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13 The long-standing and controversial Fermi-Pasta-Ulam problem addresses fundamental issues of
14 statistical physics, and the attempt to resolve the mystery of the recurrences has led to many great
15 discoveries, such as chaos, integrable systems, and soliton theory. From a general perspective, the
16 recurrence is commonly considered as a coherent phase-sensitive effect that originates in the property of
17 integrability of the system. In contrast to this interpretation, we show that convection among a pair of waves
18 is responsible for a new recurrence phenomenon that takes place for strongly incoherent waves far from
19 integrability. We explain the incoherent recurrence by developing a nonequilibrium spatiotemporal kinetic
20 formulation that accounts for the existence of phase correlations among incoherent waves. The theory
21 reveals that the recurrence originates in a novel form of modulational instability, which shows that strongly
22 correlated fluctuations are spontaneously created among the random waves. Contrary to conventional
23 incoherent modulational instabilities, we find that Landau damping can be completely suppressed, which
24 unexpectedly removes the threshold of the instability. Consequently, the recurrence can take place for
25 strongly incoherent waves and is thus characterized by a reduction of nonequilibrium entropy that violates
26 theH theorem of entropy growth. In its long-term evolution, the system enters a secondary turbulent regime
27 characterized by an irreversible process of relaxation to equilibrium. At variance with the expected
28 thermalization described by standard Gibbsian statistical mechanics, our thermalization process is not
29 dictated by the usual constraints of energy and momentum conservation: The inverse temperatures
30 associated with energy and momentum are zero. This unveils a previously unrecognized scenario of
31 unconstrained thermalization, which is relevant to a variety of weakly dispersive wave systems. Our work
32 should stimulate the development of new experiments aimed at observing recurrence behaviors with
33 random waves. From a broader perspective, the spatiotemporal kinetic formulation we develop here paves
34 the way to the study of novel forms of global incoherent collective behaviors in wave turbulence, such as
35 the formation of incoherent breather structures.

DOI: Subject Areas: Nonlinear Dynamics, Statistical Physics

I. INTRODUCTION

36 Recurrence as discovered by Fermi, Pasta, and Ulam is
37 the phenomenon of an apparent reversal of thermalization
38 that occurs in a variety of physical systems [1]. Their
39 numerical study of the dynamics of an anharmonic chain
40 of particles with a single sine wave initial condition
41 shows that energy spreads out from the initially occupied
42 mode to neighboring modes, apparently approaching the

43thermodynamic equilibrium state of energy equipartition.
44Surprisingly, this process is subsequently reversed as the
45nonlinear dynamics of the chain leads to an energy flow
46back to the initially occupied mode. Instead of the expected
47irreversible process of thermalization, the system exhibits
48recurrent oscillations between a state that is similar to the
49initial condition and a seemingly disordered state where
50energy is spread out over several modes.
51The paradox of the Fermi-Pasta-Ulam recurrence had a
52deep impact on the development of nonlinear science [2–6],
53in particular, in the context of ergodic theory, soliton theory,
54and integrability [7–15]. Aside from the specific model
55equation originally considered by Fermi, Pasta, and Ulam
56[1], the recurrence effect is a general phenomenon found in
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57 a variety of almost integrable models whose phase space is
58 strongly segmented by the existence of a large number
59 of nearly conserved quantities. As a result, a trajectory
60 emanating from a Benjamin-Feir modulational instability
61 can return nearby the original state, while weak non-
62 integrable terms cause only a slow irreversible thermal-
63 ization. The recurrence phenomenon has been studied
64 experimentally in deep water waves [16], magnetic films
65 [17], and optical systems [18–20]. In recent years, recur-
66 rence behaviors have attracted an enormous interest for
67 explaining the formation of extreme wave events (rogue
68 or freak waves) in oceans and photonic seas [21,22],
69 in relation to oscillatory breather solutions of integrable
70 nonlinear Schrödinger equations (NLSE) [23–35]. In these
71 cases, recurrent oscillatory behaviors emerge from coherent
72 wave initial conditions, so that one might think that phase
73 coherence constitutes a prerequisite for the recurrence
74 phenomenon. There is an intuitive appeal in the idea
75 that weakly nonlinear random waves should not exhibit
76 reversible recurrences, but instead a monotonic irreversible
77 process of thermalization to equilibrium. Such irreversible
78 processes can be precisely formulated by using the well-
79 developed wave turbulence theory [36–41], which has been
80 successfully applied to a huge variety of physical systems
81 [7–9,11,42–48]. The wave turbulence theory is formally
82 based on irreversible kinetic equations that describe an
83 irreversible process of thermalization to equilibrium,
84 as expressed by the fundamental H theorem of entropy
85 growth.
86 In contrast to this common intuitive picture, here, we
87 present and explain the new phenomenon of recurrence of
88 incoherent nonlinear waves in optics, fluids, plasmas, and
89 Bose-Einstein condensates. We show that large convection
90 among a pair of random waves is responsible for a
91 recurrence phenomenon that manifests itself in oscillations
92 similar to the Fermi-Pasta-Ulam recurrence. However, the
93 recurrence effect occurs under radically different physical
94 conditions: Firstly, the recurrence that we observe does not
95 originate in integrability. Secondly, unlike recent studies
96 dealing with purely coherent wave evolutions [20,26–35],
97 here, the recurrence emerges from strongly incoherent
98 random waves. More precisely, the incoherent recurrence
99 is characterized by a reduction of nonequilibrium entropy

100 that violates the H theorem of entropy growth far from
101 integrability.
102 We explain this phenomenon by showing that convection
103 leads to the spontaneous emergence of strongly correlated
104 fluctuations in the turbulent wave system. For this
105 purpose, we develop a nonequilibrium kinetic theory that
106 accounts for the existence of phase correlations among
107 the random waves. Phase correlations are known to play a
108 role in different cases [7–9,49–58]; in particular, they
109 lead to the formation of large-scale coherent structures
110 (solitons or condensates) emerging from a strongly
111 nonlinear turbulent regime [38–46,59–65]—a coherent

112structure being inherently a phase-correlated object. Also
113note that stochastic recurrences of random waves have been
114predicted recently for water waves governed by Alber’s
115equation when nonlinear effects are stronger than linear
116dispersive effects [66]. In contrast, here, we consider a
117system of weakly interacting random waves, in which
118phase correlations are expected to decay, as precisely
119described by the wave turbulence theory. At variance with
120this usual understanding of wave turbulence, our theory
121reveals that strong phase correlations emerge spontane-
122ously and grow exponentially by virtue of a novel form of
123modulational instability. More precisely, in contrast to the
124expected Landau damping that provides a stabilizing effect
125against the incoherent modulational instability [46,67–72],
126here, we identify a regime in which Landau damping can be
127completely suppressed. This has two major consequences.
128It first explains why our recurrences can take place in the
129weakly nonlinear regime and thus violate the H theorem of
130entropy growth. In addition, the suppression of Landau
131damping makes possible the emergence of strong phase
132correlations even for highly incoherent waves. Our theory
133then reveals that the expected natural loss of “phase
134information” by irreversible processes is partly offset by
135this spontaneous creation of correlated fluctuations. It turns
136out that our phase-correlation kinetic theory preserves the
137time-reversal symmetry and describes in detail the phe-
138nomenon of recurrence in a nonintegrable random wave
139system.
140In its long-term evolution, the system enters a secondary
141turbulent regime that degrades the phase information
142stored in phase correlations, which reestablishes temporal
143irreversibility in the system. However, at variance with the
144expected thermalization and the maximum entropy pro-
145cedure underlying Gibbsian statistical mechanics [4,73],
146here, the thermalization process is shown to ignore the
147usual constraints dictated by energy (Hamiltonian) and
148momentum conservation. This establishes a novel scenario
149of thermalization relevant to a large variety of systems, e.g.,
150optical polarization, magnet systems, waves in nonlinear
151periodic lattices, or the resonant three-wave interaction.
152This unconstrained thermalization process, as well as the
153critical phase-correlation effects underlying the incoherent
154recurrences, constitutes remarkable phenomena that can
155shed new light on the fundamental origins of irreversibility
156in turbulent systems operating far from thermodynamic
157equilibrium.

158II. RECURRENCES FAR FROM INTEGRABILITY

159A. Nonlinear Schrödinger model

160We study the role of convection among two incoherent
161waves by considering a system of two coupled NLSEs,
162which is known as a universal model for the description of
163vector phenomena in nonlinear wave systems. This model
164describes, for instance, the evolution of the orthogonal
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165 polarization components of a light beam that propagates
166 in an optical fiber [74]. It also describes coupled light
167 and Langmuir waves in plasma [75], deep ocean waves
168 propagating along two different directions in hydrodynam-
169 ics [76], systems of coupled electrical oscillators [77], or
170 the matter wave dynamics of binary mixtures of different
171 types of Bose-Einstein condensates [78]. The model can be
172 written in the following form:

i∂tu ¼ −∂xxu − iw∂xuþ ðjuj2 þ κjvj2Þu; ð1Þ
173 i∂tv ¼ −η∂xxvþ iw∂xvþ ðjvj2 þ κjuj2Þv; ð2Þ

174 where uðx; tÞ and vðx; tÞ denote the amplitudes of the
175 interacting waves. For convenience, we write the NLSE
176 in dimensionless form; that is, we normalize the problem
177 with respect to the nonlinear time, τ0 ¼ 1=ðγ0NÞ, and the
178 “healing” length, Λ ¼ ffiffiffiffiffiffiffiffiffi

βuτ0
p

, where γ0 is the nonlinear
179 coefficient, βu (βv), the dispersion coefficient of u (v), and
180 N is the total energy of the waves. In these units, κ denotes
181 the ratio between the cross- and self-interaction coefficients
182 and η ¼ βv=βu. Note that the equations are written in a
183 reference frame of average velocity of u and v, so that
184 the parameter w denotes the amount of convection in
185 the system. The initial conditions are incoherent waves
186 modeled by random fields that exhibit fluctuations that
187 are statistically homogeneous in space. In the numerical
188 simulations, we consider periodic boundary conditions
189 over the interval ½0; L�, with L that is much larger than
190 any characteristic length scale of the problem.
191 The NLSE conserves three important quantities: the
192 partial “energies” Nφ ¼ ð1=LÞ R L

0 jφj2dx, with φ ¼ u, v,
193 and the Hamiltonian, ~H ¼ ~Eþ ~U, which has a linear
194 contribution

~E ¼ 1

L

Z
L

0

wð ~Pv − ~PuÞ þ j∂xuj2 þ ηj∂xvj2dx; ð3Þ

195 where ~Pφ ¼ Imðφ∂xφ
�Þ, with φ ¼ u, v, and a nonlinear

196 contribution

~U ¼ 1

L

Z
L

0

1

2
ðjuj4 þ jvj4Þ þ κjuj2jvj2dx: ð4Þ

197 Note that the linear contribution to the Hamiltonian that is
198 due to convection (first term in ~E) is not positive or negative
199 definite, a feature that will be shown to play a key role in
200 the process of unconstrained thermalization. Of course, the
201 total “energy,” N ¼ Nu þ Nv, is preserved as well, and we
202 haveN ¼ 1within our normalization. Equations (1) and (2)
203 are integrable for η ¼ κ ¼ 1 (or η ¼ κ ¼ −1), regardless of
204 the parameter w [15]. In the following, we consider the
205 nonintegrable case—in particular, we consider the typical
206 value of κ ¼ 2=3, which corresponds to a realistic exper-
207 imental configuration in an optical fiber system [74].

208B. Inapplicability of the wave turbulence theory

209The effect of Fermi-Pasta-Ulam recurrence of purely
210coherent waves has been widely studied in the framework
211of NLSE models in relation to the Benjamin-Feir modula-
212tional instability [16,18–20,72]. As a result of this insta-
213bility, the initial coherent waves (usually called “pump
214waves”) lead to the amplification of two spectral sidebands
215[74]. Once the sidebands reach an amplitude comparable to
216the pump amplitudes, the system enters the nonlinear
217regime of modulational instability, which is characterized
218by a reversible transfer of energy from the sidebands to
219the pumps. This leads to the well-known phenomenon of
220coherent recurrences mediated by modulational instability
221[16,18–20,72]. In the following, we study the existence of
222recurrence behaviors by considering initial random waves.
223We anticipate that the effect of incoherent recurrence
224we present is also related to a modulational instability,
225although this instability is of a different nature than the
226usual incoherent modulational instability [46,67–72].
227We consider a highly incoherent (i.e., weakly nonlinear)
228regime where the strong randomness of the waves makes
229linear dispersive effects dominant with respect to nonlinear
230effects, j ~Ej ≫ ~U at t ¼ 0. The initial incoherent waves have
231a Gaussian spectrum [∼ exp½−k2=ð2σ2Þ�] with independent
232random spectral phases; i.e., they obey Gaussian statistics
233with a correlation length λc ∼ 1=σ. The simulations reveal
234the existence of incoherent recurrences that originate in an
235instability apparently similar to the modulational instability
236of fully coherent waves [74]. Hence, we study the incoher-
237ent recurrences as in the coherent case and analyze the
238energy transfer among the incoherent pumps ðup; vpÞ and
239incoherent sideband components ðus; vsÞ, whose corre-
240sponding spectra are centered at the maximum growth rate
241of the (coherent) modulational instability, i.e., at k ¼ �w
242for w ≫ 1. We thus split the fields as

uðx; tÞ ¼ upðx; tÞ þ usðx; tÞ expð−iwxÞ; ð5Þ
243vðx; tÞ ¼ vpðx; tÞ þ vsðx; tÞ expðþiwxÞ; ð6Þ

244where w is sufficiently large so that the incoherent pump
245and sideband components have no spectral overlap and can
246be discerned—we recall that the spectral bandwidth is of
247the order σ ∼ 1=λc ∼ 1, while w ≫ 1. The analysis reveals
248that the pump and sideband components remain discerned
249throughout the evolution.
250We report in Fig. 1(a) the evolution of the energy ratio
251between a pump and its sideband, NupðtÞ=Nu, where

252we remind the reader that Nu ¼ Nup þ Nus ¼ const,

253with NupðtÞ ¼ ð1=LÞ R L
0 jupj2dx. For moderate convection

254w ∼ 1, we recover the expected result where the recurrences
255are inhibited by the incoherence of the waves. In this case,
256the system exhibits an irreversible evolution characterized
257by a monotonous process of entropy production, which is
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258 illustrated in Fig. 1(b) (black line). This is consistent with
259 the H theorem of entropy growth, ∂t

~S ≥ 0, where the
260 nonequilibrium entropy is defined by ~S ¼ ~Su þ ~Sv, with

~SφðtÞ ¼
Z

log½ ~nφðk; tÞ�dk; ð7Þ

261 where ~nφðk; tÞ are the spectra of the waves (φ ¼ u, v)
262 [36,38–40]; see Appendix A.
263 In contrast to this monotonous behavior, for large
264 convection w ≫ 1, the energy ratio NupðtÞ=Nu exhibits
265 recurrences: After some time, the energy in the incoherent
266 sideband is reversibly transferred back to the incoherent
267 pump, as illustrated in Fig. 1(a) (red line). This is
268 characterized by a reduction of nonequilibrium entropy
269 that violates the H theorem; see Fig. 1(b) (red line). The
270 wave turbulence theory cannot explain this recurrence
271 phenomenon, despite the fact that it occurs in the weakly
272 nonlinear regime.
273 We confirm that the recurrences take place in the weakly
274 nonlinear regime by different methods. We first note that in
275 the simulation reported in Fig. 1, the ratio between non-
276 linear and linear energies is of the order ~U= ~E ∼ 10−1

277 throughout the whole evolution (0 < t < 200). In addition,
278 we analyze separately the contribution to the linear energy
279 that is due to convection ( ~E1) and the contribution due to
280 dispersion ( ~E2), with ~E ¼ ~E1 þ ~E2. The analysis reveals
281 that near the recurrence (i.e., for t≳ 50) the ratio is of the

282order ~U=j ~E1;2j ∼ 10−2, which confirms the weakly non-
283linear regime of interaction. This weak interaction has also
284been confirmed by the fact that Gaussian statistics is
285maintained throughout the evolution. This is illustrated
286by the analysis of the probability density function (PDF) of
287the intensity of the waves, which exhibits the purely
288exponential law inherent to Gaussian statistics, as
289shown in Fig. 1(c). We also study the evolution of the
290kurtosis, which is a parameter that measures the deviation
291from Gaussian statistics (Kφ ¼ hjφj4i=ð2hjφj2i2Þ − 1,
292with φ ¼ u, v). As illustrated in Fig. 1(d), the kurtosis
293remains smaller than a few percent, and thus confirms the
294Gaussian statistics of the waves throughout the incoherent
295recurrences.
296Note the presence of a peak in the kurtosis at t ¼ 50, which
297occurs almost at the same time that the time derivative of
298the entropy becomes negative, i.e., when the energy in the
299sideband component us reaches its maximum. This may be
300ascribed to a deviation from Gaussianity of us during its
301rapid (exponential) amplification from the pumps ðup; vpÞ,
302while for large times, Gaussian statistics is restored by the
303dominant role of dispersion with respect to nonlinear effects
304[see Fig. 1(d) for t≳ 60]. Note, however, that the peak in the
305kurtosis at t ¼ 50 is too small to significantly affect Gaussian
306statistics, as confirmed by the corresponding probability
307density reported for t ¼ 50 in Fig. 1(c) (blue circles).

308C. Discussion on the integrable limit

309As already mentioned in the Introduction, the Fermi-
310Pasta-Ulam recurrence is usually considered as a phenome-
311non that originates in the property of integrability. This
312statement should be interpreted in the sense that a non-
313integrable system, which is “tangent” to an integrable one,
314behaves as integrable, at least for some amount of time, a
315property that has been discussed with care in recent works
316[10,11]. However, it is also important to note that, despite
317common thought, there is no exact result (no theorem) on
318the connection between recurrence and integrability.
319On the other hand, it is well known that the inverse
320scattering transform allows one to study an integrable
321system and that it is possible to develop perturbation
322methods to analyze almost integrable systems. For mod-
323erate times, one can then determine the effects of small
324perturbations on the evolution of an exactly solvable
325nonlinear evolution equation. It was first done for the
326Zakahrov-Shabat inverse scattering transform, that can be
327applied to the scalar NLSE [79]. The Kaup-Karpman-
328Maslov perturbation scheme was then extended to other
329systems, such as the (Manakov) vector NLSE [80,81]. In
330our setting, if κ and η are close to one, this approach would
331predict that the NLSE [Eqs. (1) and (2)] departs from
332integrability after propagation times of the order of
333t� ∼ 1=maxðjκ − 1jN; jη − 1j=σ2Þ. In our case, however,
334we observe incoherent recurrences even for values of κ far
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F1:1 FIG. 1. Incoherent recurrences. Evolutions of the (a) power

F1:2 ratio NupðtÞ=Nu and (b) total entropy ~SðtÞ, for w ¼ 5 (black line),
F1:3 w ¼ 9 (blue line), and w ¼ 25 (red line) from NLSE simulations:
F1:4 The recurrences get more pronounced as w increases, which
F1:5 violates the H theorem of entropy growth (σ ¼ 0.47, η ¼ 1).
F1:6 (c) Probability density function (PDF) in logarithmic scale of the
F1:7 intensity juj2 of the wave at t ¼ 50 (blue circles) and t ¼ 60
F1:8 (dashed red line) corresponding to w ¼ 25 [red lines in (a) and
F1:9 (b)]: Gaussian statistics is preserved throughout incoherent

F1:10 recurrences, as confirmed by the evolution of the kurtosis (d).
F1:11 Note that the dashed dark line in (c) shows the purely exponential
F1:12 law inherent to Gaussian statistics of the wave amplitudes.
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335 from one (κ > 5), which means that the system is far from
336 integrability even for short times.
337 In addition, by considering the integrable limit
338 (η ¼ κ ¼ 1), the numerical simulations reveal that the

339incoherent recurrences disappear without strong convection
340(for w ∼ 1). This evidences the fact that the incoherent
341recurrences do not originate in the integrability of the
342NLSE [Eqs. (1) and (2)].

(a) (b) (c)

C

F2:1 FIG. 2. Microscopic vs macroscopic fluctuations. NLSE simulation showing the spatiotemporal evolution of jusj2ðx; tÞ (a) and
F2:2 corresponding spatial profile of the intensity at t ¼ 35 (b) [see the dashed line in (a)]. Panel (c) shows a zoom on a particular small region
F2:3 within the blue rectangle in (b): Aside from the microscopic fluctuations with correlation length λc ∼ 1 (c), the waves exhibit
F2:4 macroscopic fluctuations with the large scale lc ∼ 4πw=κ ≃ 103 (b). The envelope of the macroscopic fluctuations is reported by the
F2:5 dark bold line in (b), which denotes the spatial profile of the correlator nusðx; t ¼ 35Þ, whose dynamics is coupled to the other correlators

F2:6 ðnφj
; mμÞ by the phase-correlation kinetic equations; see Eqs. (11) and (12).

F3:1 FIG. 3. Creation of local phase correlations. (a) Spatiotemporal evolution of the product jupðx; tÞv�sðx; tÞj obtained from NLSE
F3:2 simulations, showing that phase correlations grow and exhibit a nonhomogeneous statistics. (b),(c) Spatiotemporal evolutions of the
F3:3 phases of the random waves in local spatial regions of size lc [white rectangles in (a)]: The similarity of the phases of the random waves
F3:4 up and vs reflects their strong correlations [note that the space-time windows in the phase plots (b),(c) correspond to those in the white
F3:5 rectangles in (a)]. (d),(e) Evolutions of the normalized phase correlation coefficient ϱuvðtÞ given in Eq. (8) (blue line), and power ratio
F3:6 NupðtÞ=Nu (red line), in local spatial regions [white rectangles in (a)]. Note that there are no correlations between the initial random
F3:7 waves, ϱuvðt ¼ 0Þ≃ 0: As a result of the phase-correlation modulational instability [Eq. (16)], the correlation grows up to almost unity,
F3:8 ϱuv ≃ 1. The dashed dark lines in (d) and (e) show the correlation coefficient ϱuvðtÞ computed over the whole numerical spatial window,
F3:9 showing that there is no global phase correlation, ϱuvðtÞ≲ 0.1: A complete phase correlation (ϱuv ≃ 1) solely emerges in local spatial

F3:10 regions of scale lc, which in turn leads to almost complete local recurrences, Nup=Nu ∼ 1 [red lines in (d) and (e)]. Parameters are
F3:11 σ ¼ 7.5, η ¼ 1, κ ¼ 2=3, w ¼ 25.
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343 D. Creation of correlated fluctuations

344 The simulations do not reveal any apparent phase
345 coherence among the random waves, a feature that is
346 confirmed by a global analysis of phase correlations. In
347 order to properly discuss this aspect, we first note that the
348 random waves exhibit a double structure: Aside from the
349 microscopic fluctuations with correlation length λc ∼ 1,
350 the waves exhibit macroscopic fluctuations with a large
351 length scale lc ∼ 103. The nonhomogeneous nature of the
352 random waves is illustrated in Fig. 2, which clearly shows
353 the separation of scales between the microscopic and
354 macroscopic fluctuations. The important point to note is
355 that, considering individual local spatial regions of quasi-
356 homogeneous statistics with typical size lc, we find that
357 a strong phase correlation emerges among the random
358 waves. This unexpected result is illustrated in Fig. 3,
359 which reports the global spatiotemporal evolution of
360 jupðx; tÞv�sðx; tÞj, as well as the evolutions of the phases
361 in the local spatial regions defined by the length scale lc;
362 see the two white rectangles in Fig. 3(a). We can notice a
363 remarkable similarity among the phases of the random
364 waves in Figs. 3(b) and 3(c), which reflects the emergence
365 of a strong correlation among them.
366 We confirm this fact through the analysis of the
367 normalized phase correlation coefficient

ϱuvðtÞ ¼
jhupv�siðtÞj

½NupðtÞNvsðtÞ�1=2
: ð8Þ

368 In order to distinguish the local and global phase correla-
369 tions, we consider two different spatial averages,

370 hupv�siðtÞ ¼ ð1=L0Þ
R L0

0 upðx; tÞv�sðx; tÞdx: For the global
371 analysis, the average is taken over the whole numerical
372 window, L0 ¼ L, while for the local analysis, L0 ¼ lc
373 denotes the size of the rectangular regions in Fig. 3(a).
374 In contrast to the global analysis [dark dashed line in
375 Figs. 3(d) and 3(e)], in local spatial regions we observe the
376 emergence of a strong phase correlation with ϱuv ∼ 1 [blue
377 lines in Figs. 3(d) and 3(e)]. This in turn leads to nearly
378 complete recurrences of the incoherent waves, as illustrated
379 in Figs. 3(d) and 3(e) (red lines), which shows that the
380 energy in the sideband is almost completely transferred
381 back to the pump wave. This study then reveals that the
382 incoherent recurrence phenomenon originates in the spon-
383 taneous creation of strong local correlations among the
384 random waves.

385 III. PHASE-CORRELATION KINETIC THEORY

386 A. Normal correlator and anomalous phase correlator

387 We explain the incoherent recurrences by developing a
388 kinetic theory that takes into account nonhomogeneous
389 phase correlations among the random waves. More spe-
390 cifically, the derivation of the kinetic equations follows the

391general procedure based on the wave turbulence theory:
392Considering the weakly nonlinear regime, linear dispersion
393effects dominate nonlinear effects and bring the random
394waves close to Gaussian statistics, which allows one to
395derive a set of closed equations for the second-order
396moments of the fields [36,38–40]. However, at variance
397with the standard wave turbulence approach that neglects
398phase correlations, we introduce anomalous phase corre-
399lators that account for phase correlations among copropa-
400gating random waves—see Appendix B for a detailed
401derivation of the phase-correlation kinetic equations.
402Note that anomalous correlators have been introduced to
403describe parametrically unstable magnet systems [37], or
404coupled NLSE systems [52]. However, the mechanism of
405convection induce phase correlations reported here (w ≫ 1)
406has not been discussed in these previous works. In
407particular, in Ref. [52] a set of equations for the correlations
408describing a reversible transfer of coherence among the
409waves was derived. However, such a system consists of a
410set of ordinary differential equations describing a dynamics
411of the waves which is uncoupled in both the spatial and
412frequency domains. Accordingly, the system is inherently
413unable to describe spatial effects, such as the recurrences
414mediated by modulational instablity or the unconstrained
415thermalization process we discuss below. We anticipate that
416the spatiotemporal kinetic formulation we develop here for
417the coupled evolutions of the conventional and anomalous
418phase correlators is found in quantitative agreement with
419the simulations, without using adjustable parameters.
420We define the usual “normal correlators” that denote the
421spectra of the waves:

nφj
ðx; k; tÞ ¼

Z
Bφj

ðx; ξ; tÞ expð−ikξÞdξ; ð9Þ

422where Bφj
ðx; ξ; tÞ ¼ hφjðxþ ξ=2; tÞφ�

jðx − ξ=2; tÞi are the
423autocorrelation functions ðφ ¼ u; v; j ¼ p; sÞ. Note that,
424because the waves exhibit fluctuations that are not
425homogeneous in space, the spectra depend on the spatial
426variable x. In addition, we introduce the spectra associated
427with the “anomalous phase correlators” for the pair of
428copropagating waves:

mμðx; k; tÞ ¼
Z

Γμðx; ξ; tÞ expð−ikξÞdξ; ð10Þ

429with μ¼uv, vu, where Γuvðx; ξ; tÞ ¼ hupðxþ ξ=2; tÞ×
430v�sðx − ξ=2; tÞi and Γvuðx; ξ; tÞ ¼ husðx þ ξ=2; tÞ×
431v�pðx − ξ=2; tÞi. Performing a multiscale expansion with
432the small parameter 1=w ≪ 1, we derive in Appendix B the
433following phase-correlation kinetic equations:

ð∂t þ w∂xÞnupðx; k; tÞ ¼ Gn½mμ�; ð11Þ
434ið∂t − w∂xÞmvuðx; k; tÞ ¼ Gm½nφj

; mμ�; ð12Þ
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435 while the evolutions of the sideband spectra are
436 deduced from those of the pumps [e.g.,
437 nusðx; k; tÞ ¼ nvpðk; t ¼ 0Þ − nvpðx; k; tÞ]. The functionals

438 readGn½mμ�¼−2κImfmuvðx;k;tÞ½m0�
uvðx;tÞþm0�

vuðx;tÞ�gand
439 Gm½nφj

;mμ� ¼ −2mvuðx;k;tÞfð2−κÞ½n0vpðx;tÞ− n0upðx;tÞ�þ
440 ð1−κ=2ÞðNu−NvÞg−κ½m0

vuðx;tÞþm0
uvðx;tÞ�½nvpðk;t¼0Þ−

441 2nvpðx;k;tÞ�þð1−ηÞk2mvuðx;k;tÞ, where we define

n0φj
ðx; tÞ ¼ Bφj

ðx; ξ ¼ 0; tÞ; ð13Þ
442 m0

μðx; tÞ ¼ Γμðx; ξ ¼ 0; tÞ: ð14Þ

443 Thecorrespondingequations fornvpðx; k; tÞandmuvðx; k; tÞ
444 can be deduced from Eqs. (11) and (12) through a
445 simple substitution; see Appendix B. It is important to note
446 that, in contrast to the wave turbulence formalism (see
447 Appendix A), the phase-correlation kinetic equations (11)
448 and (12) are formally reversible in time.

449 B. Phase-correlation modulational instability

450 1. Incoherent modulational instability

451 Here, we show that the linearized phase-correlation
452 kinetic equations (11) and (12) predict a modulational
453 instability characterized by an exponential growth of phase
454 correlations. It is important to discuss this phenomenon
455 within the general context of the modulational instability of
456 random waves. The “incoherent modulational instability”
457 refers to a phenomenon in which a statistical homogeneous
458 random wave can become unstable with respect to the
459 growth of weak statistical inhomogeneities, thus leading to
460 a periodically modulated pattern of the random wave. This
461 phenomenon is fundamental and has been widely studied in
462 different contexts [46,67–72,82–86]. At variance with
463 the (Benjamin-Feir) modulational instability of purely
464 coherent waves, the incoherent modulational instability
465 is characterized by a threshold: The instability is sup-
466 pressed in the weakly nonlinear regime when the incoher-
467 ence of the waves is increased beyond some critical value.
468 This property is due to a Landau damping, which has a
469 stabilizing effect that tends to suppress the modulational
470 instability [46,67–70,72]. This stabilizing effect is not an
471 ordinary dissipative damping, but an energy-conserving
472 effect that created its own share of confusion about 40 years
473 ago [67]. It is interesting to remark that in the nonlinear
474 stage of the incoherent modulational instability, the system
475 can exhibit recurrence behaviors that can be viewed as the
476 stochastic counterpart of the Fermi-Pasta-Ulam recurrence,
477 a property discussed in detail in the framework of Alber’s
478 equation [66]. Note that such recurrences do not occur for
479 strongly incoherent waves, because in the weakly nonlinear
480 regime, the modulational instability is suppressed by the
481 Landau damping—the development of the instability
482 requires that nonlinear effects are stronger than linear

483dispersion effects (i.e., a Benjamin-Feir index, BFI ≥ 1,
484in one spatial dimension [71,72]).

4852. Suppression of Landau damping

486Here, we present a phenomenon of incoherent modula-
487tional instability, which is of a different nature than that
488discussed above [46,67–72,82–86]. First of all, the modula-
489tional instability occurs solely for the phase correlations
490mμðx; k; tÞ, so that the two sidebands ðus; vsÞ are stable and
491do not grow. Furthermore, we identify a regime in which
492Landau damping is completely suppressed, so that the
493modulational instability does not exhibit any threshold:
494The phase correlations grow efficiently even for strongly
495incoherent waves. At variance with the stochastic recur-
496rences predicted in Ref. [66], here, the suppression of
497Landau damping allows the recurrences to take place in the
498weakly nonlinear regime, which leads to a violation of the
499H theorem of entropy growth.
500We start to analyze Eqs. (11) and (12) by considering the
501initial regime of interaction in which phase correlations
502are negligible and the energy in the sidebands is much
503smaller than in the pumps (nφp

≫ nφs
, nφp

≫ jmμj for small
504interaction times, t≲ 20). The linearized equations (11)
505and (12) can be solved by the Fourier-Laplace tech-
506nique, m̂μðp;k;λÞ¼

R
∞
0 dt

R
dxmμðx;k;tÞexpð−λt− ipxÞ,

507which gives the growth rate λ of the phase-correlation
508modulational instability:

1 ¼ iκ
2π

Z �
nupðk; t ¼ 0Þ
λ − i ~Δ−ðp; kÞ

−
nvpðk; t ¼ 0Þ
λ − i ~Δþðp; kÞ

�
dk; ð15Þ

509where ~Δ�ðp; kÞ ¼ ðη − 1Þk2 � pw − 2Δ, with Δ ¼
510ðNu − NvÞð1 − κ=2Þ. As illustrated in Fig. 4(a), Eq. (15)
511reveals that the incoherence of the pumps significantly
512reduces the growth rate of the phase-correlation instability.
513This property is due to a Landau damping effect, which
514is known to introduce a threshold in the modulational
515instability of random waves [46,67–72]. However, the
516unexpected result revealed by Eq. (15) is that such effective
517damping is completely suppressed for η ¼ 1, so that a
518strong phase correlation emerges in the system regardless
519of the amount of pump incoherence. In this case, the phase-
520correlation growth rate reads

λ1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2=4 − ðwp − κ=2Þ2

q
; ð16Þ

521where we consider, for simplicity, the case where
522the two pump waves have the same initial spectra
523[nvpðk; t ¼ 0Þ ¼ nupðk; t ¼ 0Þ].
524In this instability, the sideband components ðus; vsÞ
525are linearly stable: Their amplifications are delayed by a
526significant time [see Fig. 4(b), τd ≃ 13] because their
527growths are driven by the phase correlations [mμðx; tÞ]
528in the subsequent nonlinear stage of the phase-correlation
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529 instability. Such a time delay simply results from Eq. (11):
530 the sideband growths can only start once the nonlinear
531 product m0

uvðx; tÞm0�
vuðx; tÞ reaches the sidebands’ noise

532 level.
533 The phase-correlation instability explains the origin of
534 the macroscopic nonhomogeneous fluctuations of the
535 waves observed in the NLSE simulations in Figs. 2 and 3.
536 This is simply due to the fact that the homogeneous mode
537 of the instability has zero growth rate, λ1ðp ¼ 0Þ ¼ 0; see
538 Fig. 4(a). Note that in this way the incoherent recurrences
539 cannot take place homogeneously in space. More precisely,
540 the maximum growth rate in Eq. (16) occurs at
541 pMI ¼ κ=ð2wÞ, so that the large length scale of macro-
542 scopic (nonhomogeneous) fluctuations of the waves is

lc ≃ 2π=pMI ¼ 4πw=κ: ð17Þ

543 Note that since the interaction coefficient is typically of
544 order 1, κ ∼ 1, then lc ∼ w ≫ 1. The separation of scales
545 between microscopic fluctuations (with correlation length
546 λc ∼ 1) and macroscopic fluctuations (with lc ∼ 103) is
547 clearly visible in the NLSE simulations, as discussed in
548 Figs. 2 and 3.

549 C. Nonlinear stage of phase-correlation
550 modulational instability

551 1. Reduced form of phase-correlation kinetic equations

552 The incoherent recurrences take place in the nonlinear
553 stage of the phase-correlation modulational instability, as
554 discussed above through Figs. 1–3. To describe this
555 phenomenon, we remark the important fact that for η ¼ 1,
556 Eqs. (11) and (12) can be simplified by factorizing the

557correlators into their spatial and spectral contributions.
558Specifically, Eqs. (11) and (12) admit the following exact
559solutions:

nφp
ðx; k; tÞ ¼ nφp

ðk; t ¼ 0Þn0φp
ðx; tÞ=Nφ; ð18Þ

560for φ ¼ u, v, and

mμðx; k; tÞ ¼ nφp
ðk; t ¼ 0Þm0

μðx; tÞ=Nφ; ð19Þ

561for μ ¼ uv, φ ¼ u (or μ ¼ vu, φ ¼ v). Note that this
562form of the solutions has a simple meaning, namely,
563that the shapes of the (averaged) spectral profiles of the
564waves ðuφj

;vφj
Þ are preserved during their evolutions.

565Accordingly, Eqs. (11) and (12) recover the simplified
566closed form:

ð∂t þ w∂xÞn0upðx; tÞ ¼ G0
n½n0φ; m0

μ�; ð20Þ
567ið∂t − w∂xÞm0

vuðx; tÞ ¼ G0
m½n0φ; m0

μ�; ð21Þ

568and two similar equations for n0vpðx; tÞ and m0
uvðx; tÞ, while

569n0φs
ðx; tÞ ¼ Nφ − n0φp

ðx; tÞ (φ ¼ u, v). The functionals read

570G0
n½n0φ; m0

μ� ¼ −2κIm½m0
uvðx; tÞm0�

vuðx; tÞ� and G0
m½n0φ;m0

μ�¼
571−m0

vuðxÞfð2ðκ−1Þ½Nv−2n0vpðxÞ�þð2−κÞ½Nu−2n0upðxÞ�g−
572κm0

uvðxÞ½Nv−2n0vpðxÞ�. The reduced phase-correlation
573kinetic Eqs. (20) and (21) provide an accurate description
574of the incoherent recurrences and their spatial nonhomo-
575geneous nature, as revealed by a remarkable agreement
576between the kinetic equations (20) and (21) and the NLSE.
577This is illustrated in Figs. 5(c) and 5(d), which report a
578direct comparison of the evolutions of the normal and

579anomalous correlators (n0φj
,m0

μ), obtained by simulations of
580the NLSE and the kinetic equations (20) and (21). Note that
581this good agreement is obtained without using adjustable
582parameters.

5832. Poincaré-Stokes variables: Relevance and limits

584It is interesting to note that the reduced phase-correlation
585kinetic equations (20) and (21) can be written in a compact
586form by using the Poincaré-Stokes variables. The Stokes
587vectors are defined by

U ¼ 2fImðm0
uvÞ;− ~n0up ;Reðm0

uvÞg; ð22Þ
588V ¼ 2fImðm0

vuÞ; ~n0vp ;Reðm0
vuÞg; ð23Þ

589where ~n0φp
ðx; tÞ ¼ Nφ=2 − n0φp

ðx; tÞ (φ ¼ u, v), and evolve

590on the surface of two spheres of radii U2
0 ¼

P
3
i¼1 U

2
i ¼ N2

u

591and V2
0 ¼

P
3
i¼1 V

2
i ¼ N2

v. The phase-correlation kinetic
592equations (20) and (21) can then be recast in the following
593compact form:
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F4:1 FIG. 4. Phase-correlation modulational instability. (a) Growth
F4:2 rate of phase-correlation instability Re½λðpÞ� from Eq. (15) for
F4:3 η ¼ 1 (blue line), η ¼ 1.01, σ ¼ 7.5 (black line), η ¼ 1.1, σ ¼ 2
F4:4 (red line): Landau damping is suppressed for η ¼ 1, thus leading
F4:5 to an efficient phase-correlation growth. The length scale of
F4:6 macroscopic (nonhomogeneous) fluctuations is lc ≃ 2π=pMI;
F4:7 see Fig. 2 and Eq. (17). (b) Temporal evolution of the energy in
F4:8 the sideband (us) in the presence of coherent (dashed black line)
F4:9 and incoherent (solid blue line) pump waves. When the pump

F4:10 waves ðup; vpÞ are incoherent, the phase correlations are un-
F4:11 stable, while the sideband components are stable, so that the
F4:12 growth of us is delayed by a significant time, τd ≃ 13 (solid blue
F4:13 line). In contrast, when the pump waves are coherent, the
F4:14 standard modulational instability leads to an instantaneous
F4:15 growth of the sideband us (dashed black line).
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ð∂t þ w∂xÞU ¼ U × IðU þ VÞ; ð24Þ
594 ð∂t − w∂xÞV ¼ V × IðV þ UÞ; ð25Þ

595 with the diagonal matrix I ¼ diagðκ; 2 − κ; κÞ. This
596 formulation unveils the Hamiltonian structure of the
597 phase-correlation kinetic equations; see Appendix C. The
598 Hamiltonian can be split as follows:

H ¼ HU þHV þHint; ð26Þ
599 where the cross-interaction term is Hint¼−

R
V ·IUdx,

600 while the self-interaction contributions read: Hj¼EjþUj,

601 j ¼ U, V, with UU ¼ − 1
2

R
U · IUdx, UV ¼−1

2

R
V ·IVdx,

602 EU ¼ −wPU, EV ¼ wPV , and Pj ¼
R
Pjdx, j ¼ U;V. In

603 addition, Eqs. (24) and (25) conserve the momentum,

P ¼
Z

PU þ PVdx; ð27Þ

604 as well as the “magnetization,”

M ¼ −
1

2

Z
U2 þ V2dx; ð28Þ

605 as discussed in detail in Appendix C.
606 The Poincaré-Stokes formalism proved efficient to
607 describe nonlinear polarization phenomena by considering
608 essentially coherent optical waves; see, for instance,

609Refs. [87–89]. However, it is important to note that, here,
610the application of the Poincaré-Stokes formalism exhibits
611some important differences with respect to the usual
612approaches. (i) The Stokes vector has no physical inter-
613pretation in terms of polarization effects, because the
614Stokes variables do not refer to a single wave component,
615but involve a cross-correlation among different components
616[e.g., upðx; tÞ and vsðx; tÞ for U]. (ii) In contrast to usual
617approaches, here, the Stokes vector denotes the averaged
618envelopes that describe the macroscopic nonhomogeneous
619fluctuations of the turbulent waves. (iii) The Stokes
620formalism [Eqs. (24) and (25)] is valid only for η ¼ 1

621and a specific initial condition of the form Uðx;t¼0Þ¼
622ð0;U2;0Þ, Vðx; t ¼ 0Þ ¼ ð0; V2; 0Þ, whereU2ðx;t¼0Þ¼U0

623and V2ðx; t ¼ 0Þ ¼ V0 are constant. For general initial
624conditions, we deal with eight coupled real equations for
625ðnφ; mμÞ, which makes the Stokes parameters irrelevant
626to our problem. In spite of these limits, we show that the
627Stokes formulation proves convenient to discuss the ther-
628malization process presented in the following section.

629IV. UNCONSTRAINED THERMALIZATION

630A. Secondary turbulent dynamics for the correlators

631The simulations of the phase-correlation kinetic equa-
632tions (20) and (21) reveal that, for long interaction times,
633the system enters a second stage characterized by an
634irreversible evolution toward equilibrium, as illustrated in

F5:1 FIG. 5. Long-term evolution: Secondary turbulent regime and unconstrained thermalization. (a),(b) Simulations of the phase-
F5:2 correlation kinetic equations (20) and (21) showing the evolutions of the normal correlator n0up (a) and anomalous phase correlator jm0

uvj
F5:3 (b): After a few incoherent recurrences ðt≳ 80Þ, the correlators enter a secondary turbulent regime. (d),(e) Corresponding evolutions of

F5:4 the spatial averages of the correlators hn0upiðtÞ (c) and hjm0
uvjiðtÞ (d), obtained from the simulations of the phase-correlation kinetic

F5:5 equations (20) and (21) (dashed red line) and NLSE (blue line): For large times (t≳ 150), the fields relax to the equilibrium state
F5:6 predicted by the theory (horizontal black dashed lines); see Eqs. (35) and (36). Parameters are Nu ¼ 0.6, Nv ¼ 0.4, κ ¼ 2=3, w ¼ 54.
F5:7 Unexpectedly, this equilibrium state is not constrained by Hamiltonian and momentum conservation (see Sec. IV).
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635 Figs. 5(a) and 5(b) for t≳ 80. In this regime, the averaged
636 envelopes [n0φj

ðx; tÞ] that describe the nonhomogeneous
637 fluctuations of the waves themselves undergo strong turbu-
638 lent fluctuations. This secondary turbulent regime deterio-
639 rates the phase information stored in the phase correlations
640 m0

μðx; tÞ, which have been shown to be responsible for the
641 incoherent recurrences. It turns out that, despite the formal
642 reversibility of Eqs. (20) and (21), the system exhibits an
643 irreversible process of relaxation to equilibrium.
644 We describe this second turbulent stage of the system by
645 developing a secondary statistical analysis on the equations
646 that rule the evolution of the correlators ðn0φj

; m0
μÞ. In this

647 respect, it is important to note that the phase-correlation
648 kinetic equations (20) and (21) do not exhibit quadratic
649 dispersion relations; i.e., they do not exhibit second-order
650 spatial derivatives. This means that the system [Eqs. (20)
651 and (21)] is weakly dispersive, with purely linear acoustic-
652 like dispersion relations. In this way, the highly nonlinear
653 turbulent regime illustrated in Fig. 5 cannot be described by
654 a weakly nonlinear approach, such as the wave turbulence
655 theory. The nonlinear character of this secondary turbulent
656 regime will be confirmed by the probability density
657 functions of the correlators ðn0φj

; m0
μÞ, which will be shown

658 to be of different nature than Gaussian statistics. Note that
659 secondary statistical analysis of a primary mean-field
660 approximation of the problem has been considered in
661 magnet systems under parametric excitation [37].

662 B. Gibbsian statistical mechanics on the correlators

663 We study the equilibrium properties of the phase-
664 correlation kinetic equations (20) and (21) by following
665 a statistical mechanics approach based on the maximization
666 of the Gibbs entropy, i.e., a functional S½ρ�¼−

R
ρlogðρÞdK

667 of the PDF ρðKÞ that operates over the whole phase space,
668 as discussed in Appendix D. For this purpose, it proves
669 convenient to make use of the phase-correlation kinetic
670 equations written in terms of the Poincaré-Stokes variables
671 [Eqs. (24) and (25)], which have been shown to conserve
672 the Hamiltonian H, the momentum P, and the “magneti-
673 zation” M. According to standard statistical mechanics
674 and information theoretic principles, the equilibrium PDF
675 is obtained by maximizing S½ρ� under the constraints that
676 the phase-space evolution takes place on the shell that
677 conserves H, P, and M,

ρ ∼ expð−βH − νP − γMÞ; ð29Þ
678 where ðβ; ν; γÞ are the inverse temperatures (Lagrangemulti-
679 pliers) associated to ðH;P;MÞ given in Eqs. (26)–(28)
680 [4,73].

681 C. Zero inverse temperatures

682 In this section, we show that the statistical mechanics
683 approach of the phase-correlation kinetic equations (20)
684 and (21) [or Eqs. (24) and (25)] reveals the existence of an

685irreversible process of thermalization that is quite general,
686in the sense that it is relevant to a large class of weakly
687dispersive wave systems, as we discuss below in more
688detail (see Sec. VA). Such a thermalization process is
689unconstrained in the sense that it is not dictated by the
690usual laws of energy and momentum conservation; i.e.,
691the equilibrium state is characterized by zero inverse
692temperatures:

ν ¼ ∂S=∂P ¼ 0; β ¼ ∂S=∂H ¼ 0: ð30Þ

693To avoid confusion, we clarify that this process of uncon-
694strained thermalization does not occur for the microscopic
695fluctuations of the random waves ðu; vÞ (with correlation
696length λc ∼ 1), but for their macroscopic nonhomogeneous
697fluctuations (nφj

,mμ) (with correlation length lc ∼ w ≫ 1),
698whose dynamics is ruled by the phase-correlation kinetic
699equations (20) and (21). As a remarkable result, the
700unconstrained thermalization is shown to characterize
701the equilibrium properties of the waves ðu; vÞ ruled by the
702NLSE [Eqs. (1) and (2)], such as the amount of energy
703shared between the pumps and respective sidebands once
704equilibrium is reached.
705In the following, we discuss two different arguments
706that explain the unexpected zero inverse temperatures
707[Eq. (30)].

7081. First argument: Helix structure

709The first argument is based on the idea that the
710constraints imposed by the conservation of Hamiltonian
711and momentum have no influence on the entropy S. This
712stems from the simple observation that any surpluses of H
713and P can be stored by “helix” structures that are arbitrarily
714small in space.
715Consider a small spatial subsystem of the whole system
716that extends from x1 to x1 þ Δx. Some arbitrary functions
717are assigned to the field ðU2; αU; V2; αVÞ, where αj
718simply denote the azimuthal angles in cylindrical coordi-
719nates; see Appendix IX B. The angle variables are supposed
720to increase with constant rates ∂xαU ¼ a ¼ const,
721∂xαV ¼ b ¼ const. This contributes

ΔP ¼ a
Z

x1þΔx

x1

U2dxþ b
Z

x1þΔx

x1

V2dx ð31Þ

722to the total momentum and

ΔH ¼ wa
Z

x1þΔx

x1

U2dx − wb
Z

x1þΔx

x1

V2dx ð32Þ

723to the Hamiltonian. It is obviously possible to assign any
724values a and b to this helix structure, so that ΔH has an
725arbitrarily large positive or negative value, while keeping
726constant the momentum, ΔP ¼ 0. Alternatively, notice that
727ΔP could also have any positive or negative value. We
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728 stress the idea that this property is fundamentally related
729 to the fact that, because of the convective nature of the
730 interaction (w ≠ 0), the sign of the Hamiltonian is unde-
731 termined and can be either positive or negative. The helix
732 structure can thus store any positive or negative amount of
733 H within an arbitrarily small region in space Δx. At the
734 same time, by virtue of its small size, the formation of such
735 a helix leads only to a negligible change of the entropy ΔS,
736 so we can associate it with a zero inverse temperature,
737 β ¼ ΔS=ΔH ¼ 0. On the other hand, the third conserved
738 quantity M is virtually unaffected, as it is proportional to
739 the small Δx but does not contain large values of a or b.
740 In other words, the system can store any positive or
741 negative amount of H or P in a helix, but only a negligible
742 amount ofM. The helix acts as a source or sink from which
743 the rest of the system can take an arbitrary amount of
744 Hamiltonian and momentum. This allows the rest of the
745 system to achieve the state of maximum disorder without
746 caring for constraints by Hamiltonian or momentum
747 conservation.
748 Note that this is similar to a first-order phase transition
749 with two coexisting phases. One phase is the narrow
750 helix that absorbs any positive or negative amount of
751 Hamiltonian and momentum, which is possible because
752 these quantities are unbounded and not positive (or
753 negative) definite. The second phase refers to a rapidly
754 fluctuating field that fills almost the entire system and that
755 always contains the right amount of energy and momentum
756 to maximize the entropy, as well as virtually all of M.
757 In this sense, the entropy is not constrained by H and P,
758 which means that both β and ν are zero.

759 2. Second argument: Thermodynamic
760 equilibrium property

761 An alternative argument for ν ¼ β ¼ 0 can be obtained
762 by considering a fundamental thermodynamic equilibrium
763 property, namely, that an isolated system at equilibrium
764 should only exhibit a uniform motion of translation (or
765 rotation) as a whole, while any macroscopic internal motion
766 is not possible at equilibrium [73]. This property means that
767 the maximum of entropy cannot afford to waste energy in
768 macroscopic motion; i.e., turning this energy into the
769 microscopic degrees of freedom creates more entropy. If
770 the system has a nonzero total momentum, this constraint is
771 satisfied with a minimum investment of energy when all
772 subsystems move with the same velocity. A schematic
773 illustration of this thermodynamic equilibrium property is
774 reported in Fig. 6.
775 We now proceed by following a reasoning similar to that
776 outlined in Ref. [73]. For this purpose, it proves convenient
777 to consider the phase-correlation kinetic model written in
778 terms of the Poincaré-Stokes variables, Eqs. (24) and (25).
779 First, we can divide the system into two macroscopic
780 subsystems corresponding to the two waves U and V, with
781 H ¼ HU þHV þHint; see Eq. (26). It is important to note

782that in the second stage of unconstrained thermalization,
783the interaction Hamiltonian Hint is averaged out by the
784large convection among the two waves (ε ¼ 1=w ≪ 1 is the
785small parameter of the problem), so that the contribution
786of Hint results much smaller than the self-interaction
787contributions, Hint ≪ HU;V [90]. This important property
788is confirmed by numerical simulations, as revealed by the
789good agreement between the numerics and the theoretical
790equilibrium PDF [Eq. (D2)], in which U and V result
791uncorrelated with each other.
792Because of this weak interaction between U and V,
793near equilibrium the additive entropy can be written in
794the form S ¼ SU þ SV . Next, we split each Hamiltonian
795into the corresponding linear and nonlinear contributions,
796Hj ¼ Ej þ Uj, j ¼ U, V (note that the unconstrained
797thermalization does not occur in the weakly nonlinear
798regime, i.e., a priori jEjj ∼ jUjj, despite the fact that there is
799a weak interaction between U and V). Proceeding as in
800Ref. [73], the entropy of a subsystem is only a function

801of its “internal energy,” Sj ¼ ŜjðHj − EjÞ, j ¼ U, V.
802The total entropy as a function of the momentum has a
803maximum; then by introducing the Lagrange multiplier ν,
804we look for the maximum of F ¼ P

j¼U;VSj − νPj. Then
805∂F=∂Pj ¼ 0 gives ν ¼ −β∂Ej=∂Pj [73].
806Let us consider this result in the framework of classical
807kinetic gas theory. Considering a mixture of two classical
808gases of masses Mj, the dispersion relation is quadratic

F6:1FIG. 6. Property of equilibrium thermodynamics. Schematic
F6:2illustration of the collision of two incoherent waves with two
F6:3different velocities. After the collision, the two waves propagate
F6:4with the same average velocity, so as to prevent a relative internal
F6:5motion among the two waves: An isolated system at equilibrium
F6:6can only exhibit a uniform motion of translation as a whole, while
F6:7any macroscopic internal motion is not possible at equilibrium
F6:8[73]. This equilibrium thermodynamic property is verified for a
F6:9system of strongly dispersive (weakly nonlinear) waves, as

F6:10described by the wave turbulence theory [46]. However, this
F6:11property is not verified for weakly dispersive (strongly nonlinear)
F6:12waves ruled by the phase-correlation kinetic equations: A
F6:13maximum entropy state is achieved for ν ¼ β ¼ 0; see Eq. (30).
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809 Ej ¼ P2
j=ð2MjÞ, which gives Pj=Mj ¼ −ν=β: The two

810 subsystems propagate with the same velocity at equilib-
811 rium, Pj=Mj, which proves the above property of equi-
812 librium thermodynamics [73]. It is important to note that
813 the same equilibrium property holds for a system of weakly
814 nonlinear waves, in which dispersive linear effects domi-
815 nate nonlinear effects. More precisely, the wave turbulence
816 theory explicitly shows that a set of weakly nonlinear wave
817 packets (with quadratic dispersion relation) relax toward a
818 thermodynamic equilibrium state, in which all wave pack-
819 ets propagate with the same average velocity (see pp. 69–70
820 in Ref. [46]). In contrast to this weakly nonlinear regime,
821 the macroscopic envelope fluctuations ðnφj

; mμÞ evolve in
822 the nonlinear regime of interaction, because the corre-
823 sponding equations for such correlators are weakly
824 dispersive, as discussed in Sec. IVA. In other terms, the
825 phase-correlation kinetic equations exhibit a purely linear
826 dispersion relation: EU ¼ wPU, EV ¼ −wPV ; see Eq. (26).
827 In this way, ∂F=∂PU ¼ 0 gives ν ¼ −βw, whereas
828 ∂F=∂PV ¼ 0 gives ν ¼ þβw, which thus leads to the
829 conclusion ν ¼ β ¼ 0. As a consequence, weakly disper-
830 sive systems like Eqs. [(20) and (21)] [or Eqs. (24) and
831 (25)] cannot satisfy the above equilibrium property, so that
832 the maximum entropy state is achieved with ν ¼ β ¼ 0.

833 D. Equilibrium PDFs for the normal
834 and anomalous correlators

835 According to the previous discussion on zero inverse
836 temperatures, β ¼ ν ¼ 0, the general form of the PDF
837 Eq. (29) reduces to ρ ∼ expð−γMÞ. Starting from this
838 reduced density, we compute the marginal PDFs of the
839 normal and anomalous phase correlators. Specifically,

840 the PDFs for n0φp
(φ ¼ u, v) are exponential truncated on

841 ½0; Nφ�:

pðn0φp
Þ ¼ γ exp½sγðNφ=2 − n0φp

Þ�
2 sinhðγNφ=2Þ

Πð1 − 2n0φp
=NφÞ; ð33Þ

842 where s ¼ þ1 for φ ¼ u (s ¼ −1 for φ ¼ v) and ΠðxÞ ¼ 1

843 if x ∈ ½−1; 1� and 0 otherwise. For Nu ¼ Nv, then γ ¼ 0,

844 and the PDFs pðn0φp
Þ become uniform over ½0; Nφ�, which

845 contrasts with Gaussian statistics. On the other hand, the
846 marginal PDF for the anomalous phase correlator reads

pðjm0
μjÞ ¼

γjm0
μj coshðγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

φ=4 − jm0
μj2

q
Þ

sinhðγNφ=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

φ=4 − jm0
μj2

q Π
�
1 −

4jm0
μj

Nφ

�
;

ð34Þ

847 for ðμ ¼ uv;φ ¼ uÞ or ðμ ¼ vu;φ ¼ vÞ.
848 From the PDFs [Eqs. (33) and (34)], we obtain the
849 averages of the normal and anomalous correlators:

hn0φp
ieq ¼

Nφ

2
þ s
γ
−

sNφ

2 tanhðγNφ=2Þ
; ð35Þ

850while

hjm0
μjieq ¼

πNφI1ðγNφ=2Þ
4 sinhðγNφ=2Þ

; ð36Þ

851and hReðm0
μÞieq ¼ hImðm0

μÞieq ¼ 0, where I1ðxÞ is the first-
852order modified Bessel function of first kind. The expres-
853sions of the PDFs of the correlators and the corresponding
854averages are found in good agreement with the simulations
855of the phase-correlation kinetic equations (20) and (21), as
856illustrated in Fig. 7.
857We remark that the PDF distributions [Eqs. (33) and
858(34)] are of a different nature than Gaussian statistics,
859which corroborates the fact that the dynamics ruled by the
860phase-correlation kinetic equations cannot be described by
861a weakly nonlinear approach, such as the wave turbulence
862theory. Let us recall that the above PDF distributions
863describe the averaged envelopes of the macroscopic non-
864homogeneous spatial fluctuations of the waves uðx; tÞ
865and vðx; tÞ, while the underlying microscopic fluctuations
866(on the small scale λc) ruled by NLSE [Eqs. (1) and (2)]
867still exhibit Gaussian statistics. More precisely, the
868phase-correlation kinetic equations (20) and (21) are
869derived under the assumption that the correlators

870½n0φj
ðx; tÞ; m0

μðx; tÞ� evolve with a macroscopic correlation
871length scale, of the order lc ∼ w ≫ 1. During their
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F7:1FIG. 7. Unconstrained thermalization: PDFs of the correlators.
F7:2Equilibrium PDFs of the normal correlator n0up (a) and anomalous
F7:3phase correlator jm0

uvj (b), obtained from simulations of the phase
F7:4correlation kinetic equations (20) and (21). A good agreement is
F7:5obtained with the theory; see the equilibrium PDFs [Eqs. (33) and
F7:6(34)] in red lines. The equilibrium state is not constrained by
F7:7Hamiltonian and momentum conservation (Nu ¼ 0.6, Nv ¼ 0.4,
F7:8κ ¼ 2=3, w ¼ 54).
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872 relaxation to equilibrium, the typical correlation lengths of

873 ½n0φj
ðx; tÞ; m0

μðx; tÞ� get smaller and smaller, so that there
874 exists some time beyond which such correlation lengths are
875 much smaller thanw, which thus invalidates the assumption
876 made to derive the phase-correlation kinetic equations. In
877 computing the PDFs of the correlators ðnφj

; mμÞ numeri-
878 cally, the simulations are stopped before the envelope
879 kinetic equations (20) and (21) break down, i.e., for spectral
880 widths not much larger than 2π=w (typically for t≲ 200).
881 The PDFs we compute numerically then approach the
882 corresponding PDFs predicted by our equilibrium theory
883 within some large, yet finite, time.
884 A remarkable result revealed by the unconstrained

885 thermalization of the correlators ðn0φj
; m0

μÞ is that it provides
886 an analytical expression of the energy shared between the
887 pumps and respective sidebands at equilibrium. This is
888 expressed by Eq. (35), which gives the amount of energy

889 in the pump components, hn0φp
ieq ¼ hjφpðx; tÞj2ieq, with

890 φ ¼ u, v, while the equilibria for the sidebands hn0φs
ieq are

891 deduced from energy conservation, Nφ ¼ const. These
892 analytical expressions of the pump and sideband energies
893 are found in quantitative agreement with NLSE simulations
894 without using adjustable parameters, as illustrated in Fig. 5.

895 V. DISCUSSION

896 In summary, we show that large convection among
897 weakly interacting random waves is responsible for a
898 phenomenon of incoherent recurrence that can occur far
899 from integrability and that originates in the spontaneous
900 emergence of strongly correlated fluctuations. We explain
901 this phenomenon by developing a nonequilibrium kinetic
902 formulation accounting for spatial nonhomogeneous phase
903 correlations. The theory reveals that the incoherent recur-
904 rence is due to a novel form of modulational instability that
905 occurs solely for the phase correlations mμ, so that the
906 growths of the usual modulational unstable sidebands are
907 delayed by a significant time. In contrast to conventional
908 incoherent modulational instabilities, we identify a regime
909 in which Landau damping is completely suppressed,
910 which unexpectedly eliminates the modulational instability
911 threshold. Owing to this remarkable fact, the incoherent
912 recurrence can take place for strongly incoherent waves
913 in the weakly nonlinear regime, which thus leads to a
914 violation of the H theorem of entropy growth.
915 After a few incoherent recurrences, the system enters a
916 secondary turbulent regime for the correlators (nφj

, mμ),
917 which is characterized by an irreversible evolution to
918 equilibrium. This thermalization process cannot be des-
919 cribed by a weakly nonlinear treatment, so we resort to a
920 Gibbsian statistical mechanics approach on the correlators.
921 Unexpectedly, the analysis reveals the existence of a
922 novel scenario of irreversible thermalization, which is not
923 constrained by energy (Hamiltonian) and momentum

924conservation; i.e., the corresponding inverse temperatures
925are zero, β ¼ ν ¼ 0. We give two physical arguments
926without a rigorous mathematical proof that explain the
927nature of the unconstrained thermalization process. The
928first one is based on the idea that the presence of narrow
929helix-shaped coherent structures can store any amount of the
930Hamiltonian andmomentum, so that the constraints imposed
931by these conserved quantities have no influence on the
932entropy. The second argument is based on thermodynamics
933grounds and reveals that the unconstrained thermalization
934does not verify an equilibrium property, namely, that an
935isolated system at equilibrium should exhibit a uniform
936motion of translation as a whole. Both arguments rely on the
937fact that the dynamics is dominatedby the convection among
938the waves, which introduces an undetermined sign of the
939energy (the Hamiltonian is not positive or negative definite).
940Our numerical simulations are in good agreement with the
941equilibrium PDFs predicted by the unconstrained thermal-
942ization process. In this respect, it is interesting to note that the
943equilibrium PDFs of the macroscopic fluctuations of the
944waves exhibit strong deviations from Gaussianity, which
945shows that a bunch of random waves with large intensity
946(“incoherent rogue wave”) can even be more probable than
947bunches of small intensities (see Fig. 7).

948A. Generality of the process of unconstrained
949thermalization

950Her, we emphasize that the unconstrained thermalization
951does not constitute a specific property of the phase-
952correlation kinetic equations derived in our paper, but rather
953a general property for weakly dispersive wave systems
954whose dynamics is dominated by convection. We illustrate
955such a generality by considering two important examples.
956We first consider the evolution of a nonlinear wave in a
957periodic potential, a problem encountered in a variety of
958physical disciplines, such as optics, condensed matter
959physics, or Bose-Einstein condensates [91–94], in which
960the behavior of atoms mimics those of electrons in crystals
961or photons in optical gratings. Because of Bragg reflections
962around a forbidden frequency band gap, these systems
963are generally characterized by a counterpropagating wave
964interaction, so that the dynamics is dominated by con-
965vection; see Appendix E. The corresponding model has
966been widely studied in relation with the generalized
967massive Thirring model [91–94]. Note that this model is
968also relevant to the description of ocean waves in deep
969water for a periodic bottom [95].
970Another remarkable example of weakly dispersive wave
971system is provided by the resonant three-wave interaction,
972which is known to occur in any weakly nonlinear medium
973whose lowest-order nonlinearity is quadratic in terms of
974the wave amplitudes. For this reason, the three-wave
975interaction is encountered in such diverse fields as
976plasma physics, hydrodynamics, acoustics, and nonlinear
977optics [96].
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978 Both the Thirring model and the three-wave interaction
979 model constitute weakly dispersive systems with purely
980 linear dispersion relations. Accordingly, these systems
981 exhibit a Hamiltonian structure analogous to that of the
982 phase-correlation kinetic equations; see Appendix E.
983 Hence, following the analysis developed in Sec. IV C, both
984 models exhibit an irreversible process of thermalization
985 toward an equilibrium which is not constrained by energy
986 (Hamiltonian) and momentum conservation. We finally
987 note that, as discussed above through the phase-correlation
988 kinetic equations, the equilibrium state itself contains
989 arbitrarily short fluctuations, in a way similar to the
990 well-known ultraviolet catastrophe inherent to the ensemble
991 of classical waves [39]. In this respect, the equilibrium is
992 not, strictly speaking, a physical state. Its physical impor-
993 tance is its role as a statistical attractor that governs the
994 thermalization process at physically relevant scales.

995 B. Degenerate resonances

996 It is interesting to note that for η ¼ 1, the dispersion
997 relations of the system [Eqs. (1) and (2)] exhibit degenerate
998 resonances, a property of fundamental importance to find
999 additional integral invariants of kinetic equations [97], in

1000 relation to the general problem of integrability [15,98].
1001 It turns out that the wave turbulence kinetic equations
1002 associated with Eqs. (1) and (2) admit “local” invariants
1003 for η ¼ 1 [99]. Contrary to usual integral invariants which
1004 lead to a generalized Rayleigh-Jeans distribution [97], local
1005 invariants are responsible for an anomalous process of
1006 thermalization toward an equilibrium state of a different
1007 nature than the Rayleigh-Jeans spectrum [99]. However,
1008 we stress the fact that, irrespective of the local or integral
1009 nature of the invariants, the wave turbulence theory still
1010 predicts a monotonic process of entropy production.
1011 Therefore, the wave turbulence theory cannot describe the
1012 incoherent recurrences reported here, despite the fact that
1013 they occur in the weakly nonlinear regime. We note
1014 the interesting aspect that fast oscillatory energy transfers
1015 among modes can be described through quasiresonant (or
1016 nonresonant) interactions in the framework of a generalized
1017 version of the wave turbulence kinetic equation (see
1018 Refs. [71,100,101] and Chap. 7 in Ref. [41]). However
1019 such a generalized kinetic approach does not account for the
1020 existence of phase correlations, so that it is inherently unable
1021 to describe the incoherent recurrences we report here.
1022 We also note that the process of “anomalous thermal-
1023 ization” reported in Ref. [99] is of a fundamentally different
1024 nature than the unconstrained thermalization reported in the
1025 present work. Firstly, as discussed above, the anomalous
1026 thermalization results from the conservation of a local
1027 invariant in frequency space, which implies, in particular,
1028 the conservation of the energy and momentum [99]. Then
1029 in contrast to the unconstrained thermalization process, the
1030 anomalous thermalization is constrained by the conserva-
1031 tion of energy and momentum. Secondly, the anomalous

1032thermalization process is entirely described by the standard
1033wave turbulence kinetic equations in the weakly nonlinear
1034regime [99]. This is in contrast to the unconstrained
1035thermalization that occurs for weakly dispersive wave
1036systems that evolve in the strongly nonlinear regime, as
1037revealed by the equilibrium PDFs, which are of a different
1038nature than Gaussian statistics (see Sec. IV D).

1039C. Experimental implementations

1040Spatiotemporal recurrence phenomena have been widely
1041studied with purely coherent waves in various different
1042recent experiments in optical fibers [26,27,34] and water
1043tanks [29,30,34,35]. The present work should stimulate a
1044novel class of experiments aimed at observing spatiotem-
1045poral recurrences with incoherent waves.
1046The phenomenon of incoherent recurrence reported here
1047should be observable in coupled Bose-Einstein condensates
1048[78]. One may simply consider a binary mixture of the
1049same atomic species (same masses) with different internal
1050degrees of freedom, so that η ¼ 1 in Eqs. (1) and (2), while
1051the amount of convection among the waves can be
1052controlled by well-known techniques [102]. We remark
1053that this type of experiment is relevant to the emergent key
1054area of quantum turbulence in Bose-Einstein condensates
1055[103]. Hydrodynamic experiments can also be envisaged in
1056water tanks, by considering the interaction of deep water
1057waves propagating in different directions (note that η ¼ 1
1058in the NLSE model [76]).
1059We also consider with care the feasibility of an experi-
1060ment in an optical fiber system. In this respect, the NLSE
1061[Eqs. (1) and (2)] are known to accurately describe the
1062propagation of orthogonal polarization components ðu; vÞ
1063in highly birefringent optical fibers. In this setting, the
1064cross-phase modulation coefficient is set to κ ¼ 2=3 (which
1065corresponds to the value used in the simulations) and the
1066ratio between the dispersion coefficients is usually approxi-
1067mated to η≃ 1, while the convection among the polariza-
1068tion components u and v is related to the amount of fiber
1069birefringence [74]. Our analysis reveals that the numerical
1070simulations reported in this paper refer to an experiment
1071that can be implemented with currently available fiber
1072technology, so that we can reasonably expect in the near
1073future the observation of the phenomenon of incoherent
1074recurrence.

1075D. Toward incoherent breathers

1076The spatiotemporal character of the kinetic formulation
1077we develop in this work paves the way to the study of
1078novel forms of global incoherent collective behaviors in
1079turbulent systems. In the following, we discuss the impor-
1080tant example of breathers [27–35,104–109]. In this respect,
1081we note that, although breather structures have been
1082shown to emerge from a turbulent state of the system
1083[104,105,108,109], the breather itself has always been
1084considered as being inherently a coherent localized entity.
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1085 On the other hand, we show in this work that, by creating
1086 strong phase correlations, convection introduces a large-
1087 scale behavior of the incoherent wave lc ∼ w [see Eq. (17)],
1088 whosemacroscopic envelope evolution is described in detail
1089 by the phase-correlation kinetic theory. Now, one can simply
1090 remark that a coherent breather solution of the phase-
1091 correlation kinetic equations (24) and (25) corresponds to
1092 an incoherent breather state by referring back to the original
1093 NLSE random waves. In other words, the incoherent waves
1094 ðu; vÞ ruled by the NLSE system exhibit a microscopic
1095 incoherent random structure, and a macroscopic envelope
1096 structure, ðUbr;VbrÞ, which corresponds to a coherent
1097 breather solution of the kinetic equations (24) and (25).
1098 Then in contrast to widely studied coherent breathers, our
1099 formulation predicts the existenceof a large-scale incoherent
1100 breather structure, in which it is the incoherent wave as a
1101 whole that exhibits spatiotemporal recurrences.
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1123 APPENDIX A: INAPPLICABILITY OF THE
1124 WAVE TURBULENCE THEORY

1125 The standard mathematical tool to study the dynamics of
1126 weakly nonlinear random waves is based on the wave
1127 turbulence theory [36,38–40]. This kinetic approach relies
1128 on a natural asymptotic closure of the moments equations,
1129 which is induced by the dispersive properties of the waves.
1130 It leads to a kinetic description of the wave interaction that
1131 is formally based on irreversible kinetic equations, a feature
1132 which is expressed by an H theorem of entropy growth.
1133 The wave turbulence theory is essentially based on the
1134 following assumptions: (i) the waves evolve in a regime
1135 of weak nonlinear interaction j ~U= ~Ej ≪ 1, (ii) the waves
1136 exhibit fluctuations that are statistically homogeneous in

1137space, (iii) there are no correlations among the wave
1138components ðu; vÞ. In this way, the theory derives a set
1139of irreversible kinetic equations that govern the
1140evolutions of the averaged spectra of the fields ~nuðk; tÞ
1141and ~nvðk; tÞ: h ~uðk1; tÞ ~u�ðk2; tÞi ¼ ~nuðk1; tÞδðk1 − k2Þ,
1142h~vðk1; tÞ ~v�ðk2; tÞi ¼ ~nvðk1; tÞδðk1 − k2Þ, with ~uðk;tÞ¼
1143ð1= ffiffiffiffiffiffi

2π
p ÞR uðx;tÞexpð−ikxÞdx, ~vðk;tÞ¼ð1= ffiffiffiffiffiffi

2π
p ÞR vðx;tÞ×

1144expð−ikxÞdx. Following the wave turbulence procedure,
1145one obtains the following set of coupled kinetic equations:

∂t ~nuðk; tÞ ¼
κ2

2π

Z Z Z
dk1dk2dk3RuvWuv; ðA1Þ

1146
∂t ~nvðk; tÞ ¼

κ2

2π

Z Z Z
dk1dk2dk3RvuWvu; ðA2Þ

1147where Ruv ¼ ~nuðk1Þ ~nvðk2Þ ~nvðk3Þ ~nuðkÞ½ ~n−1u ðkÞþ ~n−1v ðk3Þ−
1148~n−1v ðk2Þ− ~n−1u ðk1Þ�, Wuv ¼ δ(ωuðk1Þ þ ωvðk2Þ − ωvðk3Þ−
1149ωuðkÞ)δðk1 þ k2 − k3 − kÞ, while Rvu and Wvu are
1150deduced with the substitutions u ↔ v. The dispersion
1151relations read ωuðkÞ ¼ k2 þ wk, ωvðkÞ ¼ ηk2 − wk. The
1152resonant conditions of energy and momentum conservation
1153are expressed by the Dirac δ functions. Note that the
1154self-interaction term in the NLSE [Eqs. (1) and (2)] does
1155not contribute to the kinetic equations, because the con-
1156servations of energy and momentum are trivially satisfied
1157in one dimension. Equations (A1) and (A2) conserve the
1158energies (number of particles) of each component,

1159Nφ ¼ R
~nφðk; tÞdk, the total momentum, ~P ¼ P

φ
~Pφ,

1160~Pφ ¼ R
k ~nφðk; tÞdk, and the linear contribution to

1161the Hamiltonian, ~E ¼ P
φ
~Eφ, ~Eφ ¼ R

ωφðkÞ ~nφðk; tÞdk
1162(φ ¼ u, v). The irreversible character of Eqs. (A1) and
1163(A2) is expressed by an H theorem of entropy growth,

1164d ~S=dt≥ 0, where ~S¼P
φ
~Sφ, and ~SφðtÞ¼

R
log½ ~nφðk;tÞ�dk

1165is the nonequilibrium entropy of the φth component
1166(φ ¼ u, v). The thermodynamic equilibrium spectra ~nRJφ ðkÞ
1167realizing the maximum of entropy ~S½ ~nu; ~nv�, given the

1168constraints of conservation of ~E, ~P, and ~Nφ, refer to the
1169well-known Rayleigh-Jeans distribution,

~nRJφ ðkÞ ¼
~T

ωφðkÞ þ ~νk − ~μφ
; φ ¼ u; v; ðA3Þ

1170where ~T (temperature), ~μu;v (chemical potentials), and ~ν are

1171the Lagrangian multipliers associated to ~E, ~Nφ, ~P, respec-
1172tively. Energy equipartition among the modes takes place
1173in the tails (large k) of the Rayleigh-Jeans distribution,

1174where ωφðkÞ ~nRJφ ðkÞ≃ ~T. Regardless of the amount of
1175convection in the system, i.e., irrespective of w, the kinetic
1176equations (A1) and (A2) then describe an irreversible
1177thermalization to the Rayleigh-Jeans spectrum, so that the
1178wave turbulence theory is unable to describe the incoherent
1179recurrences.

3

4
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1180 APPENDIX B: DERIVATION OF THE
1181 PHASE-CORRELATION KINETIC EQUATIONS
1182 [EQS. (11) AND (12)]

1183 1. General form of the kinetic equations

1184 The starting point consists of splitting each wave, uðx; tÞ
1185 and vðx; tÞ, into a pump component and the corresponding
1186 sideband modulational instability spectral component:

uðx; tÞ ¼ ~upðx − wt; tÞ þ ~usðxþ wt; tÞ expð−iwxÞ; ðB1Þ
1187 vðx; tÞ ¼ ~vpðxþ wt; tÞ þ ~vsðx − wt; tÞ expðþiwxÞ; ðB2Þ

1188 with the assumption that w ≫ σ, where σ is the typical
1189 spectral bandwidth of the waves ~uj and ~vj (j ¼ p, s). The
1190 coherence length of a field, λc ∼ 2π=σ, is typically smaller
1191 than one within our normalization. The shifts �w∂x in
1192 Eqs. (B1) and (B2) are chosen so as to cancel the transport
1193 terms in the four-wave model equations. Substituting these
1194 Ansätze into the NLSE, and keeping the resonant terms,
1195 we obtain:

i∂t ~up ¼ Fp½ ~uj; ~vj� þ κ ~vsðxÞð ~us ~v�pÞðxþ 2wtÞ − ∂xx ~up;

ðB3Þ
1196 i∂t ~us ¼ F s½ ~uj; ~vj� þ κ ~vpðxÞð ~up ~v�sÞðx − 2wtÞ − ∂xx ~us;

ðB4Þ
1197 with (j ¼ p, s), and where the functionals readFp½ ~uj; ~vj� ¼
1198 ½j ~upj2þ2ðj ~usj2Þðxþ2wtÞ þ κðj ~vpj2Þðxþ2wtÞ þ κj ~vsj2� ~up,
1199 and F s½ ~uj; ~vj�¼½j ~usj2þ2ðj ~upj2Þðx−2wtÞþκj ~vpj2þ
1200 κðj ~vsj2Þðx−2wtÞ� ~us. The equations for ð~vp; ~vsÞ can be
1201 derived from those for ð ~up; ~usÞ with the substitutions
1202 ~uj ↔ ~vj (j ¼ p, s), w → −w, ∂xx ~uj → η∂xx ~vj (j ¼ p, s).
1203 Note that, contrary to the usual four-wave interaction
1204 equations, we retain here second-order dispersion effects
1205 [last terms in Eqs. (B3) and (B4)], which appear to play a
1206 fundamental role in the emergence of phase correlations
1207 among the random waves. Specifically, the phase-
1208 correlation modulational instability reveals that the char-
1209 acteristic length scale of nonhomogeneous statistics of the
1210 random waves is determined by the amount of convection
1211 in the system, lc ∼ w [see Eq. (17)]. The existence of
1212 incoherent recurrences requires the presence of a large
1213 convection, w ≫ 1. Then the microscopic scale fluctua-
1214 tions of the random waves that are characterized by the
1215 coherence length, λc ∼ 1, are much smaller than the macro-
1216 scopic scale variations of the nonhomogeneous statistics,
1217 i.e., λc ≪ w. In this way, large convection is responsible for
1218 an effective averaging of the microscopic scale fluctuations.
1219 We derive an ensemble of closed equations for the
1220 evolutions of the correlation functions that describe
1221 the dynamics of the macroscopic scale fluctuations of the
1222 random waves. Under the assumption that the interaction

1223takes place in the weakly nonlinear regime, we follow the
1224general procedure of the wave turbulence theory to achieve
1225a closure of the infinite hierarchy of moments equations.
1226However, at variance with the standard wave turbulence
1227theory, here, we take into account the existence of phase-
1228correlation effects among the two pairs of copropagating
1229random wave components, as well as the nonhomogeneous
1230statistics of the macroscopic spatial fluctuations. We
1231denote upðx; tÞ ¼ ~upðx − wt; tÞ; usðx; tÞ ¼ ~usðxþ wt; tÞ;
1232vpðx; tÞ ¼ ~vpðxþ wt; tÞ; vsðx; tÞ ¼ ~vsðx − wt; tÞ. The cor-

1233relation functions are defined as follows: Bφj
ðx; ξ; tÞ ¼

1234hujðxþ ξ=2; tÞu�jðx − ξ=2; tÞi, for φ ¼ u, v (j ¼ p, s), and

1235Γuvðx; ξ; tÞ ¼ hupðxþ ξ=2; tÞv�sðx − ξ=2; tÞi, Γvuðx; ξ; tÞ ¼
1236husðxþ ξ=2; tÞv�pðx − ξ=2; tÞi. Recalling that the large
1237length scale of macroscopic fluctuations associated to
1238the nonhomogeneous statistics is lc ∼ w ≫ 1, we consider
1239a multiscale expansion with the small parameter ε ¼ 1=w:

Bφj
ðx; ξ; tÞ ¼ Bð0Þ

φj ðεx; ξ; tÞ; φ ¼ u or φ ¼ vðj ¼ p; sÞ;
Γφðx; ξ; tÞ ¼ Γð0Þ

φ ðεx; ξ; tÞ; φ ¼ uv or φ ¼ vu:

1240In this way, we havew∂xBφj
ðx; ξ; tÞ ¼ ∂XB

ð0Þ
φj ðX; ξ; tÞ, with

1241X ¼ εx (φ¼ u;v;j¼p, s). We also have Bφj
ðx�ξ=2;0;tÞ−

1242Bφj
ðx∓ξ=2;0;tÞ≃�εξ∂XB

ð0Þ
φj ðX;0;tÞ, so that these terms

1243result to be negligible with respect to terms of the form
1244w∂xBφj

ðx; ξ; tÞ. In this regime, second-order dispersion
1245effects (second-order spatial derivatives in the NLSE) are

1246negligible for the autocorrelation functions, ∂2
xξBφj

ðx; ξÞ ¼
1247ε∂2

XξB
ð0Þ
φj ðX; ξ; tÞ, while dispersion effects do affect the

1248evolutions of the phase-correlation functions with terms of

1249the form ∂2
ξΓ

ð0Þ
uv ðX; ξ; tÞ. Collecting terms of the order ε0,

1250we obtain the following system of closed equations
1251governing the evolutions of the correlation functions:

ið∂t þ w∂xÞBupðx; ξÞ ¼ Bup ½Γμ�; ðB5Þ
1252

ið∂t − w∂xÞBusðx; ξÞ ¼ Bus ½Γμ�; ðB6Þ
1253

ið∂tþw∂xÞΓuvðx;ξÞ¼Buv½Bφj
;Γμ�−δ∂2

ξΓuvðx;ξÞ; ðB7Þ

1254where δ ¼ 1 − η and the functionals read Bup ½Γμ� ¼
1255−κΓuvðx;ξÞ½Γ�

uvðx;0ÞþΓ�
vuðx;0Þ�þ κΓ�

uvðx;−ξÞ½Γuvðx;0Þþ
1256Γvuðx;0Þ�, Bus ½Γμ� ¼ −κΓvuðx; ξÞ½Γ�

uvðx; 0Þ þ Γ�
vuðx; 0Þ�þ

1257κΓ�
vuðx;−ξÞ½Γuvðx; 0Þ þ Γvuðx; 0Þ�, and Buv½Bφj

;Γμ� ¼
1258Γuvðx; ξÞfκ½Bvpðx;0Þ−Bupðx;0Þ þBvsðx;0Þ−Busðx;0Þ�þ
12592½Bupðx;0Þ−Bvsðx;0ÞþBusðx;0Þ−Bvpðx;0Þ�gþκ½Bvsðx;ξÞ−
1260Bupðx;ξÞ�½Γuvðx;0Þ þ Γvuðx;0Þ�. The corresponding equa-

1261tions for Bvjðx; ξ; tÞ (j ¼ p, s) and Γvuðx; ξ; tÞ can be

1262deduced with the substitutions: ~uj ↔ ~vj (j ¼ p, s),
1263w → −w, Γuvðx; ξ; tÞ → Γ�

vuðx;−ξ; tÞ, δ → −δ.
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1264 2. Invariant correlation functions

1265 Equations (B5)–(B7) reveal the existence of conserved
1266 correlationfunctions:ð∂tþw∂xÞ½Bupðx;ξ;tÞþBvsðx;ξ;tÞ�¼0

1267 and ð∂t − w∂xÞ½Bvpðx; ξ; tÞ þ Busðx; ξ; tÞ� ¼ 0. Let us ana-
1268 lyze these invariant correlation functions in the problem
1269 under consideration here, in which only the two incoherent
1270 pump waves are initially injected in the system; i.e.,
1271 jφpðx; t ¼ 0Þj ≫ jφsðx; t ¼ 0Þj, with φ ¼ u, v. Moreover,
1272 the incoherent pump waves exhibit fluctuations that are
1273 statistically homogeneous in space, so that we have two
1274 conserved functions,QuðξÞ andQvðξÞ, which are determined
1275 by the initial condition

QuðξÞ ¼ Bupðξ; t ¼ 0Þ ¼ Bupðx; ξ; tÞ þ Bvsðx; ξ; tÞ; ðB8Þ
1276 QvðξÞ ¼ Bvpðξ; t ¼ 0Þ ¼ Bvpðx; ξ; tÞ þ Busðx; ξ; tÞ: ðB9Þ

1277 Note that these invariants donot dependon the spatial variable
1278 x, because of the assumption of homogeneous statistics
1279 of the initial pump waves. Owing to the invariants [Eqs. (B8)
1280 and (B9)], the general equations for the correlation functions
1281 Eqs. (B5)–(B7) reduce to a set of four closed equations. These
1282 can be reformulated by considering the evolutions of the local
1283 spectra of the fields by taking the Wigner-like transform, as
1284 defined through Eqs. (9) and (10). In this way, we obtain the
1285 phase-correlation kinetic equations (11) and (12) for the
1286 evolutions of nupðx; k; tÞ and mvuðx; k; tÞ, where Nφ ¼
1287 Qφðξ ¼ 0Þ (with φ ¼ u, v) denote the conserved “energies”
1288 of thewavesuandv.Note that thecorrespondingequationsfor
1289 nvpðx; k; tÞ and muvðx; k; tÞ can be deduced from Eqs. (11)

1290 and (12) through the substitution nup ↔ nvp , w → −w,
1291 mvuðx; ξ; tÞ ↔ m�

uvðx; ξ; tÞ, ð1 − ηÞ → −ð1 − ηÞ.

1292 3. Formal reversibility

1293 Note that, contrary to the usual wave turbulence for-
1294 malism discussed in Appendix A [36,39,40], the system
1295 Eqs. (11) and (12) is reversible in time; i.e., the equations
1296 are invariant under the transformation

t→−t; w→−w; k→−k; nφ → nφ; mμ →m�
μ:

ðB10Þ

1297 This transformation is inherited from the well-known
1298 time invariance of the NLSE [Eqs. (1) and (2)]: t → −t,
1299 w → −w, u → u�, v → v�.

1300 APPENDIX C: HAMILTONIAN STRUCTURE
1301 OF THE PHASE-CORRELATION
1302 KINETIC EQUATIONS

1303 1. Spherical coordinates

1304 The Hamiltonian of Eqs. (20) and (21) can be unveiled
1305 by using the Poincaré-Stokes representation reported in
1306 Eqs. (24) and (25). We consider the Poisson bracket:

fF;Gg ¼
X
ijk

Z
dx0δðx − x0ÞεijkQ½F;G�; ðC1Þ

1307where Q½F;G�¼Ui½δF=ðδUjÞ�½δG=ðδUkÞ�þVi½δF=ðδVjÞ�
1308½δG=ðδVkÞ�, and ½δF=ðδUjÞ�¼½∂F=ð∂UjÞ�−½d=ðdxÞ�
1309½∂F=ð∂U0

jÞ�, with εijk the antisymmetric tensor. Here and
1310below, the prime denotes the spatial partial derivative;
1311e.g., U0

i ¼ ∂xUi. In particular, we have fUiðxÞ;
1312Ujðx0Þg¼εijkUkδðx−x0Þ;fViðxÞ;Vjðx0Þg¼εijkVkδðx−x0Þ.
1313Equations (25) and (26) can then be written as
1314∂tU ¼ fU;Hg, ∂tV ¼ fV;Hg, with the Hamiltonian
1315H ¼ HU þHV þHint, explicitly given in Eq. (27).
1316Making use of U · U0 ¼ 0, V · V0 ¼ 0, we have
1317U0 ¼ fU; PUg, V0 ¼ fV; PVg, where the momenta read

PU ¼ U2

U2
0 − U2

2

ðU3U0
1 −U1U0

3Þ; ðC2Þ

1318
PV ¼ V2

V2
0 − V2

2

ðV3V 0
1 − V1V 0

3Þ; ðC3Þ

1319and the conserved total momentum is P ¼ R
PU þ PVdx.

13202. Cylindrical coordinates

1321It proves convenient to rewrite the Hamiltonian in
1322cylindrical coordinates. The canonical cylindrical coordi-
1323nates ðU2; αU; V2; αVÞ are defined by

U ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
0 −U2

2

q
sinðαUÞ; U2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

0 −U2
2

q
cosðαUÞ

i
; ðC4Þ

1324
V ¼

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 − V2

2

q
sinðαVÞ; V2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 − V2

2

q
cosðαVÞ

i
: ðC5Þ

1325In these coordinates, the corresponding canonical equations
1326read:

ð∂t þ w∂xÞαU ¼ ∂Hs=∂U2; ðC6Þ
1327ð∂t þ w∂xÞU2 ¼ −∂Hs=∂αU; ðC7Þ
1328ð∂t − w∂xÞαV ¼ ∂Hs=∂V2; ðC8Þ
1329ð∂t − w∂xÞV2 ¼ −∂Hs=∂αV; ðC9Þ

1330where Hs ¼ − 1
2
ðU þ VÞ · IðU þ VÞ ¼ −κ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

0 − U2
2

p
×

1331
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 − V2

2

p
cosðαU − αVÞ þ U2V2� − ð1 − κÞðU2 þ V2Þ2−

1332κ
2
ðU2

0 þ V2
0Þ. These equations are equivalent to Eqs. (24)

1333and (25). The advantage of these canonical cylindrical
1334coordinates with respect to the spherical Stokes parameters
1335is that the momentum contribution to the Hamiltonian
1336takes a much simpler form. Using the fact that PU ¼ U2α

0
U

1337and PV ¼ V2α
0
V , the Hamiltonian has the form H ¼

1338
R
ĤðU2; V2; αU; αV; α0U; α

0
VÞdx, with
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ĤðU2; V2; αU; αV; α0U; α
0
VÞ

¼ wðV2α
0
V −U2α

0
UÞ

− κ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
0 −U2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 − V2

2

q
cosðαU − αVÞ þ U2V2

i

− ð1 − κÞðU2 þ V2Þ2 −
κ

2
ðU2

0 þ V2
0Þ; ðC10Þ

1339 the momentum reads P ¼ R
P̂ðU2; V2; αU;αV; α0U; α

0
VÞdx,

1340 with

P̂ðU2; V2;αU; αV; α0U; α
0
VÞ ¼ U2α

0
U þ V2α

0
V; ðC11Þ

1341 and the magnetization reads M ¼
1342

R
M̂ðU2; V2; αU; αV; α0U; α

0
VÞdx, with

M̂ðU2; V2; αU; αV;α0U; α
0
VÞ ¼ −

1

2
ðU2 þ V2Þ: ðC12Þ

1343

1344 APPENDIX D: DERIVATION OF THE
1345 PROBABILITY DENSITIES [EQS. (30)–(35)]

1346 1. General expression

1347 We begin by introducing a finite-dimensional approxi-
1348 mation of the partial differential equation (C6)–(C9)
1349 through a spatial discretization of the variable x,
1350 which gives a finite-dimensional system governing the
1351 evolution of ðKjÞnj¼1, where K ¼ ðU2; V2; αU; αV; α0U; α

0
VÞ

1352 is an element of the phase space. The equilibrium density ρ
1353 maximizes the Gibbs entropy functional, SG½ρ�¼
1354 −

R
ρ½ðKjÞnj¼1�logfρ½ðKjÞnj¼1�gdK1…dKn, under the con-

1355 straints dictated by the three conserved quantities, the
1356 Hamiltonian H [Eq. (C10)], the momentum P
1357 [Eq. (C11)], and the magnetization M [Eq. (C12)]. Follo-
1358 wing the standard procedure based on the Lagrangian
1359 multipliers, the equilibrium PDF reads ρ½ðKjÞnj¼1�∼
1360 expf−βH½ðKjÞnj¼1�−νP½ðKjÞnj¼1�−γM½ðKjÞnj¼1�g. In the
1361 long-term evolution, the waves Uðx; tÞ and Vðx; tÞ exhibit
1362 fluctuations that are statistically homogeneous in space, with
1363 a correlation length that decreases during the evolution. In
1364 this way, the large convection among the waves (w ≫ 1)
1365 leads to an effective averaging of the spatial correlations of
1366 thewaves, so that the state of maximum entropy ρ½ðKjÞnj¼1�∼
1367 exp½−βPn

j¼1ĤðKjÞ−ν
P

n
j¼1P̂ðKjÞ−γ

P
n
j¼1M̂ðKjÞ�, with

1368 Ĥ, P̂, and M̂ given by Eqs. (C10)–(C12), results to be the
1369 product of the elementary densities

Q
n
j¼1 ρðKjÞ, with

ρðKÞ ∼ exp½−βĤðKÞ − νP̂ðKÞ − γM̂ðKÞ�; ðD1Þ

1370 where K stands for Kj to simplify the notations.

1371 2. Reduced form of the equilibrium density

1372 According to Eq. (31), we have ν ¼ β ¼ 0, and we
1373 now look for the equilibrium PDF distribution ρðQÞ, by

1374considering solely the constraint imposed by the conser-
1375vation of M. The vector Q ¼ ðU;VÞ is an element of the
1376phase space that refers to the product of the two spheres of
1377radii U0 and V0. We refer back to the original variables so
1378as to derive the equilibrium PDF in terms of the correlators
1379ðn0φj

; m0
μÞ. Accordingly, the vectors ½ ~n0φp

;Reðm0
μÞ; Imðm0

μÞ�
1380evolve on the surface of two spheres of radii Nφ=2, with
1381ðφ ¼ u; μ ¼ uvÞ or ðφ ¼ v; μ ¼ vuÞ. We represent these
1382vectors in spherical coordinates: ~n0φp

¼ ðNφ=2Þ cos θφ
1383(φ ¼ u, v); Reðm0

μÞ ¼ ðNφ=2Þ sin θφ cos δφ, Imðm0
μÞ¼

1384ðNφ=2Þsinθφsinδφ, with ðφ¼u;μ¼uvÞ or ðφ¼v;μ¼vuÞ.
1385We look for the stationary distribution of the state vector
1386ðθu; δu; θv; δvÞ by maximizing the entropy under the con-
1387straint imposed by the conservation of the magnetization
1388M, which can be written as L−1R L

0 ½ ~n0upðx;tÞ− ~n0vpðx;tÞ�dx¼
1389ðNv−NuÞ=2. Following the usual procedure based on the
1390method of the Lagrange multipliers, we obtain the PDF of
1391the equilibrium distribution:

ρðθu; δu; θv; δvÞ ¼ Z−1 exp

�
γ

�
Nu

2
cos θu −

Nv

2
cos θv

��
;

ðD2Þ
1392where the multiplier γ, associated to the conservation ofM,
1393is the unique solution of

−
2

γ
þ Nu

2

1

tanhðγNu=2Þ
þ Nv

2

1

tanhðγNv=2Þ
¼ Nv − Nu

2
;

1394and Z is given by

Z ¼ 64π2

NuNvγ
2
sinh

�
γNu

2

�
sinh

�
γNv

2

�
:

1395The PDF Eq. (D2) shows, in particular, that ½ ~n0up ;Reðm0
uvÞ;

1396Imðm0
uvÞ� and ½ ~n0vp ;Reðm0

vuÞ; Imðm0
vuÞ� are independent.

1397The marginal PDFs for the normal correlator pðn0φj
Þ and

1398anomalous correlator pðjm0
μjÞ given in Eqs. (34) and (35)

1399have been computed from the general expression of the
1400PDF Eq. (D2).

1401APPENDIX E: HAMILTONIAN STRUCTURE
1402OF THE THIRRING AND THREE-WAVE
1403INTERACTION MODELS

1404In order to illustrate the generality of the process of
1405unconstrained thermalization, here, we show that the phase-
1406correlation kinetic equations (24) and (25) [or Eqs. (20)
1407and (21)] exhibit a Hamiltonian structure analogous to that
1408of the Thirring model and the three-wave interaction model.
1409The generalized massive Thirring model can be recast in
1410the following dimensionless form [91,92,94,95]:

i∂tuþ i∂xu ¼ −δv − ðjuj2 þ 2jvj2Þu; ðE1Þ
1411i∂tv − i∂xv ¼ −δu − ðjvj2 þ 2juj2Þv; ðE2Þ
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1412 where u and v denote the forward and backward wave
1413 amplitudes, while δ is the linear coupling coefficient of the
1414 structure. These equations conserve the total energy
1415 N ¼ R juj2 þ jvj2dx, the Hamiltonian H ¼ R

Pv − Pu−
1416

1
2
ðjuj4 þ jvj4Þ − 2juj2jvj2 − κðuv� þ vu�Þdx, and the

1417 momentum P ¼ R
Pv þ Pudx, with Pφ ¼ Imðφ∂xφ

�Þ,
1418 φ ¼ u, v. On the other hand, the equations for the three-
1419 wave interaction can be written in the form [96]

i∂tu1 þ iw1∂xu1 ¼ −u3u�2; ðE3Þ
1420 i∂tu2 þ iw2∂xu2 ¼ −u3u�1; ðE4Þ
1421 i∂tu3 ¼ −u1u2; ðE5Þ

1422 where wj denote the velocity differences between the
1423 daughter waves u1;2 and the pumpwave u3. These equations
1424 conserve the Manley-Rowe invariants for the energies
1425 N1 ¼

R ju1j2 þ ju3j2dx, N2 ¼
R ju2j2 þ ju3j2dx, the

1426 Hamiltonian H ¼ R
−w1P1 − w2P2 − u1u2u�3 − u�1u

�
2u3dx,

1427 and the total momentum P ¼ R
P1 þ P2 þ P3dx, with

1428 Pj ¼ Imðuj∂xu�jÞ. Note that the signs of the velocities (wj)
1429 of the three waves can be changed by simply writing the
1430 equations in different inertial references frames.
1431 It becomes apparent from the expressions of the con-
1432 served quantities that the generalized massive Thirring
1433 model and the resonant three-wave interaction model
1434 exhibit a Hamiltonian structure analogous to that of the
1435 phase-correlation kinetic equations [see the relation
1436 between the Hamiltonian and the momenta in Eq. (27)].
1437 Then, following the same reasoning as that developed in
1438 Sec. IV C, one arrives at the conclusion that the
1439 Hamiltonian and the momentum do not constrain the
1440 maximization of the Gibbs entropy at equilibrium.
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