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ABSTRACT 
 

Design exploration in the structural dynamics contexts involves assessment of a large family of designs, 

which frequently leads to a parameter-dependent eigenvalue problem. The present work is inspired by a 

class of structural dynamic problems in the presence of gyroscopy, control, or aeroelasticity that naturally 

give rise to asymmetric coefficient matrices in their governing equations of motion. Here, we restrict our 

attention to the case of a single parameter-dependent eigenvalue problem 𝐀(𝑝)𝐱(𝑝) = 𝜆(𝑝)𝐱(𝑝) that are 

also encountered in the state-space formulation of general dynamical systems. These design alternatives 

vary significantly in their geometrical and physical characteristics. A need to solve a large number of 

similar eigenvalue problems thus arises. In design scenarios, it is computationally inefficient to carry out 

reanalysis for each nominally similar structural design. Here, an algorithm for approximating the natural 

frequencies for a range of parameter-dependent designs is presented. A method based on the interpolation 

of eigenvectors over the parameter interval, in order to calculate eigenvalues economically, is introduced. 

Numerical simulations are carried out for an asymmetric system to demonstrate how the proposed 

technique works. Approximate results compare well with the exact ones while providing significant 

computational economy. The computational saving is found to be increasingly more significant as the size 

of the problem increases. Finally, the computational complexity of the proposed algorithm is assessed. 

 

 

NOMENCLATURE 

 

𝜆 eigenvalue 

𝐱 eigenvector 

𝐱0 eigenvector from the initial reference 

𝐱𝑓 eigenvector from the final reference 

𝐱̆ interpolated vector 

𝑝 parameter 

 

1. INTRODUCTION 

 

Eigenvalue problems are found in a range of 

application from the vibration of structures to 

Google’s Page Ranking algorithm. Dynamical 

systems, such as those containing gyroscopy, 

damping, or involving aeroelasticity lead to an 

asymmetric standard eigenvalue problem 

 𝐀𝐱 = 𝜆𝐱, 𝐀 ≠ 𝐀𝑇 , (1) 

 

where 𝐀 = [−𝐌−1(𝐆 + 𝐂) −𝐌−1(𝐊 + 𝐇)
𝐈 0

], 𝜆 is 

an eigenvalue which corresponds to an eigenvector 

𝐱. Equation (1) represents the equation of motion 

 

 𝐌𝐱̈ + (𝐆 + 𝐂)𝐱̇ + (𝐊 + 𝐇)𝐱 = 𝟎,  (2) 

 

where 𝐌 is the mass matrix; 𝐆 is the gyroscopic 

matrix; 𝐂 is the damping matric; 𝐊 is the stiffness 

matrix; 𝐇  is the circulatory matrix and 𝐈  is an 

identity matrix [1]. In problems involving 

gyroscopy, for example, the matrix associated with 

the time-derivative term is skew-symmetric.  

While creating a finite element model, the 

designers have to go through the evaluation of the 

dynamics of several designs alternatives. Finding 

the natural frequencies of each design leads to a 

large number of evaluations, which is 

computationally demanding. Therefore, at early 

stages of design search, a cheap approximate 

calculation is valuable. In this paper, we consider a 

general case of the form (1) where matrix 𝐀 =
𝐀(𝑝) depends on a design parameter. An algorithm 

for approximating the eigenvalues of such a 

parameter-dependent problem is presented. The 

method is based on an eigenvector interpolation 

from eigenvectors evaluated only at the initial and 

final designs.  

Several approaches [2, 3, 4] have been suggested 

for predicting the bounds for the eigenvalues and 

eigenvectors of a symmetric interval matrix. 



Behnke [5] presented a method for finding 

eigenvalues bounds of a real symmetric parameter-

dependent eigenvalue problem using the Temple 

quotient. However, the author specified that the 

method is suitable for matrices of small size up to 

40 × 40. 

Rohn [6] considered two special cases of symmetric 

and skew-symmetric matrices. They defined the 

bounds for real and imaginary parts of eigenvalues 

using min and max values, central matrix, radius 

matrix. Hladik [7] presented a computationally 

inexpensive formula for calculating the bounds on 

eigenvalues of real and complex parameter-

dependent matrices in the same time improving 

previously mentioned results [6] by presenting low 

computational cost and tighter bounds for 

eigenvalues.  

An asymmetric eigenvalue problem is a harder 

problem than the symmetric one, especially for 

large matrices. Several works attempt to solve this 

problem in more efficient way. Goldhirsch et al. [8] 

proposed an economical scheme, which includes 

filtering, construction and analysis of vectors, to 

obtain leading eigenvalues and eigenvectors for 

large asymmetric matrices. Saad [9] presented a 

technique based on Chebyshev polynomials to 

compute a few eigenvalues with the largest or the 

smallest real parts of asymmetric eigenvalue 

problems. Bai [10] presented comparative review 

of several algorithms and suggested a new 

technique to solve an asymmetric eigenvalue 

problem. 

Most works approximate the bounds of eigenvalues 

or solve a single asymmetric eigenvalue problem in 

efficient way. By contrast, the aim of the research 

presented here is to develop a computationally 

economic approximation of eigenvalues for several 

design problems that depends on a parameter.  

Previously there were some works done for the 

problem in terms of symmetric eigenvalue 

problems [11, 12]. Here we extend the same 

analysis for the case of asymmetric matrices that 

arises in a class of structural dynamic problems. 

Asymmetry of the coefficient matrices necessitates 

the use of a different set of orthogonality relations, 

a new definition of the Rayleigh quotient, and the 

consideration to an adjoint eigenvalue problem 

associated with the transpose of the original.  

2.  THE MODE INTERPOLATION 

ALGORITHM FOR EIGENVALUE 

APPROXIMATION 
 

The algorithm presented here is a generalisation of 

an interpolated modes method which makes use of 

the Rayleigh quotient using a trial vector that is rich 

in its components along the exact eigenvector. 

Consider first a parameter-dependent eigenvalue 

problem in terms of a symmetric matrix 𝐀 

 𝐀(𝑝)𝐱(𝑝) = 𝜆(𝑝)𝐱(𝑝), (3) 

where 𝑝0 ≤ 𝑝 ≤ 𝑝𝑓 ,  𝐱  is an eigenvector that 

corresponds to an eigenvalue 𝜆.  A mode-

interpolation based approximation was proposed in 

[11, 12], which is presented in this section before a 

generalisation of the same is taken up in section 3. 

The interpolation is based on two exactly calculated 

eigenvectors from the initial eigenvalue problem  

 𝐀0𝐱0 = 𝜆𝐱0, (4) 

where 𝐀0 = 𝐀(𝑝 = 𝑝0) and from the final 

eigenproblem  

 𝐀𝑓𝐱𝑓 = 𝜆𝐱𝑓 , (5) 

where 𝐀𝑓 = 𝐀(𝑝 = 𝑝𝑓). The approximate 

eigenvalues are calculated using the Rayleigh 

quotient  

 𝜆̆(𝑝) =
𝐱̆𝑇(𝑝)𝐀(𝑝)𝐱̆(𝑝)

𝐱̆𝑇(𝑝)𝐱̆(𝑝)
 (6) 

with exact matrix 𝐀 at each parametric point and 

the interpolated vector  

𝐱̆(𝑝) =
(𝑝𝑓 − 𝑝)𝐱0 + sgn(𝐱0

𝑇𝐱𝑓)(𝑝 − 𝑝0)𝐱𝑓

𝑝𝑓 − 𝑝0
. (7) 

 

Signum function of a dot product of eigenvectors 

𝐱0 and 𝐱𝑓 in (7) is used to ensure that the sense of 

the eigenvectors chosen at the ends of parametric 

range is such that the angle between them is acute, 

which is to ensure that interpolation is not 

erroneously carried out between two vectors of 

approximately opposite directions. So, equation (7) 

asserts that when the product of eigenvectors 

𝐱0
𝑇𝐱𝑓 > 0,  a positive sign is used in the 



interpolation. Otherwise when, 𝐱0
𝑇𝐱𝑓 < 0 the sign 

in (7) is changed to a negative. 

In the previous work [12], the algorithm was tested 

on several numerical examples which showed 

excellent accuracy and computational efficiency.  

The interpolated modes method is now extended to 

an approximation of an asymmetric parameter-

dependent eigenvalue problem which is taken up 

next. 

3. ASYMMETRIC EIGENVALUE 

PROBLEM APPROXIMATION 
 

Consider a standard parameter-dependent 

eigenvalue problem (3) in terms of asymmetric 

matrix 𝐀 ≠ 𝐀𝑇 .  Several modifications to the 

interpolated modes method for symmetric matrices 

[11, 12]  need to be made now. They are dictated by 

new orthogonality relations for asymmetric 

matrices. In case of a single real symmetric matrix, 

eigenvectors are orthogonal. For asymmetric case, 

left and right eigenvectors of a matrix 𝐀 

corresponding to distinct eigenvalues are 

orthogonal [1]. In other words, eigenvectors of the 

matrix and its transposed matrix are biorthogonal. 

Therefore, an eigenvalue problem associated with 

transposed matrix 𝐀𝑇 needs to be solved to find a 

left eigenvector. So, for the present case, four 

eigenproblems: (4), (5) and  

 𝐀0
𝑇𝐲0 = 𝜆𝐲0 (8) 

 

 𝐀𝑓
𝑇𝐲𝑓 = 𝜆𝐲𝑓 (9) 

 

should be solved before the interpolation can take 

place. Their eigenpairs are complex and do not 

appear in an order. It is impossible to determine 

which complex value is larger or smaller, as 

complex numbers consist of real and imaginary 

parts. Hence, they cannot be sorted in ascending or 

descending orders. Therefore, eigenvalues need to 

be sorted by some other criteria. Here, the 

eigenvalues are sorted in ascending order by their 

real parts. As a conjugate pair has equal real parts, 

it is important to sort the numbers within a pair in 

the same order too. For example, a complex number 

with a positive imaginary part is chosen first 

followed by one with a negative imaginary part. 

The corresponding eigenvectors are normalised and 

sorted by order of the corresponding eigenvalues. 

 

A new definition of the Rayleigh quotient valid for 

asymmetric eigenvalue problems [1] needs to be 

involved 

 𝜆̆(𝑝) =
𝐲̆𝑇(𝑝)𝐀(𝑝)𝐱̆(𝑝)

𝐲̆𝑇(𝑝)𝐱̆(𝑝)
, (10) 

where  𝐲̆  and 𝐱̆  are the left and the right 

eigenvectors given by  

 𝐱̆(𝑝) =
(𝑝𝑓 − 𝑝)𝐱0 + (𝑝 − 𝑝0)𝐱𝑓

𝑝𝑓 − 𝑝0
 (11) 

and  

 

 
𝐲̆(𝑝) =

(𝑝𝑓 − 𝑝)𝐲0 + (𝑝 − 𝑝0)𝐲𝑓

𝑝𝑓 − 𝑝0
 (12) 

respectively. These two interpolations make use of 

exactly calculated eigenvectors 𝐱0,  𝐱𝑓 , 𝐲0  and 𝐲𝑓 

from using equations (4), (5), (8) and (9) 

respectively. 

The interpolated modes method in [11] was 

inspired by the stationarity of the Rayleigh 

quotient. Equation (10) makes use of a Rayleigh 

quotient based approximation that utilises (i) actual 

parameter-dependent matrix 𝐀(𝑝)  at 𝑝 , and (ii) 

interpolated left and right eigenvectors 𝐲̆(𝑝)  and 

𝐱̆(𝑝). We could make another Rayleigh quotient 

based approximation using exact 𝐀(𝑝)  at the 

parameter value 𝑝, but trial vectors fixed at one or 

the other end of the parameter interval. It would be 

interesting to compare how approximations based 

on the proposed interpolated modes compare with 

those employing eigenvectors fixed at one end. 

If a parameter 𝑝  of the system changes, the 

eigenvalues along all parametric range could be 

approximated by Rayleigh quotient based on 

reference trial vectors at the initial  

 𝜆̃(𝑝) =
𝐲0

𝑇𝐀(𝑝)𝐱0

𝐲0
𝑇𝐱0

 (13) 

and final states of parametric range   

 𝜆̃̃(𝑝) =
𝐲𝒇

𝑇𝐀(𝑝)𝐱𝑓

𝐲𝑓
𝑇𝐱𝑓

 (14) 



using the exact eigenvectors from eigenvalue 

problems (4), (8), (5) and (9) respectively.  

4. A NUMERICAL EXAMPLE FOR 

SYSTEMS INVOLVING ASYMMETRIC 

MATRICES 

A computer program for approximating the 

eigenvalues for a standard asymmetric parameter-

dependent eigenvalue problem is developed in the 

MATLAB environment [13]. Consider a standard 

parameter-dependent eigenvalue problem (3) 

involving an asymmetric matrix 𝐀 ≠ 𝐀𝑇 where 𝑝 is 

in a range 0 ≤ 𝑝 ≤ 1  with 10 numbers of 

subdivisions over the parameter interval. Two 

arbitrary asymmetric matrices of size 1000 ×
1000 were generated and assigned as initial 𝐀0 =
𝐀(𝑝 = 0)  and final 𝐀𝑓 = 𝐀(𝑝 = 1)  matrices. As 

matrices are randomly generated a parametric 

problem needs to be created to connect those. For 

simplicity of illustration, the entries of 𝐀(𝑝)  are 

taken to be linearly varying with the parameter 𝑝 

within the interval, so that 

 𝐀(𝑝) = 𝐀0 + 𝑝(𝐀𝑓 − 𝐀0). (15) 

The numerical calculations were carried out within 

a MATLAB implementation which makes use of 

the method presented in the previous section. The 

first 10 eigenvalues are calculated (i) exactly, (ii) 

by the proposed interpolated modes method, and 

(iii) reference fixed mode based Rayleigh quotient. 

For demonstration, only the first two eigenvalues 

are presented in Figure 1 and 2. 

As it was stated before, the eigenvalues of 

asymmetric eigenvalue problem are complex. So, 

approximations for their real and imaginary parts 

are presented separately. In this example, the first 

two eigenvalues are a conjugate pair shown in 

Figure 1 and 2. The figure for the real part of the 

second eigenvalues is omitted as a conjugate pair 

have identical real parts, shown in Figure 1(a), and 

opposite sign imaginary parts, shown in Figure 1(b) 

and 2. 

The computed values of the interpolated modes 

method marked by black dots in Figure 1 and 2 are 

in excellent agreement with the exact eigenvalues 

presented by thick red line. The Rayleigh quotient 

approximation based on eigenvectors 𝐱0 and 𝐱f 

fixed at the ends 𝑝 = 0 and 𝑝 = 1 are marked by 

thin green and blue lines respectively Figure 1 and 

2 as labelled. 

 
(a) 

 
(b) 

Figure 1: Real (a) and imaginary (b) parts of the second 

eigenvalue λ1 as a function of parameter p of an eigenvalue 

problem with respect to an asymmetric arbitrary matrix of size 

1000 × 1000  computed exactly (thick red line), by the 

interpolated modes method (black dots) and reference fixed 

mode Rayleigh quotient (thin green and blue lines as 

labelled). 

Approximations based on equations (13) and (14) 

show good eigenvalue prediction close to the taken 

reference. However, their accuracy deteriorates 

further away from the reference point. As opposed 

to this, the approximation based on the proposed 

method (10) matches extremely well throughout the 

whole parameter range 0 ≤ 𝑝 ≤ 1. The numerical 

results based on the interpolated modes are so good 

that the exact values (red lines) are practically 



indistinguishable from the approximate ones (black 

dots).   

 
Figure 2: Imaginary part of the second eigenvalue λ2  as a 

function of parameter p  of an eigenvalue problem with 

respect to an asymmetric arbitrary matrix of size 1000 ×
1000 computed exactly (thick red line), by the interpolated 

modes method (black dots) and reference fixed mode 

Rayleigh quotient (thin green and blue lines as labelled). 

The percentage error of the first 10 modes between 

exact and approximated eigenvalues is calculated to 

assess the accuracy of the presented method and to 

compare the errors involve with those using the 

fixed reference based Rayleigh quotient 

approximation. The maximal error along parameter 

range for each real and imaginary parts are 

presented in Figure 3(a) and 3(b) respectively. 

The error while using interpolated modes method, 

marked with black dots, is very close to zero with 

the largest being of 2.9 × 10−4%  and 0.03% in 

real and imaginary parts respectively. Such small 

error indicate excellent accuracy achieved in 

calculations while using the interpolated modes 

method. The accuracy of the fixed mode Rayleigh 

quotient approximation is worse than the proposed 

method, as the errors are significantly larger, which 

is shown in Figure 3.  

Another advantage of the approximation presented 

here is the computational efficiency. In this 

example, the run time is 9.62 s to solve 10 

eigenvalue problems of size 1000 × 1000 exactly 

within MATLAB environment. The interpolated 

modes approximation requires 5.78 s to 

approximate all the eigenvalues, which is in 1.7 

times less than exact. Moreover, the actual 

approximation, Rayleigh quotient (10) and 

interpolated vectors (11), (12) took 1.98 s, as the 

rest of this time was spent on solving initial (4), (5) 

and final (8), (9) eigenproblems exactly. 

Calculating the exact eigenvectors form both ends 

of a parametric range is the most expensive 

procedure in the proposed algorithm but it is still 

more efficient than calculating each problem (10 in 

this case) exactly. This becomes even more 

significant when the number of such evaluations is 

even greater since the computational time would 

scale linearly with the number of such intermediate 

calculations.  

 
(a) 

 
(b) 

Figure 3: The maximum percentage error for the first 10 real  

(a) and imaginary (b) parts of eigenvalues over a parameter 

range calculated between exact and eigenvalues approximated 

by the interpolated modes method (black dots)  and reference 

fixed mode Rayleigh quotient (blue and green dots as 

labelled).  



In most of practical problems, considering only the 

first few modes is enough. In such cases, the 

algorithm required 4.22 s to approximate the first 

10 eigenvalues, which is in 2.3 times less than exact 

calculations. This significant computational gain 

could even increase depending on the number of 

approximated values required, the size of the 

eigenvalue problem and the number of designs. 

Therefore, an asymmetric parameter-dependent 

eigenvalue problem can be approximately solved 

by the interpolated modes method which is 

computationally significantly inexpensive.  

5. CONCLUSIONS 

In this paper, the method for approximating the 

eigenvalues for systems depending on a design 

parameter and involving asymmetric matrices is 

proposed. The approach is based on a Rayleigh 

quotient approximation using the interpolated 

vectors that include the exact eigenvectors from 

eigenvalue problems at the ends of parametric 

range. The proposed method was applied on a 

numerical example of size 1000 × 1000  and 10 

numbers of subdivisions over the parameter 

interval. The computed results show excellent 

accuracy of the approximated eigenvalues by the 

interpolated modes method and significant 

computational economy. Finally, the interpolated 

modes method was compared to the Rayleigh 

quotient fixed mode approximation that showed 

worse accuracy than the proposed method. The 

maximum percentage error over the parameter 

range were calculated and the method proposed 

here performed very favourably. 
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