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Abstract. In this paper, we present a deep learning based underwater acous-
tic (UWA) orthogonal frequency-division multiplexing (OFDM) communica-
tion system. Unlike the traditional receiver for UWA OFDM communication
system, the deep learning based receiver interpreted as a deep neural network
(DNN) can recover the transmitted symbols directly withoutexplicit channel
estimation and equalization after sufficient training. The estimation of transmit-
ted symbols in the DNN based receiver is achieved in two stages: 1) training
stage, where labeled data such as known transmitted data andsignal received
in the unknown channel are used to train the DNN, and 2) test stage, where
the DNN receiver recovers transmitted symbols given the received signal. To
demonstrate the performance of the deep learning based UWA OFDM commu-
nications, we generate a large number of labeled and unlabeled data by using
an acoustic propagation model with a measured sound speed profile to train
and test the DNN receiver. The performance of the deep learning based UWA
OFDM communications is evaluated under various system parameters, such as
the cyclic prefix (CP) length, number of pilot symbols, and others. Simulation
results demonstrate that the deep leaning based receiver offers consistent im-
provement in performance compared to the traditional UWA OFDM receiver.

1 Introduction

Underwater acoustic (UWA) channel poses a significant challenge for reliable communica-
tions due to its significant multipath spread and rapid time variation due to Doppler effects
[1]. Orthogonal frequency-division multiplexing (OFDM) is an attractive scheme for UWA
communications because of its capability of dealing with long multipath spread of UWA
channels without resorting to complicated time-domain equalization techniques [2–5].

In recent years, deep learning has been considered as an effective way to solve complex
problems such as object detection and recognition, speech separation [6, 7]. Some initial
research works demonstrate the successful application of deep learning in various communi-
cation applications [8].
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In this paper, we propose an UWA OFDM communication system using deep learning
method which can directly recover the transmitted symbols after a sufficient training stage.
We use the ray tracing software Bellhop to generate the channel impulse responses (CIRs)
which are utilized in training and test stage. Several numerical experiments are conducted
with changing system parameters and numerical results showthat the deep learning based
UWA OFDM communication system outperforms conventional one with the least squares
(LS) channel estimation.

The rest of the paper is organized as follows. In Section 2, the conventional baseband
UWA OFDM communication system is reviewed, and then the deeplearning based UWA
OFDM communication system is presented in detail. Simulation results are presented in
Section 3. Finally, conclusions are drawn in Section 4.

2 System model for deep learning based UWA OFDM
communications

2.1 Review of a conventional UWA OFDM communication system

Fig. 1 depicts a conventional baseband UWA OFDM system. After mapping the binary infor-
mation bit vectorb according to the specified modulation mode, inserting pilotsymbols, and
transforming the frequency-domain datax̄(k) into the time domain signalx(n), a cyclic prefix
(CP) is inserted to mitigate the inter-symbol interference(ISI), and its length should be larger
than the maximum delay spread of the channelK [3, 4]. Then the transmitted signalxCP(n)
will pass through the UWA channel with additive noise, wheren denotes the time index.
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Figure 1. Block diagram of conventional baseband OFDM system in a multipath channel.

Then the received signal is given by

yCP(n) = xCP(n) ⊗ h(n) + w(n) = H(n)xCP(n) + w(n), (1)

whereh(n) = [h0, · · · , hK−1]T is the channel impulse response,H(n) is a circulant matrix

that is stacked byh(n) =
[

h(n)T , 0T
N+NCP−K

]T
, w(n) is additive white Gaussian noise (AWGN)

with zero mean and varianceσ2
n.

After removing the CP and performing DFT, the received equivalent frequency domain
signal is ȳ(k) = H̄(k)x̄(k) + w̄(k), where vector̄y(k), x̄(k), H̄(k), and w̄(k) are the DFT of
vectory(n), x(n),H(n), andw(n), respectively. Following the DFT block, the pilot signals
are extracted and used to estimate the channel impulse response with a channel estimation
scheme such as the LS estimator.



2.2 UWA OFDM communications using deep learning

DNN is an artificial neural network with more than one hidden layer [10]. The structure of a
DNN with Q layers is shown in Fig. 2.
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Figure 2. An example of DNN structure.

Assume that the input layer (i.e. layer 1) hasJ(1) variables in vectorb(1). We rewriteb(1)

asb(1) =
[

b(1)
1 , · · · , b

(1)
j , · · · , b

(1)
J(1)

]T
to associate it with input layer 1, then thej-th neuron’s

input of layer 2 is

a(2)
j =

J(1)
∑

i=1

u(1)
i j b(1)

i + v
(1)
j , j = 1, 2, · · · , J(2), (2)

whereu(1)
i j is called a weight between thei-th neuron of layer 1 and thej-th neuron of layer

2, v(1)
j is a bias of thej-th neuron in layer 2,J(2) is the number of neurons of layer 2. In

each hidden layer, there is a non-linear activation function f (·) which transforms the lin-
ear combinations of inputs to non-linear combinations, several activation functions can be
chosen, i.e., the sigmoid functionfS (n) = 1

1+e−n , Rectified Linear Unit (ReLU) nonlinearity
fR(n) =max(0, n) [10]. The j-th neuron’s output of layer 2 is thus given by:

b(2)
j = f

(

a(2)
j

)

, (3)

thenb(2) =
[

b(2)
1 , · · · , b

(2)
j , · · · , b

(2)
J(2)

]T
will be the next layer’s input. Similarly, we can generate

the neuron’s input and output of other layers’.
The deep learning based OFDM system is shown in Fig. 3. There are two stages to obtain

an effective deep learning model. In the offline training stage, we utilize received signals
that are generated with various information sequences and under UWA channel conditions
with certain statistical properties to train our model by reducing the difference between the
prediction and supervision data, thus generating appropriate weights and bias of DNN. UWA
channel statistics are generated from a channel model Bellhop [11]. The training process aims
to minimize the difference between the original transmitted data sequence and the output of
the deep learning model. Here we choose theL2 loss to define the difference as following:

L2 =
1
N

N−1
∑

k=0

(

b̂(k) − b(k)
)2
, (4)



whereb̂(k) is the prediction andb(k) is the supervision data corresponding to Fig.3. The
training process ends when the value of the lossL2 shown in (4) reaches a predefined thresh-
old ξ. As a result, appropriate weightsu and biasv for every layer of DNN are generated.
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Figure 3. Deep learning based UWA OFDM communication system.

In the test stage, with weightsu and biasv obtained at the training stage, the deep learning
model generates the received signalȳ(k) in the frequency domain, and recovers the transmit-
ted data without explicit estimation and equalization of the underwater acoustic channel [9].

3 Simulation results

3.1 Environment and parameter configurations

Figure 4. Measured SSP and predicted transmission loss with a source at 50 m depth.



Fig. 4 depicts the SSP measured in a sea experiment and transmission loss (TL). In order
to train the DNN, we use the Bellhop with the SSP to generate a large number of CIRs.

In the simulation, an UWA OFDM symbol withN = 512 sub-carriers and the CP of
length 128 is considered if we use the CP in the modulation, the QPSK is modulation type.
The maximum multipath delay is set to 128. The number of neurons are set to 1024, 1500,
600, 128, and 32 for the input layer, three hidden layers and output layer, respectively. The
number of neurons for input layer corresponds to 1024 bits transmitted in one OFDM symbol,
and the number of output neurons represents every 32 bits of original data predicted based on
a single model trained independently. We choose the Sigmoidfunction for the hidden layers 1
and 2, and ReLU function for hidden layer 3. For the conventional UWA OFDM receiver, the
channel estimation and equalization are performed following the LS method and the linear
minimum mean squared error (MMSE) criterion, respectively.

3.2 BER performance of different system parameters

We compare the deep learning based UWA OFDM system with the conventional UWA
OFDM system with the LS channel estimation. Fig. 5(a) shows the deep learning based
UWA OFDM system outperforms the conventional one. The performance gap between the
latter using 32 pilots and 512 pilots for channel estimationis large. By contrast, the deep
learning based UWA OFDM system is robust to the pilot number.
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(a) BER performance for the different number of pi-
lots.
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Figure 5. BER performance of two types of UWA OFDM systems with changing system parameters.

For fair comparison, we keep the 512 pilots unchanged for thetwo types of UWA OFDM
systems and compare the performance of them impacted by the absence of CP in Fig. 5(b).
Unlike the conventional UWA OFDM system has a high error floor, the performance loss of
deep learning based UWA OFDM system induced by the absence ofCP is small, due to the
capability of the DNN to learn the impact of the UWA channel during the training stage.

4 Conclusions

In this paper, a deep learning based UWA OFDM communication system, which treats the
complicated UWA communication system as a DNN, is presented. Unlike the traditional
UWA communication, the deep learning based UWA communication can be trained to learn
the complicated distortions induced by the UWA channel, andthen recover the transmitted



symbols directly from the received signal, subject to a sufficient training. Simulation results
demonstrate that the deep learning based UWA OFDM communication is more robust to the
training pilot number and the absence of CP than the traditional UWA OFDM receiver. Thus,
the deep learning based UWA OFDM system offers a higher spectral efficiency.
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