Hyperpolarized Fumarate via Parahydrogen – Supporting Information

Barbara Ripka a,†, James Eills b,†,*, Hana Kouřilová b, Markus Leutzsch c, Malcolm H. Levitt b, and Kerstin Münemann a,d

a Max Planck Institute for Polymer Research, Mainz, Germany, b University of Southampton, Southampton, United Kingdom, c Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom, d Technical University of Kaiserslautern, Kaiserslautern, Germany
† These authors contributed equally to this work.
*Corresponding Author: eills@soton.ac.uk

1. Thermal equilibrium 1H spectra

Figure S1 shows thermal 1H reference spectra after trans-hydrogenation for a sample composed of 100 mM acetylenedicarboxylic acid disodium salt and 6 mM [RuCp*(MeCN)3]PF6 in D2O, both with and without 100 mM sodium sulphite present in solution. To react the sample, a high-pressure NMR tube containing the sample solution was pressurised with 5 bar of hydrogen gas and heated to 55°C. The sample tube was shaken vigorously by hand for 300 s. It can be observed that without sodium sulphite (Fig. S5a), the ratio of fumarate:maleate:succinate is 1:0.25:0.18. With 100 mM sodium sulphite in the sample solution (Fig. S5b), the ratio is 1:0:0.09 (i.e. there is no detectable maleate in the 32 transient 1H NMR spectrum).

Figure S1: Thermal 1H NMR spectra after trans-hydrogenation. (a) Reaction solution: 250mM acetylenedicarboxylic acid disodium salt, 6mM [RuCp*(MeCN)3]PF6 in D2O. (b) Reaction solution: as in (a) but with 100mM ammonium sulphite.
2. Relaxation data

Proton and carbon relaxation times were measured on [1-13C]fumarate. The molecule is shown in Figure S2.

![Figure S2: [1-13C]fumarate.](image)

The 1H T_1 was measured by inversion recovery, and the data is shown in Figure S3 along with the pulse sequence.

![Figure S3: Inversion recovery pulse sequence (top) and the T_1 data (bottom).](image)

The 13C T_1 was measured by saturation recovery, and the data is shown in Figure S4 along with the pulse sequence.

![Figure S4: Saturation recovery pulse sequence (top) and the T_1 data (bottom).](image)

The 1H T_1 was measured by the pulse sequence shown in Figure S5. Firstly, proton magnetization is converted into singlet order through the differential J-coupling to the 13C spin, using the M2S pulse sequence. Then, a variable delay allows the singlet order to relax. This is followed by a T_{00} filter [1], which removes spin operators higher than rank-0. Finally, the S2hM sequence is applied to the 13C channel to convert proton singlet order into 13C magnetization for detection.

For the M2S and S2hM sequences, the values $\tau = 15.8$ ms and $n = 7$ were used.
The T_{OFF} filter parameters are given in the table below.

<table>
<thead>
<tr>
<th>PFG</th>
<th>Shape</th>
<th>Strength / Gcm$^{-1}$</th>
<th>Duration / ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>SINE.100</td>
<td>10</td>
<td>8.8</td>
</tr>
<tr>
<td>G_2</td>
<td>SINE.100</td>
<td>-10</td>
<td>4.8</td>
</tr>
<tr>
<td>G_3</td>
<td>SINE.100</td>
<td>-15</td>
<td>4.0</td>
</tr>
</tbody>
</table>