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Abstract

1. Taylor’s power law (TPL) describes the relationship between the mean and variance in

abundance of populations, with the power law exponent considered a measure of
aggregation. However the usefulness of TPL exponents as an ecological metric has been

questioned, largely due to its apparent ubiquity in various complex systems.

. The aim of this study was to test whether TPL exponents vary systematically with

potential drivers of animal aggregation in time and space, and therefore capture useful

ecological information of the system of interest.

. We derived community TPL exponents from a long term, standardised and spatially

dense data series of abundance and body size data for a strongly size-structured fish
community in the North Sea. We then compared TPL exponents between regions of

contrasting environmental characteristics.

. We find that, in general, TPL exponents vary more than expected under random

conditions in the North Sea for size-based populations compared to communities
considered by species. Further, size-based temporal TPL exponents are
systematically higher (implying more temporally-aggregated distributions) along
hydrographic boundaries. Time-series of size-based spatial TPL exponents also

differ between hydrographically distinct basins.

. These findings support the notion that TPL exponents contain ecological

information, capturing community spatio-temporal dynamics as influenced by

external drivers.

Introduction

A major challenge in ecology is condensing the complexity of ecosystem

dynamics into quantifiable metrics. In 1961, Taylor posited that the variance in the
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abundance of a population scales with the mean abundance of that population as a
power law, such that:

0% =auf,a>0,
where g2is the variance in abundance of the population and y is the mean abundance of
the population, with the coefficient « and the scaling exponent £. His findings were
based on empirical observations from a range of different organisms and became
known as Taylor’s power law (TPL). This relationship has since been verified in many
more taxa and communities (e.g. Xu et al, 2015; Doring et al., 2015; Ramsayer et al.
2012), and even in non-ecological systems, where it is also known as fluctuation scaling
(Eisler et al, 2008).

Conceptually, TPL describes the level of aggregation between individuals in
populations, captured by the scaling exponent, 5, while the coefficient a is taken to be
an artefact of sampling methodology (Taylor, 1961). If individuals are distributed
randomly, then the Poisson distribution is approached, giving 62 = y, and therefore
B = 1. An increasing 8 describes increasing heterogeneity beyond random (i.e.
aggregation), whereas a decreasing f§ describes populations tending towards a uniform
or more even distribution. The 8 term can therefore be taken as a descriptive measure
of aggregation. If mean-variance pairs are calculated from abundances taken across
space but at the same point in time, then £ reflects the spatial aggregation of
individuals, which we denote B(s), and is known as spatial TPL. This can be interpreted
as the degree of patchiness, with increasing S(s) reflecting greater clustering in space.
Conversely, if mean-variance pairs are estimated from abundances measured through
time but at the same location then the temporal aggregation in the populations is

described. This is referred to as temporal TPL, where the exponent, S(t), can be taken

(1)
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as a measure of the magnitude of fluctuations in abundance of populations through
time.

Beyond a purely descriptive use, there have been other practical applications of
TPL in ecology. For instance, measures of $(t) have been used to improve sampling
regimes for bioassessments (Monaghan, 2015; Xu et al,, 2016). Reed & Hobbs (2004)
and Pertoldi et al. (2008) used modified forms of S(t) to explore extinction risk in
small-sized populations. The residuals in temporal TPL have been proposed as a
measure of stability in crop yields (Doring et al., 2015) and similarly, the spatial
heterogeneity of plants has also been described using residuals from spatial TPL
regressions (Guan et al,, 2016).

The mechanism by which TPL emerges is, however, still heavily debated in the
literature. Many theoretical models have been produced that seek to explain the
emergence of TPL in ecological systems including those based on: density dependent
(Perry 1994) or independent, stochastic population growth (Anderson et al., 1982;
Cohen et al.,, 2013); reproductive covariance (Ballantyne & Kerkhoff, 2007); dispersal
distance (Shi et al., 2016); competition (Kilpatrick & Ives, 2003) or population
synchrony (Cohen & Saitoh, 2016; Reuman et al,, 2017). Others argue that the ubiquity
of TPL suggests less system specific causes such as data series length and sampling
error (Kalyuzhny et al.,, 2014) or statistical artefacts of system configuration (Xiao et al.,
2015). These theoretical models seek to explain TPL emergence with a typical exponent
of 1 < B < 2, as this is the typical range observed in empirical studies, however few
offer widely applicable interpretations of variation in exponent values (but see Cohen et
al. 2013 and Reuman et al, 2017). Kilpatrick & Ives (2003) argued that the null
expectation for B (t) is a value of 2 due to the scaling between the mean and variance of

random variables. Tokeshi (1995) illustrated graphically that, when estimating
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either B(t) or B(s), data will be constrained on the log-log plot between the hard upper
bound of variance for a given mean that has a slope of 2 and a soft lower bound of
variance given the mean, the Poisson distribution, with a slope of 1, matching empirical
observation. However estimates are known to vary outside of these limits (Taylor et al.,
1980; Taylor & Woiwood, 1982) and, theoretically, any exponent value is feasible
(Cohen, 2014). Xiao et al. (2015) highlight the fact that, while TPL is statistically
inevitable, the exact form cannot be predicted on purely statistical grounds and
therefore may still contain ecological information.

Empirical data suggest that TPL exponents do contain ecologically relevant
information (Taylor & Woiwood, 1982; Lagrue et al.,, 2015), however this is particularly
evidenced for fishes. A systematic reduction in 8(t) was found in fishes along gradients
of increasing connectivity and size of reefs, implying that fish species experience greater
temporal fluctuations in abundance on smaller, more isolated reefs, following known
patterns of recruitment (Mellin et al., 2010). Analysis of larval survey data from
California revealed that the spatial heterogeneity of fish species, as measured by £(s),
varied with both life history, decreasing with more “K-selected” traits, and fishing
pressure, increasing if the species was commercially targeted (Kuo et al, 2016). These
studies suggest that both spatial and temporal TPL exponents, 8(t) and S(s), could be
considered as potential ecological metrics as they appear to be sensitive enough to track
changes in temporal fluctuations and spatial patchiness of fish populations.

A key finding in both of the studies discussed above was the importance of body
size when determining sources of variation in £ (t) and S (s) between species. Mellin et
al. (2010) found that the maximum length of a species explained 35% of the variation in

B (t) alone whereas Kuo et al. (2016) found a strong negative linear relationship
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between £(s) and maximum body size, arguing that larger organisms are better able to
buffer environmental stresses.

Fish communities and aquatic systems are notably size structured where the size
spectrum, the power law distribution of body sizes when size is considered at the
individual-level, is commonly employed as an ecological metric (Kerr & Dickie, 2003;
Goémez-Canchong et al, 2013; Trebilco et al, 2013). Further, body size is, in general, a
key biological trait affecting almost all aspects of individual ecology (Peters 1983).
Cohen et al. (2012) predicted that allometric scaling exists between body size and
variance in abundance by combining TPL with estimates of population-level mean
biomass. However another approach would be to parameterise TPL exponents by
grouping individuals into classes of body size, rather than taxonomic groups, as is done
with size spectra. If, as Kuo et al. (2016) suggested, heterogeneity due to environmental
stresses are dependent on individual size and because smaller individuals are almost
always more abundant than larger individuals, calculating TPL exponents as a function
of body size rather than species may be more sensitive to detecting environmentally
driven changes in spatial patchiness and temporal fluctuations.

Using one of the most spatially dense, long-term fish survey datasets available,
the North Sea International Bottom Trawl Survey (NS-IBTS; ICES, 2015), we employ
B (t) and B(s) as ecological metrics of temporal fluctuations and spatial patchiness
respectively as applied to fish communities. We derive S(t) andf(s) at the community
level (e.g. Grman et al, 2010; Cohen et al, 2016), allowing us to determine spatially
explicit values of S(t) and temporally explicit values of S (s). We then determine the
sensitivity of (t) and S (s) by quantifying extreme values and testing whether these
values are randomly distributed in relation to the external environment. Specifically, we

test the hypothesis that fish community B (t) increases with proximity to hydrographic
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boundaries, where interannual environmental variability is higher due to the lack of a
dominant hydrographic regime (van Leeuwen et al.,, 2015). We also test the hypothesis
that, over time, the community S (s) differs between two hydrographically distinct
basins: the deep northern North Sea that is permanently stratified and the shallow
southern North Sea that is seasonally well-mixed (Heessen et al.,, 2015; van Leeuwen et
al., 2015). Finally, we test the hypothesis that both S(t) and B (s) are more sensitive
when individuals are considered by body size by comparing trends with hydrography in
exponents derived from groups of individual length classes with those derived from

groups by species.

Materials and Methods
The analytical workflow from survey data through to 8 (t) and S(s) calculations and
hypothesis testing is summarised as a schematic in Fig. 1, with numbered sections

expanded upon below.

Data Sources and Processing (1)

Fish community data from the ICES International Bottom Trawl Survey for the

North Sea (NS-IBTS) were sourced from DATRAS (http://www.ices.dk/marine-

data/data-portals/Pages/DATRAS.aspx - accessed 03/09/2015). The NS-IBTS is an

internationally coordinated survey originally conducted to estimate the distribution of
juvenile herring, Clupea harengus, in the North Sea, although it was quickly expanded to
target other species, notably round fish such as cod, Gadus morhua. The survey provides
abundance estimates as Catch Per Unit Effort (CPUE) for each species caught (all fish

and some invertebrate species of interest) binned into length classes within spatial
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rectangles of 0.5° latitude by 1.0° longitude, with an approximate area of 30km?, known
as subareas (ICES, 2015).

Data included in this study are limited to the years 1977 through to 2015, after
the commencement of gear standardisation (GOV trawl with approximately 30 minute
duration), although this was only fully adopted by all eight participating nations from
1983 and differences between rigging set-ups still remain (ICES, 2015). Further, data
were limited to quarter one only, when survey cruises typically occur from mid January
to mid February, to exclude seasonal differences in abundance (ICES, 2015). In total, the
dataset used here contains over one million observations. All invertebrate records were
removed and fish records of less than 60mm in length were excluded due to inefficient
sampling within the trawl gear (Daan et al.,, 2005). Length classes for all species were
consolidated into 10mm bins, taxonomic identifications were corrected following
Heessen et al. (2015) and subareas with fewer than 10 years of sampling were removed.

In order to assign subareas to the deep, northern basin or the shallow, southern
basin, average depth was taken as the mean depth using ETOPO1 larc-minute global
relief model with a resolution of 1800 data points per subarea (Amante & Eakins, 2009).
In the North Sea, the 50m-depth contour approximately demarcates the difference
between deep, permanently stratified and shallow, seasonally well-mixed waters
(Heessen et al, 2015). Accordingly, subareas with average depth < 50m were assigned
to the shallow basin whereas those with average depths >50m were assigned to the

deep basin (see Fig. 2a).

Mean-Variance Calculations (2):
We applied the following argument to calculate the mean and variance in

abundance. Let x, ,, denote the abundance of species p of length class [ sampled in
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subarea s in year t. Individuals were grouped into species and abundances pooled

across length classes, such that the abundance for species p sampled in subarea s in

Ns,tp

yeartisxgep = 2,5

Xs,tp, Where ng ., is the number of length classes for species p

sampled in subarea s in year t. Separately, individuals were grouped into length classes

. n
and abundances pooled across species, such that for length class [, x;;, = Zpi'til Xs,t.p,l

where ng ., is the number of species.

For each subarea, the mean abundance of each species was calculated through

. _ 1 @n . . : :
time, X(t)s, = n—Zti”l’ Xs ¢ p, and similarly the variance in abundance through time for
S,p

each species, denoted s(t),, where n;, is the number of years sampled in that subarea
for species p (left-hand side of part 2, Fig. 1). Note that n, will be the same for all
species within subarea s. As time-series length can influence temporal TPL parameters
(Kalyuzhny et al., 2014), we limited subareas to those with at least 30 years of sampling
(ns, = 30). Further, species with fewer than 10 years of presence (i.e. less than 10 non-
zero abundance records) within a subarea were excluded so that transient species,
which cause zero-inflation of variance, were not included in the community TPL
parameterisation. Years of absence for species within a subarea were then assigned an
abundance value of zero. The temporal mean and variance of abundance were
calculated using the same method for each length class in each subarea giving x(t);,
and s?(t)s; where ng; = ng .
Spatial mean-variances pairs were calculated for each year across subareas
within the deep and shallow basins separately for each species. Typically, zero data in
spatial TPL analyses are excluded a priori, however this causes selection bias in data

where zero abundance can be valid, potentially influencing the estimates of @ and 8

(Jorgensen et al., 2011). Here, this was accounted for by constructing a feasible habitat
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area within each basin for each species / length class (blue-background subareas in
abundance maps on the right-hand side of Fig. 1). This was done by taking the overlap
of the subareas sampled within the basin during any one year and all the subareas that
the species (or length class) had occurred in within that basin over the whole time

period.

1 @nip

The spatial mean is then given as X(s,)., = —— X ] X5, Where the subscript z
P T g, Hs=1 Y50t

denotes the basin (z = d for deep and z = sh for shallow) and nf,, is the number of
subareas within the feasible habitat area for species p in basin z for year t. Note that nf,,
will be unique for each species and may differ between years as the number of subareas
sampled in each year can vary. Absences within feasible habitat areas were assigned
zero abundance. The spatial variance was similarly calculated, denoted as s?(s,) .
Here, we limited species to those present within at least five subareas (at least five non-
zero abundance records) for any given year within a feasible habitat area of at least 25
subareas to exclude vagrants within the community and prevent zero inflation of
variance. Using the same method, the spatial mean and variance of abundance were

calculated for each length class in each year for each basin giving ¥(s,).; and s2(s,),.

TPL parameterisation (3):
From equation 1, it follows that the TPL exponent and coefficient can be
estimated from the linear relationship of the logarithms using sample data:
log (s?) = log(&) + Blog(x) + €, a >0,
where € is the residual error, with the form of TPL estimated depending upon whether

temporal or spatial mean-variance pairs are used.

(2)
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For each subarea, we estimated the temporal TPL (left-hand side of Fig. 1) for the
community of individuals grouped by species, with the exponent denoted as (¢, p)s,
using ordinary least squares linear regression (OLS) on the logarithmically transformed
x(t)sp and s2(t)s,,. We used base 10 logarithms although the base value is arbitrary for
estimating . We assigned equal weighting to mean-variance pairs as n, ,, is the same
for each species. We used the same approach to estimate the exponent when groups
were defined as length classes, giving (¢, ).

For each year, the spatial TPL exponent (right-hand side of Fig. 1) was calculated
separately for the deep and shallow basins using OLS on the logarithmically
transformed means and variances, giving (s, p); and B(ssp, p); respectively for the
species-based community. As the residual error, €7, is approximately inversely
proportional to the degrees of freedom used to estimate the means and variances
(Perry, 1981; Jorgensen et al,, 2011) and here nf,, is unique for each species, we

assigned weights of n{,, — 1 to each mean-variance pair. The same method was applied

to estimate the spatial TPL exponents for the size-based community, giving (s4, 1), and
B (Ssnr D

To ensure that any observed trends were not an artefact of the statistical method
used to parameterise TPL, we separately estimated all TPL exponents using the Siegel
repeated medians method for linear regression (SM, Siegel 1982), a method that is
highly robust to the influence of outliers (breakdown point of 50%, ca. 0% for OLS). For
a set of N points (X;, Y;), SRM estimates the slope of the linear relationship Y = a + bX
as

j = Median {Median

: i Slope(i,j)} (3)



265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

where Slope(i,j) = Y7V Essentiall , for each individual data point, this approach
pely, ) XX; y p pp

computes individual pairwise slopes with all other data points (excluding itself), from
which the median is taken. The slope of the linear relationship is then taken to be the
median of N median slopes. SRM makes no assumptions about the error distribution of

the residuals and takes equal weighting for pairs of data points.

Spatial and temporal trends with hydrography (4):

We explored spatial trends in the temporal TPL exponents (left-hand side of Fig.
1) by first testing whether estimated 3(t, p)s and S (t, 1) for each subarea had a value
that was extreme compared to that expected at random given the data x,,, and x; .,
respectively. We employed the “feasible set” approach following Xiao et al. (2015),
constructing a distribution of random temporal TPL exponents for each subarea given
the data, conducted separately for groups by species and by length class. For each of
10000 permutations for species groupings, pairs of ¥(t);,, and s*(t);, were randomly
re-ordered across all species, p, and subareas, s, giving a random configuration of the
data. Temporal TPL exponents were then calculated following the methods described
above (both OLS and SRM methods separately), which we denote B(t, p)., where the r
superscript signifies that it is the random distribution from 10000 feasible set
permutations. This approach maintains the same n, for each subarea and we
permuted at the level of mean-variance pairs to avoid erroneous, ecologically
implausible abundance structures. Confidence intervals at the 95% level were then
constructed separately for each subarea by numerically integrating over (¢, p)%. This
was repeated for groups by length class producing £ (t, )7 and associated confidence

intervals. The in situ, empirical estimates of 8 (t, p) and S (¢, 1) were then tested
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against their confidence intervals and grouping methods compared, with estimates
falling outside of their intervals suggesting that such values were unlikely to be
generated by random processes alone for those subareas.

To test for patterns with hydrography, the spatial distribution of 8 (¢, p), and
B(t,1); were modelled as a linear function of their proximity to the nearest
hydrographic boundary. Boundaries were taken as the subareas that contained: the
500m depth contour separating the North Sea from the Atlantic drift current; the
55°45'N line running between Denmark and Sweden separating the North Sea from the
Baltic Sea; a straight line between Dover, UK, and Calais, France, separating the North
Sea from the English Channel and the 50m depth contour from Oslofjord, Norway, to
Scarborough, UK, which approximately demarcates the transition between the deep,
permanently stratified waters and the shallow, seasonally well-mixed waters (Heessen
etal, 2015; van Leeuwen et al., 2015). Subareas were assigned a proximity category of
either “on”, “adjacent to”, or “distant from”, see Fig. 2b.

For temporal trends in the spatial TPL exponents, we similarly tested for
extreme values in 3(s,, p), and B(s,, 1), using the feasible set approach. We generated
B (s,, p)t and B(s,, 1)¥ by randomly re-ordering spatial mean-variance pairs across both
deep and shallow basins prior to estimating the spatial TPL exponents separately for
each basin. We carried forward nf,, and n¢; values with their mean-variance pairs for
weighting in OLS. Confidence intervals were constructed at the 95% level and years
whose empirical values fell outside of this range identified. Differences between the two
hydrographically distinct basins were identified by constructing time-series and
comparing the overlap in £(s,, p), and B(s,, |), estimates, using the standard errors of
the slopes for the OLS method and the median absolute deviation (MAD) for the SRM

method to estimate 95% confidence intervals, coupled with paired t-tests.
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All analyses were conducted in R 3.3.2 (R Core Team, 2016), utilising the
packages: “plyr” (Wickham, 2011); “data.table” (Dowle & Srinivasan, 2017); and “mblm”
(Komsta 2013). Map production was done utilising the package “maps” (Brownrigg et

al, 2017).

Results

Across all formulations, we calculated a total of 416 f’s, each being estimated using two
separate regression methods. For the OLS method, for which p-values were calculated,
all B’s showed a significant log-log linear relationship at the p = 0.05 level. A summary
of the number of observations, r-squared values and orders of magnitude spanned by
the regressions can be found in table 1. An example of the relationship between mean
abundance, variance of abundance and body size used to calculate ,[?(t, [) is shown in

Fig. 3 (all individual TPL plots can be found in the Supplementary).

Temporal TPL

Maps of B(t, p)s and B(t, 1) are shown in Fig. 4, covering a total of 169 subareas
in the North Sea. Values of B(t, p)s ranged from 1.80 to 2.09 with a mean of 1.93 with
only 3 subareas having values that fell outside their confidence intervals. Values of
B(t, 1) had a larger range from 1.64 to 2.21 with a mean of 1.98, with many more
exponents falling outside their confidence intervals - 31 in total, see Fig. 4b. Further,
values of B(t, 1) systematically decreased with decreasing proximity to hydrographic
boundaries (F1,167 = 40.0, p < 0.001), whereas values of 3(t, p); showed no trend with
proximity (F1,167= 0.975, p = 0.325), see Fig. 5. Similar results were obtained using SRM

regression; see the Supplementary for figures.
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Spatial TPL

Time series of f(s4, p); and B (s¢y, P);, Spanning 39 years are shown in Fig. 6. In
total, only one year had a value outside its confidence intervals for #(sq, p), and only
three years for 5 (ss,, p);. The spatial TPL time series for the deep and shallow basins
were generally similar over the whole period, overlapping for the majority of years and
with no mean difference between B (sg, p), and B(Ssp, )¢ (tas = -0.537, p = 0.594).
Conversely, the time series of 8(s4, 1), and S (sss, 1), had 19 and 13 years respectively
where values fell outside of their confidence intervals. The majority of these were lower
than expected for the deep basin (18 out of 19) but higher than expected for the shallow
basin (11 out of 13). The two time series show considerable divergence over much of
the sampling period; with (s, 1), being significantly lower on average compared to
B (ssn, D¢ (tas = 6.01, p < 0.001). As with temporal TPL, qualitatively similar results were
obtained when using SRM regression to estimate spatial TPL exponents; see the

Supplementary for figure and associated statistics.

Discussion

Ecosystems are both complex and dynamic, making it challenging to characterise
and quantify responses in ecosystem structure to external conditions. Taylor’s Power
Law has been proposed as a metric describing the extent of aggregation of organisms
within systems. We empirically tested whether the aggregation of organisms by species
and across size classes within a community, as measured by Taylor’s Power Law
exponents, varied systematically in response to external environmental conditions.

Using a long-term and spatially dense community dataset, we have shown that:
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(1) Within the North Sea fish community, TPL exponents largely fall between 1<f<2,
agreeing with previous empirical work.

(2) We found systematic differences in both spatial and temporal TPL exponents
within the North Sea associated with regional hydrography and therefore the in
situ environment, with high values of §§ typically associated with more dynamic
hydrographic conditions.

(3) Systematic relationships between TPL exponents and the external environment
were only apparent when mean-variance pairs were calculated from body size
rather than species-level data (Figs. 4 & 6).

Here we infer that systematic variations in TPL exponents are related to the extent of
variability (dynamism) in external hydrographic conditions and therefore capture
ecological information, providing practical as well as theoretical applications of TPL.
For temporal TPL we found higher exponents, implying relatively higher
temporal variance in abundance at smaller body sizes, in more hydrographically
dynamic areas. Notably, high estimates of f(t) tracked the 50m-depth contour that
separates the two basins within the North Sea, see Fig. 3, an area where a lack of a
dominant hydrographic regime between years imparts higher interannual variability at
these localities (van Leeuwen et al,, 2015). Variability within the environment is a key
component of models that seek to explain the emergence of temporal TPL, for example,
Saitoh & Cohen (2018) showed a strong positive linear relationship between modeled
environmental variability and B (t) in their simulations of vole populations. The results
presented here provide empirical evidence that has previously been lacking for such a
key relationship utilised in simulation modeling of TPL. While we have successfully used
TPL exponents to demonstrate differences in temporal fluctuations between subareas,

identifying specific environmental drivers influencing these differences is much more
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difficult.

Of particular pertinence to the fish data examined here is the effect of fishing
pressure on community structuring. It has long been known that fishing can amplify the
magnitude of temporal fluctuations in fish stocks (Shelton & Mangel, 2011; Essington et
al, 2015) and given that the North Sea has some of the highest fishing pressures in the
world (Amoroso et al. 2018), one might expect there to be a strong link between size-
selective fishing pressure and temporal TPL. Although not explicitly tested for due to
additional complexities in the available fishing effort data, we observe no obvious
correlations between the spatial distribution in £(t) and the distribution in fishing
effort or gear type (Jennings et al,, 1999). Instead, we find that the distribution of
abundance within size classes is more variable through time at locations at boundaries
between areas of contrasting but dynamic environmental conditions. It is certainly
possible that high fishing pressure across the North Sea enhances the effect of
environmental dynamism on community abundances, but we do not have data to test
this.

Recently, research on more specific sources of variability in S (s) has focused on
the spatial synchrony of populations, which is the degree to which abundances between
geographically separate populations are correlated (Cohen & Saitoh, 2016; Reuman et
al., 2017). High spatial correlation results in a reduction in the expected variance for a
given mean abundance, and therefore increased spatial synchrony typically manifests as
areduction in the spatial TPL exponent (Reuman et al., 2017). Dispersal mechanisms
can result in spatial synchrony, however typically spatial synchrony can be attributed to
spatially correlated environments, known as the Moran effect (Moran 1953, Koenig &

Liebhold 2016), which has been shown in reef fishes (Cheal et al., 2007).
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Our results showed, on average, a reduced B(s) at the community level in the
deep, permanently stratified basin compared to the shallow, seasonally well-mixed
basin, which could be explained by a more spatially correlated environment in the
deeper northern North Sea. However, the time series of f(s) exhibited alternating
periods of divergence and tight coupling between the two basins, suggesting greater
complexity in the drivers of S(s) than a static Moran effect. Indeed, the reducing effects
of spatial synchrony can be masked by other drivers of variability, as has been shown
for chlorophyll-a data (Reuman et al,, 2017). Interestingly, recent theoretical work
suggests that fishing pressures may in fact change the degree of spatial synchrony
within harvested populations (Engen et al., 2018) and therefore asymmetric fishing
practices cannot be excluded as a potential driver of trends in B (s). Fishing methods
vary between the northern and southern basins in the North Sea (Jennings et al, 1999),
reflecting differences in water depth and community composition. We are unable to
determine therefore whether the observed increased patchiness in the southern basin,
inferred by a higher B (s) time-series, reflects spatial differences in hydrology,
community composition, fishing effort or some combination of all three.

The observed patterns in £(t) and S (s) only held when communities were
considered as consisting of individuals grouped into different classes of body size. The
scaling of mean abundance with individual body size, known as the size spectrum (Kerr
& Dickie, 2001), has long been considered an ecosystem metric. In particular, it is often
used in reference to size-selective fishing, which causes a truncation in abundances of
larger body sizes and a resultant increase in the magnitude of scaling exponent (e.g.
Daan et al, 2005). By grouping individuals by body size, the resultant S(t) and S(s)
estimates quantify the variability in the distribution of biomass by body size in the

community (i.e. the size spectrum) either through time (as the magnitude of temporal
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fluctuations) or across space (degree of patchiness in the spatial distribution)
respectively. The relationship between mean abundance, variance in abundance and
body size is demonstrated in Fig. 3. Scaling of variance in abundance with mean body
size across the range of TPL exponents exhibited in the North Sea is shown in Figure 7.
Changes in the TPL exponent result in greater relative changes in the variability of
abundance at smaller body sizes, which is in agreement with the findings of Mellin et al.
(2010) and Kuo et al., (2016) who showed the importance of body size in 3(t) and B(s)
respectively at the species-level. Community TPL therefore provides complementary
information to that of the biomass size spectrum regarding the variability of community
structure in time and space. Our results suggest that external environmental drivers
systematically influence ecosystem structural dynamics as coded by community TPL
exponents.

We recognise that trawl sampling introduces systematic biases. Notably, very
small and very large body sizes are under-represented, which is important given that
our results show size-associated trends. Similarly, different species also have different
rates of catchability (ICES, 2015). Nevertheless a broadly consistent sampling approach
was used throughout the survey series; therefore data are comparable across time and
space. To further reduce the potential for gear selection biases in the dataset, we
excluded a priori very small body sizes (<60mm) and extremely rare observations of
species and body sizes. We chose the NS-IBTS dataset in order to maximise the signal to
noise ratio when considering environmental correlates of TPL. The potential for
recovering signal was increased by a dataset containing more than one million
observations sampled using a relatively consistent methodology across known
gradients of environmental conditions. Further, noise due to error in TPL estimates was

reduced by sampling a relatively large range of body sizes, spanning up to two orders of
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magnitude by length from a total of 147 species, resulting in relatively well-constrained
regression models.

Variations in community structure in time and space are more than simply
absolute changes in abundance either as a function of taxonomy or body size (Cohen,
2014). Ecosystems are notably complex, however current theoretical work is outpacing
our ability to ground-truth predictions. Metrics that can empirically capture patterns of
ecosystem structure beyond simple changes in abundance are therefore required in
order to test ecological theory as well as monitor these important systems. We show
that TPL exponents efficiently capture differences in the variance of abundance or
biomass across size spectra (or taxonomic groups) in the North Sea fish community and
that the differences can be related to ecological, environmental or anthropogenic
drivers. Coupled with the versatility of how it can be estimated (across space, through
time, at the species or community level etc.), we argue Taylor’s Power Law is a

promising candidate for the development of new ecosystem metrics.
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632  Figure 1:
633 Schematic diagram illustrating the progression from data acquisition to

634  construction of maps and time-series of TPL exponents. Methodology is split into 4

635  sections that are described in greater detail in the text. 1: Data sources and processing.
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2: Mean-variance calculations. Dashed lines indicate years with zero abundance. Blue
subareas in abundance maps indicate feasible habitat area with zero abundance. 3: TPL
parameterisation, and 4: Spatial and temporal trends with hydrography. Note that

CPUE, mean abundance and variance in abundance axes are on logarithmic scales.
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Figure 2:

Map of deep (>50m) and shallow (< 50m) subareas in the North Sea (a) and a map of

subarea assignment to proximity of hydrographic boundaries (b).
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Figure 3:

An example of £(t, 1) (temporal TPL by length class), visualised as the slope of the
least-squares log-log linear regression (solid red line) between the mean and variance
in abundance through time for the subarea “37F7”. Solid and dashed black lines show
the hard upper bound and soft lower bound of variance given the mean following
Tokeshi (1995). Data points are coloured based on size. The smaller and larger size
classes occupy the extremes of mean abundance and so are more influential in TPL
parameter estimation, however variance at low mean abundances (larger size classes)

is heavily bounded which limits leverage. Note the base 10 logarithmic scale.
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Maps of B(t, p), (left hand side) and B(t, 1), (right hand side) estimates for the
benthic fish community within 169 subareas across the North Sea (a and b
respectively). Subareas with exponent estimates either above or below the 95%
confidence interval (CI), marked with black and white filled circles respectively.
Note that the colour scaling for the temporal TPL exponents is non-linear and

differs between the two maps.
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669  Figure 5:

670  Box plot showing the distribution of temporal of #(t, 1) (left hand panel) and
671  [(t,p), (right hand panel) against hydrographic boundary assignment for 169
672  subareas.
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Figure 6:

Time-series of £(s,, p), (top panels) and S (s,, 1), (bottom panels) calculated

separately for deep (>50m, blue, z = d) and shallow (<50m, red, z = sh) regions of

the North Sea. Confidence intervals of 1.96 standard errors of the regression

estimates are plotted as opaque polygons to show periods of overlap and

divergence. Years with TPL exponents either above or below their 95%

confidence intervals are marked by triangles either above or below the time-

series respectively. The distributions of estimates over the whole period are

shown in adjacent box plots.
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The relationship between individual body size, variance in abundance, and a
changing TPL exponent, using subarea “37F7” as an example (Figure 3). The
estimated temporal TPL (black dashed line, § = 1.94) plotted as a function of
body size where the mean abundance at body size is described by the empirically
estimated size spectrum

(log;o(Mean Abundance) = 16.7 — 6.27 X log;,(Body Length), p < 0.001).
Coloured lines illustrate the effect of changing £ (t), where the value of B(t) is
varied (holding all other terms constant) over the observed empirical range of

B (t) estimated across the North Sea (Figure 4). An increasing exponent results in
a greater increase in variance at smaller body sizes. Raw body length - variance
in abundance data are plotted as white circles. Note that the data show
curvature, reflecting the curvature of the empirical size spectrum (coefficient of

second order polynomial =-1.49, p < 0.001). However variance data that are
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adjusted by the squared difference between raw mean abundance values and
those estimated by the log-log linear size spectrum (grey circles) closely track

the graph of the empirical estimate of TPL by body size. Note that the axes are on

a logarithmic scale.

Table 1:

Summary statistics of each form of TPL exponents calculated. Number of p/l is
the number of mean-variance pairs used to calculate log-log linear regressions.
Number of t/s is the number of observations used to estimate mean-variance

pairs. The mean range in abundance is the orders of magnitude over which log-

log linear regressions are estimated.

Form of | Number | Median Median Mean R- | Mean
TPL of B Number | Number | squared | range in
of p/l per | of t/s per abundance
B p/1
B(t,p)s | 169 21 39 0.973 3.99
B, D, | 169 46 39 0.981 3.60
B(sq,p)e | 39 45 85 0.975 4.64
B(sy, D, | 39 87 92 0.985 4.29
B(ss,p); | 39 45 67 0.982 475
B(se, D, |39 72 74 0.992 4.48




