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Design and experimental validation of an adaptive sliding mode observer based fault tolerant control for underwater vehicles
Xing Liu, Mingjun Zhang, Yujia Wang and Eric Rogers
Abstract—Cost and other practically related reasons can mean that velocity sensors are not available on an underwater vehicle. For such cases, the results in this paper are developed on an observer based fault tolerant control for underwater vehicles in the presence of external disturbances and unknown thruster faults. An adaptive sliding mode observer is developed to achieve finite-time convergence where, in comparison to a high-gain based design for the observer, a nonlinear feedback is constructed based on the position estimation error. Unlike alternatives, a discontinuity term in the developed fault tolerant controller is avoided and the stability of the controlled dynamics is characterized using Lyapunov theory. Finally, these new results are supported by both a simulation based study and experimental verification.
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Introduction
[bookmark: _Hlk524548008][bookmark: _Hlk524548825]Applications for autonomous and remotely operated underwater vehicles (AUVs and ROVs respectively) include inspection of underwater structures, exploration of underwater resources, pipeline tracking and target searching, see, e.g. [1, 2]. In the complex and unknown ocean environment, tracking control is critical to ensure that these vehicles follow as closely as possible a specified or planned-online trajectory. This task is always challenging due to the underlying nonlinear dynamics and the presence of external disturbances.
An increasing trend in the control of these vehicles is to use state feedback action based on position and velocity information measured directly by onboard sensors [3]. In this area, GPS cannot be directly used to determine the vehicles current position due to short wave attenuation effects [4]. This has led to the use of acoustic instruments, such as acoustic long baseline (LBL) and acoustic ultrashort baseline (USBL) to measure position and attitude with respect to the inertial frame using a compass module. 
To measure velocity, the Doppler velocity log and fibre optic gyroscope are one option to obtain translational and angular velocities with respect to the body-fixed frame. However, the cost of implementation and other practical reasons mean that some of these vehicles do not carry velocity measurement sensors. In such cases, a simple method to obtain approximate velocities for the vehicle is based on numerical differentiation, but this is often not feasible due to measurement noise in the position sensor measurements [3].
To implement trajectory tracking control without velocity measurements for these vehicles, observer based control schemes have been considered, see, e.g., [3, 5-7]. Of the possible structures, high-gain observers have been applied to estimate velocities. In, e.g., [8] nonlinear model based state estimation experiments on a Jason2 ROV using a high-gain observer and extended Kalman filter, respectively, are reported. Also in [9] results from full-scale sea trials based on an output feedback control system that combines a three term (proportional plus integral plus derivative) controller with a high-gain observer for an ROV are reported.
High-gain observer stability analysis, see, e.g., [5], shows that the associated estimation error can only achieve asymptotic convergence. Moreover, to converge quickly with acceptable estimation performance, a large gain is needed but the result could be ‘quick’ changes (or chattering) in the estimation error, tracking error and control output in the early stages of the system output. Finite-time convergent observer design offers advances in convergence speed, disturbance rejection and robustness to uncertainty and a natural step is to investigate the possible benefits of this approach in the underwater vehicles area.
A terminal sliding mode observer was used in [10] to guarantee that all estimated states of an AUV converge in a finite time and hence a thruster fault can be reconstructed in time. In [3], a nonlinear observer with finite-time convergence was constructed to estimate an AUV’s translational velocities where the observer used was based on a fractional order signature function to estimate the position error without considering the external disturbance. To estimate an underwater vehicle’s unmeasured states, another adaptive terminal sliding mode observer was developed in [5] that uses the derivative of the position estimation error.
Observer/controller design for underwater vehicles requires a model of the dynamics in most cases. Due to the highly coupled multivariable nonlinear dynamics and the external disturbance, any model will be subject to potentially significant uncertainties. Also during operation faults, such as entanglement and impairment, can occur in the thrusters, see, e.g., [11] and this increases the uncertainty in the model and makes trajectory tracking more challenging. In this area, a suitably designed neural network has been applied to approximate the unknown model or the general uncertainty term in underwater vehicle research, as discussed next.
In [12] an adaptive sliding mode tracking control design for underwater vehicles was developed where a radial basis function based neural network was applied to mimic the equivalent control. Moreover, in [13], the unknown thruster fault, model uncertainty and external disturbance are treated as a general uncertainty term, which is approximated by a neural network. Designs such as these must counteract the neural network’s estimation error and the effects of the neglected higher-order terms resulting from use of the Taylor series expansion.
Existing methods using this approach assume that the upper bound of the neural networks estimation error and the neglected higher-order terms is known a priori. This assumption is very strict (with consequences for controller design), since it is very difficult to select the upper bound for underwater vehicles subject to external disturbances, which includes effects from waves and the ocean current. An alternative is to directly estimate the upper bound of the term involved, i.e., an adaptive rate in the framework of Lyapunov theory. Such a method does not need to know this upper bound a priori but it introduces a discontinuous term into the control law.
Safety is one of key issues for underwater vehicles [14, 15]. This paper investigates fault tolerant control design without velocity measurement for underwater vehicles with the presence of ocean current disturbances and unknown thruster faults, where a recurrent neural network is used to approximate the unknown function in the dynamics.
The main new contributions are as follows: (a) An adaptive sliding mode observer based fault tolerant control design is developed to estimate quickly the underwater vehicle’s unmeasured velocity states, with the advantage that the estimation error converges to zero in finite time compared with a design based on a high-gain observer. In contrast to the designs in [16, 17], a new sliding mode observer is constructed by combining a linear function, signature function, integral function and a fractional order function of the position estimation error to keep the discontinuous term as small as possible. (b) A method to counteract the neural network estimation error and the higher-order term caused by truncating a Taylor series expansion is developed. In alternative approaches [5, 13], the bound on this term is assumed to be known a priori or is directly estimated based on an adaptive rate. In the new approach in this paper the term involved is split into two parts: an unknown function and the sliding surface. Then the unknown function is estimated based on an adaptive rate and thereby avoids introducing a discontinuous term into the control law. (c) Based on the developed observer and compensation method, a fault tolerant control law is designed using the integral sliding mode technique. In the process of constructing an integral sliding surface, the estimation error is also included.
Results from simulation studies and pool experiments are given to demonstrate the effectiveness of the new design.
Modeling and Problem Specification
[bookmark: _Hlk524548937]The nonlinear vehicle model considered in the presence of ocean current disturbances and thruster faults is


		(1)

where if  denotes the number of degrees of freedom,  is the  position and orientation vector with respect to the inertial frame. Also if m denotes the number of thrusters, the  vector u is the control vector applied through the thrusters and


	

		(2)

where, B is the  thruster configuration matrix. Also K is a  diagonal matrix with entries  that specifies the loss of the ith thruster effectiveness, where kii=0 denotes the ith thruster is healthy and kii=1 denotes the case when the thruster has completely failed. The remainder of the notation is specified in Appendix 1.
Assumption 1: It is assumed that G is exactly known and that  is unknown but with a known structure.

Let ui denote an entry in u. Then it is assumed that such an entry satisfies  where and , respectively, denote the minimum and maximum available thrust.
In this paper, a recurrent neural network is used to estimate the term , where the output of a recurrent neural network with one hidden layer can be written as


		(3)
In this representation x is the network input and W, , β, γ are weighting matrixes and the output of an entry in the hidden layer is expressed as


	
		(4)
where Q(x, , β, γ)(i) denotes the ith entry of Q(x, , β, γ); and (i), β(i), γ(i), respectively, are the ith rows of , β, γ and , , are, respectively, the last instantaneous values of the output of the hidden and output layers.
By standard neural network theory, there exist ideal weighting matrices, denoted by W*, *, β*, γ*, such that


		(5)

where  is the minimum error arising from an insufficient number of neurons in the hidden layer. Hence the approximation error  can be written as


		(6)

where , , ,are the estimates of W*, *, β*, γ*. For ease of presentation, the dependence of, e.g., Q on x, , β, γ is suppressed. Also  and  and  is the estimate of  by this recurrent neural network, i.e., .
Using a Taylor series expansion for , the approximation error can be written as


		(7)

where , , ，, , , and denotes the higher order Taylor series terms.
In the absence of sensors to measure the underwater vehicle’s velocity, an observer with finite-time convergence is first designed in the analysis that follows in this paper. Next, based on the estimated states, an integral sliding surface is designed by adding the observer estimation error and the neural network based control design is developed. Then a new robust compensator is designed to attenuate the term , denoted as ψ. Finally, the stability of the controlled system is established and simulation and experimental verification results are given.
Sliding Mode Observer Design




Introduce the state variables, and set . Also introduce the state transformation [17], with

	
where I and 0 denote the identity and null matrices, respectively, of compatible dimensions and T2 is a diagonal matrix with positive entries αi, . Hence


		(8)
where


The sliding mode observer structure is


		(9)


where the superscript e denotes an estimated quantity,, and


		(10)
where


	, 



and , ,  ,  are positive constants, , , where  is a positive constant, l1i, l2i are constants and will be selected below, the block diagonal matrix P = diag(P1, P2) will be selected below, where P1, P2 are symmetric positive definite matrixes, the superscript -1 denotes the inverse matrix,  and denotes replacing the entries in a vector by their absolute values.


If the term  is not present in the observer structure, finite time stability, established later in the paper, requires to be chosen sufficiently large. This means that the magnitude of the discontinuity will also be large and hence more control action would be required. Hence this is the reason why this term is included in the second observer equation.
Using (8) and (9), the observer estimation error dynamics are given by


		(11)


with estimation error vector  and .
Assumption 2: It is assumed that there exists a known parameter σ >0 such that [10, 17]


		(12)

Proposition 1: The observer (9) is finite-time convergent if the following conditions hold

		(13)

		(14)

		(15)


	,  	(16)

[bookmark: _Hlk524591169]where, , Qo is a symmetric positive definite matrix, ,  and  are positive constants (specified below) and 

	
Proof: To establish finite-time convergence of the observer, the route is to first establish that the resulting estimation error is bounded and then establish the required property.

As shown in Appendix 2, the estimation error Δ is bounded under the conditions given by (13)-(14). Given this fact, the finite-time convergence of Δ1 and Δ2 is established by first introducing  and hence from (11)


		(17)
where

	

Moreover, since Δ is bounded and  is a combination of a linear function and a fractional order function of Δ, it is routine to establish that this latter function is also bounded, i.e., , where . Also it is routine to show that Δ1 and  are finite-time convergent to zero under the conditions of (15)-(16), similar to the proof in [18]. Also given this property for these two variables ensures,  also occurs in a finite time by the second entry in (17). 
It remains to prove that Δ2 = 0 also occurs in finite time, where in Appendix 2 it is shown that 


		(18)

Also since the position estimation error Δ1 converges to zero in finite time, then


		(19)
where λmin(Qo) denotes the minimum eigenvalue of Qo.
Suppose to the contrary that Δ2 converges to a non-zero constant in finite time. Then this assumption plus (19) means that Δ2 is still decreasing. Hence the observer converges in finite time.
The matrix P in (13) can be obtained by the following Linear Matrix Inequality (LMI) for a given 


		(20)
with C=[I, 0];.
Sliding Mode Based Fault Tolerant Control
To ensure that η converges to the desired trajectory , a second-order reference model is used, i.e.,


		(21)
where  is the reference state vector and  and ξ are positive constants. Also define the tracking error


		(22)

and hence the error dynamics can be written as


		(23)

The fault tolerant controller is designed based on sliding mode theory but the estimation error is added to the sliding surface, resulting in 


		(24)



where, Λ > 0 is a constant and , (from (8)) is given by 


		(25)

Prior to deriving the control law, it is necessary to counteract the effects of ψ in such a way that an upper bound on this term is not needed and a discontinuity does not occur in the control law. In contrast to existing methods, the term ψ is split into two parts in what follows, i.e.,


		(26)
Assumption 3: At low speeds, it is assumed that h(s) varies slowly and hence there exists a constant vector Hb such that .
Let  denote the estimated value of h(s) and hence the estimate of ψ is . In this paper, a fractional order expression is used to adjust  and since the sliding surface cannot converge exactly to zero in application, a boundary technique is also included, i.e.,


		(27)

[bookmark: _Hlk524591586]where for ease of notation the dependence of  on s is omitted,  is a positive definite diagonal matrix;  and  is the boundary term to be selected. Also it can be shown [16] that .
Proposition 2: Consider an underwater vehicle subject to an unknown thruster fault as described in Section II. Suppose also that the control law u applied results in tracking error dynamics described by (23). Suppose also that the fault tolerant controller defined by (24)-(27) is applied. Then the following control law and recurrent neural network updating structure guarantee that the tracking error e1 exponentially converges to a known region.

		(28)

		(29)

		(30)

		(31)

		(32)

where k > 0,  are constants, , ,  and  are positive definite diagonal matrices, and the superscript + denotes the pseudo inverse, x is the input of the neural network, described in Section II.
Proof: This proof is based on the Lyapunov function


		(33)

		(34)

where ,   = diag(ς) where ς is selected below.
Differentiating V2 with respect to time gives 


		(35)

where Ξ = Δ2 + T2Δ1 and since Δ1 and Δ2 converge to zero in finite time both Ξ and  also have this property.
Next, perform the following steps, i) substitute (23) into (35), ii) then introduce the control law (28) and iii) substitute (29)-(32) to give after extensive, but routine, manipulations


		(36)

Two cases now arise: Case I . In this case, (36) can be written as


		(37)

where ς is selected such that  . Hence the sliding surface is bounded and will be inside the specified boundary  after a finite period of time has elapsed.
Case II . In this case the sign of  is not certain and it has been shown in [19] that inside the designed boundary the stability property of is indefinite. If the sliding surface s exceeds the designed boundary, i.e., , (37) again holds and as detailed in [19], s will be attracted to inside the boundary. Hence the sliding surface s converges to the designed boundary  under the applied control system.
After a certain time, say t0, the sliding surface satisfies   with zero estimation error. Hence there exists a constant vector  satisfying  and by the definition of the sliding surface (see (24))


		(38)

Next, apply the following sequence of operations, i) multiply (38) by , ii) integrate the result from t0 to t, iii) divide the result by . Then since , it follows that 


		(39)
Also since 


		(40)

and using (38) and (39) it follows that


		(41)

and hence the tracking error e1 exponentially converges to the domain given by the right-side of this last equation.
Experimental  and Simulation Results
Experimental results for an ROV
The Beaver 2 ROV can be used for underwater observation by carrying different sensors. The results are given in this section are for tracking of the yaw angle, where by design this vehicle has weak coupling between axes. This ROV has dimensions 0.8m×0.5m×0.4m and its dry weight is 50 kg. It is also slightly positively buoyant with thrusters on the left and right-hand sides to provide the force inputs and the yaw angle is measured by a HMR3000 digital compass [20].
Two desired yaw angles are considered, i.e.,



	, 	(42)

An incipient thruster fault is considered, which is widely used in the subject area. The fault is specified as


		(43)
where f [0, 1] denotes the magnitude of the thruster fault,
Consider the case when the left-hand side thruster has an incipient fault with f = 0.3, i.e., the effectiveness of the thruster output is gradually reduced to 70% of its input after 20 seconds. Also consider the following choices for the design parameters:
 = 2,  = 2,  = 3;  = 0.8, T2 = I, P1 = 1.1546I, P2 = 1.4845I,
ρ1 = 2P1, ρ2 = 2I,  = 3I,  = 4/5, L1 = 2.5I, L2 = -0.222I, 
[bookmark: _Hlk524592228] = (T2 - L1 + 0.3I),  = I,  = 5,  = 5/7, k = 5,  = 12/5,
 =  =   =  = 0.2I,  = 0.2I,  = 0.02I
Moreover, , ρ1, ,   must be selected according to experimental results, since it is difficult to determine the values of , and .
Computing the control law (28) and applying it to the vehicle generated the experimental results shown in Fig. 1 for the first desired yaw and Fig. 2 for the second under the incipient thruster fault. From Figs. 1 and Fig. 2, the tracking performance is satisfactory for the new design, showing the effectiveness of the design for the ROV without velocity measurement.
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(a)
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(b)
Fig. 1  Experimental results for the first desired yaw.
(a) Yaw angle. (b) Tracking error.
[image: ]
(a)
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(b)
Fig. 2  Experimental results for the second desired trajectory.
(a) Yaw angle. (b) Tracking error.
AUV simulation results
The center gravity for an open-frame AUV can be adjusted to be lower than its center of buoyancy and also the pitch and roll angles have only small values, fluctuating near zero, during operation. In such cases, the interaction between the horizontal and vertical planes can be neglected. In this paper, therefore, the horizontal plane is considered.
For the ODIN underwater vehicle, the following model matrices are used


	

	

	


	, 



	, , 
		(44)

where v and vr denote, respectively, the vehicle’s absolute and relative, velocities with respect to the ocean current in the body-fixed frame. Also the ocean current is simulated as in [20], and its direction is assumed be of fixed value π/4 with respect to the inertial frame.
This vehicle has four identical thrusters in the horizontal plane with configuration matrix  


		(45)

with θ = 1/4π; Rz = 0.508. Also the initial position and velocity vectors 

	η(0) = [0.05, 0.05, 0.01]T,  (0) = 0	(46)



In the reference trajectory model (21),  = 3 and  = 0.8. And the neural network (3) has 6 hidden layers and the input vector x formed from and. The number of outputs is 3 and all weights are randomly selected in the range [0, 0.5].

In the sliding mode observer, T2 = I and then an LMI solver is used to compute P, L1 and L2 from (20). Then the rest of the parameters are selected based on (13)-(16). Moreover the term  ensures that   do not need to be large.
The parameters used in the simulation results are 
 = 2,  = 2, L1 = 2.5I, L2 = -0.222I, P1 = 1.1546I, 
P2 = 1.4845I,  = 4P1,  = 50I,  = 20.5I,  = 4/5,
 = (T2 - L1 + 0.3I),  = 0.125diag(1, 1, 0.4).
Moreover, , ρ1, κ ,   must be selected according to simulation results, since it is difficult to determine the values of , and .
The control law and the adaptive estimation are constructed using 
 = 5,  = 5/7, k = 5,  = 12/5,
 =  =   =  = 0.5I,  = 150I,  = 0.01I
In simulation, the incipient thruster fault of (43) is considered again, where it is assumed that the fault occurs in the first thruster with f = 0.3. Also the desired trajectory is an “8” type, given by



	, 


	, 	(47)

To provide a comparison, designs based on a high-gain observer and a terminal sliding mode observer, respectively, are also considered. In the first of these two cases, the final control law is again of the form and the structure of the law developed in this paper and the parameters in the neural network are not changed. Hence in this case


	

	

		(48)

where L1 = L2 = diag(2, 2, 10),  = [6, 3, 7.5]T and the saturation function sat(s) is given by


		(49)

Similarly, the terminal sliding mode observer based controller is given by

	


	,    	(50)
where, T2 = I, L1 = 2.5I, L2 = -0.222I,  = 0.5,  = 2.5,  = 0.1 and the sliding surface is again given by the third entry in (48).
In the case of the incipient fault, Fig. 3 gives the simulation results for the new design in this paper and Fig. 4 and Fig. 5, respectively, show the results for the high-gain observer based controller and the terminal sliding mode observer based controller. These results show that the new controller has distinct advantages in terms of tracking error, energy consumption and chattering reduction.
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(a)
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(b)
Fig. 3  Simulation results for the new design.
(a) Tracking error. (b) Control output.
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(a)
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(b)
Fig. 4  Simulation results for the high-gain observer-controller.
(a) Tracking error. (b) Control output.

[image: ]
(a)
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(b)
Fig. 5  Simulation results for the terminal sliding mode observer.
(a) Tracking error. (b) Control output.

From Figs. 3-5, among these three methods, the estimation based on high-gain observer is worst in the early stage, and the chattering phenomenon in the control output in this stage is most pronounced. In high-gain observer based controller, satisfactory tracking performance requires the gain in the observer to be large, but such a gain would also cause serious chattering in the control output. In the terminal sliding mode observer based controller, although it avoids large gain in the observer and has good performance in the early stage compared with the high-gain observer based controller, the signature function in the feedback of the observer leads to the discontinuity of the control law, resulting in the largest energy consumption and chattering value among these three methods. Experimental validation is the next step as further research.
Conclusion
This paper has developed new results on the fault tolerant control problem for underwater vehicles without velocity measurement. An adaptive sliding mode observer based fault tolerant control has been developed where the estimation error of the constructed observer converges to zero in a finite time. Also Lyapunov stability analysis has been used to show that the sliding surface converges in a well defined sense in a finite time and that the tracking error exponentially converges in the same sense. Experiment results on a Beaver 2 ROV in yaw angle tracking confirm the effectiveness of the new design. The new design has also been applied to the ODIN AUV and compared with two alternative designs. The results show that the new design can deliver better performance in the early stages and has superior tracking precision. It also requires less energy and has less chattering of the designs considered. Future research will include the pool experiment verification on the AUV and then lake tests.
Appendix 1






The following notation is used throughout the paper. J is the  transformation matrix from the inertial frame to the body frame;; and Vc is the  ocean current vector with respect to the body frame;  is the   mass matrix including added mass effects described in the inertial frame;  is the  rigid-body Coriolis and centripetal matrix described in the inertial frame;  is the  hydrodynamic Coriolis and centripetal matrix described in the inertial frame;   is the   drag matrix described in the inertial frame;  is the  vector of gravity and buoyancy forces and moments.
Appendix 2
The proof is based on the following Lyapunov function


		(51)


Taking the derivative of V1 and making use of Young’s inequality (where both X and Y are column vectors of the same dimension and  is a positive scalar) plus extensive, but routine, manipulations gives


		(52)


Hence there exists a positive constant, say R, such that when , , and therefore the estimation error Δ is bounded.
References
[1]	C. P. Bechlioulis, G. C. Karras, S. Heshmati-Alamdari, and K. J. Kyriakopoulos, "Trajectory Tracking With Prescribed Performance for Underactuated Underwater Vehicles Under Model Uncertainties and External Disturbances," IEEE Transactions on Control Systems Technology, vol. 25, pp. 429-440, Mar 2017.
[2]	W. Caharija, K. Y. Pettersen, M. Bibuli, P. Calado, E. Zereik, J. Braga, et al., "Integral Line-of-Sight Guidance and Control of Underactuated Marine Vehicles: Theory, Simulations, and Experiments," IEEE Transactions on Control Systems Technology, vol. 24, pp. 1623-1642, Sep 2016.
[3]	S. H. Li, X. Y. Wang, and L. J. Zhang, "Finite-Time Output Feedback Tracking Control for Autonomous Underwater Vehicles," IEEE Journal of Oceanic Engineering, vol. 40, pp. 727-751, Jul 2015.
[4]	M. Bayat, N. Crasta, A. P. Aguiar, and A. M. Pascoal, "Range-Based Underwater Vehicle Localization in the Presence of Unknown Ocean Currents: Theory and Experiments," IEEE Transactions on Control Systems Technology, vol. 24, pp. 122-139, 2016.
[5]	Z. Chu, D. Zhu, and S. X. Yang, "Observer-Based Adaptive Neural Network Trajectory Tracking Control for Remotely Operated Vehicle," IEEE Transactions Neural Networks Learn Systems, vol. 28, pp. 1633-1645, Jul 2017.
[6]	Z. L. Zhao and B. Z. Guo, "A Novel Extended State Observer for Output Tracking of MIMO Systems With Mismatched Uncertainty," IEEE Transactions on Automatic Control, vol. 63, pp. 211-218, Jan 2018.
[7]	T. I. Fossen and A. M. Lekkas, "Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents," International Journal of Adaptive Control and Signal Processing, vol. 31, pp. 445-463, Apr 2017.
[8]	J. C. Kinsey, Q. J. Yang, and J. C. Howland, "Nonlinear Dynamic Model-Based State Estimators for Underwater Navigation of Remotely Operated Vehicles," IEEE Transactions on Control Systems Technology, vol. 22, pp. 1845-1854, Sep 2014.
[9]	D. D. Fernandes, A. J. Sorensen, K. Y. Pettersen, and D. C. Donha, "Output feedback motion control system for observation class ROVs based on a high-gain state observer: Theoretical and experimental results," Control Engineering Practice, vol. 39, pp. 90-102, Jun 2015.
[10]	Z. Z. Chu and M. J. Zhang, "Fault reconstruction of thruster for autonomous underwater vehicle based on terminal sliding mode observer," Ocean Engineering, vol. 88, pp. 426-434, Sep 15 2014.
[11]	M. L. Corradini, A. Monteriu, and G. Orlando, "An Actuator Failure Tolerant Control Scheme for an Underwater Remotely Operated Vehicle," IEEE Transactions on Control Systems Technology, vol. 19, pp. 1036-1046, Sep 2011.
[12]	A. Bagheri, T. Karimi, and N. Amanifard, "Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers," Applied Soft Computing, vol. 10, pp. 908-918, Jun 2010.
[13]	Y. J. Wang, M. J. Zhang, P. A. Wilson, and X. Liu, "Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault," Ocean Engineering, vol. 110, pp. 15-24, Dec 1 2015.
[14]	M. Brito and G. Griffiths, "A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions," Reliability Engineering & System Safety, vol. 146, pp. 55-67, Feb 2016.
[15]	X. B. Xiang, C. Y. Yu, and Q. Zhang, "On intelligent risk analysis and critical decision of underwater robotic vehicle," Ocean Engineering, vol. 140, pp. 453-465, Aug 2017.
[16]	S. Laghrouche, J. X. Liu, F. S. Ahmed, M. Harmouche, and M. Wack, "Adaptive Second-Order Sliding Mode Observer-Based Fault Reconstruction for PEM Fuel Cell Air-Feed System," IEEE Transactions on Control Systems Technology, vol. 23, pp. 1098-1109, May 2015.
[17]	C. P. Tan, X. H. Yu, and Z. H. Man, "Terminal sliding mode observers for a class of nonlinear systems," Automatica, vol. 46, pp. 1401-1404, Aug 2010.
[18]	J. A. Moreno and M. Osorio, "A Lyapunov approach to second-order sliding mode controllers and observers," in 2008 47th IEEE Conference on Decision and Control, 2008, pp. 2856-2861.
[19]	F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, "New methodologies for adaptive sliding mode control," International Journal of Control, vol. 83, pp. 1907-1919, 2010.
[20]	M. J. Zhang, X. Liu, B. J. Yin, and W. X. Liu, "Adaptive terminal sliding mode based thruster fault tolerant control for underwater vehicle in time-varying ocean currents," Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 352, pp. 4935-4961, Nov 2015.



[bookmark: _GoBack]
image2.wmf
1

  ()

GJMB

h

h

-

=


image47.wmf
e

h

&


oleObject47.bin

image48.wmf
221

    

eee

T

hzz

=+

&


oleObject48.bin

image49.wmf
  ()

hss

y

=


oleObject49.bin

image50.wmf
(

)

3

ˆ

  

r

h

hssigns

lf

=--

&


oleObject50.bin

image51.wmf
(

)

(

)

(

)

(

(

)

(

)

)

2

2

2

2

112

  2  2

      2    (,)

ˆ

      

nRnR

eee

nd

r

uG

eF

kssigns

hwhxwh

whhzz

y

+

=-+L-

+-L+L-

-+

&

&


oleObject51.bin

oleObject2.bin

image52.wmf
ˆ

ˆ

  

T

W

WsQ

l

=-

&


oleObject52.bin

image53.wmf
ˆ

ˆ

  

TT

QWsx

aa

al

=-

&


oleObject53.bin

image54.wmf
(

)

1

ˆ

ˆ

  

TT

N

QWsQ

bb

bl

-

=-

&


oleObject54.bin

image55.wmf
(

)

11

ˆ

ˆ

  

TT

N

QWsF

gg

gl

-

=-

&


oleObject55.bin

image56.wmf
222

1

    

2

T

VssV

=+


oleObject56.bin

image3.wmf
(

)

1

(,)  ()(,)

              + (,)

              + (,)

              + ()  

RB

Arrr

rrr

T

FMC

C

D

gJBKu

hh

h

h

h

hhhhh

hhh

hh

h

h

h

-

-

=

-

&&

&&

&

&

&


image57.wmf
(

)

(

)

(

)

(

)

(

)

11

22

1

11

11

    

22

111

          

222

TT

W

TTT

h

VtrWWtr

trtrhh

a

bgV

lala

blbglgll

--

-

--

=+

+++

%%

%%

%%

%%

%%


oleObject57.bin

image58.wmf
[

]

(

(

)

222

2

1122

    

     2  0

     0      

T

T

VssV

sIIeIe

IV

=+

éù

=L+L

ëû

ö

X

æö

+-+D+D+

÷

ç÷

X

èø

ø

&&

&

&

&&

&


oleObject58.bin

image59.wmf
(

)

(

)

2

1

2

1

ˆ

ˆ

       

2

Tr

TT

h

Vkssshshshh

V

ll

-

=-+-+

&

%

&


oleObject59.bin

image60.wmf
(

)

(

)

(

)

2

3

2

2

22

1

1

  

ˆ

       1  

      0

Tr

T

r

b

r

Vkss

Hhss

k

V

f

-

-

+

£-

+--

£-<

&


oleObject60.bin

image61.wmf
(

)

(

)

11

2

22

   2  0d    

ˆ

ˆ

a

ee

sIIIt

ee

fef

æöæö

£=L+L+£

ç÷ç÷

èøèø

ò


oleObject61.bin

oleObject3.bin

image62.wmf
(

)

2

1

2

  

  

a

edt

fe

+L

£

L

ò


oleObject62.bin

image63.wmf
111

exp()  exp()  exp()

d

tedttedtte

dt

L=LL+L

òò


oleObject63.bin

image64.wmf
(

)

2

1

  

  2

a

e

fe

+L

£

L


oleObject64.bin

image65.wmf
(

)

  sin0.05

4

d

t

p

j

=


oleObject65.bin

image66.wmf
(

)

(

)

  1  exp0.1

4

d

t

p

j

=--


oleObject66.bin

image4.wmf
minmax

()

uuiu

££


image67.wmf
(

)

(

)

11

                   0,                   

   20

      

1  exp(20)/4,    20

t

k

ftt

<

ì

ï

=

í

*---³

ï

î


oleObject67.bin

image68.tiff
Yaw Angle (rad)

desired|
real

50

100
Time (s)

150

200




image69.tiff
0.10 |

0.
0.00

(peu) Jourg Sunyorl],

-0.05 -

-0.10

100 150 200

Timc (s)

50




image70.tiff
Yaw Angle (rad)

real

desired|

100

Time (s)

150

200




image71.tiff
0.5

0.4

] o =
o =) =3

(per) 1o11g Sun{orI]

L
=
S

-0.1

100 150 200

Time (s)

50




image72.wmf
(

)

  187.39187.3940

Mdiag

=


oleObject68.bin

image73.wmf
(

)

(

)

(

)

(

)

(

)

001252

  001251

125212510

RB

v

Cvv

vv

é-ù

êú

=

êú

êú

-

ëû


oleObject69.bin

oleObject4.bin

image74.wmf
(

)

(

)

(

)

(

)

(

)

001252

  001251

125212510

r

Arr

rr

v

Cvv

vv

é-ù

êú

=

êú

êú

-

ëû


oleObject70.bin

image75.wmf
(

)

(

)

  

r

DvdiagDDD

abg

=


oleObject71.bin

image76.wmf
(

)

  0

g

h

=


oleObject72.bin

image77.wmf
(

)

1481100

r

Dv

a

=+


oleObject73.bin

image78.wmf
(

)

1482100

r

Dv

b

=+


oleObject74.bin

image5.wmf
1

  (,,,)

FWQx

abg

=


image79.wmf
(

)

2803230

r

Dv

g

=+


oleObject75.bin

image80.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

sinsinsinsin

  sinsinsinsin

zzzz

B

RRRR

qqqq

qqqq

é--ù

êú

=--

êú

êú

--

ëû


oleObject76.bin

image81.wmf
1

z


oleObject77.bin

image82.wmf
2

e

z


oleObject78.bin

image83.wmf
1

1

2211

()

r

Psign

r

-

DD


oleObject79.bin

oleObject5.bin

image84.wmf
[

]

  

T

dddd

xy

hj

=


oleObject80.bin

image85.wmf
  2sin(0.5)

d

xt

=


oleObject81.bin

image86.wmf
  2cos(0.25)

d

yt

=-


oleObject82.bin

image87.wmf
(

)

(

)

  0.11  exp/5

d

tt

j

=--


oleObject83.bin

image88.wmf
1211

2221221

    

    (,)    

ee

eeee

L

TFGuL

zz

zzzz

=-D

=-++-D

&

&


oleObject84.bin

image6.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

11

(,,,)  1/1  exp

NN

QxiixiQiF

abgabg

--

=+---


image89.wmf
(

)

(

)

11

2

22

  2  0d

ˆ

ˆ

ee

sIIIt

ee

æöæö

=L+L

ç÷ç÷

èøèø

ò


oleObject85.bin

image90.wmf
(

)

ˆ

  

h

sats

yr

=-


oleObject86.bin

image91.wmf
/,     0.5

()  

(),      0.5

serrors

sats

signss

ì

<

ï

=

í

³

ï

î


oleObject87.bin

image92.wmf
(

)

(

)

(

)

1212111

2

2212212

2111

        

      (,)

          

c

eee

c

eeeee

r

c

TLsign

TTF

GuLsign

zzza

zzzzz

b

=+-D-D

=--+

+-D-DD

&

&


oleObject88.bin

image93.wmf
(

)

ˆ

ˆ

  

hsats

y

=


oleObject89.bin

oleObject6.bin

image94.wmf
ˆ

  

c

hs

l

=-

&


oleObject90.bin

image95.tiff
Tracking Frror (m, m, rad)

0.08

0.06

-0.02

-0.04

aon

aon|

a.0m)

uo02|

1
\fault occurance

—X
—Y
— Yaw|

20 30
Time (s)

40 50




image96.tiff
200

S o 9
=3 3

(N) mding jonuoyy (N) mdingy jonuoy

-200
200
0
100
-200

Time (s)




image97.tiff
—X
e €
— Yaw,

fault occurance

% %) = o ) a =
= =3 =3 2 3 =) =
= = = =3 = = <

(ped ‘w ‘wr) doas] Supjoed]

50

40

10

Time (s)




image98.tiff
2 o o
S 3

(N) nding jonuoyy (N) mding [onuoy

200
-200
200
0
100
-200

Time (s)




image99.tiff
Tracking Error (m, m, rad)

0.08

0.06

0.04

0.02

0.00

-0.02

-0.04

0.008,

0.004]

0.000]

0.004

-0.008

fault occurance

"
i
I
I
'
1
I
'
1
L

20 30
Time (s)

40

50




image100.tiff
200

>

(N) mdingy _oz_:ou

Time (s)

10
10

-200
100
-200

(N) mdingy jonuoy




image101.wmf
rc

V

hh

=-

&


oleObject91.bin

image7.wmf
****

(,)  (,,,)  

f

FWQx

habg

h

e

=+

&


image102.wmf
()

M

h

h


oleObject92.bin

image103.wmf
(,)

RB

C

h

hh

&


oleObject93.bin

image104.wmf
(,)

Arr

C

h

hh

&


oleObject94.bin

image105.wmf
(,)

rr

D

h

hh

&


oleObject95.bin

image106.wmf
()

g

h

h


oleObject96.bin

oleObject7.bin

image107.wmf
(

)

1111

    

T

T

VPdtPdt

a

k

=DD+DD

òò


oleObject97.bin

image108.wmf
1

2    

TTT

o

o

XYXXYY

e

e

£+


oleObject98.bin

image109.wmf
(

)

1

1min2

  ()  2  

r

o

VQaP

v

lr

£-DD-D+

&


oleObject99.bin

image110.wmf
  

R

D<


oleObject100.bin

image111.wmf
1

  0

V

<

&


oleObject101.bin

image8.wmf
****

  (,)  (,)

ˆ

ˆ

ˆ

ˆ

     (,,,)  (,,,)  

ˆ

ˆ

           

e

f

f

FFF

WQxWQx

WQWQWQ

hh

abgabge

h

e

h

=-

=-+

=+++

&

%

%%

&

%

%


oleObject8.bin

image9.wmf
(

)

(

)

(

(

)

)

(1)

1(1)

ˆ

    

ˆ

ˆ

              

TT

N

T

Nnf

FWQxQQ

QFWQWQWO

ab

g

ab

ge

-

-

=+

+++++

%

%

%

%

%%

%


oleObject9.bin

image10.wmf
1

zh

=


oleObject10.bin

image11.wmf
2

zh

=

&


oleObject11.bin

image12.wmf
12

  

T

TT

zzz

éù

=

ëû


oleObject12.bin

image13.wmf
T

zz

=


oleObject13.bin

image14.wmf
2

0

  

I

T

TI

éù

=

êú

-

ëû


oleObject14.bin

image15.wmf
12

0

0

      

(,)

Au

F

G

zz

zz

éù

éù

=++

êú

êú

ëû

ëû

&


oleObject15.bin

image16.wmf
(

)

2

2

22

TI

A

TT

éù

=

êú

--

êú

ëû


oleObject16.bin

image17.wmf
(

)

12121

2

22122

122

    

    

      (,)    

eee

eee

ee

T

TT

FGu

zzzm

zzz

zzm

=++

=--

+++

&

&


oleObject17.bin

image18.wmf
12

(,)  (,)

eee

FF

zh

h

z

º

&


oleObject18.bin

image19.wmf
(

)

(

)

(

)

1

0.5

11111111

1

22122111

        

      

a

r

Lsigndt

LPsignasign

l

v

mrkk

mr

-

=-D-DD-D-D

=-D-DD-D

ò


oleObject19.bin

image20.wmf
{

}

1111

n

Ldiagll

=

L


oleObject20.bin

image21.wmf
{

}

2212

n

Ldiagll

=

L


oleObject21.bin

image22.wmf
111

e

zz

D=-


oleObject22.bin

image23.wmf
g


oleObject23.bin

image24.wmf
(

)

1

1

2211

r

Psign

r

-

DD


oleObject24.bin

image25.wmf
a

v


oleObject25.bin

image26.wmf
(

)

(

)

(

)

(

)

(

)

(

)

1

0.5

12112111

11

2

2221221212

1

22111

      

           

     (,)  (,)

           

a

ee

r

TLsign

dt

TLTFF

Psignasign

l

v

r

kk

zzzz

r

-

D=-D+D-DD

-D-D

D=-+D-D+-

-DD-D

ò

&

&


oleObject26.bin

image27.wmf
12

  

T

TT

éù

D=DD

ëû


oleObject27.bin

image28.wmf
222

  

e

zz

D=-


oleObject28.bin

image29.wmf
121222

(,)  (,)    

eee

FF

zzzzszz

-£-


oleObject29.bin

image30.wmf
1

        

T

ooo

o

PAAPPPQ

j

e

+++=-


oleObject30.bin

image31.wmf
21

    0

TL

-<


oleObject31.bin

image32.wmf
(

)

(

)

(

)

2

3

121

3

1

2  5    

  

2  

a

a

a

pTL

p

l

rk

k

r

+--

>

-


oleObject32.bin

image33.wmf
  

a

vc

>H


oleObject33.bin

image34.wmf
1

  2

c

r

>H


oleObject34.bin

image35.wmf
(

)

(

)

21

2

222

  

o

TLI

A

TLT

-

éù

êú

=

-+-

êú

ëû


oleObject35.bin

image36.wmf
12

  

a

vk

=-D+D

&

&


oleObject36.bin

image1.wmf
  (,)

GuF

h

h

h

=-

&

&&


image37.wmf
(

)

(

)

(

)

(

)

0.5

1211111

1

11

    

        

      

a

TLsign

asignt

l

v

r

kv

vkc

D=-D-DD

-D+

=-D-D+

&

&


oleObject37.bin

image38.wmf
(

)

(

)

(

)

1

2

22122

1212

1

2211

()      

         (,)  (,)

         

ee

r

tTLT

FF

Psign

c

zzzz

r

-

=-+D-D

+-

-DD


oleObject38.bin

image39.wmf
(

)

(

(

)

)

1

12211

21

    2

     

r

TT

o

VQsign

aPsign

v

r

£-DD-DDD

+D

&


oleObject39.bin

image40.wmf
1min2

  ()

o

VQ

l

£-D

&


oleObject40.bin

image41.wmf
00

  0

TTT

cc

o

PAAPYCCYP

PI

j

e

éù

+--+

<

êú

-

ëû


oleObject41.bin

oleObject1.bin

image42.wmf
(

)

2

2

0

0

    

2

RR

d

n

RR

nn

I

I

II

hh

h

w

hh

wwx

éù

éù

éùéù

=+

êú

êú

êúêú

--

ëûëû

ëû

êú

ëû

&

&&&


oleObject42.bin

image43.wmf
1

2

    

R

R

e

e

e

hh

hh

-

éùéù

==

êúêú

-

ëûëû

&&


oleObject43.bin

image44.wmf
(

)

2

2

0

  

2

0

0

        

00

00

        

(,)

R

R

nn

d

n

I

e

II

I

I

u

FG

h

h

wwx

h

h

w

h

h

h

éù

éù

=

êú

êú

--

ëû

êú

ëû

éù

éùéù

+-

êú

êúêú

ëûëû

ëû

éùéù

--

êúêú

ëûëû

&

&

&

&


oleObject44.bin

image45.wmf
[

]

11

2

11

22

  2      0d

ˆ

ˆ

ee

sIIdtIt

ee

éùéù

éù

=L+D+D+L

êúêú

ëû

ëûëû

òò


oleObject45.bin

image46.wmf
2

ˆ

    

e

R

e

hh

=-

&&


oleObject46.bin

