M single-

antenna users simultaneously transmits its respective data to

the relay, which receives a signal vector yr ∈ C
N×1 given

as yr =
∑2M

i=1 σihixi + nr = HD
1
2x + nr. Similar to [12],

[13], the vector hi ∈ C
N×1 denotes the UL channel spanning

from the ith user to the relay whose entries are assumed to

be independent and identically distributed (iid) with a pdf

CN (0, 1). The scalar σi, similar to [12], [13], denotes the

large scale fading coefficient of the ith user. The scalar xi

is the symbol transmitted by user i. The augmented matrix

H = [h1 h2, · · · ,h2M−1 h2M ] ∈ C
N×2M and the vector

x = [x1 x2, · · · , x2M−1 x2M ]T contain the uplink channels

and independent transmit symbols of all users, respectively.

The matrix D is a 2M×2M diagonal matrix with [D]ii = σ2
i .

The vector nr ∈ C
N×1 denotes the relay receiver’s noise with

iid entries and pdf CN (0, N0).
In the BC phase, the relay multiplies its received MAC-

phase signal yr by a precoder F as xr = cFyr, and then

forwards this signal to the 2M users in the DL. The scalar c
ensures that the average relay transmit power constraint Pr is

met i.e.,

c =

√
Pr

E[‖Fyr‖2]
. (1)

The signal received by the i′th user is

yi′ = σi′gi′xr + ni′ = σi′gi′Fyr + ni′ , (2)

where gi′ ∈ C
N denotes the row vector DL channel span-

ning from the relay to the i′th user, whose entries are

iid CN (0, 1). We note that i′ = 2k and i = 2k − 1
form a communicating pair. The augmented matrix G =
[gT

1 gT
2 , · · · ,gT

2M−1 gT
2M ]T ∈ C

2M×N contains the downlink

channels of all the users. The scalar ni′ denotes the noise at

the i′th user and has a pdf of CN (0, N0).
Remark 1: We assume that the relay estimates the uplink

channel H as Ĥ = HD
1
2 + Eu. Here Eu is the estimation

error matrix, whose entries are iid with pdf of CN (0, η2u), and

are independent of the entries of H [24], [25]. Let ĥi denote

the ith column of Ĥ. Since we consider a FDD relay, the UL

and DL channels are non-reciprocal. The DL channel G is

available to the relay in its quantized form, fed back to it by

the users.

We also assume that the i′th user estimates the DL channel

vector σi′gi′ . Based on its estimate of the channel gain vector

σi′gi′ , the i′th user computes B bits per relay transmit antenna

and feeds them back to the relay through an error-free low-

rate feedback channel. The relay then constructs the precoder

F based on the knowledge of Ĥ and the quantized knowledge

of Ĝ = D
1
2G + Ed. The matrix Ed is the estimation error

matrix with iid entries that are independent of the entries of

G and have pdf of CN (0, η2d) [13]. We also use ĝi′ to denote

the i′th row of the estimated DL channel matrix Ĝ.

We now precisely state how the uplink channel is estimated at

the relay, and the downlink channel is estimated and fed back

to the relay.

Uplink channel estimation at the relay: We consider a block-

fading channel with coherence time of Tc samples. Each user

sends a T -sample long (2M ≤ T ≪ Tc) complex orthogonal

pilot row vector sequence sn ∈ C
T with power Pl such that

sns
H
n = Pl and sns

H
n′ = 0 for n 6= n′ [11]. The received

signal Y ∈ C
N×T over T samples is then given as

Y = σnhnsn +

2M∑

k 6=n

σkhksk +N,

where N ∈ C
N×T is the relay noise with iid entries and pdf

CN (0, N0). The least squares estimate [24], [25] of hn is then

given as

ĥn =
YsHn
Pl

= σnhn +
NsHn
Pl

. (3)

Equation (3) shows that the error column vector eun =
NsHn
Pl

∈
C

N is independent of hn, and its entries are iid with pdf

CN (0, N0

Pl
). This implies that in the estimated uplink channel

matrix Ĥ =
[
ĥ1 · · · ĥ2M

]
= HD

1
2 +Eu, the error matrix

Eu has entries independent of the uplink channel matrix H =[
h1 · · · h2M

]
, where Eu =

[
eu1 · · · eu2M

]
and D is

a 2M × 2M diagonal matrix with [D]ii = σ2
i .

Downlink channel estimation at the users and its quan-

tization: For the downlink channel of coherence time Tc

samples, the relay sends a complex orthogonal pilot sequence

S ∈ C
N×T , 2M ≤ T ≪ Tc, with power Pl such that

SSH = PlI ∈ C
N×N [11]. The received symbol row vector

yn ∈ C
T at user n is

yn = σngnS+ nn

where nn ∈ C
T is the thermal noise row vector at user n with

entries distributed iid CN (0, N0). The least squares estimate

[24], [25] of gn is then given as

ĝn =
ynS

H

Pl
= σngn +

nnS
H

Pl
. (4)

Equation (4) shows that error row vector edn = nnS
H

Pl
∈ C

N is

independent of gn, and its entries are iid with pdf CN (0, N0

Pl
).

This implies that in the estimated downlink channel matrix

Ĝ =
[
ĝT
1 · · · ĝT

2M

]T
= D

1
2G + Ed, the error matrix Ed

has entries independent of the downlink channel matrix G =[
gT
1 · · · gT

2M

]T
, where Ed =

[
eTd1 · · · eTd2M

]T
.

III. PRECODER DESIGN

We begin this section by defining the structure of precoder

F, wherein we decompose it as F = FdFpFu, where Fu ∈
C

2M×N is designed to mitigate the uplink MAC-phase MUI

from the relay’s received signal yr for large N . To achieve

this objective, we design Fu based on the MRC criteria using

the UL channel estimated by the relays i.e. set Fu = ĤH ∈
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C
2M×N . The precoder is set to Fp = blk-diag{P1, · · · ,PM},

where Pi = [0 1; 1 0] is a 2 × 2 permutation matrix which

ensures that the symbol x2i−1 transmitted by the (2i − 1)th
user in the MAC phase is sent to the intended 2ith user in the

BC phase. Finally, the DL MRT precoder

Fd = [a1 a2 · · · a2M ] (5)

is designed for mitigating the DL BC-phase MUI for large

N . The column vector ai′ = [a1i′ , · · · , aNi′ ]
T ∈ C

N is the

precoding vector for the i′th receiver. The entries of ai′ are

aki′ = ejθki′ for k = 1 to N transmit relay antennas, and

for i′ = 1 to 2M users. The signal received by the i′th user

in (2) can be expressed by substituting the expression of the

precoder F in (2) as

yi′ = cσi′σigi′ai′ ĥ
H
i hixi︸ ︷︷ ︸

Desired signal

+R̃Ii′ + ÑIi′ + ni′ . (6)

The term R̃Ii′ is the sum of the MUI and the SI experienced

by the i′th user due to its MAC-phase transmit signal xi′ . The

term R̃Ii′ can be expressed as R̃Ii′

= cσi′gi′ai′

2M∑

m=1,m 6=i

σmĥH
i hmxm

+

2M∑

l′=1,l′ 6=i′

cσi′gi′al′

2M∑

m=1

σmĥH
l hmxm (7)

= cσi′gi′ai′σi′ ĥ
H
i hi′xi′ +

2M∑

l′=1,l′ 6=i′

cσi′gi′al′σi′ ĥ
H
l hi′xi′

︸ ︷︷ ︸
SI

+ cσi′gi′ai′

2M∑

m=1,m 6=i,i′

σmĥH
i hmxm

︸ ︷︷ ︸
MUI

+
2M∑

l′=1,l′ 6=i′

cσi′gi′al′

2M∑

m=1,m 6=i′

σmĥH
l hmxm

︸ ︷︷ ︸
MUI

.

Since user i′ does not have the knowledge of the UL channel

σi′hi′ , it cannot cancel the SI term. The term ÑIi′ denotes

the MAC-phase thermal noise forwarded by the relay to the

i′ user node, and is given as

ÑIi′ = cσi′

2M∑

l′=1

gi′al′ ñl, where ñl = ĥH
l nr. (8)

We assume that xi is from an M -QAM constellation, and

use △xi to denote the minimum distance across all pairs of

constellation points. For a given channel realization, the noise-

free minimum received distance squared at the i′th user is

d2i′ = c2σ2
i′σ

2
i

∣∣∣gi′ai′ ĥ
H
i hi△xi

∣∣∣
2

, where (9)

gi′ai′ ĥ
H
i hi△xi

=
( N∑

n=1

gi′ne
jθni′

)( N∑

n=1

ĥ∗
nihni

)

= △xi

( N∑

n=1

|gi′n| ej(αi′n+θni′ )
)( N∑

n=1

ĥ∗
nihni

)

= △xi

( N∑

n=1

|gi′n| ejδ
[i′n]

ni′

)( N∑

n=1

ĥ∗
nihni

)
. (10)

In the above equations, gi′n = |gi′n|ejαi′n . We define

δ
[il]
ni′ = αil + θni′ , (11)

where the superscript [il] and subscript ni′ denote the indices

of αil and θni′ , respectively.

The symbol-PEP is determined by the ratio [26]

d2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0

. (12)

We will show that for the MRC-MRT precoder, both the

interference power |R̃Ii′ |2 and the forwarded noise power

|ÑIi′ |2 almost surely go to zero as N → ∞. Consequently,

the symbol PEP asymptotically approaches that of an AWGN

channel. For a given B ≥ 1, we assign the precoder phase

angles θni′ from a uniform quantizer as shown below

θni′ = −π + (k − 1)
2π

2B
= −µSk

, if α̂i′n ∈ Sk, where

(13)

Sk =

[
π −

(
k − 1

2

)
2π

2B
, π −

(
k − 3

2

)
2π

2B

)
, (14)

and µSk
is the centroid of Sk and

[Ĝ]i′n = ĝi′n = |ĝi′n|ejα̂i′n . (15)

We observe that the intervals Si and Sj are disjoint for i 6= j

and
⋃2B

i=1 Si = [−π, π).
Channel feedback: The nth user quantizes the phases of its

estimated downlink channel ĝn spanning from the relay and

feeds back its index (see (13) and (14)) to the relay using

a low-rate feedback channel. The relay uses these indices

to construct the downlink transmit precoder Fd (see (5)).

Such quantization techniques are extensively used for reducing

channel feedback requirements in conventional MIMO sys-

tems [26], as well as in the commercial cellular systems, such

as LTE-A [27].

Remark 2: We note that the zero-forcing receive/zero-

forcing transmit (ZFR/ZFT) precoder has better rate for given

N and M . But we also note that the ZFR/ZFT precoder has

O(N3) complexity, which is much higher than the MRC/MRT

complexity of O(2MN). In this work we investigate the BER

of the low-complexity quantized MRC/MRT precoder. It is

important to investigate the BER of the high-rate quantized

ZFR/ZFT precoder also, which can be taken up as future work.
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Remark 3: The MRC-MRT precoder in (5) has 2M

columns of the N -length vector ai′ =
[
ejθi′,1 ... ejθi′,N

]T
.

Now if Ĝ is the downlink channel from the relay to the 2M
users and its entries are [Ĝ]i′,n = |ĝi′,n|ejα̂i′,n , then each

θn,i′ , for B quantized bits, takes values from 2B levels which

are defined in (13) and (14). The above design rule allows the

phases θn,i′ to take the complex conjugates of the phases of

the channel coefficients [Ĝ]i′,n = |ĝi′,n|ejα̂i′,n .

We use a uniform quantizer since it minimizes the BER degra-

dation over all quantizers, when the channel phases are iid

and have a uniformly distributed pdf in [−π, π) [28]. Having

defined the precoder F, we simplify E[‖Fyr‖2] in (1), which

will be useful for our analysis in the sequel. It is fairly easy

to show that E[‖Fyr‖2]

=E[Tr(FdFpĤ
Hyry

H
r ĤFpF

H
d )]

=E[Tr(FpF
H
d FdFpĤ

Hyry
H
r Ĥ)]

=Tr(FpE[F
H
d Fd]FpE[Ĥ

Hyry
H
r Ĥ])

=NTr(I2ME[ĤHyry
H
r Ĥ])

=PsN
3(

2M∑

i=1

σ4
i ) +N2(

2M∑

i=1

σ2
i )

2 + PsN
2(2M)η2u(

2M∑

i=1

σ2
i )

+N0N
2(

2M∑

i=1

σ2
i ) +N0N

2(2M)η2u. (16)

IV. BOUND ON THE NUMBER OF USERS TO ACHIEVE

AGWN-LIKE PERFORMANCE

In this section, we analyze the PEP, the per-user rate and the

EE of the quantized MRC-MRT precoder design by varying

the number of users 2M with relay antennas N i.e., 2M =
⌊Nα⌋.

A. Characterization of the MUI and SI power experienced by

user i′

Our objective is to find a bound on α so that |R̃Ii′ |2
a.s.→ 0 as

both N and the number of users 2M = ⌊Nα⌋ tend to infinity.

We do this in the following steps.

1) Using Markov’s inequality [20], we find the bound

P (|R̃Ii |K > ǫ) as well as P (|ÑIi |K > ǫ) for ǫ > 0
and for an even natural number K.

2) We show that for α ∈ [0, 1) and Pr = 2MEr

N , the sums
∞∑

N=1

P (|R̃Ii′ |K > ǫ),
∞∑

N=1

P (|ÑIi′ |K > ǫ) are finite.

3) We invoke the First Borel-Cantelli Lemma [20] to show

that both R̃Ii′ and later ÑIi′ , almost surely tend to zero.

4) We use the almost sure limit results on continuous

functions to get 1
|R̃I

i′
|2+|ÑI

i′
|2+N0

a.s.→ 1
N0

for N → ∞.

Let us now state Markov’s inequality and the First Borel-

Cantelli Lemma from [20].

Lemma 4.1: Markov’s inequality: For a non-negative ran-

dom variable X , we have:

P (X > ǫ) ≤ E[X]

ǫ
, for given ǫ > 0. (17)

Lemma 4.2: First Borel-Cantelli Lemma: Let An represent

events obeying
∞∑

n=1
P (An) < ∞. Then almost surely only

finite number of An events will occur.

Now, for even K, we have:

P (|R̃Ii |K > ǫ)
(a)

≤ E[|R̃Ii |K ]

ǫ

(b)
< O[(2M)

K
2 N

3K
2 ]

k̃cKσK
i′

ǫ
+O[(2M)KNK ]

˜̃
kcKσK

i′

ǫ

(c)
<

O[(2M)
K
2 N

3K
2 ]k̃P

K
2

r σK
u

(PsN32Mσ4
l )

K
2 ǫ

+
O[(2M)KNK ]

˜̃
kP

K
2

r σK
u

(PsN32Mσ4
l )

K
2 ǫ

=
O[1]k̃P

K
2

r σK
u

(Psσ4
l )

K
2 ǫ

+
O[(2M)

K
2 N

−K
2 ]

˜̃
kP

K
2

r σK
u

(Psσ4
l )

K
2 ǫ

(d)
=

k̃E
K
2
r σK

u

N
K−αK

2 (Psσ4
l )

K
2 ǫ

+
˜̃
kE

K
2
r σK

u

NK−αK(Psσ4
l )

K
2 ǫ

, (18)

where

• Inequality (a) follows from Markov’s inequality.

• Inequality (b) follows from Appendix A, where we show

that for a given number of feedback bits B ≥ 1,

even K and large N, 2M , the interference term R̃Ii′

defined in (7), obeys the bound
E[|R̃I

i′
|K ]

cKσK
i′

< O[(2M −
1)

K
2 N

3K
2 ]k̃ + O[(2M − 1)K(N)K ]

˜̃
k, where

˜̃
k is some

constant. The method of expanding higher moments of

random variables using the O[·] notation is well illustrated

by Tao [19].

• Equality (c) is true because from (1) and (16), we have,

c ≤
√√√√√

Pr

PsN3
2M∑
i=1

σ4
i

≤
√

Pr

Ps2MN3σ4
l

, (19)

where σl = inf{σ1 · · ·σ2M} and σu = sup{σ1 · · ·σ2M}.

• Equality in (d) is true because of the relay power allo-

cation of Pr = 2MEr

N in the presence of 2M = ⌊Nα⌋
users. This choice of Pr, as derived later in Section IV-C,

ensures the convergence of the received signal distance

square to a non-zero constant, as N → ∞.

From (18), we have

∞∑

N=1

P
(
|R̃Ii′ |K > ǫ

)

<

N ′∑

N=1

P
(
|R̃Ii′ |K > ǫ

)
+

k̃E
K
2
r σK

u

(Psσ4
l )

K
2 ǫ

∞∑

N=N ′

1

N
K−αK

2

+
˜̃
kE

K
2
r σK

u

(Psσ4
l )

K
2 ǫ

∞∑

N=N ′

1

NK−αK
. (20)

The tail series only obey
∞∑

N=N ′

1

N
K−αK

2

< ∞ when K−αK
2 >

1, since
∞∑

N=1

1
Np converges for p > 1. Likewise,

∞∑
N=N ′

1
NK−αK

is finite only when K − αK > 1. This implies that (20) is

only finite when α < 1 − 2
K . We see that if we fix K to a

large enough value, when N → ∞, the condition simplifies
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to α < 1. This is possible, since all even-K moments of the

Gaussian random variable exist and are finite.

Remark 4: Note that a sufficient condition for the summa-

tion in (20) to be finite is that the lower bound of the large

scale fading parameters must be non-zero i.e., σl > 0 and

the upper bound be finite i.e., σu < ∞. The authors of [12],

[13] do not impose such conditions on the large scale fading

parameters, since the number of users in [12], [13] does not

scale with the number of relay antennas N .

By using the First Borel-Cantelli lemma (see Lemma 4.2), we

therefore have R̃Ii′
a.s.→ 0 as N → ∞, for α ∈ [0, 1). Since

|x|2 is continuous in x, invoking the Continuous Mapping

Theorem of [20], we have

|R̃Ii′ |2
a.s.→ 0 as N → ∞. (21)

Both the MUI and SI terms almost surely go to zero for Pr =
2MEr

N , and the number of users 2M = ⌊Nα⌋ with α < 1,

for any arbitrary choice of feedback bits B ≥ 1 and channel

estimation error variance, as N → ∞.

Remark 5: The sum in (20) is finite for α < 1, because all

the even moments of a Gaussian random variable exist. Let us

suppose that instead of Gaussian, the channel entries are iid

with some zero-mean, complex-valued distribution. Then for

this new distribution, it turns out that the derivation of (18) and

(20) remains exactly the same. Also, at this point let us assume

that all higher moments beyond Kth moment do not exist for

the new distribution. Then (20) is finite only when α < 1− 2
K

implying the the number of users can only grow as fast N1− 2
K .

This implies that the above analysis characterizing the MUI

and SI is applicable for any zero-mean non-Gaussian complex

distribution with the pdf fαi′n
(.) of αi′n satisfying fαi′n

(x) =
fαi′n

(x+π), as shown in Appendix B. We make another crucial

observation. For the Gaussian case, with α = 0 and B = ∞,

our analysis reduces to that of [12], [13], where the authors

fixed the number of users 2M , while increasing the number

of relay antennas.

B. Characterization of the noise forwarded by the relay to

user i′

The forwarded noise term from (8) can be expressed as

ÑIi′

= cσi′

2M∑

l′=1

gi′al′ ñl = cσi′

(
gi′ai′ ñi +

2M∑

l′=1,l′ 6=i

gi′al′ ñl

)

= cσi′

( N∑

p=1

|gi′p|ejδ
[i′p]

pi′ ñi +
2M∑

l′=1,l′ 6=i

N∑

p′=1

|gi′p′ |ejδ
[i′p′]

p′l′ ñl

)
,

(22)

where ñl = ĥH
l nr. By using Markov’s inequality we have

P (|ÑIi′ |K > ǫ) ≤ E[|ÑIi′ |K ]

ǫ
(a)
< (O[N

3K
2 ] +O[(2M)

K
2 NK)]

cKσK
i′ k̃

ǫ

(b)
< (O[N

3K
2 ] +O[(2M)

K
2 NK)]

P
K
2

r σK
u k̃

(Ps2MN3σ4
l )

K
2 ǫ

(c)
= (O[N

3K
2 ] +O[(2M)

K
2 NK ])

E
K
2
r σK

u k̃

(PsN4σ4
l )

K
2 ǫ

(d)
=

E
K
2
r σK

u k̃

N
K
2 (Psσ4

l )
K
2 ǫ

+
E

K
2
r σK

u k̃

NK−αK
2 (Psσ4

l )
K
2 ǫ

. (23)

• Inequality in (a) follows from Appendix C, where we

show that for even K, and for large N and 2M , the relay

noise term ÑIi′ can be bounded as
E[|ÑI

i′
|K ]

cKσK
i′

< O[N
3K
2 ]k̃ +

O[(2M)
K
2 NK ]k̃.

• Inequality in (b) follows from (19) and from the fact that

σu ≥ σi ∀i.
• Equality in (c) follows the assignment Pr = 2MEr

N .

• Equality in (d) is true, because 2M = ⌊Nα⌋.

Now, from (23) we have,

∞∑

N=1

P (|ÑIi′ |K > ǫ)

<
N ′∑

N=1

P (|ÑIi′ |K > ǫ) +
∞∑

N=N ′

E
K
2
r σK

u k̃

N
K
2 (Psσ4

l )
K
2 ǫ

+
∞∑

N=N ′

E
K
2
r σK

u k̃

NK−αK
2 (Psσ4

l )
K
2 ǫ

. (24)

For large K and α < 1, the tail series
∞∑

N=N ′

1

N
K
2

and
∞∑

N=N ′

1

NK−αK
2

in (24) are finite and consequently

∞∑
N=1

P (|ÑIi′ |K > ǫ) < ∞. Hence, by the Borel-Cantelli

Lemma (see Lemma 4.2), the noise term ÑIi′
a.s.→ 0 as N →

∞, for α < 1. Since |x|2 is continuous in x ∈ C, we have,

|ÑIi′ |2
a.s.→ 0 for α < 1 as N → ∞. (25)

From (21) and (25), and for α ∈ [0, 1), 2M = ⌊Nα⌋ and

Pr = 2MEr

N , the term |R̃Ii′ |2 + |ÑIi′ |2
a.s.→ 0 as N → ∞. We

therefore have,

1

|R̃Ii′ |2 + |ÑIi′ |2 +N0

a.s.→ 1

N0
as N → ∞. (26)

The above result follows from the fact that the term 1
x+N0

is

continuous in x ∈ C for a fixed N0 > 0 and the convergence

of the term
(
|R̃Ii′ |2 + |ÑIi′ |2

)
is in almost sure sense.

Remark 6: Note that (20) and (24) are not finite for K =
∞. Hence α = 1 is not achievable with the aid of MRC-MRT

scheme.

Remark 7: Equation (18) shows that the rate of conver-

gence of R̃Ii′ to zero does not depend on any particular (i′, i)
receiver-transmitter pair. Hence, R̃Ii′ converges uniformly to

0 for all users. Likewise, ÑIi′ converges uniformly to 0 for

all users. This fact will be used in Appendix D.
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C. Characterization of the received distance squared for user

i′ and relay power scaling

We know from (9) and (10) that the received distance at the

i′th user is given by

di′ = |△xi|cσi′σi

( N∑

n=1

|gi′n| ejδ
[i′n]

ni′

)( N∑

n=1

ĥ∗
nihni

)
.

For 2M = ⌊Nα⌋ and α ∈ [0, 1), by substituting c =√
Pr

E[||Fyr||2]
from (16) and introducing the short hand

kN =

√√√√√√

NPr

Nα

Ps

Nα
∑

i=1

σ4
i

Nα +
(
Nα
∑

i=1

σ2
i )

2

N1+α +
Psη2

u

Nα
∑

i=1

σ2
i

N +
N0

Nα
∑

i=1

σ2
i

N1+α +
N0η2

u

N

(27)

we get di′

= kN |△xi|σi′σi

N∑
n=1

|gi′n| ejδ
[i′n]

ni′

N

N∑
n=1

ĥ∗
nihni

N
a.s.→ |△xi|σi′E[|gi′n| ejδ

[i′n]

ni′ ]E[ĥ∗
nihni] lim

N→∞
kN (28)

= |△xi|σi′E[|gi′n| ejδ
[i′n]

ni′ ]E[(σih
∗
ni + [Eu]

∗
ni)hni] lim

N→∞
kN

= |△xi|σi′σ
2
i E[|gi′n| ejδ

[i′n]

ni′ ]

√√√√√√
Er

Ps lim
N→∞

Nα
∑

i=1
σ4
i

Nα

. (29)

• Equation (28) follows by applying SLLN to

N
∑

n=1
|gi′n|e

jδ
[i′n]

ni′

N

and

N
∑

n=1
ĥ∗
nihni

N as N → ∞.

• Relay power law: Equation (29) is true because

lim
N→∞

kN =
√√√√

Er

Ps lim
N→∞

Nα
∑

i=1
σ4
i

Nα

, where Er = NPr

Nα for a constant

Ps. For the received distance of user i′ to be non-zero, we

require kN > 0; consequently a constant Er is a possible

choice. This implies that the relay power must scale as

Pr = NαEr

N = 2MEr

N . This is different from the relay power

laws derived in [12], [13] for TDD precoders, which do not

account for the Nα term in Pr, which arises due to scaling

the number of users as 2M = Nα. This is because we

simultaneously scale both M and N to ∞ whilst obeying

2M = Nα. By contrast, the power scaling laws of [12], [13]

are only valid for N → ∞ in conjugation with a finite M ,

which does not allow them to vary simultaneously. Our current

framework therefore allows us to investigate the BER, rate and

energy efficiency, when both M and N are large. Now if we

simultaneously vary both M and N , we cannot use the law

of large numbers to quantify the MUI term as in [12], [13].

This is explained as follows:

• Invoking strong law of large numbers (SLLN), the authors

of [12], showed that the MUI term in (7) obeys R̃Ii
a.s.→ 0 as

N → ∞ and for a fixed 2M . This is because according to

SLLN for N → ∞ the inner products between 1) uplink

channel vectors ĥH
i and hm for i 6= m; as well as 2)

between the downlink channel vectors gi′ and al′ for i′ 6= l′

converge to zero in the expressions
2M∑

m=1,m 6=i

σmĥH
i hmxm

and
2M∑

l′=1,l′ 6=i′
cσi′gi′al′

2M∑
m=1

σmĥH
l hmxm in R̃Ii in (7) and

consequently almost surely we have R̃Ii → 0. However, if

the number of users varies with that of the relay antennas i.e.,

2M = ⌊Nα⌋, the SLLN cannot be applied to each term in (7)

i.e., to each term in the expression
Nα∑

m=1,m 6=i

σmĥH
i hmxm and

Nα∑
l′=1,l′ 6=i′

cσi′gi′al′
Nα∑
m=1

σmĥH
l hmxm to conclude that R̃Ii →

0 almost surely with N → ∞, as the summation limit itself

now varies with N .

• Similarly, for a fixed 2M , reference [12] approximates

MUI R̃Ii by Gaussian noise for N ≫ 2M by applying

central limit theorem to each term in (7) and then adding up

2M Gaussian terms. This simplifies the computation of the

lower bound on the sum-rate. However if 2M = ⌊Nα⌋, this

approximation cannot be applied to the individual terms.

In the current work, we overcome the above problems

by using Markov’s inequality (Lemma 4.1), Borel Cantelli

Lemma (Lemma 4.2) and Dominated Convergence Theorem

(Theorem 4.3), which allow us to derive power scaling laws

which, are valid for a wide class of non-Gaussian channels –

channels whose higher moments do not exist (see Remark 5)–

and not only Gaussian channels as in [12], [13].

D. Asymptotic pairwise error performance

We now compute the symbol PEP, per-use rate and the

system’s EE in almost sure sense for large N values. To

derive this result, we will choose the following theorem proved

in [20].

Theorem 4.3: Dominated Convergence Theorem: Let Xn

be a sequence of random variables so that for each n,

Xn ≤ Y almost surely and E[|Y |] < ∞. Then lim
n→∞

E[Xn] =

E[ lim
n→∞

Xn].

Note from (29), that the convergence in (29) is in almost sure

sense, since |x|2 is continuous in C. Then we assert that

d2i′
a.s.→
(
σ2
i σi′ |△xi|E

[
|gi′n|ejδ

[i′n]

ni′

])2




Er

Ps lim
N→∞

Nα
∑

i=1

σ4
i

Nα




.

(30)

From (26) and (30), it follows that for 2M = Nα, Pr =
2MEr

N , α < 1 and N → ∞

d2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0



8

a.s.−→

(
σ2
i σi′ |△xi|E

[
|gi′n|ejδ

[i′n]

ni′

])2

N0




Er

Ps lim
N→∞

Nα
∑

i=1

σ4
i

Nα




.

(31)

The asymptotic symbol-PEP of user i′ averaged over all

channel realizations is

lim
N→∞

E

[
Q

(√
d2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0

)]

(a)
= E

[
Q

(√
lim

N→∞

d2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0

)]

(b)
= Q




|△xi|σi′σ
2
i E[|gi′n| ejδ

[i′n]

ni′ ]√
N0

√√√√√√
Er

Ps lim
N→∞

Nα
∑

i=1

σ4
i

Nα




(c)
= Q

( |△x̃i|ζi,i′
√
Er√

N0

)
. (32)

Here the expectation is over all realizations of

H,G,Eu and Ed. The equality in (a) follows from

Theorem 4.3, and because the complementary error function

Q(x) ≤ 1 and Q(
√
x) is non-negative and continuous in x

[29]. Equality in (b) follows from (31). In (c) we use the

constant ζi,i′ =
σi′σ

2
i E[|gi′n|e

jδ
[i′n]

ni′ ]
√

√

√

√

lim
N→∞

Nα
∑

i=1
σ4
i

Nα

. Since E[|xi|2] = Ps, the

term |△x̃i| = |△xi|√
Ps

represents the minimum distance among

all the points of the unit-energy transmit constellation.

Remark 8: An AWGN channel is represented by y =
ζi,i′x + n, where x is the transmit symbol with power Er

and n is iid CN (0, N0), which has the same symbol PEP as

that of (32). This verifies our claim that the per-user symbol-

PEP of the MRC-MRT precoder converges almost surely to

that of an equivalent AWGN channel.

Remark 9: The impact of the DL channel estimation error

and of the quantized precoder is captured in E[|gi′n| ejδ
[i′n]

ni′ ],
which can be evaluated numerically. Note that the UL channel

estimation error does not impact the asymptotic PEP, since

(32) shows that the asymptotic PEP is not a function of the

UL channel estimation error variance η2u.

Impact of the Number of Quantization Bits (B) on

Symbol-PEP: It is clear from (32) that E[|gi′n| ejδ
[i′n]

ni′ ] has

to be computed to investigate the impact of quantization bits

B on the asymptotic per-user PEP. It is difficult to evaluate

E[|gi′n| ejδ
[i′n]

ni′ ] to get any analytical result for the asymptotic

PEP, when the estimation error η2u and η2d > 0. We now

proceed to demonstrate how B impacts the asymptotic PEP,

when η2u = η2d = 0.

We know from (11) that δ
[i′n]
ni′ = αi′n + θni′ . Due to the

precoding rule defined in (13) and (14) we can see that when

η2u = η2d = 0, we have δ
[i′n]
ni′ ∈ [−π

2B
, π
2B

]. For (β, β + δβ) ⊂

[−π
2B

, π
2B

], we have,

{δ[i
′n]

ni′ ∈ (β, β + δβ)}

=

2B⋃

k=1

{αi′n ∈ (β + µSk
, β + δβ + µSk

)}. (33)

Equation (33) is true because i) whenever αi′n ∈ (β +
µSk

, β + δβ + µSk
), the parameter obeys θni′ = −µSk

(see

(13)); ii) αi′n ∈ (β + µSk
, β + δβ + µSk

) ⊂ Sk for each

k = 1, · · · , 2B(see (13), (14)); and iii) ∪2B

k=1Sk = [−π, π] and

Sk ∩ Sl = φ, k 6= l (see text after (15)). Hence from (33), we

have:

P ({δ[i
′n]

ni′ ∈ (β, β + δβ)})

=
2B∑

k=1

P ({αi′n ∈ (β + µSk
, β + δβ + µSk

)}) = 2Bδβ

2π
.

(34)

Equation (34) follows from the fact that the angle αi′n of

the complex Gaussian random variable gi′n is uniformly dis-

tributed in [−π, π]. Hence for η2u = η2d = 0, δ
[i′n]
ni′ is distributed

uniformly with pdf f
δ
[i′n]

ni′
(x) = 2B

2π , which is independent of

|gi′n|, since αi′n is independent of |gi′n|. Note that |gi′n| is

Rayleigh distributed with a pdf of f|gi′n|(y) = 2ye−y2

. Hence,

we have:

E[|gi′n| ejδ
[i′n]

ni′ ] = E[|gi′n|]E[ejδ
[i′n]

ni′ ]

=

∞∫

0

yf|gi′n|(y)dy

π

2B∫

−π

2B

ejxf
δ
[i′n]

ni′
(x)dx =

√
π sin( π

2B
)

2π
2B

. (35)

It follows from (32) and (35) that when η2u = η2d = 0 the

per-user asymptotic PEP is

Q



|△x̃i|σi′σ

2
i

√
π sin( π

2B
)
√
Er

√
N0

2π
2B

√

lim
N→∞

Nα
∑

i=1

σ4
i

Nα




. (36)

Remark 10: We see from (36) that the PEP of a quantized

precoder is a function of
sin( π

2B
)

π

2B
, which has a maximum value

of unity for B = ∞ and 0.9 for B = 2. For B = 2 the

PEP, and consequently the BER, of the quantized MRC-MRT

precoder will be close to that of the unquantized one for large

N . We will validate this fact later in the numerical section.

Although we do not have a closed-form PEP expression for

analyzing the impact of quantization in presence of channel

estimation error, we conjecture that with B = 2 and η2u and

η2d > 0, the BER of the quantized MRC precoder will be close

to that of the unquantized one. We later numerically show that

the conjecture is in fact true not only for the BER, but also

for the per-user rate,EE.

Remark 11: From (36), we conclude that the smaller the

parameter lim
N→∞

Nα
∑

i=1

σ4
i

Nα , the better the asymptotic per-user PEP

of the MRC-MRT precoder becomes. A smaller limit value
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implies larger path loss values on a average. This implies

having a lower on average MUI power, leading to a better

per-user BER.

E. Asymptotic per-user rate

The per-user rate is given by 1
2E[log(1 +

p2
i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

)], where p2i′ = c2σ2
i′σ

2
i Ps

∣∣∣gi′ai′ ĥ
H
i hi

∣∣∣
2

is the instantaneous received signal power of user i′. The

p2i′ expression is similar to the d2i expression in (9). For

2M = Nα, Pr = 2MEr

N and α ∈ [0, 1), we can similarly

prove that
p2
i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

a.s.→ Ps

(
σ2
i σi′E

[
|gi′n|ejδ

[i′n]

ni′

])2




Er

Ps lim
N→∞

Nα
∑

i=1

σ4
i

Nα




. (37)

The asymptotic per-user rate is given by

lim
N→∞

1

2
E

[
log
(
1 +

p2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0

)]

(a)

≤ E

[
lim

N→∞

1

2
log
(
1 +

p2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0

)]

(b)
=

1

2
log



1 +

(
σ2
i σi′E

[
|gi′n|ejδ

[i′n]

ni′

])2

N0




Er

lim
N→∞

Nα
∑

i=1

σ4
i

Nα







=
1

2
log

(
1 +

Erζ
2
i,i′

N0

)
. (38)

Inequality in step (a) is from Fatou’s lemma [20], which states

that if a sequence of positive random variables Xn → X
almost surely, then we have lim

n→∞
E[Xn] ≤ E[X]. Equality in

step (b) follows from (37).

Remark 12: We observe from (38) that for an arbitrary

choice of B ≥ 1, the asymptotic per-user rate is upper bounded

by the rate of an AWGN channel y = ζi,i′x+n with transmit

power Er and noise n having pdf CN (0, N0) when i) the relay

power is being scaled as Pr = 2MEr

N ; and ii) the number of

users being scaled as 2M = ⌊Nα⌋ for α ∈ [0, 1).
Impact of the Number of Quantization Bits (B) on Per-

User Rate: This can be observed by investigating (38), when

the channel estimation error is η2u = η2d = 0. Substituting the

value of E

[
|gi′n|ejδ

[i′n]

ni′

]
from (35) in (38), we get an upper

bound on the per-user rate as follows

1

2
log



1 +

σ4
i σ

2
i′π sin2( π

2B
)Er

N0(
2π
2B

)2 lim
N→∞

Nα
∑

i=1

σ4
i

Nα




. (39)

We see from (39) that the per-user rate of a quantized precoder,

similar to PEP, is a function of
sin( π

2B
)

π

2B
, which has a maximum

value of unity for B = ∞ and 0.9 for B = 2. Hence, for

B = 2 both quantized and unquantized MRC-MRT precoders

will have similar rates, for large N , a fact which we will later

validate in the numerical section.

F. Asymptotic Energy efficiency

Let us now investigate the EE of the quantized MRC-MRT

precoder which is defined as ρN = RN

Pr+PT
[12]. Here Rn is

the system’s sum rate, which is given by

RN =
1

2
E

[ 2M∑

i′=1

log
(
1 +

p2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0

)]
. (40)

Furthermore, Pr = 2MEr

N is the total transmit power of the

relay, and PT = 2ME
[
|xi|2

]
= 2MPs is the total transmit

power of the 2M single-antenna users. The asymptotic EE

associated with 2M = ⌊Nα⌋ is given by

lim
N→∞

ρN = lim
N→∞

Nα∑
i′=1

E

[
log
(
1 +

p2
i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

)]

2NαEr

N + 2NαPs

(a)

≤ 1

2Ps
E


 lim
N→∞

Nα∑
i′=1

log
(
1 +

p2
i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

)

Nα




(b)
=

1

2Ps
lim

N→∞

Nα∑
i′=1

log

(
1 +

Erζ
2
i,i′

N0

)

Nα
. (41)

The inequality in step (a) follows from Fatou’s lemma [20].

Equality in (b) is proved in Appendix D. The crucial

step in proving the result in Appendix D is to assume

inf{σ1, σ2, ...} = σl > 0 and sup{σ1, σ2, ...} = σu < ∞,

which allows for uniform convergence of the interference

powers for all the (i, i′) receiver transmitter pairs.

Impact of Quantization Bits (B) on EE: The impact of

quantization on asymptotic EE can be seen by investigating

(41) when channel estimation error η2u = η2d = 0. Similar to

the derivation of (39), it can be shown that for η2u = η2d = 0,

the EE upper bound in (41) reduces to

1

2Ps
lim

N→∞

Nα∑
i′=1

log


1 +

σ4
i σ

2
i′
π sin2( π

2B
)Er

N0(
2π

2B
)2 lim

N→∞

Nα
∑

i=1
σ4
i

Nα




Nα
. (42)

We see from (42) that EE of a quantized precoder, similar to

the PEP and per-user rate, is a function of
sin( π

2B
)

π

2B
. Hence for

B = 2, and for large N , we will show that both quantized

and unquantized MRC-MRT precoders will have similar EE.

V. NUMERICAL RESULTS AND DISCUSSIONS

We now numerically investigate the BER, per-user rate

and EE of the quantized MRC-MRT precoder using Monte

Carlo simulations. We first investigate its BER and consider

a system, where each user employs 4-QAM, and estimates its

DL channel σigi and then uniformly quantizes phases of the
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entries of σigi using B bits each. The relay also estimates the

UL channel H. We plot the BER of users versus its respective

average receive SNR. For example the average receive SNR

for user 1 is defined as
E[|cσ1g1a1ĥ

H
2 σ2h2x2|2]

E[|n1|2] . It is worthwhile

noting that whenever we vary the number of relay antenna N ,

we vary the number of users 2M = ⌊Nα⌋. This is in contrast

to [12], where the number of users was fixed while varying

N . Also, here we fix α = 1
3 .

We begin our investigation by setting the large scale fading

parameter σi = 1, ∀i = 1, · · · , 2M . Since all the users

statistically observe the same channel, we plot the BER of

first user alone. We recall from Remark 8 that for α ∈ [0, 1)
per-user symbol-PEP of the quantized MRC-MRT precoder

converges almost surely to that of an equivalent AWGN

channel y = ζi,i′x + n , where ζi,i′ is defined after (32).

To verify this, we plot in Fig. 1a the BER of this equivalent

AWGN channel versus the average receive SNR
E[|ζi,i′x|2]

E[|n|2]
with B = ∞ and η2u = η2d = 0. We observe that with N = 200
and B = 2, the first user BER is significantly inferior than

the equivalent AWGN channel. With N = 1600, B = 2 and

2M = 12, and at 10−4 BER, it requires only 1.6 dB higher

SNR than that of the equivalent AWGN channel.

We now evaluate in Fig. 1a the effect of quantization on

the BER of the MRC-MRT precoder using B = 1 and B = 2
bits. For benchmarking, we also plot the unquantized MRC-

MRT massive MIMO TWR relay precoder from [12], which

is designed by assuming that the relay also has unquantized

downlink CSI. We see that for N = 1600 and B = 2 bits,

the BER of the quantized precoder is similar to that of the

unquantized one. This can be justified by recalling that the

asymptotic PEP, derived in (36), is a function of sinc( π
2B

). We

now plot in Fig. 1b the sinc( π
2B

) for different B values. We see

that for B = 2, sinc( π
2B

) =
sin( π

2B
)

π

2B
= 0.9, which is 90% of its

peak value. We note from Fig. 1a that for B = 1, the BER of

the quantized precoder for N = 1600 is ≈ 1.5 dB away from

the unquantized one. This is because for B = 1, sinc( π
2B

) ≈
0.65; the PEP expression in (36), and consequently the BER

of the quantized precoder, proportionately degrades.

We now numerically show in Fig. 1c that the user PEP

gracefully approaches the PEP of an equivalent AWGN chan-

nel with the number of relay antennas N → ∞. For this

study we have 2M = N
1
3 , we fix η2u = η2d = 0, and set

N0 = 1 and B = 2. We observe that as N increases from 8
to 1728, the user PEP tends to its limit as calculated in (36).

This figure thus confirms that the system at N = 1728 for

the aforementioned parameters starts experiencing asymptotic

PEP behavior.

We now assume large scale fading parameters for different

users are varied as σi = d−2
i 10ζi where ζi is iid with pdf

CN (0, 0.1) and di varies uniformly between 0 to 2 kms for

i = 1, · · · , 2M [30]. We now plot the BER of the first

three different users in Figs. 2a, 2b and 2c respectively for

the following systems configuration: N = 200, 1600 relay

antennas, 2M = ⌊N 1
3 ⌋ users, and with channel estimation

error variance η2u = η2d = 1. We see from the plots that with

B = 2, the BER of all the three users with the quantized

MRC-MRT precoder is close to the unquantized one. Also,

Average Receive SNR (dB)
0 5 10 15

B
E

R

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 N=200, B=2 [Q]

N=200, B=1 [Q]

 N=200 [U]

 N=1600, B=2 [Q]

N=1600, B=1 [Q]

N=1600 [U]

AWGN, 4-QAM

1.5 dB1.6

dB

BER improves

as both N

and 2M = N
α

increase.

(a)

Number Of Quantization Bits (B)
1 2 3 4 5 6

s
in

c
(
π

/2
B
)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

At B=2, 90%

of maximum

value of

sinc( π/2
B
)

is achieved. 

(b)

N

0 500 1000 1500

P
E

P

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

2M=N
1/3

limiting PEP

(c)

Fig. 1: a) BER of the quantized (Q) and unquantized (U)
MRC-MRT precoder [12]. Also channel estimation error η2

u =

η2
d = 0; (b) Variation of sinc( π

2B
) =

sin( π

2B
)

π

2B
with the number

of quantization bits B; (c) Variation of averaged per-user PEP

EH

[

Q
(

√

d2
i′

|R̃I
i′

|2+|ÑI
i′

|2+N0

)]

with N . N0 = 1, Ps = Er = 2.

For Fig 1a) and 1c), each user employs 4-QAM, and the number of

users 2M varies with relay antennas N as 2M = ⌊N
1
3 ⌋.
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Fig. 2: BER of the quantized (Q) and unquantized MRC-MRT
precoder [12] with non-unity large scale fading parameters for (a)
User 1 and (b) User 2 and (c) User 3. The number of users 2M
varies with the number of relay antennas as 2M = ⌊N

1
3 ⌋. We assume

channel estimation error η2
u = η2

d = 1, 4-QAM modulation.

BER of each user reduces with increase in N .

We next plot the rate of the first three users of the quantized

precoder in Figs. 3a, 3b and 3c by using the same system

parameters as used in generating the plots in Fig. 2. We see

from these figures that by increasing N (and consequently the

number of users 2M = ⌊Nα⌋), the per-user rate increases. We

also see that the per-user rate, as also discussed in Remark 12,

is upper-bounded by the rate of the equivalent AWGN channel

y = ζi,i′x+ n, where ζi,i′ is defined after (32). We also note

that for every finite N , the per-user rate saturates beyond a

certain SNR. This is because for every finite N , the MUI is

strictly non-zero. Upon increasing N , the MUI of (21) tends

to zero, which increases the rate. We also observe that for

B = 2, both the quantized and unquantized precoders have

similar rates. For B = 1, the quantized precoder, however,

has a degraded performance. This is because the per-user rate

upper-bound (39) is a function of sinc( π
2B

). For B = 2, as

shown earlier in Fig. 1b, sinc( π
2B

) achieves 90% percent of

its maximum value, while for B = 1 it achieves only 65% of

its highest value, which degrades the per-user rate.

We next investigate the EE of the quantized MRC-MRT

precoder. We commence with the case when the channel

estimation error is η2u = η2d = 0 and σi = 1 ∀i. We observe in

Fig. 4a that for B = 2 and for large N , the EE of the quantized

precoder is close to the unquantized one. For B = 1, the

EE however, degrades significantly. This is because, as shown

in (42), for large N , the EE is a function of sinc( π
2B

). This

term, as discussed earlier, for B = 2 and B = 1 achieves

90% and 65% percent of its maximum value, respectively.

Furthermore, the EE increases with N due to decrease in

MUI (see (21)). Note that for σi = 1 ∀i, the upper bound

in (42) becomes 1
2Ps

log(1 +
πErsin

2( π

2B
)

N0(
2π

2B
)2

), which is the EE

of an AWGN channel associated with y =
√
πsin( π

2B
)x

2π

2B
+n as

well as E[|x|2] = Er = Ps and E[|n|2] = N0. We plot the EE

of the AWGN channel for B = ∞, Er = Ps = 2 versus the

average receive SNR i.e., πEr

4N0
. We see from the figure that

the EE of this AWGN channel upper bounds the EE of the

quantized MRC-MRT precoder, a fact proved earlier in (42).

We next plot in Fig. 4b the EE for the channel estimation

error variance of η2u = η2d = 1 and the same large scale fading

model as used in Fig. 2. We see for B = 2 the EE of the

quantized precoder is close to that of the unquantized one.

This again validates the conjecture that B = 2 is sufficient for

the quantized MRC-MRT precoder to achieve a performance

close to the unquantized one, even with channel estimation

errors.

VI. CONCLUSIONS

We investigated three performance metrics for quantized

MRC/MRT precoder designed for FDD TWR, using B ≥ 1
bits per transmit antenna per-user of the quantized DL channel

information. We showed that the symbol-PEP, per-user rate

and energy efficiency of this quantized MRC/MRT precoder

converges almost surely to that of an AWGN channel by con-

currently increasing the number of i) relay antennas N → ∞;

and ii) users as 2M = ⌊Nα⌋ with α ∈ [0, 1). We showed
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Fig. 3: Per user achievable rate comparison of the quantized (Q) and
unquantized MRC-MRT precoder (from [12]) with non-unity large
scale fading parameters for (a) User 1; (b) User 2 and (c) User 3.
The number of users 2M varies with the number of relay antennas

N = 1600 as 2M = ⌊N
1
3 ⌋ and channel estimation error η2

u = η2
d =

1.
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Fig. 4: Energy Efficiency (EE) comparison of the quantized(Q) and
unquantized(U) MRC-MRT precoder (from [12]). The number of
users 2M varies with the number of relay antennas N as 2M =

⌊N
1
3 ⌋ with (a) channel estimation error η2

u = η2
d = 0, σi = 1∀i; (b)

η2
u = η2

d = 1, σi 6= 1.

how to bound α when the channel coefficients are iid complex

zero-mean non-Gaussian with a constraint on the pdf of the

phase. The key conclusion from this work is that for B = 2 ,

the quantized MRC-MRT precoder performs very close to the

unquantized MRC-MRT precoder in terms of BER, per-user

rate and EE. This happens for large N , with the number of

users scaled as 2M = ⌊Nα⌋, with α ∈ [0, 1) with the relay

power varied as Pr = 2MEr

N for a fixed per user transmit

power Ps.
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APPENDIX A

BOUND ON E[|R̃Ii′ |K ]

Claim: For large N, 2M and even K, the interference term

R̃Ii′ defined in (7), satisfies

E[|R̃Ii′ |K ]

cKσK
i′

< O[(2M − 1)
K
2 N

3K
2 ]k̃ +O[(2M − 1)K(N)K ]

˜̃
k.

Proof: Before proceeding further, we state and prove few

lemmas.

Lemma A.1: For l, l′ ∈ {1 · · · , i− 1, i+ 1, · · · , N}
and n, p ∈ {1, · · · , N} for n 6= p, random

variables |gi′n| ejδ
[i′n]
nl , |gi′p| ejδ

[i′p]

pl′ are uncorrelated i.e.,

E

[∣∣∣gi′n
∣∣∣ejδ

[i′n]
nl

∣∣∣gi′p
∣∣∣e−jδ

[i′p]

pl′

]
= 0 for a given B ≥ 1.

Proof:

E

[
|gi′n| ejδ

[i′n]
nl |gi′p| e−jδ

[i′p]

pl′

]

(a)
= E

[
|gi′n| ej(αi′n+θnl) |gi′p| e−j(αi′p+θpl′ )

]
(A.1a)

(b)
= E [|gi′n|]E

[
ejαi′n

]
E
[
ejθnl

]
E [|gi′p|]E

[
e−jαi′p

]

× E
[
e−jθpl′

]

(c)
= 0. (A.1b)

Equality in (a) is due to the definitions of δ
[i′n]
nl = αi′n +

θnl and δ
[i′p]
pl′ = αi′p + θpl′ . Equality in (b) is because

|gi′n| , |gi′p| , αi′n, αi′p, αln and αl′p are independent of each

other, while θnl and θpl′ are solely a function of αln and

αl′p, respectively. Equality in (c) is because as shown in

Appendix B, we have E
[
ejθnl

]
= 0 for B ≥ 1.

Lemma A.2: For l 6= l′, the random variables

|gi′n| ejδ
[i′n]
nl and |gi′n| ejδ

[i′n]

nl′ are uncorrelated i.e.,

E

[
|gi′n| ejδ

[i′n]
nl |gi′n| e−jδ

[i′n]

nl′

]
= 0 for a given B ≥ 1.

Proof: Similar to the proof of Lemma A.1.

The MUI term R̃Ii′ (7) is reformulated as (A.2a). Now, for

an even K we have

E[|R̃Ii′ |K ]

cKσK
i′

(a)
=

∑

1≤i1,...,iK≤2MN

E[Xi1X
∗
i2 · · ·XiK−1

X∗
iK ]

(b)≈ O[NK ]E[|gi′n|ejδ
[i′n]

ni′ · · · |gi′q′ |e−jδ
[i′q′]

q′i′ |︸ ︷︷ ︸
K terms

d̃i|K ]

+O[(2M − 1)
K
2 N

K
2 ]E[|gi′n|2| ˜̃dl|2 · · · |gi′q|2| ˜̃dl′ |2︸ ︷︷ ︸

K
2 terms

]

(c)
= O[NK ](E[|gi′n|ejδ

[i′n]

ni′ ])KE[|d̃i|K ]

+O[(2M − 1)
K
2 N

K
2 ]E[|gi′n|2 · · · |gi′q|2]E[| ˜̃dl|2 · · · | ˜̃dl′ |2]

(d)

≤ O[NK ]E[|d̃i|K ]k̃1

+O[(2M − 1)
K
2 N

K
2 ]E[| ˜̃dl|2 · · · | ˜̃dl′ |2]k̃1. (A.3)

• Equality in (a) is due to the Kth moment expansion formula

in [19]. Xi’s take the value |gi′n|ejδ
[i′n]

ni′ d̃i from the first

part of the sum in (A.2a) or |gi′n|ejδ
[i′n]

nl′
˜̃
dl from the second

part of the sum in (A.2a). Further d̃i,
˜̃
dl are defined as

d̃i =
2M∑

m=1,m 6=i

σmxmĥH
i hm and

˜̃
dl =

2M∑
m=1

σmxmĥH
l hm.

• The approximation in (b) lists the dominant terms in

the expansion of step (a). Since, |gi′n|ejδ
[i′n]

ni′ d̃i in the first

part of (A.2a) are iid non-zero mean random variables, there

can be O[NK ] such terms as listed in step (b). Furthermore,

|gi′n|ejδ
[i′n]

nl′
˜̃
dl in the second part of (A.2a) are zero mean

iid random variables, so each |gi′n|ejδ
[i′n]

nl′
˜̃
dl must occur in

pair along with its conjugate an even number of times in the

expansion of the term in step (a), otherwise from Lemmas A.1

and A.2, their contribution will be zero. The dominant number

of such terms is O[(2M − 1)
K
2 N

K
2 ] which happens when a

typical |gi′n|ejδ
[i′n]

nl′
˜̃
dl term occurs exactly twice. Note that the

approximation is tight for large N and 2M [19].

• Equality in (c) is true, because entries of G,H and Eu,Ed

are iid CN (0, 1) and CN (0, η2u = η2d) respectively, and Ĥ =
H+Eu. This means that the entries of G are independent of

Ĥ, H.

• Inequality in (d) is true for a fixed K, because

(E[|gi′n′ |e−jδ
[i′n′]

n′i′ ])K < (E[|gi′n′ |2])K
2 < ∞ (Cauchy-Swartz

inequality) as the entries of G are iid CN (0, 1). Similarly,

E[|gi′n|2 · · · |gi′q|2] < ∞ by the repeated application of the

Cauchy Swartz inequality for a fixed K. Hence each of

the terms (E[|gi′n′ |e−jδ
[i′n′]

n′i′ ])K , E[|gi′n|2 · · · |gi′q|2] can be

bounded by some finite constant k̃1.

Equation (A.3) tells us that we have to compute E[|d̃i|K ]

and E[
˜̃
dl · · · ˜̃dl′ ] to evaluate E[|R̃Ii |K ]. We next evaluate them

as follows.

Lemma A.3: E[|d̃i|K ] < O[(2M − 1)
K
2 N

K
2 ]k̃2.
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R̃Ii′

cσi′

=
( N∑

n=1

|gi′n| ej(αi′n+θni′ )
)( 2M∑

m=1,m 6=i

σmxmĥH
i hm

)

+

2M∑

l′=1,l′ 6=i

{( N∑

n=1

|gi′n| ej(αi′n+θnl′ )
)( 2M∑

m=1

σmxmĥH
l hm

)}

=
( N∑

n=1

|gi′n| ejδ
[i′n]

ni′

)( M∑

m=1,m 6=i

σmxmĥH
i hm

)

︸ ︷︷ ︸
part 1

+

2M∑

l′=1,l′ 6=i

{( N∑

n=1

|gi′n| ejδ
[i′n]

nl′

)( 2M∑

m=1

σmxmĥH
l hm

)}

︸ ︷︷ ︸
part 2

. (A.2a)

Proof:

E[|
2M∑

m=1,m 6=i

σmxmĥH
i hm|K ]

= E[|
2M∑

m=1,m 6=i

(σmxm

N∑

p=1

ĥ∗
pihpm)|K ]

(a)
=

∑

1≤i1,..,ik≤(2M−1)N

E[Xi1X
∗
i2 · · ·XiK−1

X∗
iK ]

(b)≈ O[(2M − 1)
K
2 N

K
2 ]E[|σmxmĥ∗

pihpm|2 · · · |σnxnĥ
∗
qihqn|2︸ ︷︷ ︸

K
2 terms

]

(c)
< O[(2M − 1)

K
2 N

K
2 ]k̃2.

Here the Xi’s in (a) take values of the type σmxmĥ∗
pihpm.

Since hpi’s and [Eu]pi are iid CN (0, 1) and CN (0, η2u) respec-

tively, and ĥpi = σihpi+[Eu]pi, each σmxmĥ∗
pihpm term must

occur exactly twice to contribute to the O[(2M − 1)
K
2 N

K
2 ]

number of dominant terms in the approximation in step (b).
The approximation is tight for large N and 2M [19]. The

finite constant k̃2 bounds the expectation term in the particular

term, which precedes the inequality (b). Inequality in (c) is

true, since all moments of Gaussian random variables hpi’s

and ĥpi = σihpi + [Eu]pi are finite.

Lemma A.4:

E[|
2M∑

m=1

σmxmĥH
l hm|2 · · · |

2M∑

m=1

σmxmĥH
l′ hm|2

︸ ︷︷ ︸
K
2 terms

]

< (O[NK ] +O[(2M − 1)
K
2 (N)

K
2 ])k̃2.

Proof: Similar to the bounds derived in Lemma A.3.

Combining equation (A.3) with Lemma A.3 and Lemma A.4

we have

E[|R̃Ii′ |K ]

cKσK
i′

< O[(2M − 1)
K
2 N

3K
2 ]k̃ +O[(2M − 1)K(N)K ]

˜̃
k,

where k̃ = 2k̃1k̃2 and
˜̃
k = k̃1k̃2 are constants.

APPENDIX B

PROOF OF E
[
ejθnl

]
= 0

Given that the channel estimates are corrupted by AWGN,

ejθni′ is a zero-mean random variable i.e., E[ejθni′ ] = 0,

∀n, i′.
Proof: As mentioned in Section II, we assume that the

relay has a quantized estimate of the DL channel D
1
2G. The

DL channel estimated by user i′ is ĝi′n, which is given as

ĝi′n = σi′gi′n + ẽi′n = |ĝi′n|ejα̂i′n . Here σi′gi′n is the

true value and ẽi′n is the (i′, n)th entry of Ed distributed

iid CN
(
0, η2d

)
[13]. The pdf of α̂i′n given αi′n, σi′ |gi′n| as

derived in [31] is

λ (α̂i′n/αi′n, σi′ |gi′n|) =
∞∫

0

te
2rσ

i′
|g

i′n
|cos(α̂

i′n
−α

i′n
)

η2
d dr,

(B.1)

where t = r
πη2

d

e

−r2−σ2
i′

|g
i′n

|2

η2
d . Now, we have:

E
[
ejθni′

]
= E|gi′n|Eαi′n

Eα̂i′n
[ejθni′ ]

= E|gi′n|Eαi′n

π∫

−π

ejθni′λ(α̂i′n/αi′n, σi′ |gi′n|)dα̂i′n

= E|gi′n|
1

2π

π∫

−π

( π∫

−π

ejθni′λ(α̂i′n/αi′n, σi′ |gi′n|)dα̂i′n

)
dαi′n

= E|gi′n|[I]. (let) (B.2)

Note from (14) that whenever,

α̂i′n ∈ Sk =

[
π −

(
k − 1

2

)
2π

2B
, π −

(
k − 3

2

)
2π

2B

)
, we have

θni′(α̂i′n) = −π + (k − 1)
2π

2B
.

This implies that

α̂i′n + π ∈
[
2π −

(
k − 1

2

)
2π

2B
, 2π −

(
k − 3

2

)
2π

2B

)

forcing

θni′(α̂i′n + π) = −2π + (k − 1)
2π

2B
= −π + θni′(α̂i′n).
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Hence for every (α̂i′n, αi′n, σi′ |gi′n|) tuple, by (B.1),

ejθni′ (α̂i′n)λ(α̂i′n/αi′n, σi′ |gi′n|)
= −ejθni′ (α̂i′n+π)λ(α̂i′n + π/αi′n + π, σi′ |gi′n|)

⇒
π∫

−π

π∫

−π

ejθni′ (α̂i′n)λ(α̂i′n/αi′n, σi′ |gi′n|)dα̂i′ndαi′n

= −
π∫

−π

π∫

−π

ejθni′ (α̂i′n+π)λ(α̂i′n + π/αi′n + π, σi′ |gi′n|)dα̂i′ndαi′n

⇒ I = −I ⇒ I = 0. (B.3)

Hence the result follows by substituting (B.3) into (B.2).

For complex zero-mean non-Gaussian distributions, the result

holds true if the pdf fαi′n
(.) of αi′n satisfies fαi′n

(x) =
fαi′n

(x+ π) and is independent of |gi′n|.

APPENDIX C

BOUND ON E[|ÑIi′ |K ]

Claim: For even K and for large N, 2M , the relay noise

term ÑIi′ defined in (22) is bounded by:
E[|ÑI

i′
|K ]

cKσK
i′

<

O[N
3K
2 ]k̃ +O[(2M)

K
2 NK ]k̃.

Proof: Expanding (22) using K moment expansion for-

mula [19], we have,
E[|ÑI

i′
|K ]

cKσK
i′

(a)
= O[NK ]E[|gi′p|ejδ

[i′p]

pi′ ñi · · · |gi′p′ |e−jδ
[i′p′]

p′i′ ñi︸ ︷︷ ︸
K terms

]

+O[(2M)
K
2 N

K
2 ]E[|gi′p′ |2|ñl|2 · · · |gi′p′′ |2|ñl′ |2︸ ︷︷ ︸

K
2 terms

]

(b)
= O[NK ]E[|gi′p|ejδ

[i′p]

pi′ · · · |gi′p′ |e−jδ
[i′p′]

p′i′ ]E[|ñi|K ]

+O[(2M)
K
2 N

K
2 ]E[|gi′p′ |2 · · · |gi′p′′ |2]E[|ñl|2 · · · |ñl′ |2]

(c)
< O[NK ]E[|ñi|K ]k̃3 +O[(2M)

K
2 N

K
2 ]E[|ñl|2 · · · |ñl′ |2]k̃3.

(C.1)

Note that |gi′p|ejδ
[i′p]

pi′ are non-zero mean random variables.

They contribute to the dominant term in O(NK) ways in

the expansion of the sum in step (a). |gi′p|ejδ
[i′p]

pl′ are zero-

mean random variables, where each such independent term

must occur exactly twice along with its conjugate in the sum

in step (a) to contribute to the dominant term. The number

of such terms is O[(2M)
K
2 N

K
2 ]. Equality in (b) is because

that the entries of Ĥ,G and nr are independent of each other

and ñl = ĥlnr. Constant k̃3 occurs in inequality in (c) true

because

E[|gi′p|ejδ
[i′p]

pi′ · · · |gi′p′ |e−jδ
[i′p′]

p′i ] ≤
√

E[|gi′p|2 · · · |gi′p′ |2],
and the fact that all moments of Gaussian random variables

can be bounded. Next, we have

E[|ñi|K ] = E[|
N∑

k=1

ĥ∗
kinrk |K ]

= O(N
K
2 )E[|ĥki|2|nrk |2 · · · |ĥk′i|2|nrk′ |2]

< O(N
K
2 )k̃4. (C.2)

Equation (C.2) follows from the fact that all finite moments

of Gaussian random variables ĥki, nrk can be bounded i.e.,

E[|ĥki|2|nrk |2 · · · |ĥk′i|2|nrk′ |2] < k̃3. Likewise, it can be

shown that

E[|ñi|2 · · · |ñl|2] < O[N
K
2 ]k̃4 (C.3)

From (C.1), (C.2) and (C.3), we have

E[|ÑIi′ |K ]

cKσK
i′

< O[N
3K
2 ]k̃ +O[(2M)

K
2 NK ]k̃.

where k̃ = k̃3k̃4.

APPENDIX D

PROOF OF EQUATION (41)

Claim:

E[ lim
N→∞

Nα∑
i′=1

log
(
1 +

p2
i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

)

Nα
]

= lim
N→∞

Nα∑
i′=1

log

(
1 +

Erζ
2
i,i′

N0

)

Nα
.

Proof: We know from (21) that the interference power

obeys |R̃Ii′ |2
a.s.→ 0 as N → ∞. Hence for ǫ > 0, ∃N̂1(ǫ)

such that ∀N ≥ N̂1(ǫ) the event {|R̃Ii′ |2 > ǫ} almost surely

never occurs. Furthermore, Remark 7 tells us that the N̂1(ǫ)
threshold is the same for all the Nα users.

Likewise from (23) and (25), for ǫ > 0, ∃N̂2(ǫ) such that

∀N ≥ N̂2(ǫ) the event {|ÑIi′ |2 > ǫ} almost surely never

occurs. This N̂2(ǫ) threshold is the same for all the Nα users

by Remark 7.

Similarly the received signal power p2i′ converges al-

most surely to

(
σ2
i σi′E

[
|gi′n|ejδ

[i′n]

ni′

])2




Er

lim
N→∞

Nα
∑

i=1
σ4
i

Nα


 =

Erζ
2
i,i′ . Hence for ǫ > 0, ∃N̂3(ǫ) such that ∀N ≥ N̂3(ǫ) the

event {|p2i′ − Erζ
2
i,i′ | > ǫ} almost surely never occurs. Also

the convergence is uniform for all users.

From the above discussions we conclude that for ǫ >
0, ∃N̂4(ǫ) = max{N̂1(ǫ), N̂2(ǫ), N̂3(ǫ)} such that ∀N ≥
N4(ǫ) the event {| p2

i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

− Erζ
2
i,i′

N0
| > ǫ} almost

surely never occurs.

Next, since log(1 + x) is continuous in x, ∃N̂(ǫ) such that

∀N ≥ N̂(ǫ) such that the event

{| log(1 + p2i′

|R̃Ii′ |2 + |ÑIi′ |2 +N0

)− log(1 +
Erζ

2
i,i′

N0
)| > ǫ}

almost surely never occurs. (D.1)



16

Now ∀N ≥ N̂(ǫ),

∣∣∣
Nα∑
i′=1

log(1 +
p2
i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

)− log(1 +
Erζ

2
i,i′

N0
)
∣∣∣

Nα

≤

Nα∑
i′=1

∣∣∣ log(1 + p2
i′

|R̃I
i′
|2+|ÑI

i′
|2+N0

)− log(1 +
Erζ

2
i,i′

N0
)
∣∣∣

Nα

(a)

≤ ǫ. (D.2)

Step (a) is true because (D.1) holds for all users uniformly.

The result, thus holds true.
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