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ABSTRACT

Design exploration in the structural dynamics contexts involves assessment of a large family of designs,
which frequently leads to a parameter-dependent eigenvalue problem. The present work is inspired by a
class of structural dynamic problems in the presence of gyroscopy, control, or aeroelasticity that naturally
give rise to asymmetric coefficient matrices in their governing equations of motion. Here, we restrict our
attention to the case of a single parameter-dependent eigenvalue problem A(p)x(p) = A(p)x(p) that are
also encountered in the state-space formulation of general dynamical systems. These design alternatives
vary significantly in their geometrical and physical characteristics. A need to solve a large number of
similar eigenvalue problems thus arises. In design scenarios, it is computationally inefficient to carry out
reanalysis for each nominally similar structural design. Here, an algorithm for approximating the natural
frequencies for a range of parameter-dependent designs is presented. A method based on the interpolation
of eigenvectors over the parameter interval, in order to calculate eigenvalues economically, is introduced.
Numerical simulations are carried out for an asymmetric system to demonstrate how the proposed
technique works. Approximate results compare well with the exact ones while providing significant
computational economy. The computational saving is found to be increasingly more significant as the size
of the problem increases. Finally, the computational complexity of the proposed algorithm is assessed.

NOMENCLATURE

A eigenvalue

X eigenvector

X,  eigenvector from the initial reference
Xf eigenvector from the final reference

X interpolated vector
p parameter

1. INTRODUCTION

Eigenvalue problems are found in a range of
application from the vibration of structures to
Google’s Page Ranking algorithm. Dynamical
systems, such as those containing gyroscopy,
damping, or involving aeroelasticity lead to an
asymmetric standard eigenvalue problem

Ax = X, A+ AT, 1)
_mM-1 _mM-1
where A = M (IG+C) M (()K+H) ,Ads

an eigenvalue which corresponds to an eigenvector
x. Equation (1) represents the equation of motion

Mx+ (G+Ox+ (K+H)x=0, (2)

where M is the mass matrix; G is the gyroscopic
matrix; C is the damping matric; K is the stiffness
matrix; H is the circulatory matrix and I is an
identity matrix [1]. In problems involving
gyroscopy, for example, the matrix associated with
the time-derivative term is skew-symmetric.

While creating a finite element model, the
designers have to go through the evaluation of the
dynamics of several designs alternatives. Finding
the natural frequencies of each design leads to a
large  number of evaluations, which is
computationally demanding. Therefore, at early
stages of design search, a cheap approximate
calculation is valuable. In this paper, we consider a
general case of the form (1) where matrix A =
A(p) depends on a design parameter. An algorithm
for approximating the eigenvalues of such a
parameter-dependent problem is presented. The
method is based on an eigenvector interpolation
from eigenvectors evaluated only at the initial and
final designs.

Several approaches [2, 3, 4] have been suggested
for predicting the bounds for the eigenvalues and
eigenvectors of a symmetric interval matrix.



Behnke [5] presented a method for finding
eigenvalues bounds of a real symmetric parameter-
dependent eigenvalue problem using the Temple
quotient. However, the author specified that the
method is suitable for matrices of small size up to
40 x 40.

Rohn [6] considered two special cases of symmetric
and skew-symmetric matrices. They defined the
bounds for real and imaginary parts of eigenvalues
using min and max values, central matrix, radius
matrix. Hladik [7] presented a computationally
inexpensive formula for calculating the bounds on
eigenvalues of real and complex parameter-
dependent matrices in the same time improving
previously mentioned results [6] by presenting low
computational cost and tighter bounds for
eigenvalues.

An asymmetric eigenvalue problem is a harder
problem than the symmetric one, especially for
large matrices. Several works attempt to solve this
problem in more efficient way. Goldhirsch et al. [8]
proposed an economical scheme, which includes
filtering, construction and analysis of vectors, to
obtain leading eigenvalues and eigenvectors for
large asymmetric matrices. Saad [9] presented a
technique based on Chebyshev polynomials to
compute a few eigenvalues with the largest or the
smallest real parts of asymmetric eigenvalue
problems. Bai [10] presented comparative review
of several algorithms and suggested a new
technique to solve an asymmetric eigenvalue
problem.

Most works approximate the bounds of eigenvalues
or solve a single asymmetric eigenvalue problem in
efficient way. By contrast, the aim of the research
presented here is to develop a computationally
economic approximation of eigenvalues for several
design problems that depends on a parameter.

Previously there were some works done for the
problem in terms of symmetric eigenvalue
problems [11, 12]. Here we extend the same
analysis for the case of asymmetric matrices that
arises in a class of structural dynamic problems.
Asymmetry of the coefficient matrices necessitates
the use of a different set of orthogonality relations,
a new definition of the Rayleigh quotient, and the
consideration to an adjoint eigenvalue problem
associated with the transpose of the original.

2. THE MODE INTERPOLATION
ALGORITHM FOR EIGENVALUE
APPROXIMATION

The algorithm presented here is a generalisation of
an interpolated modes method which makes use of
the Rayleigh quotient using a trial vector that is rich
in its components along the exact eigenvector.
Consider first a parameter-dependent eigenvalue
problem in terms of a symmetric matrix A

A(p)x(p) = A(p)x(p), 3)

where po <p <ps, X is an eigenvector that
corresponds to an eigenvalue A. A mode-
interpolation based approximation was proposed in
[11, 12], which is presented in this section before a
generalisation of the same is taken up in section 3.
The interpolation is based on two exactly calculated
eigenvectors from the initial eigenvalue problem

AOX0 = AXO, (4)
where Ay =A(p =py) and from the final
eigenproblem

Afo = AXf, (5)

where Af=A(p=pf). The  approximate
eigenvalues are calculated using the Rayleigh
quotient

. X' (pA@PEX(®)
AP) = =7 x(p)

with exact matrix A at each parametric point and
the interpolated vector

(6)

o (pr = p)xo + sgn(x4x) (0 — po)xy
X(p) = - ()
Pr — Do

Signum function of a dot product of eigenvectors
X, and x¢ in (7) is used to ensure that the sense of
the eigenvectors chosen at the ends of parametric
range is such that the angle between them is acute,
which is to ensure that interpolation is not
erroneously carried out between two vectors of
approximately opposite directions. So, equation (7)
asserts that when the product of eigenvectors
xoX; >0, a positive sign is used in the



interpolation. Otherwise when, x{x; < 0 the sign
in (7) is changed to a negative.

In the previous work [12], the algorithm was tested
on several numerical examples which showed
excellent accuracy and computational efficiency.
The interpolated modes method is now extended to
an approximation of an asymmetric parameter-
dependent eigenvalue problem which is taken up
next.

3. ASYMMETRIC EIGENVALUE
PROBLEM APPROXIMATION

Consider a standard  parameter-dependent
eigenvalue problem (3) in terms of asymmetric
matrix A # AT. Several modifications to the
interpolated modes method for symmetric matrices
[11, 12] need to be made now. They are dictated by
new orthogonality relations for asymmetric
matrices. In case of a single real symmetric matrix,
eigenvectors are orthogonal. For asymmetric case,
left and right eigenvectors of a matrix A
corresponding to distinct eigenvalues are
orthogonal [1]. In other words, eigenvectors of the
matrix and its transposed matrix are biorthogonal.
Therefore, an eigenvalue problem associated with
transposed matrix AT needs to be solved to find a
left eigenvector. So, for the present case, four
eigenproblems: (4), (5) and

A7(;YO = Ay, (8)
A?Yf = )IYf 9)

should be solved before the interpolation can take
place. Their eigenpairs are complex and do not
appear in an order. It is impossible to determine
which complex value is larger or smaller, as
complex numbers consist of real and imaginary
parts. Hence, they cannot be sorted in ascending or
descending orders. Therefore, eigenvalues need to
be sorted by some other criteria. Here, the
eigenvalues are sorted in ascending order by their
real parts. As a conjugate pair has equal real parts,
it is important to sort the numbers within a pair in
the same order too. For example, a complex number
with a positive imaginary part is chosen first
followed by one with a negative imaginary part.
The corresponding eigenvectors are normalised and
sorted by order of the corresponding eigenvalues.

A new definition of the Rayleigh quotient valid for
asymmetric eigenvalue problems [1] needs to be
involved

_ Y ®mA®@X(®)
y'@)X()

where ¥ and X are the left and the right
eigenvectors given by

A(p) (10)

(pr — )Xo + (P — Po)X¢
s — Do (11)

X(p) =

and

(pr —P)¥o + (0 — P0)Ys
Pr — Do

(12)

y(p) =

respectively. These two interpolations make use of
exactly calculated eigenvectors x,, X¢, y, and yr
from using equations (4), (5), (8) and (9)
respectively.

The interpolated modes method in [11] was
inspired by the stationarity of the Rayleigh
quotient. Equation (10) makes use of a Rayleigh
quotient based approximation that utilises (i) actual
parameter-dependent matrix A(p) at p, and (ii)
interpolated left and right eigenvectors y(p) and
X(p). We could make another Rayleigh quotient
based approximation using exact A(p) at the
parameter value p, but trial vectors fixed at one or
the other end of the parameter interval. It would be
interesting to compare how approximations based
on the proposed interpolated modes compare with
those employing eigenvectors fixed at one end.

If a parameter p of the system changes, the
eigenvalues along all parametric range could be
approximated by Rayleigh quotient based on
reference trial vectors at the initial

T

. YoA(p)x

Ap) =" (13)
YoXo

and final states of parametric range

x Y; A(p)xs

i) ==L (14)
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using the exact eigenvectors from eigenvalue
problems (4), (8), (5) and (9) respectively.

4. A NUMERICAL EXAMPLE FOR
SYSTEMS INVOLVING ASYMMETRIC
MATRICES

A computer program for approximating the
eigenvalues for a standard asymmetric parameter-
dependent eigenvalue problem is developed in the
MATLAB environment [13]. Consider a standard
parameter-dependent eigenvalue problem (3)
involving an asymmetric matrix A = AT where p is
in a range 0 <p <1 with 10 numbers of
subdivisions over the parameter interval. Two
arbitrary asymmetric matrices of size 1000 x
1000 were generated and assigned as initial A, =
A(p = 0) and final Af = A(p = 1) matrices. As
matrices are randomly generated a parametric
problem needs to be created to connect those. For
simplicity of illustration, the entries of A(p) are
taken to be linearly varying with the parameter p
within the interval, so that

A(p) = Ao +p(Ar — Ap). (15)

The numerical calculations were carried out within
a MATLAB implementation which makes use of
the method presented in the previous section. The
first 10 eigenvalues are calculated (i) exactly, (ii)
by the proposed interpolated modes method, and
(iii) reference fixed mode based Rayleigh quotient.
For demonstration, only the first two eigenvalues
are presented in Figure 1 and 2.

As it was stated before, the eigenvalues of
asymmetric eigenvalue problem are complex. So,
approximations for their real and imaginary parts
are presented separately. In this example, the first
two eigenvalues are a conjugate pair shown in
Figure 1 and 2. The figure for the real part of the
second eigenvalues is omitted as a conjugate pair
have identical real parts, shown in Figure 1(a), and
opposite sign imaginary parts, shown in Figure 1(b)
and 2.

The computed values of the interpolated modes
method marked by black dots in Figure 1 and 2 are
in excellent agreement with the exact eigenvalues
presented by thick red line. The Rayleigh quotient
approximation based on eigenvectors x, and X
fixed at the ends p = 0 and p = 1 are marked by

thin green and blue lines respectively Figure 1 and
2 as labelled.
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Figure 1: Real (a) and imaginary (b) parts of the second
eigenvalue A, as a function of parameter p of an eigenvalue
problem with respect to an asymmetric arbitrary matrix of size
1000 x 1000 computed exactly (thick red line), by the
interpolated modes method (black dots) and reference fixed
mode Rayleigh quotient (thin green and blue lines as
labelled).

Approximations based on equations (13) and (14)
show good eigenvalue prediction close to the taken
reference. However, their accuracy deteriorates
further away from the reference point. As opposed
to this, the approximation based on the proposed
method (10) matches extremely well throughout the
whole parameter range 0 < p < 1. The numerical
results based on the interpolated modes are so good
that the exact values (red lines) are practically



indistinguishable from the approximate ones (black
dots).
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Figure 2: Imaginary part of the second eigenvalue A, as a
function of parameter p of an eigenvalue problem with
respect to an asymmetric arbitrary matrix of size 1000 x
1000 computed exactly (thick red line), by the interpolated
modes method (black dots) and reference fixed mode
Rayleigh quotient (thin green and blue lines as labelled).

The percentage error of the first 10 modes between
exact and approximated eigenvalues is calculated to
assess the accuracy of the presented method and to
compare the errors involve with those using the
fixed reference based Rayleigh quotient
approximation. The maximal error along parameter
range for each real and imaginary parts are
presented in Figure 3(a) and 3(b) respectively.

The error while using interpolated modes method,
marked with black dots, is very close to zero with
the largest being of 2.9 X 107*% and 0.03% in
real and imaginary parts respectively. Such small
error indicate excellent accuracy achieved in
calculations while using the interpolated modes
method. The accuracy of the fixed mode Rayleigh
quotient approximation is worse than the proposed
method, as the errors are significantly larger, which
is shown in Figure 3.

Another advantage of the approximation presented
here is the computational efficiency. In this
example, the run time is 9.62 s to solve 10
eigenvalue problems of size 1000 x 1000 exactly
within MATLAB environment. The interpolated
modes approximation requires 5.78 s to
approximate all the eigenvalues, which is in 1.7
times less than exact. Moreover, the actual

approximation, Rayleigh quotient (10) and
interpolated vectors (11), (12) took 1.98 s, as the
rest of this time was spent on solving initial (4), (5)
and final (8), (9) eigenproblems exactly.
Calculating the exact eigenvectors form both ends
of a parametric range is the most expensive
procedure in the proposed algorithm but it is still
more efficient than calculating each problem (10 in
this case) exactly. This becomes even more
significant when the number of such evaluations is
even greater since the computational time would
scale linearly with the number of such intermediate
calculations.
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Figure 3: The maximum percentage error for the first 10 real
(a) and imaginary (b) parts of eigenvalues over a parameter
range calculated between exact and eigenvalues approximated
by the interpolated modes method (black dots) and reference
fixed mode Rayleigh quotient (blue and green dots as
labelled).



In most of practical problems, considering only the
first few modes is enough. In such cases, the
algorithm required 4.22 s to approximate the first
10 eigenvalues, which is in 2.3 times less than exact
calculations. This significant computational gain
could even increase depending on the number of
approximated values required, the size of the
eigenvalue problem and the number of designs.
Therefore, an asymmetric parameter-dependent
eigenvalue problem can be approximately solved
by the interpolated modes method which is
computationally significantly inexpensive.

S. CONCLUSIONS

In this paper, the method for approximating the
eigenvalues for systems depending on a design
parameter and involving asymmetric matrices is
proposed. The approach is based on a Rayleigh
quotient approximation using the interpolated
vectors that include the exact eigenvectors from
eigenvalue problems at the ends of parametric
range. The proposed method was applied on a
numerical example of size 1000 x 1000 and 10
numbers of subdivisions over the parameter
interval. The computed results show excellent
accuracy of the approximated eigenvalues by the
interpolated modes method and significant
computational economy. Finally, the interpolated
modes method was compared to the Rayleigh
quotient fixed mode approximation that showed
worse accuracy than the proposed method. The
maximum percentage error over the parameter
range were calculated and the method proposed
here performed very favourably.
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