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1 Introduction

The Standard Model (SM) does not explain the existence of either the three families of

quarks and leptons or the three gauge forces. The quest for unification of the three forces

led to the original proposal of SU(5) Grand Unified Theory (GUT) [1], while the discovery

of neutrino mass and mixing motivates an SO(10) GUT. Gauge coupling unification (in a

single step) provides the traditional motivation for TeV scale supersymmetry (SUSY) [2–4],

which, although so far elusive at the LHC, may yet eventually be discovered in the future.

The explanation of the three families of quarks and leptons is less clear and there

have been various proposals put forwards. One idea is to extend the GUT symmetry to

large groups which can accommodate three families such as SU(8) or O(16) [5–8]. Another

approach is to introduce a commuting family symmetry such as SU(3) or one of its sub-

groups. If the three families of quarks and leptons are unified into a triplet of an SU(3)

gauged family symmetry, this could provide a reason for the origin of the three families

which would be analogous to the three colours of quarks in QCD.
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Attempts have been made to formulate an SU(3)×SO(10) gauge theory which includes

the unification of the three families and the three gauge forces, although not within a single

gauge group [9–11]. Similar models with discrete subgroups of SU(3) such as A4 or S4 [12]

have also been combined with GUTs [13–28]. The problem is that the most ambitious such

complete theories also require additional sectors to achieve the desired vacuum alignments

and to break the gauge symmetry to the SM with doublet-triplet Higgs splitting, leading

to somewhat involved models [27–30].

There is a top-down motivation for considering such models coming from string the-

ory formulated in extra dimensions. For example E8 × E8 heterotic string theory can

accommodate SU(3) × SO(10). Many of the complications of doublet-triplet splitting are

avoided by assuming the existence of extra dimensions [31, 32]. For example, extra dimen-

sional models have been constructed based on combining A4 or S4 with SU(5) [33–36]. In

such theories, the discrete Family Symmetry could have a dynamical origin as a result of

the compactification of a 6d theory down to 4d [34–40]. The connection of such orbifold

compactifications to string theory has been discussed in [41].

In this paper we discuss a simple and elegant SU(3) × SO(10) family unified gauge

theory in 6d compactified on a torus with the orbifold T 2/Z3
2 and supplemented by a

Z6×Z3 discrete symmetry. The orbifold boundary conditions generate all the desired SU(3)

breaking vacuum expectation values (VEVs) including the (0, 1,−1) and (1, 3,−1) vacuum

alignments (CSD3) of the Littlest Seesaw model [42–50] for atmospheric and solar neutrino

mixing, as well as the usual SO(10) breaking with doublet-triplet splitting. The absence

of driving and messenger fields considerably simplifies the field content of the model. It

naturally explains why there are three families of quarks and leptons, and accounts for

all their masses, mixing angles and CP phases via rather elegant looking Yukawa and

Majorana matrices in the theory basis. The resulting model controls proton decay and

allows successful Leptogenesis.

The layout of the remainder of the paper is as follows. In section 2 we present the

details of the orbifold and boundary conditions. In section 3 we shoe the full field content

of the model and how it behaves in the extra dimensions. In section 4 we show how the

SU(3) breaking vacuum alignments are fixed in through boundary conditions. In section 5,

the effective Yukawa terms of the model, the fermion mass matrices and a numerical fit

are presented. In section 6 we show how proton decay is controlled. In section 7 we show

how the Baryon Asymmetry of the Universe (BAU) can be obtained through Leptogenesis

in our model. Section 8 concludes the paper. In appendix B we discuss the implications of

an alternative SU(3) breaking vacuum alignment (1, 0, 2) (CSD2) [51, 52].

2 Orbifolding

We assume as gauge symmetry SU(3)× SO(10). We also assume that the spacetime is the

6d manifold M = R4 × T 2, where the torus is defined by

(x5, x6) = (x5 + 2πR1, x
6),

(x5, x6) = (x5, x6 + 2πR2).
(2.1)
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We will use interchangeably the complex notation

z = x5 + ix6, (2.2)

where, for simplicity in this notation, we will absorb the dimension so that R1 = R2 = 1.

The extra dimensions are actually orbifolded so that they are T2/Z
3
2 . The orbifolding

leaves 4 invariant 4d branes

zi = 0,
1

2
,
i

2
,

1 + i

2
. (2.3)

We locate one Z2 boundary condition on the branes

Z2 : z̃i = −z̃i, where z̃i = z + zi, (2.4)

where each boundary condition is defined by a matrix Pi that satisfies P 2
i = I and

i = 0, 1/2, i/2. We aim that these boundary conditions break the gauge symmetry into

the MSSM.

The boundary conditions are chosen to be

P0 = I10 ⊗ SU,
P1/2 = PPS ⊗ T13,
Pi/2 = PGG ⊗ T1,

(2.5)

where

PGG = diag(1, 1, 1, 1, 1)⊗ σ2, PPS = diag(−1,−1,−1, 1, 1)⊗ σ0, (2.6)

and

SU =
1

3

−1 2 2

2 2 −1

2 −1 2

 , T1 =

−1 0 0

0 1 0

0 0 1

 , T13 =

 0 0 −1

0 1 0

−1 0 0

 . (2.7)

The above PGG boundary condition, when applied to an SO(10) adjoint, breaks the

gauge group to SU(5) × U(1)X . To see this explicitly, we may write the adjoint, which is

a 10× 10 antisymmetric real matrix (with 45 components), in terms of 5× 5 sub-matrices

which transform as

PGG

(
A A5

−A†5 A′

)
PGG =

(
A′ A†5
−A5 A

)
, (2.8)

where we may see that the A5 submatrix is preserved, provided it is hermitian. This is a

5×5 submatrix, with 25 components, that correspond to the generators of SU(5)×U(1)X .

The above boundary condition PPS , when applied to an SO(10) adjoint, breaks the

gauge group to the Pati-Salam gauge group. To see this, we rotate to an equivalent basis

via a matrix R that satisfies R2 = 1 so that

R PPS R = R diag(−I3×3, I2×2,−I3×3, I2×2) R = diag(−I6×6, I4×4), (2.9)

Then we may write the SO(10) adjoint in terms of 6×6 and 4×4 matrices which transform as

PPS

(
A6×6 A6×4

−A†6×4 A4×4

)
PPS =

(
A6×6 −A6×4

A†6×4 A4×4

)
, (2.10)
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so that the antisymmetric real matrices A6×6, A4×4 are preserved. These matrices generate

SO(6)× SO(4) which is isomorphic to the Pati-Salam group.

To summarise, each boundary condition breaks the symmetry [40]

PGG : SO(10)→ SU(5)×U(1)X ,

PPS : SO(10)→ SU(4)× SU(2)L × SU(2)R,

T1 : SU(3)F → SU(2)F ×U(1)F ,

T13 : SU(3)F → U(1)F ×U(1)F ′ ,

SU : SU(3)F → Z2,

I : N = 2→ N = 1 SUSY.

(2.11)

Together they break SO(10) × SU(3)F → SU(3)C × SU(2)L × U(1)Y × U(1)X with simple

SUSY. The flavour symmetry SU(3)F is completely broken.

3 Field content

The field content of the model is listed in table 1. They contain the SM fermions, Higgses,

flavons and GUT breaking fields. We remark that only spinorial, fundamental and adjoint

representations are used. The field content is rather simple, especially when compared to

4d models which aim to be as complete as this one [28–30, 36, 61], due to the absence of

driving and messenger fields in the present model. Note that, in addition, there may be

other spectator fields (not shown) which play no part in the model construction but are

there to cancel anomalies, e.g. additional 3 representations which any full string theory

construction would automatically provide. We assume that they do not obtain any VEV

so they do not affect the Yukawa structure.

The superfield ψ contains all the SM fermions. We choose it to be located equally on

all of the 4d branes,

ψ(x, z) = ψ(x)
(
δ2(z) + δ2(z − 1/2) + δ2(z − i/2) + δ2(z − 1/2− i/2)

)
, (3.1)

which is consistent with the remnant D4 symmetry of the orbifold [37], as well as the

underlying SU(3) gauge symmetry.

This is the only field fixed on the 4d branes, and as a consequence is not subject to any

boundary conditions. On the other hand, the flavons are constrained to lie on different 5d

branes so that they comply with different boundary conditions. The localization mechanism

lies beyond the scope of this work and we treat it as a phenomenological ansatz. This is

explained further in section 4.

3.1 Bulk superfieds

All the fields labeled as H obtain a VEV and propagate through the bulk. They are flavour

singlet so that they only feel the PGG, PPS boundary conditions.

The Hu,d are SO(10) fundamentals. They have both positive parity under the condi-

tion PPS . As can be seen from eq. (2.6), this condition projects out the triplets, solving
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Field
Representation Localization

SU(3) SO(10) Z6 Z3 P0 P1/2 Pi/2

ψ 3̄ 16 0 0

Hu
10 1 10 0 0 +1 +1 +1

Hd
10 1 10 2 0 +1 +1 -1

H16 1 16 0 0 +1 +1 -1

H16 1 16 0 0 +1 +1 -1

HX,Y
45 1 45 0 1 +1 +1 +1

HW,Z
45 1 45 2 1 +1 +1 +1

φ1 3 1 2 1 +1 +1

φ2 3 1 0 1 +1 +1

φ3 3 1 3 1 +1 +1

Table 1. The simple field content used in constructing the model, including matter, Higgs and

flavon superfields.

the doublet-triplet splitting and leaving only the two doublets in each one. They have

opposite parities under the PGG which breaks SO(10) into SU(5) × U(1). The positive

parity projects out the 5 inside the 10, while the negative parity projects out the 5. With

both conditions, only one doublet is left massless inside each Hu,d, which would be the

MSSM hu,d respectively. There are no more light doublets which allows for standard gauge

coupling unification.

We assume that the H16 field develops a GUT scale VEV in the singlet N direction in

order to break the U(1)X gauge group, which survives after the rank preserving orbifolding,

and hence allow RHN Majorana masses. This assumption is at least consistent since the

H16 propagates through the bulk and complies with the boundary conditions.1 The field

H16, with the same boundary conditions, is included in order to allow renormalizable

masses at the GUT scale for all components of the H16.

The H45 gets a VEV that supplies the difference between charged leptons and down

quarks. It propagates in the bulk and its VEV must comply with the boundary conditions.

This reduces the alignment possibilities from 45 to 13. From those 13, the ones in the

SU(3), SU(2) generators would break the SM. The VEV can be aligned in a linear combi-

nation of the generators U(1)X , U(1)Y . We don’t assume any specific choice, other than

all the 〈HX,Y,W,Z
45 〉 are different.

1The positive parity under PGG would project out the 10, 1 components of the H16, while the negative

one would project out the 5. The positive PPS parity would project out the left fields and the negative

parity would project out the right fields. The chosen parities for H16 hence leave as possible light modes

the corresponding right fields inside the 10, 1. These would correspond to the SM N,u, e superfields and

the VEV must be aligned with one of them. This can always be rotated to be in the N direction.
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Figure 1. The 5d branes where each flavon propagate. The effective extra dimensional space is

the space inside the red triangle. The Flavons propagate through the boundary.

We assume that the VEVs 〈HX,Y,W,Z
45 〉 , 〈H16〉 , 〈φ1,2,3〉 are driven radiatively at a large

scale . Λ ∼MGUT [53–60].

4 Flavon alignment

The model has only 3 flavons that propagate in different 5d branes

φ1 = φ1(x, x5) δ(x6),

φ2 = φ2(x, x6) δ(x5),

φ3 = φ3(x, x5) δ(x5 + x6 − 1/2),

(4.1)

which can be seen in the figure 1. Each flavon propagates in an extra dimensional line and

must comply with the boundary conditions

〈φa〉 = Pi 〈φa〉 . (4.2)

These fix completely the flavon VEV alignment.

We obtain the so called CSD3 flavon alignment [29, 42, 43, 45, 61]. This alignment

seems to happen more naturally with the discrete flavour symmetry S4 [74]. Inspired by

this, we choose one Z2 boundary condition be the matrix

SU =
1

3

−1 2 2

2 2 −1

2 −1 2

 . (4.3)

The flavons φ1,2 must be invariant under the SU matrix, since they have positive

parity. This forces their VEVs to be

〈φ1,2〉 ∼

 a

b

2a− b

 , (4.4)

with arbitrary a, b.
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The VEV 〈φ1〉 is invariant under SU and T13, which forces b = 3a and the VEV is

aligned as

〈φ1〉 = v1

 1

3

−1

 . (4.5)

The VEV 〈φ2〉 is invariant under SU and T1, which forces a = 0 and the VEV is

aligned as

〈φ2〉 = v2

 0

1

−1

 . (4.6)

The VEV 〈φ3〉 is invariant under T1 and T13, which forces the first and third entry to

vanish, so it is aligned as

〈φ3〉 = v3

 0

1

0

 . (4.7)

This way, all the flavon VEVs are aligned completely through orbifolding, without

the need for any superpotential. The vacuum alignments above are known collectively as

CSD3. An alternative vacuum alignment known as CSD2 is discussed in appendix B.

5 Yukawa terms

In 6d the superpotential must be dimension 5 while a chiral superfield has dimension 2. Any

superpotential with interaction terms is non renormalizable, so there is no UV completion

adding messenger fields. For this reason we have to consider all order terms.

The effective 4d Yukawa terms allowed by the symmetries are

WY ∼
Hu

10(ψφ1)(ψφ1)

Λ3
HX,Y

45 +
Hu

10(ψφ2)(ψφ2)

Λ3
HW,Z

45 +
Hu

10(ψφ3)(ψφ3)

Λ3
HW,Z

45

+
Hd

10(ψφ1)(ψφ2)

Λ3
HW,Z

45 +
Hd

10(ψφ2)(ψφ2)

Λ3
HX,Y

45 +
Hd

10(ψφ3)(ψφ3)

Λ3
HX,Y

45

+
H16H16(ψφ1)(ψφ1)

Λ4
HX,Y

45 +
H16H16(ψφ2)(ψφ2)

Λ4
HW,Z

45 +
H16H16(ψφ3)(ψφ3)

Λ4
HW,Z

45 .

(5.1)

This superpotential is responsible for all quark and lepton (including neutrino) masses

and mixings. We shall assume that the flavon VEVs are driven to be hierarchical

v1 � v2 � v3 in order to account for the charged fermion mass hierarchy.

We note that the terms involving Hu, H16 each consist of a sum of flavon squared

terms. The terms involving Hd have a mixed term φ1φ2. Since we assume v1 � v2 � v3,

this will be responsible for the milder hierarchy in the down sector than the up sector.

All the terms are coupled to two different H45 with different dimensionless couplings.

The VEVs of the H45 treats quarks and leptons differently and we can choose these different

couplings to obtain different masses for the charged leptons and down quarks [61].
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The next order terms, with extra flavons are of O(φ8), due to the SU(3) symmetry.

In the appendix A we discuss higher order corrections, with particular focus on those

associated with the top quark Yukawa coupling, and also propose a mechanism for naturally

suppressing such corrections.

5.1 Fit friendly matrices

The fermion mass matrices’s structure is determined by the flavons Mij ∼
∑

a,b 〈φai φbj〉. We

make the redefinition

ψ → (ψ1, ψ3,−ψ2)
T . (5.2)

We now introduce convenient low energy parameters that effectively come from eq. (5.1),

using CSD3 vacuum alignments, in terms of which the SM fermion mass matrices are [61]

M e/vd = ye1e
iηe

0 1 1

1 2 4

1 4 6

 + ye2

0 0 0

0 1 1

0 1 1

 + ye3e
iη′e

0 0 0

0 0 0

0 0 1

 ,

Md/vd = yd1e
iηd

0 1 1

1 2 4

1 4 6

 + yd2

0 0 0

0 1 1

0 1 1

 + yd3e
iη′d

0 0 0

0 0 0

0 0 1

 ,

Mu/vu = yu1 e
iηu

1 1 3

1 1 3

3 3 9

 + yu2

0 0 0

0 1 1

0 1 1

+ yu3 e
iη′u

0 0 0

0 0 0

0 0 1

 ,

Mν
D/vu = yν1e

iηD

1 1 3

1 1 3

3 3 9

 + yν2

0 0 0

0 1 1

0 1 1

+ yν3e
iη′D

0 0 0

0 0 0

0 0 1

 ,

Mν
R = M̃ν

R1e
iηR

1 1 3

1 1 3

3 3 9

 + M̃ν
R2

0 0 0

0 1 1

0 1 1

 + M̃ν
R3e

iη′R

0 0 0

0 0 0

0 0 1

 ,

mν = µ1e
iην

1 1 3

1 1 3

3 3 9

 +µ2

0 0 0

0 1 1

0 1 1

 + µ3e
iη′ν

0 0 0

0 0 0

0 0 1

 ,

(5.3)

where we distinguish the different neutrino mass matrices as Mν
D (the Dirac mass matrix),

Mν
R (the heavy right-handed neutrino Majorana mass matrix) and mν (the light effective

left-handed Majorana mass matrix after the seesaw mechanism). Note that the parameters

M̃ν
Ri (denoted by tildes) differ from the eigenvalues of Mν

R which are later written as Mν
Ri

(without tildes).

We assume that 〈HXYWZ
45 〉 are in general complex so that, together with the 〈φi〉 they

break CP. Due to the amount of dimensionless constants that couple to each H45, we can

obtain a free phase in each mass matrix.

The left handed neutrino small masses, mν , are generated through the usual seesaw

mechanism. Due to the Mν
D, M

ν
R mass matrices being rank 1 and with the same structure,

– 8 –
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the mν has the same structure with [61, 62]

µi =
(yνi vu)2

M̃ν
Ri

. (5.4)

Furthermore ην = 2ηD − ηR, which also applies for the primed phases. Note that µi are

not equal to the light neutrino mass eigenstates, where the latter are the eigenvalues of the

matrix mν written as mi.

At low energies, there are 12 real parameter (9 dimensionless and 3 neutrino masses),

and 8 phases.

We assume the hierarchy between families arise from the flavon VEVs being hierarchi-

cal, for example with the values,

v3 ∼ Λ, v2 ∼ 10−1Λ, v1 ∼ 10−3Λ,

Λ ∼MGUT ∼ 〈H45〉 ∼ 〈H16〉 ,
(5.5)

which would yield the following natural values for the parameters

yu,ν1 ∼ 10−6, ye,d1 ∼ 10−4, yu,ν,d,e2 ∼ 10−2, yu,ν,d,e1 ∼ 1,

M̃ν
R1 ∼ 1010 GeV, M̃ν

R2 ∼ 1014 GeV, M̃ν
R3 ∼ 1016 GeV,

and hence µ1 ∼ 1µeV, µ2 ∼ 10 meV, µ3 ∼ 1 eV.

(5.6)

Concluding, we have 20 low energy parameters to generate the 20 flavour parameters

(22 counting Majorana phases).

5.2 Threshold corrections

We have to run the SM Yukawa couplings to the GUT scale, where we do the fit. Since

our model does not say anything about SUSY breaking can parametrize its unknown con-

tributions to the running through the threshold corrections [63]

yMSSM
u,c,t ' ySMu,c,t cscβ,

yMSSM
d,s ' (1 + η̄q)

−1 ySMd,s secβ,

yMSSM
b ' (1 + η̄b)

−1 ySMb secβ,

yMSSM
e,µ ' (1 + η̄`)

−1 ySMe,µ secβ,

yMSSM
τ ' yMSSM

τ secβ.

(5.7)

The CKM parameters receive the contributions

θq,MSSM
i3 ' 1 + η̄b

1 + η̄q
θq,SMi3 , θq,MSSM

12 ' θq,SM12 , δq,MSSM ' δq,SM. (5.8)

SUSY threshold corrections to the neutrino sector are negligible [48, 63, 76].

We will be assuming

tanβ = 10, η̄b = −0.9, η̄q = 0.4, η̄l = 0, (5.9)

since the values η̄b,q improve significantly the numerical fit.

– 9 –
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The ηb parameter is needed to be somewhat large and the leading contributions come

from loops either sbottoms and gluinos or stops and higgsinos that add up to [75]

η̄b '
tanβ

16π2

(
8

3
g23
mg̃µ

2m2
0

+ λ2t
µAt
m2

0

)
, (5.10)

where m0 denotes the squark masses, g3 the strong coupling, mg̃ the gluino mass and

At the SUSY softly breaking trilinear coupling involving the stops. We see that a large

contribution can be achieved when

mg̃, µ,At > m0, tanβ & 10. (5.11)

The parameter η̄q has a similar expression

η̄q '
tanβ

16π2

(
8

3
g23
mg̃µ

2m2
0

)
, (5.12)

but without the contribution of the trilinear coupling. This makes it natural to be smaller

but the same order of magnitude. Finally the parameter

η̄l '
tanβ

16π2

(
8

3
g22
mW̃µ

2m2
0

)
, (5.13)

only receives contributions from Winos and Binos and therefore expected to be smaller and

negligible.

5.3 Numerical fit

We perform a numerical fit to the flavour observables at the GUT scale. The running of

the neutrino parameters is negligible [48, 76].

The numerical fit uses the 12 real parameters, 8 phases and the 2 large threshold

corrections, so that we have 22 free real parameters. As an example, we select tan β = 10,

although a good fit can be obtained with 5 < tanβ < 50. With the setup just mentioned,

we can obtain a perfect fit with a χ2 ≈ 0. We have 22 flavour parameters at low energies:

6 quark masses, 3 charged lepton masses, 3 light neutrino masses, 4 CKM parameters and

6 PMNS parameters with Majorana masses. We therefore have 22 real parameters in the

model for 22 observables (although 3 of them m1, α21, α31 are not yet measured).

The fit turns out to be quite insensitive to many of the input phases, with the un-

derlying CSD3 structure being largely responsible for the success of the model as in [28–

30, 36, 61]. To illustrate this, we consider a benchmark point with

ηd = η′d = ηe = η′e = 0, ηu = η′u, ην = η′ν , (5.14)

which reduces the number of input phases to two. In addition, motivated by the Z6 × Z3

symmetry, which could play a role in how CP is broken as in [28], we require that these

remaining two phases be a multiple of the 18th roots of unity. A benchmark point con-

forming to the above requirements is given in table 2. The table also shows a fit related to

the alternative vacuum alignment discussed in appendix B.
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Observable
Data Model best fit

Central value 1σ range CSD2 CSD3

θ`12 /
◦ 33.62 32.86 → 34.38 33.75 31.51

θ`13 /
◦ 8.54 8.57 → 8.69 8.50 8.54

θ`23 /
◦ 47.20 45.30 → 49.10 46.27 46.85

δ` /◦ 234 178 → 290 126 327

ye /10−6 2.05 2.03 → 2.07 2.06 2.06

yµ /10−4 4.34 4.29 → 4.39 4.36 4.36

yτ /10−3 7.20 7.12 →7.28 7.23 7.24

∆m2
21/(10−5 eV2) 7.51 7.33 → 7.69 7.43 7.39

∆m2
31/(10−3 eV2) 2.52 2.48 → 2.56 2.49 2.49

m1 /meV 2.37 0.28

m2 /meV 8.94 8.59

m3 /meV 49.97 49.95∑
mi /meV < 230 61.28 58.84

α21 /
◦ 118 347

α31 /
◦ 286 129

mββ /meV < 61-165 1.48 2.02

θq12 /
◦ 13.03 12.98 → 13.07 13.02 13.02

θq13 /
◦ 0.22 0.21 → 0.23 0.22 0.23

θq23 /
◦ 2.24 2.20 → 2.28 2.24 2.23

δq /◦ 69.22 66.10 → 72.33 69.45 72.82

yu /10−6 2.81 1.96→ 3.65 2.83 2.84

yc /10−3 1.41 1.40 → 1.43 1.42 1.42

yt 0.53 0.49 → 0.56 0.54 0.52

yd /10−6 4.82 4.28 → 5.35 5.09 5.19

ys /10−5 9.65 9.16 → 10.13 9.51 9.65

yb /10−3 5.43 5.31 → 5.54 5.44 5.39

χ2 4.99 5.23

Table 2. Flavour observables from experiments compared to the predictions of the model discussed

in the main text, based on CSD3 vacuum alignment, as well as for an alternative CSD2 vacuum

alignment discussed in appendix B. The quark masses, charged lepton masses and CKM parameters

come from [63]. The neutrino observables come from [64]. The fits have been performed using the

Mixing Parameter Tools (MPT) package. The SUSY breaking threshold corrections are assumed

to be: tan β = 10, η̄b = −0.9, η̄q = 0.4, η̄l = 0..

The necessary parameters of the model to obtain this fit are listed in table 3. We

can compare these values to the expected natural ones in eq. (5.5) and see that all the

dimensionless coupling constants have natural values. The µ1,3 are not near from their

natural value.

We showed that we can fit the 22 low energy flavour parameters with 14 real parameters

and 8 input phases. However, as the benchmark point illustrates, although there are 8 free

phases, the results are particularly sensitive to them, and they may take restricted values

such as zero or a particular root of unity, maintaining a good fit to the observables.
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Parameter Value

yu1 /10−6 2.84

yu2 /10−2 0.14

yu3 −0.52

yd1 /10−4 −1.55

yd2 /10−3 −0.32

yd3 0.54

Parameter Value

ye1 /10−4 3.14

ye2 /10−2 0.41

ye3/10−1 0.66

µ1 /meV 2.07

µ2 /meV 31.09

µ3 /meV 1.89

Parameter Value

ηu 7/18π

η′u 7/18π

ηd, η
′
d 0

ηe, η
′
e 0

ην −5/6π

η′ν −5/6π

Table 3. Model parameters to generate the fit in table 2 for CSD3.

6 Proton decay

One of the main signatures of GUTs is proton decay. However, it has not been observed

and its lifetime is constrained to be [67]

τp > 1029 yrs. (6.1)

In usual GUTs, the main source for proton decay comes from the new heavy gauge

bosons and the color triplets accompanying the Higgs doublets. The triplets are heavy, at

the compactification scale, due to the orbifold boundary conditions [31, 32]. So are the extra

gauge bosons. We identify the compactification scale with Λ ∼MGUT ∼ 2× 1016 GeV , so

that the model predicts the proton lifetime to be the same as in usual SO(10) 4d models

with [2, 3, 68–70]

τp ∼ 1029–1030 yrs, (6.2)

so that the model barely meets the experimental constraints.

The fact that the compactification scale is so high makes the KK mode contributions

to proton decay at least 3 orders of magnitude smaller than the usual sources [71–73].

These contributions, though small, could eventually provide specific signatures for extra

dimensional GUTs.

There could also be extra contributions to proton decay coming from the extra fields

specific to our model. Due to the symmetries of the model the largest contributions would

come from the terms

ψψψψ
〈HW,Z

45 〉
3
〈HX,Y

45 〉
3

Λ7
p

, (6.3)

where Λp is the scale where these term is generated. To comply with the observed proton

decay constraints we must have [68–70]

〈HW,Z
45 〉

3
〈HX,Y

45 〉
3
M2
P

Λ7
p

< 3× 109 GeV, Λp > 6× 1017 GeV, (6.4)

which is a natural value for this scale. Since this term requires flavour contractions into

representations that are not in the original field content, we may expect it to be larger

than Λ.
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7 Leptogenesis

We have seen that the values for µi in this model are not exactly natural. However these

quantities appear after the seesaw and relate to yν ,MR as shown in eq. (5.4).

If we assume that the heavy RHN mass eigenvalues have the expected natural values,

of the same order of magnitude as the parameters in eq. (5.6),

Mν
R1 ∼ 1010 GeV, Mν

R2 ∼ 1014 GeV, Mν
R3 ∼ 1016 GeV, (7.1)

this would imply that

yν1 ∼ 10−4, yν2 ∼ 10−2, yν3 ∼ 10−1, (7.2)

which is just one order of magnitude away from the natural values for yν3 and two orders

of magnitude for yν1 . These values are effectively free in our model and we can tune them

to be so without any problem.

Assuming the natural values for Mν
Ri and the deviated ones for yν requires a fine tuning

of 1 in 100. However having exactly these values can explain the Baryon Asymmetry of

the Universe (BAU) through Leptogenesis.

Leptogenesis generates the BAU through CP violating decay of the lightest RHN

into neutrinos generating a lepton asymmetry, then transformed into baryon asymmetry

through non perturbative sphaleron processes [65].

Leptogenesis has already been studied with matrices in the CSD3 alignment [44, 45, 66].

The result ultimately depends on the phase η which we identify with the leptogenesis phase.

With the phase in our fit, to generate the observed BAU the RHN masses must be

109 < Mν
R1 < 1011, 1011 < Mν

R2 < 1013, Mν
R3 ∼MGUT, (7.3)

which are the natural order of magnitude values for the RHN mass parameters as seen in

eq. (5.6). Therefore, if we assume the tuning to obtain the yν as in eq. (7.2), our model

generates the observed BAU through Leptogenesis.

8 Conclusion

We have discussed a simple and elegant SU(3) × SO(10) family unified gauge theory in

6d compactified on a torus with the orbifold T 2/Z3
2 and supplemented by a Z6 × Z3 dis-

crete symmetry. The orbifold boundary conditions break the symmetry down to SU(3)C ×
SU(2)L×U(1)Y ×U(1)X , achieving doublet-triplet splitting and leaving only the light Higgs

doublets of the MSSM, with the gauge coupling unification scale of order the compactifi-

cation scale Λ ∼ MGUT. The U(1)X is broken by a H16 field which develops a GUT scale

VEV in the singlet N direction, thereby allowing Majorana masses. Below the GUT scale

we then have just the MSSM field content, together with right-handed neutrino masses.

An important and new feature of our model is that the orbifold boundary conditions

generate all the desired SU(3) breaking vacuum alignments, such as the (0, 1,−1) and

(1, 3,−1) alignments, without having to introduce an additional superpotential with extra

driving fields. The absence of driving and messenger fields considerably simplifies the field

– 13 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
8

content of the model which requires only twelve superfield multiplets, which is remarkably

economical for a complete Flavoured GUT. Having a gauged SU(3), the model naturally

explains why there are three families of quarks and leptons.

The model quantitatively accounts for all quark and lepton (including neutrino) masses,

mixing angles and CP phases via rather elegant looking Yukawa and Majorana matrices

in the theory basis. Although the model involves 14 independent real parameters and 8

phases to fix 22 flavour observables, we have shown that the successful fit is mainly due

to the vacuum alignments, and is insensitive to the precise value of many of the phases.

To illustrate this we have considered a benchmark point with a restricted set of phases,

and shown that it can achieve a good fit to the observables, with χ2 = 5, where most of

the real parameters take natural O(1) values. However we do not discuss how the large

hierarchical flavon VEVs, responsible for the charged fermion mass hierarchies, are driven.

Finally we remark that the resulting model controls proton decay, with a proton lifetime

close to the current limits. In addition it allows successful Leptogenesis.
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A Higher order corrections

In this appendix we discuss higher order corrections, with particular focus on those asso-

ciated with the top quark Yukawa coupling, and also propose a mechanism for naturally

suppressing such corrections.

Since a superpotential in 6d is always nonrenormalizable, in principle we have to an-

alyze such terms of all orders. To begin with, the VEVs 〈H45〉 are very large and higher

powers of them would not be very suppressed. However, these VEVs so not affect the ma-

trix structure of the fermion masses. They do affect the relation between charged leptons

and down quarks but we can redefine the fit variables so they do not affect at low energies.

Turning to the flavons, the next order terms involving more flavons would be of

O(φ8/Λ8) due to the SU(3) symmetry. The most dangerous such terms involve the VEV

v3 which is quite large since it gives the top mass. As we see in the fit, we expect the

ratio v3/Λ ≈ 0.7 so that even large powers of it, like (v3/Λ)8 ≈ 0.05, are not necessarily

negligible. The largest of these corrections would involve

(φ3)
6(φiφj)

Λ6
, (A.1)

which is a completely symmetric product into an SU(3) 6 dimensional representation.

Since (φ3)
6 is a singlet under the discrete symmetries, we can have all terms in eq. (5.1)

with an extra (φ3)
6/Λ6. These correct the respective (φiφj) Yukawa terms. They have
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Field
Representation Localization

SU(3) SO(10) Z6 Z3 P0 P1/2 Pi/2

χ 1 16 3 1

χ̄ 1 16 3 2

Table 4. Possible extra messenger-like fields fixed on the brane.

a suppression of (v3)
6/Λ6 ∼ (yu3 )3 ∼ 0.1. If we choose the corresponding dimensionless

coupling constant to be small, less than 0.1, these terms become negligible.

It is possible to naturally suppress such terms, without appealing to the dimensionless

coupling constants, by adding the messenger-like fields in table 4. These fields are located

in the same brane as the field ψ so that we have the effective 4d terms after compactification

Wχ ∼Mχχχ+ ψχφ3 +Hu
10H

X,Y
45 (χχ+ χχ). (A.2)

The physical top quark field is then identified as the massless linear combination of χ

and φ3ψ. The term Hu
10H

X,Y
45 χχ then allows the physical top quark to naturally a have

larger mass. This can also be seen since these effective messengers allow us to make the

replacement
φ3
Λ
→ φ3

Mχ
, (A.3)

in eq. (5.1). This allows us to assume v3/Mχ ∼ 0.5� v3/Λ ∼ 0.01, which makes all higher

order term negligible.

Any term involving any other flavon or more flavons are completely negligible.

B CSD2 vacuum alignment

In this appendix we discuss an alternative vacuum alignment (CSD2) [51, 52], which can

lead to a good fit when combined with SO(10) [30].

If we keep all the same model setup but instead of the matrix T13 in the condition P1/2

we use the matrix

T2 =

 1 0 0

0 −1 0

0 0 1

 , (B.1)

we can obtain the so called CSD2 alignment.

In this case, the VEV 〈φ1〉 is invariant under SU and T2, which forces b = 0 and the

VEV is aligned as

〈φ1〉 ∼

 1

0

2

 . (B.2)

The VEV 〈φ2〉 remains unchanged

〈φ2〉 ∼

 0

1

−1

 . (B.3)
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The VEV 〈φ3〉 is invariant under T1 and T2, which forces the first and second entry to

vanish, so it is aligned as

〈φ3〉 ∼

 0

0

1

 . (B.4)

These are the 3 VEVs that generate the CSD2 alignment and they have also been

achieved through orbifold boundary conditions only.

B.1 CSD2 fit friendly masses

As we just, with small changes to the model, we can obtain the CSD2 alignment. With

this alignment the redefinition in eq. (5.2) wouldn’t need the swap in the last two entries

and it would be

ψ → (ψ1,−ψ2, ψ3)
T (B.5)

Using the CSD2 alignment, the SM fermion mass matrices, in terms of the low energy

parameters, are

M e/vd = ye1e
iηe

0 1 1

1 0 2

1 2 4

 + ye2

0 0 0

0 1 1

0 1 1

 + ye3e
iη′e

0 0 0

0 0 0

0 0 1

 ,

Md/vd = yd1e
iηd

0 1 1

1 0 2

1 2 4

 + yd2

0 0 0

0 1 1

0 1 1

 + yd3e
iη′d

0 0 0

0 0 0

0 0 1

 ,

Mu/vu = yu1 e
iηu

1 0 2

0 0 0

2 0 4

 + yu2

0 0 0

0 1 1

0 1 1

+ yu3 e
iη′u

0 0 0

0 0 0

0 0 1

 ,

Mν
D/vu = yν1e

iηD

1 0 2

0 0 0

2 0 4

 + yν2

0 0 0

0 1 1

0 1 1

+ yν3e
iη′D

0 0 0

0 0 0

0 0 1

 ,

Mν
R = M̃ν

R1e
iηR

1 0 2

0 0 0

2 0 4

 + M̃ν
R2

0 0 0

0 1 1

0 1 1

 + M̃ν
R3e

iη′R

0 0 0

0 0 0

0 0 1

 ,

mν = µ1e
iην

1 0 2

0 0 0

2 0 4

 +µ2

0 0 0

0 1 1

0 1 1

+ µ3e
iη′ν

0 0 0

0 0 0

0 0 1

 ,

(B.6)

where all the previous discussion also applies.

B.2 Numerical fit

Again, with the CSD2 alignment we can obtain a perfect fit with χ2 ≈ 0. However we will

also make the arbitrary assumptions to show the predictivity of this setup

ηd = η′d = ηe = η′e = 0, ηu = η′u, (B.7)
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Parameter Value

yu1 /10−6 −2.83

yu2 /10−2 −0.14

yu3 −0.53

yd1 /10−4 −1.53

yd2 /10−3 −0.63

yd3 −0.54

Parameter Value

ye1 /10−4 2.94

ye2 /10−2 −0.41

ye3/10−1 0.75

µ1 /meV 3.43

µ2 /meV 24.71

µ3 /meV 12.51

Parameter Value

ηu 7/18π

η′u 7/18π

ηd, η
′
d 0

ηe, η
′
e 0

ην 2/9π

η′ν 17/18π

Table 5. Model parameters to generate the fit in table 2 with CSD2.

where we have one less condition than in the CSD3. This brings the amount of physical

phases to 3, where one extra phase is needed with respect to CSD3.

In table 2 we have already shown that we can obtain a good fit in this setup. The

necessary parameters for this fit are shown in the table 5.

Again we can see that this setup is as natural as the CSD3 one discussed in the

main text.
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