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Abstract	26	

1. Taylor’s power law (TPL) describes the relationship between the mean and variance in 27	

abundance of populations, with the power law exponent considered a measure of 28	

aggregation. However the usefulness of TPL exponents as an ecological metric has been 29	

questioned, largely due to its apparent ubiquity in various complex systems. 30	

2. The aim of this study was to test whether TPL exponents vary systematically with 31	

potential drivers of animal aggregation in time and space, and therefore capture useful 32	

ecological information of the system of interest. 33	

3. We derived community TPL exponents from a long term, standardised and spatially 34	

dense data series of abundance and body size data for a strongly size-structured fish 35	

community in the North Sea. We then compared TPL exponents between regions of 36	

contrasting environmental characteristics. 37	

4. We	find	that,	in	general,	TPL	exponents	vary	more	than	expected	under	random	38	

conditions	in	the	North	Sea	for	size-based	populations	compared	to	communities	39	

considered	by	species.	Further,	size-based	temporal	TPL	exponents	are	40	

systematically	higher	(implying	more	temporally-aggregated	distributions)	along	41	

hydrographic	boundaries.	Time-series	of	size-based	spatial	TPL	exponents	also	42	

differ	between	hydrographically	distinct	basins.	 43	

5. These	findings	support	the	notion	that	TPL	exponents	contain	ecological	44	

information,	capturing	community	spatio-temporal	dynamics	as	influenced	by	45	

external	drivers.		46	

	47	

Introduction	48	

A	major	challenge	in	ecology	is	condensing	the	complexity	of	ecosystem	49	

dynamics	into	quantifiable	metrics.		In	1961,	Taylor	posited	that	the	variance	in	the	50	
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abundance	of	a	population	scales	with	the	mean	abundance	of	that	population	as	a	51	

power	law,	such	that:	52	

𝜎! = 𝛼𝜇! ,𝛼 > 0,	 (1)	

where	𝜎!is	the	variance	in	abundance	of	the	population	and	𝜇	is	the	mean	abundance	of	53	

the	population,	with	the	coefficient	𝛼	and	the	scaling	exponent	𝛽.	His	findings	were	54	

based	on	empirical	observations	from	a	range	of	different	organisms	and	became	55	

known	as	Taylor’s	power	law	(TPL).	This	relationship	has	since	been	verified	in	many	56	

more	taxa	and	communities	(e.g.	Xu	et	al.,	2015;	Döring	et	al.,	2015;	Ramsayer	et	al.	57	

2012),	and	even	in	non-ecological	systems,	where	it	is	also	known	as	fluctuation	scaling	58	

(Eisler	et	al.,	2008).		59	

Conceptually,	TPL	describes	the	level	of	aggregation	between	individuals	in	60	

populations,	captured	by	the	scaling	exponent,	𝛽,	while	the	coefficient	𝛼	is	taken	to	be	61	

an	artefact	of	sampling	methodology	(Taylor,	1961).		If	individuals	are	distributed	62	

randomly,	then	the	Poisson	distribution	is	approached,	giving	𝜎! = 𝜇,	and	therefore	63	

𝛽 = 1.	An	increasing	𝛽	describes	increasing	heterogeneity	beyond	random	(i.e.	64	

aggregation),	whereas	a	decreasing	𝛽	describes	populations	tending	towards	a	uniform	65	

or	more	even	distribution.	The	𝛽	term	can	therefore	be	taken	as	a	descriptive	measure	66	

of	aggregation.	If	mean-variance	pairs	are	calculated	from	abundances	taken	across	67	

space	but	at	the	same	point	in	time,	then	𝛽	reflects	the	spatial	aggregation	of	68	

individuals,	which	we	denote	𝛽 𝑠 ,	and	is	known	as	spatial	TPL.	This	can	be	interpreted	69	

as	the	degree	of	patchiness,	with	increasing	𝛽 𝑠 	reflecting	greater	clustering	in	space.	70	

Conversely,	if	mean-variance	pairs	are	estimated	from	abundances	measured	through	71	

time	but	at	the	same	location	then	the	temporal	aggregation	in	the	populations	is	72	

described.		This	is	referred	to	as	temporal	TPL,	where	the	exponent,	𝛽 𝑡 ,	can	be	taken	73	
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as	a	measure	of	the	magnitude	of	fluctuations	in	abundance	of	populations	through	74	

time.		75	

Beyond	a	purely	descriptive	use,	there	have	been	other	practical	applications	of	76	

TPL	in	ecology.	For	instance,	measures	of	𝛽 𝑡 	have	been	used	to	improve	sampling	77	

regimes	for	bioassessments	(Monaghan,	2015;	Xu	et	al.,	2016).	Reed	&	Hobbs	(2004)	78	

and	Pertoldi	et	al.	(2008)	used	modified	forms	of	𝛽 𝑡 	to	explore	extinction	risk	in	79	

small-sized	populations.	The	residuals	in	temporal	TPL	have	been	proposed	as	a	80	

measure	of	stability	in	crop	yields	(Döring	et	al.,	2015)	and	similarly,	the	spatial	81	

heterogeneity	of	plants	has	also	been	described	using	residuals	from	spatial	TPL	82	

regressions	(Guan	et	al.,	2016).		83	

The	mechanism	by	which	TPL	emerges	is,	however,	still	heavily	debated	in	the	84	

literature.	Many	theoretical	models	have	been	produced	that	seek	to	explain	the	85	

emergence	of	TPL	in	ecological	systems	including	those	based	on:	density	dependent	86	

(Perry	1994)	or	independent,	stochastic	population	growth	(Anderson	et	al.,	1982;	87	

Cohen	et	al.,	2013);	reproductive	covariance	(Ballantyne	&	Kerkhoff,	2007);	dispersal	88	

distance	(Shi	et	al.,	2016);	competition	(Kilpatrick	&	Ives,	2003)	or	population	89	

synchrony	(Cohen	&	Saitoh,	2016;	Reuman	et	al.,	2017).	Others	argue	that	the	ubiquity	90	

of	TPL	suggests	less	system	specific	causes	such	as	data	series	length	and	sampling	91	

error	(Kalyuzhny	et	al.,	2014)	or	statistical	artefacts	of	system	configuration	(Xiao	et	al.,	92	

2015).	These	theoretical	models	seek	to	explain	TPL	emergence	with	a	typical	exponent	93	

of	1 ≤ 𝛽 ≤ 2,	as	this	is	the	typical	range	observed	in	empirical	studies,	however	few	94	

offer	widely	applicable	interpretations	of	variation	in	exponent	values	(but	see	Cohen	et	95	

al.	2013	and	Reuman	et	al.,	2017).	Kilpatrick	&	Ives	(2003)	argued	that	the	null	96	

expectation	for	𝛽 𝑡 	is	a	value	of	2	due	to	the	scaling	between	the	mean	and	variance	of	97	

random	variables.	Tokeshi	(1995)	illustrated	graphically	that,	when	estimating	98	
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either 𝛽 𝑡 	or	𝛽 𝑠 ,	data	will	be	constrained	on	the	log-log	plot	between	the	hard	upper	99	

bound	of	variance	for	a	given	mean	that	has	a	slope	of	2	and	a	soft	lower	bound	of	100	

variance	given	the	mean,	the	Poisson	distribution,	with	a	slope	of	1,	matching	empirical	101	

observation.	However	estimates	are	known	to	vary	outside	of	these	limits	(Taylor	et	al.,	102	

1980;	Taylor	&	Woiwood,	1982)	and,	theoretically,	any	exponent	value	is	feasible	103	

(Cohen,	2014).	Xiao	et	al.	(2015)	highlight	the	fact	that,	while	TPL	is	statistically	104	

inevitable,	the	exact	form	cannot	be	predicted	on	purely	statistical	grounds	and	105	

therefore	may	still	contain	ecological	information.	106	

Empirical	data	suggest	that	TPL	exponents	do	contain	ecologically	relevant	107	

information	(Taylor	&	Woiwood,	1982;	Lagrue	et	al.,	2015),	however	this	is	particularly	108	

evidenced	for	fishes.	A	systematic	reduction	in	𝛽 𝑡 	was	found	in	fishes	along	gradients	109	

of	increasing	connectivity	and	size	of	reefs,	implying	that	fish	species	experience	greater	110	

temporal	fluctuations	in	abundance	on	smaller,	more	isolated	reefs,	following	known	111	

patterns	of	recruitment	(Mellin	et	al.,	2010).	Analysis	of	larval	survey	data	from	112	

California	revealed	that	the	spatial	heterogeneity	of	fish	species,	as	measured	by	𝛽 𝑠 ,	113	

varied	with	both	life	history,	decreasing	with	more	“K-selected”	traits,	and	fishing	114	

pressure,	increasing	if	the	species	was	commercially	targeted	(Kuo	et	al.,	2016).	These	115	

studies	suggest	that	both	spatial	and	temporal	TPL	exponents,	𝛽 𝑡 	and	𝛽 𝑠 ,	could	be	116	

considered	as	potential	ecological	metrics	as	they	appear	to	be	sensitive	enough	to	track	117	

changes	in	temporal	fluctuations	and	spatial	patchiness	of	fish	populations.	118	

A	key	finding	in	both	of	the	studies	discussed	above	was	the	importance	of	body	119	

size	when	determining	sources	of	variation	in	𝛽 𝑡 	and	𝛽 𝑠 	between	species.	Mellin	et	120	

al.	(2010)	found	that	the	maximum	length	of	a	species	explained	35%	of	the	variation	in	121	

𝛽 𝑡 	alone	whereas	Kuo	et	al.	(2016)	found	a	strong	negative	linear	relationship	122	
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between	𝛽 𝑠 	and	maximum	body	size,	arguing	that	larger	organisms	are	better	able	to	123	

buffer	environmental	stresses.		124	

Fish	communities	and	aquatic	systems	are	notably	size	structured	where	the	size	125	

spectrum,	the	power	law	distribution	of	body	sizes	when	size	is	considered	at	the	126	

individual-level,	is	commonly	employed	as	an	ecological	metric	(Kerr	&	Dickie,	2003;	127	

Gómez-Canchong	et	al.,	2013;	Trebilco	et	al.,	2013).	Further,	body	size	is,	in	general,	a	128	

key	biological	trait	affecting	almost	all	aspects	of	individual	ecology	(Peters	1983).	129	

Cohen	et	al.	(2012)	predicted	that	allometric	scaling	exists	between	body	size	and	130	

variance	in	abundance	by	combining	TPL	with	estimates	of	population-level	mean	131	

biomass.	However	another	approach	would	be	to	parameterise	TPL	exponents	by	132	

grouping	individuals	into	classes	of	body	size,	rather	than	taxonomic	groups,	as	is	done	133	

with	size	spectra.	If,	as	Kuo	et	al.	(2016)	suggested,	heterogeneity	due	to	environmental	134	

stresses	are	dependent	on	individual	size	and	because	smaller	individuals	are	almost	135	

always	more	abundant	than	larger	individuals,	calculating	TPL	exponents	as	a	function	136	

of	body	size	rather	than	species	may	be	more	sensitive	to	detecting	environmentally	137	

driven	changes	in	spatial	patchiness	and	temporal	fluctuations.	138	

Using	one	of	the	most	spatially	dense,	long-term	fish	survey	datasets	available,	139	

the	North	Sea	International	Bottom	Trawl	Survey	(NS-IBTS;	ICES,	2015),	we	employ	140	

𝛽 𝑡 	and 𝛽 𝑠 	as	ecological	metrics	of	temporal	fluctuations	and	spatial	patchiness	141	

respectively	as	applied	to	fish	communities.	We	derive	𝛽 𝑡 	and𝛽 𝑠 	at	the	community	142	

level	(e.g.	Grman	et	al.,	2010;	Cohen	et	al.,	2016),	allowing	us	to	determine	spatially	143	

explicit	values	of	𝛽 𝑡 	and	temporally	explicit	values	of	𝛽 𝑠 .	We	then	determine	the	144	

sensitivity	of	𝛽 𝑡 	and 𝛽 𝑠 	by	quantifying	extreme	values	and	testing	whether	these	145	

values	are	randomly	distributed	in	relation	to	the	external	environment.	Specifically,	we	146	

test	the	hypothesis	that	fish	community	𝛽 𝑡 	increases	with	proximity	to	hydrographic	147	
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boundaries,	where	interannual	environmental	variability	is	higher	due	to	the	lack	of	a	148	

dominant	hydrographic	regime	(van	Leeuwen	et	al.,	2015).	We	also	test	the	hypothesis	149	

that,	over	time,	the	community	𝛽 𝑠 	differs	between	two	hydrographically	distinct	150	

basins:	the	deep	northern	North	Sea	that	is	permanently	stratified	and	the	shallow	151	

southern	North	Sea	that	is	seasonally	well-mixed	(Heessen	et	al.,	2015;	van	Leeuwen	et	152	

al.,	2015).	Finally,	we	test	the	hypothesis	that	both	𝛽 𝑡 	and 𝛽 𝑠 	are	more	sensitive	153	

when	individuals	are	considered	by	body	size	by	comparing	trends	with	hydrography	in	154	

exponents	derived	from	groups	of	individual	length	classes	with	those	derived	from	155	

groups	by	species.	156	

	157	

Materials	and	Methods	158	

The	analytical	workflow	from	survey	data	through	to	𝛽 𝑡 	and	𝛽 𝑠 	calculations	and	159	

hypothesis	testing	is	summarised	as	a	schematic	in	Fig.	1,	with	numbered	sections	160	

expanded	upon	below.	161	

	162	

Data	Sources	and	Processing	(1)	163	

Fish	community	data	from	the	ICES	International	Bottom	Trawl	Survey	for	the	164	

North	Sea	(NS-IBTS)	were	sourced	from	DATRAS	(http://www.ices.dk/marine-165	

data/data-portals/Pages/DATRAS.aspx	-	accessed	03/09/2015).	The	NS-IBTS	is	an	166	

internationally	coordinated	survey	originally	conducted	to	estimate	the	distribution	of	167	

juvenile	herring,	Clupea	harengus,	in	the	North	Sea,	although	it	was	quickly	expanded	to	168	

target	other	species,	notably	round	fish	such	as	cod,	Gadus	morhua.	The	survey	provides	169	

abundance	estimates	as	Catch	Per	Unit	Effort	(CPUE)	for	each	species	caught	(all	fish	170	

and	some	invertebrate	species	of	interest)	binned	into	length	classes	within	spatial	171	
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rectangles	of	0.5°	latitude	by	1.0°	longitude,	with	an	approximate	area	of	30km2,	known	172	

as	subareas	(ICES,	2015).	173	

	Data	included	in	this	study	are	limited	to	the	years	1977	through	to	2015,	after	174	

the	commencement	of	gear	standardisation	(GOV	trawl	with	approximately	30	minute	175	

duration),	although	this	was	only	fully	adopted	by	all	eight	participating	nations	from	176	

1983	and	differences	between	rigging	set-ups	still	remain	(ICES,	2015).	Further,	data	177	

were	limited	to	quarter	one	only,	when	survey	cruises	typically	occur	from	mid	January	178	

to	mid	February,	to	exclude	seasonal	differences	in	abundance	(ICES,	2015).	In	total,	the	179	

dataset	used	here	contains	over	one	million	observations.	All	invertebrate	records	were	180	

removed	and	fish	records	of	less	than	60mm	in	length	were	excluded	due	to	inefficient	181	

sampling	within	the	trawl	gear	(Daan	et	al.,	2005).	Length	classes	for	all	species	were	182	

consolidated	into	10mm	bins,	taxonomic	identifications	were	corrected	following	183	

Heessen	et	al.	(2015)	and	subareas	with	fewer	than	10	years	of	sampling	were	removed.	184	

In	order	to	assign	subareas	to	the	deep,	northern	basin	or	the	shallow,	southern	185	

basin,	average	depth	was	taken	as	the	mean	depth	using	ETOPO1	1arc-minute	global	186	

relief	model	with	a	resolution	of	1800	data	points	per	subarea	(Amante	&	Eakins,	2009).	187	

In	the	North	Sea,	the	50m-depth	contour	approximately	demarcates	the	difference	188	

between	deep,	permanently	stratified	and	shallow,	seasonally	well-mixed	waters	189	

(Heessen	et	al.,	2015).	Accordingly,	subareas	with	average	depth	≤	50m	were	assigned	190	

to	the	shallow	basin	whereas	those	with	average	depths	>50m	were	assigned	to	the	191	

deep	basin	(see	Fig.	2a).	192	

	 	193	

Mean-Variance	Calculations	(2):	194	

We	applied	the	following	argument	to	calculate	the	mean	and	variance	in	195	

abundance.	Let	𝑥!,!,!,! 	denote	the	abundance	of	species	𝑝	of	length	class	𝑙	sampled	in	196	
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subarea	𝑠	in	year	𝑡.	Individuals	were	grouped	into	species	and	abundances	pooled	197	

across	length	classes,	such	that	the	abundance	for	species	𝑝	sampled	in	subarea	𝑠	in	198	

year	𝑡	is	𝑥!,!,! = 𝑥!,!,!,!
!!,!,!
!!! 	where	𝑛!,!,!	is	the	number	of	length	classes	for	species	𝑝	199	

sampled	in	subarea	𝑠	in	year	𝑡.	Separately,	individuals	were	grouped	into	length	classes	200	

and	abundances	pooled	across	species,	such	that	for	length	class	𝑙,	𝑥!,!,! = 𝑥!,!,!,!
!!,!,!
!!! 	201	

where	𝑛!,!,! 	is	the	number	of	species.	202	

For	each	subarea,	the	mean	abundance	of	each	species	was	calculated	through	203	

time,	𝑥 𝑡 !,! =
!
!!,!

𝑥!,!,!
!!,!
!!! ,	and	similarly	the	variance	in	abundance	through	time	for	204	

each	species,	denoted	𝑠! 𝑡 !,!	where	𝑛!,!	is	the	number	of	years	sampled	in	that	subarea	205	

for	species	𝑝	(left-hand	side	of	part	2,	Fig.	1).		Note	that	𝑛!,!	will	be	the	same	for	all	206	

species	within	subarea	𝑠.	As	time-series	length	can	influence	temporal	TPL	parameters	207	

(Kalyuzhny	et	al.,	2014),	we	limited	subareas	to	those	with	at	least	30	years	of	sampling	208	

(𝑛!,! ≥ 30).	Further,	species	with	fewer	than	10	years	of	presence	(i.e.	less	than	10	non-209	

zero	abundance	records)	within	a	subarea	were	excluded	so	that	transient	species,	210	

which	cause	zero-inflation	of	variance,	were	not	included	in	the	community	TPL	211	

parameterisation.	Years	of	absence	for	species	within	a	subarea	were	then	assigned	an	212	

abundance	value	of	zero.	The	temporal	mean	and	variance	of	abundance	were	213	

calculated	using	the	same	method	for	each	length	class	in	each	subarea	giving	𝑥 𝑡 !,! 	214	

and	𝑠! 𝑡 !,! 	where	𝑛!,! = 𝑛!,!.	215	

Spatial	mean-variances	pairs	were	calculated	for	each	year	across	subareas	216	

within	the	deep	and	shallow	basins	separately	for	each	species.	Typically,	zero	data	in	217	

spatial	TPL	analyses	are	excluded	a	priori,	however	this	causes	selection	bias	in	data	218	

where	zero	abundance	can	be	valid,	potentially	influencing	the	estimates	of	α	and	β	219	

(Jørgensen	et	al.,	2011).	Here,	this	was	accounted	for	by	constructing	a	feasible	habitat	220	
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area	within	each	basin	for	each	species	/	length	class	(blue-background	subareas	in	221	

abundance	maps	on	the	right-hand	side	of	Fig.	1).	This	was	done	by	taking	the	overlap	222	

of	the	subareas	sampled	within	the	basin	during	any	one	year	and	all	the	subareas	that	223	

the	species	(or	length	class)	had	occurred	in	within	that	basin	over	the	whole	time	224	

period.		225	

The	spatial	mean	is	then	given	as	𝑥 𝑠! !,! =
!
!!,!!

𝑥!!,!,!
!!,!!

!!! ,	where	the	subscript	𝑧	226	

denotes	the	basin	(𝑧 = 𝑑	for	deep	and		𝑧 = 𝑠ℎ	for	shallow)	and	𝑛!,!! 	is	the	number	of	227	

subareas	within	the	feasible	habitat	area	for	species	𝑝	in	basin	𝑧	for	year	𝑡.	Note	that	𝑛!,!! 	228	

will	be	unique	for	each	species	and	may	differ	between	years	as	the	number	of	subareas	229	

sampled	in	each	year	can	vary.	Absences	within	feasible	habitat	areas	were	assigned	230	

zero	abundance.	The	spatial	variance	was	similarly	calculated,	denoted	as	𝑠! 𝑠! !,!.	231	

Here,	we	limited	species	to	those	present	within	at	least	five	subareas	(at	least	five	non-232	

zero	abundance	records)	for	any	given	year	within	a	feasible	habitat	area	of	at	least	25	233	

subareas	to	exclude	vagrants	within	the	community	and	prevent	zero	inflation	of	234	

variance.	Using	the	same	method,	the	spatial	mean	and	variance	of	abundance	were	235	

calculated	for	each	length	class	in	each	year	for	each	basin	giving	𝑥 𝑠! !,! 	and	𝑠! 𝑠! !,! .	236	

	237	

TPL	parameterisation	(3):	238	

	 From	equation	1,	it	follows	that	the	TPL	exponent	and	coefficient	can	be	239	

estimated	from	the	linear	relationship	of	the	logarithms	using	sample	data:	240	

log (𝑠!) = log 𝛼 + 𝛽 log 𝑥 +  𝜖,    𝛼 > 0,	 (2)	

where	𝜖	is	the	residual	error,	with	the	form	of	TPL	estimated	depending	upon	whether	241	

temporal	or	spatial	mean-variance	pairs	are	used.		242	
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For	each	subarea,	we	estimated	the	temporal	TPL	(left-hand	side	of	Fig.	1)	for	the	243	

community	of	individuals	grouped	by	species,	with	the	exponent	denoted	as	𝛽 𝑡,𝑝 !,	244	

using	ordinary	least	squares	linear	regression	(OLS)	on	the	logarithmically	transformed	245	

𝑥 𝑡 !,!	and	𝑠! 𝑡 !,!.	We	used	base	10	logarithms	although	the	base	value	is	arbitrary	for	246	

estimating	𝛽.	We	assigned	equal	weighting	to	mean-variance	pairs	as	𝑛!,!	is	the	same	247	

for	each	species.	We	used	the	same	approach	to	estimate	the	exponent	when	groups	248	

were	defined	as	length	classes,	giving	𝛽 𝑡, 𝑙 !.		249	

For	each	year,	the	spatial	TPL	exponent	(right-hand	side	of	Fig.	1)	was	calculated	250	

separately	for	the	deep	and	shallow	basins	using	OLS	on	the	logarithmically	251	

transformed	means	and	variances,	giving	𝛽 𝑠! ,𝑝 !	and	𝛽 𝑠!! ,𝑝 !	respectively	for	the	252	

species-based	community.	As	the	residual	error,	𝜖!,!! ,	is	approximately	inversely	253	

proportional	to	the	degrees	of	freedom	used	to	estimate	the	means	and	variances	254	

(Perry,	1981;	Jørgensen	et	al.,	2011)	and	here	𝑛!,!! 	is	unique	for	each	species,	we	255	

assigned	weights	of	𝑛!,!! − 1	to	each	mean-variance	pair.	The	same	method	was	applied	256	

to	estimate	the	spatial	TPL	exponents	for	the	size-based	community,	giving	𝛽 𝑠! , 𝑙 !	and	257	

𝛽 𝑠!! , 𝑙 ! .	258	

To	ensure	that	any	observed	trends	were	not	an	artefact	of	the	statistical	method	259	

used	to	parameterise	TPL,	we	separately	estimated	all	TPL	exponents	using	the	Siegel	260	

repeated	medians	method	for	linear	regression	(SM,	Siegel	1982),	a	method	that	is	261	

highly	robust	to	the	influence	of	outliers	(breakdown	point	of	50%,	ca.	0%	for	OLS).	For	262	

a	set	of	N	points	(𝑋! ,𝑌!),	SRM	estimates	the	slope	of	the	linear	relationship	𝑌 = 𝑎 + 𝑏𝑋	263	

as	264	

𝑏 = 𝑀𝑒𝑑𝑖𝑎𝑛
𝑖

𝑀𝑒𝑑𝑖𝑎𝑛
𝑗 ≠ 𝑖 𝑆𝑙𝑜𝑝𝑒 𝑖, 𝑗 		 (3)	
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where	𝑆𝑙𝑜𝑝𝑒 𝑖, 𝑗 = !!!!!
!!!!!

.	Essentially,	for	each	individual	data	point,	this	approach	265	

computes	individual	pairwise	slopes	with	all	other	data	points	(excluding	itself),	from	266	

which	the	median	is	taken.	The	slope	of	the	linear	relationship	is	then	taken	to	be	the	267	

median	of	N	median	slopes.	SRM	makes	no	assumptions	about	the	error	distribution	of	268	

the	residuals	and	takes	equal	weighting	for	pairs	of	data	points.	269	

	270	

Spatial	and	temporal	trends	with	hydrography	(4):	271	

	 We	explored	spatial	trends	in	the	temporal	TPL	exponents	(left-hand	side	of	Fig.	272	

1)	by	first	testing	whether	estimated	𝛽 𝑡,𝑝 !	and	𝛽 𝑡, 𝑙 !	for	each	subarea	had	a	value	273	

that	was	extreme	compared	to	that	expected	at	random	given	the	data	𝑥!,!,!	and	𝑥!,!,! 	274	

respectively.	We	employed	the	“feasible	set”	approach	following	Xiao	et	al.	(2015),	275	

constructing	a	distribution	of	random	temporal	TPL	exponents	for	each	subarea	given	276	

the	data,	conducted	separately	for	groups	by	species	and	by	length	class.	For	each	of	277	

10000	permutations	for	species	groupings,	pairs	of	𝑥 𝑡 !,!	and	𝑠! 𝑡 !,!	were	randomly	278	

re-ordered	across	all	species,	p,	and	subareas,	s,	giving	a	random	configuration	of	the	279	

data.	Temporal	TPL	exponents	were	then	calculated	following	the	methods	described	280	

above	(both	OLS	and	SRM	methods	separately),	which	we	denote	𝛽 𝑡,𝑝 !
! ,	where	the	r	281	

superscript	signifies	that	it	is	the	random	distribution	from	10000	feasible	set	282	

permutations.	This	approach	maintains	the	same	𝑛!,!	for	each	subarea	and	we	283	

permuted	at	the	level	of	mean-variance	pairs	to	avoid	erroneous,	ecologically	284	

implausible	abundance	structures.	Confidence	intervals	at	the	95%	level	were	then	285	

constructed	separately	for	each	subarea	by	numerically	integrating	over	𝛽 𝑡,𝑝 !
! .	This	286	

was	repeated	for	groups	by	length	class	producing	𝛽 𝑡, 𝑙 !
! 	and	associated	confidence	287	

intervals.	The	in	situ,	empirical	estimates	of 𝛽 𝑡,𝑝 !	and	𝛽 𝑡, 𝑙 !	were	then	tested	288	



	 13	

against	their	confidence	intervals	and	grouping	methods	compared,	with	estimates	289	

falling	outside	of	their	intervals	suggesting	that	such	values	were	unlikely	to	be	290	

generated	by	random	processes	alone	for	those	subareas.	291	

	 To	test	for	patterns	with	hydrography,	the	spatial	distribution	of	𝛽 𝑡,𝑝 !	and	292	

𝛽 𝑡, 𝑙 !	were	modelled	as	a	linear	function	of	their	proximity	to	the	nearest	293	

hydrographic	boundary.	Boundaries	were	taken	as	the	subareas	that	contained:	the	294	

500m	depth	contour	separating	the	North	Sea	from	the	Atlantic	drift	current;	the	295	

55°45’N	line	running	between	Denmark	and	Sweden	separating	the	North	Sea	from	the	296	

Baltic	Sea;	a	straight	line	between	Dover,	UK,	and	Calais,	France,	separating	the	North	297	

Sea	from	the	English	Channel	and	the	50m	depth	contour	from	Oslofjord,	Norway,	to	298	

Scarborough,	UK,	which	approximately	demarcates	the	transition	between	the	deep,	299	

permanently	stratified	waters	and	the	shallow,	seasonally	well-mixed	waters	(Heessen	300	

et	al.,	2015;	van	Leeuwen	et	al.,	2015).	Subareas	were	assigned	a	proximity	category	of	301	

either	“on”,	“adjacent	to”,	or	“distant	from”,	see	Fig.	2b.		302	

	 For	temporal	trends	in	the	spatial	TPL	exponents,	we	similarly	tested	for	303	

extreme	values	in	𝛽 𝑠! ,𝑝 !	and	𝛽 𝑠! , 𝑙 !	using	the	feasible	set	approach.	We	generated	304	

𝛽 𝑠! ,𝑝 !
! 	and	𝛽 𝑠! , 𝑙 !

! 	by	randomly	re-ordering	spatial	mean-variance	pairs	across	both	305	

deep	and	shallow	basins	prior	to	estimating	the	spatial	TPL	exponents	separately	for	306	

each	basin.	We	carried	forward	𝑛!,!! 	and	𝑛!,!! 	values	with	their	mean-variance	pairs	for	307	

weighting	in	OLS.	Confidence	intervals	were	constructed	at	the	95%	level	and	years	308	

whose	empirical	values	fell	outside	of	this	range	identified.	Differences	between	the	two	309	

hydrographically	distinct	basins	were	identified	by	constructing	time-series	and	310	

comparing	the	overlap	in	𝛽 𝑠! ,𝑝 !	and	𝛽 𝑠! , 𝑙 !	estimates,	using	the	standard	errors	of	311	

the	slopes	for	the	OLS	method	and	the	median	absolute	deviation	(MAD)	for	the	SRM	312	

method	to	estimate	95%	confidence	intervals,	coupled	with	paired	t-tests.	313	
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All	analyses	were	conducted	in	R	3.3.2	(R	Core	Team,	2016),	utilising	the	314	

packages:	“plyr”	(Wickham,	2011);	“data.table”	(Dowle	&	Srinivasan,	2017);	and	“mblm”	315	

(Komsta	2013).	Map	production	was	done	utilising	the	package	“maps”	(Brownrigg	et	316	

al.,	2017).	317	

	318	

Results	319	

Across	all	formulations,	we	calculated	a	total	of	416	𝛽’s,	each	being	estimated	using	two	320	

separate	regression	methods.	For	the	OLS	method,	for	which	p-values	were	calculated,	321	

all	𝛽’s	showed	a	significant	log-log	linear	relationship	at	the	p	=	0.05	level.	A	summary	322	

of	the	number	of	observations,	r-squared	values	and	orders	of	magnitude	spanned	by	323	

the	regressions	can	be	found	in	table	1.	An	example	of	the	relationship	between	mean	324	

abundance,	variance	of	abundance	and	body	size	used	to	calculate	𝛽 𝑡, 𝑙 !	is	shown	in	325	

Fig.	3	(all	individual	TPL	plots	can	be	found	in	the	Supplementary).	326	

	327	

Temporal	TPL	328	

	 Maps	of	𝛽 𝑡,𝑝 !	and	𝛽 𝑡, 𝑙 !	are	shown	in	Fig.	4,	covering	a	total	of	169	subareas	329	

in	the	North	Sea.	Values	of	𝛽 𝑡,𝑝 !	ranged	from	1.80	to	2.09	with	a	mean	of	1.93	with	330	

only	3	subareas	having	values	that	fell	outside	their	confidence	intervals.	Values	of	331	

𝛽 𝑡, 𝑙 !	had	a	larger	range	from	1.64	to	2.21	with	a	mean	of	1.98,	with	many	more	332	

exponents	falling	outside	their	confidence	intervals	–	31	in	total,	see	Fig.	4b.	Further,	333	

values	of	𝛽 𝑡, 𝑙 !	systematically	decreased	with	decreasing	proximity	to	hydrographic	334	

boundaries	(F1,167	=	40.0,	p	<	0.001),	whereas	values	of	𝛽 𝑡,𝑝 !	showed	no	trend	with	335	

proximity	(F1,167	=	0.975,	p	=	0.325),	see	Fig.	5.	Similar	results	were	obtained	using	SRM	336	

regression;	see	the	Supplementary	for	figures.	337	



	 15	

	338	

Spatial	TPL	339	

	 Time	series	of	𝛽 𝑠! ,𝑝 !	and	𝛽 𝑠!! ,𝑝 ! ,	spanning	39	years	are	shown	in	Fig.	6.	In	340	

total,	only	one	year	had	a	value	outside	its	confidence	intervals	for	𝛽 𝑠! ,𝑝 !	and	only	341	

three	years	for	𝛽 𝑠!! ,𝑝 ! .	The	spatial	TPL	time	series	for	the	deep	and	shallow	basins	342	

were	generally	similar	over	the	whole	period,	overlapping	for	the	majority	of	years	and	343	

with	no	mean	difference	between	𝛽 𝑠! ,𝑝 !	and	𝛽 𝑠!! ,𝑝 !	(t38	=	-0.537,	p	=	0.594).	344	

Conversely,	the	time	series	of	𝛽 𝑠! , 𝑙 !	and	𝛽 𝑠!! , 𝑙 !	had	19	and	13	years	respectively	345	

where	values	fell	outside	of	their	confidence	intervals.	The	majority	of	these	were	lower	346	

than	expected	for	the	deep	basin	(18	out	of	19)	but	higher	than	expected	for	the	shallow	347	

basin	(11	out	of	13).	The	two	time	series	show	considerable	divergence	over	much	of	348	

the	sampling	period;	with	𝛽 𝑠! , 𝑙 !	being	significantly	lower	on	average	compared	to	349	

𝛽 𝑠!! , 𝑙 !	(t38	=	6.01,	p	<	0.001).	As	with	temporal	TPL,	qualitatively	similar	results	were	350	

obtained	when	using	SRM	regression	to	estimate	spatial	TPL	exponents;	see	the	351	

Supplementary	for	figure	and	associated	statistics.	352	

	353	

Discussion	354	

	 Ecosystems	are	both	complex	and	dynamic,	making	it	challenging	to	characterise	355	

and	quantify	responses	in	ecosystem	structure	to	external	conditions.	Taylor’s	Power	356	

Law	has	been	proposed	as	a	metric	describing	the	extent	of	aggregation	of	organisms	357	

within	systems.		We	empirically	tested	whether	the	aggregation	of	organisms	by	species	358	

and	across	size	classes	within	a	community,	as	measured	by	Taylor’s	Power	Law	359	

exponents,	varied	systematically	in	response	to	external	environmental	conditions.	360	

Using	a	long-term	and	spatially	dense	community	dataset,	we	have	shown	that:	361	
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(1) Within	the	North	Sea	fish	community,	TPL	exponents	largely	fall	between	1<𝛽<2,	362	

agreeing	with	previous	empirical	work.			363	

(2) We	found	systematic	differences	in	both	spatial	and	temporal	TPL	exponents	364	

within	the	North	Sea	associated	with	regional	hydrography	and	therefore	the	in	365	

situ	environment,	with	high	values	of	𝛽	typically	associated	with	more	dynamic	366	

hydrographic	conditions.	367	

(3) Systematic	relationships	between	TPL	exponents	and	the	external	environment	368	

were	only	apparent	when	mean-variance	pairs	were	calculated	from	body	size	369	

rather	than	species-level	data	(Figs.	4	&	6).		370	

Here	we	infer	that	systematic	variations	in	TPL	exponents	are	related	to	the	extent	of	371	

variability	(dynamism)	in	external	hydrographic	conditions	and	therefore	capture	372	

ecological	information,	providing	practical	as	well	as	theoretical	applications	of	TPL.	373	

	 For	temporal	TPL	we	found	higher	exponents,	implying	relatively	higher	374	

temporal	variance	in	abundance	at	smaller	body	sizes,	in	more	hydrographically	375	

dynamic	areas.	Notably,	high	estimates	of	𝛽 𝑡 	tracked	the	50m-depth	contour	that	376	

separates	the	two	basins	within	the	North	Sea,	see	Fig.	3,	an	area	where	a	lack	of	a	377	

dominant	hydrographic	regime	between	years	imparts	higher	interannual	variability	at	378	

these	localities	(van	Leeuwen	et	al.,	2015).	Variability	within	the	environment	is	a	key	379	

component	of	models	that	seek	to	explain	the	emergence	of	temporal	TPL,	for	example,	380	

Saitoh	&	Cohen	(2018)	showed	a	strong	positive	linear	relationship	between	modeled	381	

environmental	variability	and	𝛽 𝑡 	in	their	simulations	of	vole	populations.	The	results	382	

presented	here	provide	empirical	evidence	that	has	previously	been	lacking	for	such	a	383	

key	relationship	utilised	in	simulation	modeling	of	TPL.	While	we	have	successfully	used	384	

TPL	exponents	to	demonstrate	differences	in	temporal	fluctuations	between	subareas,	385	

identifying	specific	environmental	drivers	influencing	these	differences	is	much	more	386	
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difficult.	387	

	 Of	particular	pertinence	to	the	fish	data	examined	here	is	the	effect	of	fishing	388	

pressure	on	community	structuring.	It	has	long	been	known	that	fishing	can	amplify	the	389	

magnitude	of	temporal	fluctuations	in	fish	stocks	(Shelton	&	Mangel,	2011;	Essington	et	390	

al.,	2015)	and	given	that	the	North	Sea	has	some	of	the	highest	fishing	pressures	in	the	391	

world	(Amoroso	et	al.	2018),	one	might	expect	there	to	be	a	strong	link	between	size-392	

selective	fishing	pressure	and	temporal	TPL.	Although	not	explicitly	tested	for	due	to	393	

additional	complexities	in	the	available	fishing	effort	data,	we	observe	no	obvious	394	

correlations	between	the	spatial	distribution	in	𝛽 𝑡 	and	the	distribution	in	fishing	395	

effort	or	gear	type	(Jennings	et	al.,	1999).	Instead,	we	find	that	the	distribution	of	396	

abundance	within	size	classes	is	more	variable	through	time	at	locations	at	boundaries	397	

between	areas	of	contrasting	but	dynamic	environmental	conditions.	It	is	certainly	398	

possible	that	high	fishing	pressure	across	the	North	Sea	enhances	the	effect	of	399	

environmental	dynamism	on	community	abundances,	but	we	do	not	have	data	to	test	400	

this.	401	

Recently,	research	on	more	specific	sources	of	variability	in	𝛽 𝑠 	has	focused	on	402	

the	spatial	synchrony	of	populations,	which	is	the	degree	to	which	abundances	between	403	

geographically	separate	populations	are	correlated	(Cohen	&	Saitoh,	2016;	Reuman	et	404	

al.,	2017).	High	spatial	correlation	results	in	a	reduction	in	the	expected	variance	for	a	405	

given	mean	abundance,	and	therefore	increased	spatial	synchrony	typically	manifests	as	406	

a	reduction	in	the	spatial	TPL	exponent	(Reuman	et	al.,	2017).	Dispersal	mechanisms	407	

can	result	in	spatial	synchrony,	however	typically	spatial	synchrony	can	be	attributed	to	408	

spatially	correlated	environments,	known	as	the	Moran	effect	(Moran	1953,	Koenig	&	409	

Liebhold	2016),	which	has	been	shown	in	reef	fishes	(Cheal	et	al.,	2007).		410	
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Our	results	showed,	on	average,	a	reduced	𝛽 𝑠 	at	the	community	level	in	the	411	

deep,	permanently	stratified	basin	compared	to	the	shallow,	seasonally	well-mixed	412	

basin,	which	could	be	explained	by	a	more	spatially	correlated	environment	in	the	413	

deeper	northern	North	Sea.	However,	the	time	series	of	𝛽 𝑠 	exhibited	alternating	414	

periods	of	divergence	and	tight	coupling	between	the	two	basins,	suggesting	greater	415	

complexity	in	the	drivers	of	𝛽 𝑠 	than	a	static	Moran	effect.	Indeed,	the	reducing	effects	416	

of	spatial	synchrony	can	be	masked	by	other	drivers	of	variability,	as	has	been	shown	417	

for	chlorophyll-a	data	(Reuman	et	al.,	2017).	Interestingly,	recent	theoretical	work	418	

suggests	that	fishing	pressures	may	in	fact	change	the	degree	of	spatial	synchrony	419	

within	harvested	populations	(Engen	et	al.,	2018)	and	therefore	asymmetric	fishing	420	

practices	cannot	be	excluded	as	a	potential	driver	of	trends	in	𝛽 𝑠 .	Fishing	methods	421	

vary	between	the	northern	and	southern	basins	in	the	North	Sea	(Jennings	et	al.,	1999),	422	

reflecting	differences	in	water	depth	and	community	composition.	We	are	unable	to	423	

determine	therefore	whether	the	observed	increased	patchiness	in	the	southern	basin,	424	

inferred	by	a	higher	𝛽 𝑠 	time-series,	reflects	spatial	differences	in	hydrology,	425	

community	composition,	fishing	effort	or	some	combination	of	all	three.	426	

The	observed	patterns	in	𝛽 𝑡 	and	𝛽 𝑠 	only	held	when	communities	were	427	

considered	as	consisting	of	individuals	grouped	into	different	classes	of	body	size.	The	428	

scaling	of	mean	abundance	with	individual	body	size,	known	as	the	size	spectrum	(Kerr	429	

&	Dickie,	2001),	has	long	been	considered	an	ecosystem	metric.	In	particular,	it	is	often	430	

used	in	reference	to	size-selective	fishing,	which	causes	a	truncation	in	abundances	of	431	

larger	body	sizes	and	a	resultant	increase	in	the	magnitude	of	scaling	exponent	(e.g.	432	

Daan	et	al.,	2005).	By	grouping	individuals	by	body	size,	the	resultant	𝛽 𝑡 	and	𝛽 𝑠 	433	

estimates	quantify	the	variability	in	the	distribution	of	biomass	by	body	size	in	the	434	

community	(i.e.	the	size	spectrum)	either	through	time	(as	the	magnitude	of	temporal	435	
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fluctuations)	or	across	space	(degree	of	patchiness	in	the	spatial	distribution)	436	

respectively.	The	relationship	between	mean	abundance,	variance	in	abundance	and	437	

body	size	is	demonstrated	in	Fig.	3.	Scaling	of	variance	in	abundance	with	mean	body	438	

size	across	the	range	of	TPL	exponents	exhibited	in	the	North	Sea	is	shown	in	Figure	7.	439	

Changes	in	the	TPL	exponent	result	in	greater	relative	changes	in	the	variability	of	440	

abundance	at	smaller	body	sizes,	which	is	in	agreement	with	the	findings	of	Mellin	et	al.	441	

(2010)	and	Kuo	et	al.,	(2016)	who	showed	the	importance	of	body	size	in	β(t)	and	β(s)	442	

respectively	at	the	species-level.	Community	TPL	therefore	provides	complementary	443	

information	to	that	of	the	biomass	size	spectrum	regarding	the	variability	of	community	444	

structure	in	time	and	space.	Our	results	suggest	that	external	environmental	drivers	445	

systematically	influence	ecosystem	structural	dynamics	as	coded	by	community	TPL	446	

exponents.		447	

We	recognise	that	trawl	sampling	introduces	systematic	biases.	Notably,	very	448	

small	and	very	large	body	sizes	are	under-represented,	which	is	important	given	that	449	

our	results	show	size-associated	trends.	Similarly,	different	species	also	have	different	450	

rates	of	catchability	(ICES,	2015).	Nevertheless	a	broadly	consistent	sampling	approach	451	

was	used	throughout	the	survey	series;	therefore	data	are	comparable	across	time	and	452	

space.	To	further	reduce	the	potential	for	gear	selection	biases	in	the	dataset,	we	453	

excluded	a	priori	very	small	body	sizes	(<60mm)	and	extremely	rare	observations	of	454	

species	and	body	sizes.	We	chose	the	NS-IBTS	dataset	in	order	to	maximise	the	signal	to	455	

noise	ratio	when	considering	environmental	correlates	of	TPL.	The	potential	for	456	

recovering	signal	was	increased	by	a	dataset	containing	more	than	one	million	457	

observations	sampled	using	a	relatively	consistent	methodology	across	known	458	

gradients	of	environmental	conditions.	Further,	noise	due	to	error	in	TPL	estimates	was	459	

reduced	by	sampling	a	relatively	large	range	of	body	sizes,	spanning	up	to	two	orders	of	460	



	 20	

magnitude	by	length	from	a	total	of	147	species,	resulting	in	relatively	well-constrained	461	

regression	models.		462	

	 Variations	in	community	structure	in	time	and	space	are	more	than	simply	463	

absolute	changes	in	abundance	either	as	a	function	of	taxonomy	or	body	size	(Cohen,	464	

2014).	Ecosystems	are	notably	complex,	however	current	theoretical	work	is	outpacing	465	

our	ability	to	ground-truth	predictions.	Metrics	that	can	empirically	capture	patterns	of	466	

ecosystem	structure	beyond	simple	changes	in	abundance	are	therefore	required	in	467	

order	to	test	ecological	theory	as	well	as	monitor	these	important	systems.	We	show	468	

that	TPL	exponents	efficiently	capture	differences	in	the	variance	of	abundance	or	469	

biomass	across	size	spectra	(or	taxonomic	groups)	in	the	North	Sea	fish	community	and	470	

that	the	differences	can	be	related	to	ecological,	environmental	or	anthropogenic	471	

drivers.	Coupled	with	the	versatility	of	how	it	can	be	estimated	(across	space,	through	472	

time,	at	the	species	or	community	level	etc.),	we	argue	Taylor’s	Power	Law	is	a	473	

promising	candidate	for	the	development	of	new	ecosystem	metrics.	474	

	475	
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Figures	and	Tables	630	

	631	

Figure	1:	632	

	 Schematic	diagram	illustrating	the	progression	from	data	acquisition	to	633	

construction	of	maps	and	time-series	of	TPL	exponents.	Methodology	is	split	into	4	634	

sections	that	are	described	in	greater	detail	in	the	text.	1:	Data	sources	and	processing.	635	
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2:	Mean-variance	calculations.		Dashed	lines	indicate	years	with	zero	abundance.	Blue	636	

subareas	in	abundance	maps	indicate	feasible	habitat	area	with	zero	abundance.		3:	TPL	637	

parameterisation,	and	4:	Spatial	and	temporal	trends	with	hydrography.	Note	that	638	

CPUE,	mean	abundance	and	variance	in	abundance	axes	are	on	logarithmic	scales.	639	

	640	

		641	

	642	

Figure	2:	643	

Map	of	deep	(>50m)	and	shallow	(≤	50m)	subareas	in	the	North	Sea	(a)	and	a	map	of	644	

subarea	assignment	to	proximity	of	hydrographic	boundaries	(b).	645	
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	647	
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	648	

Figure	3:	649	

An	example	of	𝛽 𝑡, 𝑙 !	(temporal	TPL	by	length	class),	visualised	as	the	slope	of	the	650	

least-squares	log-log	linear	regression	(solid	red	line)	between	the	mean	and	variance	651	

in	abundance	through	time	for	the	subarea	“37F7”.	Solid	and	dashed	black	lines	show	652	

the	hard	upper	bound	and	soft	lower	bound	of	variance	given	the	mean	following	653	

Tokeshi	(1995).	Data	points	are	coloured	based	on	size.	The	smaller	and	larger	size	654	

classes	occupy	the	extremes	of	mean	abundance	and	so	are	more	influential	in	TPL	655	

parameter	estimation,	however	variance	at	low	mean	abundances	(larger	size	classes)	656	

is	heavily	bounded	which	limits	leverage.	Note	the	base	10	logarithmic	scale.657	
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	658	

Figure	4:	659	

Maps	of	𝛽 𝑡,𝑝 !	(left	hand	side)	and	𝛽 𝑡, 𝑙 !	(right	hand	side)	estimates	for	the	660	

benthic	fish	community	within	169	subareas	across	the	North	Sea	(a	and	b	661	

respectively).	Subareas	with	exponent	estimates	either	above	or	below	the	95%	662	

confidence	interval	(CI),	marked	with	black	and	white	filled	circles	respectively.	663	

Note	that	the	colour	scaling	for	the	temporal	TPL	exponents	is	non-linear	and	664	

differs	between	the	two	maps.		665	

		666	
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	668	

Figure	5:	669	

Box	plot	showing	the	distribution	of	temporal	of	𝛽 𝑡, 𝑙 !	(left	hand	panel)	and	670	

𝛽 𝑡,𝑝 !	(right	hand	panel)	against	hydrographic	boundary	assignment	for	169	671	

subareas.	672	
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	677	

Figure	6:	678	

Time-series	of	𝛽 𝑠! ,𝑝 !	(top	panels)	and	𝛽 𝑠! , 𝑙 !	(bottom	panels)	calculated	679	

separately	for	deep	(>50m,	blue,	z	=	d)	and	shallow	(≤50m,	red,	z	=	sh)	regions	of	680	

the	North	Sea.		Confidence	intervals	of	1.96	standard	errors	of	the	regression	681	

estimates	are	plotted	as	opaque	polygons	to	show	periods	of	overlap	and	682	

divergence.	Years	with	TPL	exponents	either	above	or	below	their	95%	683	

confidence	intervals	are	marked	by	triangles	either	above	or	below	the	time-684	

series	respectively.	The	distributions	of	estimates	over	the	whole	period	are	685	

shown	in	adjacent	box	plots.		686	
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	692	

	693	

Figure	7:	694	

The	relationship	between	individual	body	size,	variance	in	abundance,	and	a	695	

changing	TPL	exponent,	using	subarea	“37F7”	as	an	example	(Figure	3).	The	696	

estimated	temporal	TPL	(black	dashed	line,	𝛽 = 1.94)	plotted	as	a	function	of	697	

body	size	where	the	mean	abundance	at	body	size	is	described	by	the	empirically	698	

estimated	size	spectrum	699	

(log!" Mean Abundance =  16.7− 6.27 × log!" Body Length ,	p	<	0.001).		700	

Coloured	lines	illustrate	the	effect	of	changing	𝛽 𝑡 ,	where	the	value	of	𝛽 𝑡 	is	701	

varied	(holding	all	other	terms	constant)	over	the	observed	empirical	range	of	702	

𝛽 𝑡  estimated	across	the	North	Sea	(Figure	4).	An	increasing	exponent	results	in	703	

a	greater	increase	in	variance	at	smaller	body	sizes.	Raw	body	length	–	variance	704	

in	abundance	data	are	plotted	as	white	circles.	Note	that	the	data	show	705	

curvature,	reflecting	the	curvature	of	the	empirical	size	spectrum	(coefficient	of	706	

second	order	polynomial	=	-1.49,	p	<	0.001).	However	variance	data	that	are	707	
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adjusted	by	the	squared	difference	between	raw	mean	abundance	values	and	708	

those	estimated	by	the	log-log	linear	size	spectrum	(grey	circles)	closely	track	709	

the	graph	of	the	empirical	estimate	of	TPL	by	body	size.	Note	that	the	axes	are	on	710	

a	logarithmic	scale.	711	

	712	

Table	1:	713	

Summary	statistics	of	each	form	of	TPL	exponents	calculated.	Number	of	p/l	is	714	

the	number	of	mean-variance	pairs	used	to	calculate	log-log	linear	regressions.	715	

Number	of	t/s	is	the	number	of	observations	used	to	estimate	mean-variance	716	

pairs.	The	mean	range	in	abundance	is	the	orders	of	magnitude	over	which	log-717	

log	linear	regressions	are	estimated.	718	

	719	
Form	of	
TPL	

Number	
of	𝛽	

Median	
Number	
of	p/l	per	
𝛽		

Median	
Number	
of	t/s	per	
p/l	

Mean	R-
squared	

Mean	
range	in	
abundance	

𝛽 𝑡,𝑝 !	 169	 21	 39	 0.973	 3.99	
𝛽 𝑡, 𝑙 !	 169	 46	 39	 0.981	 3.60	
𝛽 𝑠! ,𝑝 !	 39	 45	 85	 0.975	 4.64	
𝛽 𝑠! , 𝑙 !	 39	 87	 92	 0.985	 4.29	
𝛽 𝑠!,𝑝 !	 39	 45	 67	 0.982	 4.75	
𝛽 𝑠!, 𝑙 !	 39	 72	 74	 0.992	 4.48	
	720	
	721	


