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Abstract

This paper presents a feature selection model that aims
to identify subjects from low-resolution surveillance images
based on a soft biometric description query. The process is
divided into three main stages. In the first stage, semantic
segmentation is performed on the subjects, classifying and
localising different parts of their bodies / accessories. The
second stage extracts information from the segmentations
and maps each subject to a vector in a soft biometric feature
space. Last but not least, the purpose of the final stage is to
find a good weighting on the features extracted in the previ-
ous step, based on the intuition that some of them are more
important, more accurate or have a higher variance. It is
assumed that the matching process might benefit consider-
ably from a set of good weights. Analysis on the IEEE AVSS
Challenge dataset shows encouraging performance for seg-
mentation and subject matching with the correct subject re-
liably matched just outside the top ten on the training set,
and just outside top 10% on the recently released test set.

1. Introduction
The ability to identify subjects from CCTV images is

much needed and has been widely studied. Soft biomet-
rics became a subject of interest for human re-identification
due to their property of being easily describable by people
which closed the gap between human and machine under-
standing as far as information from the images is concerned.
In terms, this aids the automatic human re-identification
process, avoiding the need to manually inspect many hours
of surveillance footage.

This paper explores the possibility of using soft bio-
metric features for performing human re-identification from
low resolution surveillance images based on semantic
queries. A pipeline that contains three stages of informa-
tion processing and independently trainable modules is pro-
posed. The first stage performs semantic segmentation on
the subjects using state-of-the-art atrous convolution filters
at different resolution levels in a pyramidal fashion. In the
second stage, a set of experts are trained separately using

machine learning classifiers on various features extracted
from the segmented maps, while in the last stage the weights
of the soft biometric features are tuned with respect to the
score obtained in the query ranking. The remainder of this
work is organised as follows. Section 2 reviews some of the
previous research works done in soft biometrics and seman-
tic segmentation. Section 3 presents the feature selection
model in details. Section 4 shows and analyses the results,
while the final conclusions are drawn in Section 5.

2. Related Work

2.1. Soft Biometrics

The long term objective is to develop automatic com-
puter vision techniques that outperform human analysis.
Studies in [15] reveal some of the main differences in per-
formance between human and machine vision. The results
showed that human vision finds it much easier to evaluate
traits like age, race and gender and it is hardly affected by
illumination conditions or the low quality of images. On the
other hand, human identification by humans may be subject
to memory limitations and descriptive completeness. An-
other aspect about the limitations of the soft biometrics is
discussed in [6] which encourages the usage of as many
traits as possible, because unimodal systems (systems that
use only one feature) are highly sensible to noisy sensor
data, low permanence, unacceptable error rates and spoof
attacks. Combining evidence from multiple sources can re-
duce these issues.

The relative importance of the individual features has
been a subject of interest in many papers ([10], [14], [15],
[16]). For instance, in [10] it is remarked that weighting
features based on their distinctiveness and permanence can
have a high positive impact on the results. Investigations
with the purpose of finding out what body features are the
most relevant are also carried out in [15] and [16]. More-
over, the authors of [16] developed a study about how many
of those features are correlated to each other when anno-
tated by humans. Finding such internal correlations would
be useful not only to reduce the number of features to a
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smaller relevant set, but also to infer the value of missing
features in cases they cannot be extracted properly. In [14]
the main focus was the usage of relative rather than absolute
features. The work concluded that relative features clearly
outperformed the categorical ones because of their ability to
assign soft probabilities.

2.2. Semantic Segmentation

Semantic segmentation has been a topic of research for
many years, as it helps accomplishing various tasks. Some
basic proposed methods used iterative clustering to gener-
ate superpixels [2], while others performed mean-shift and
re-weighting on histograms of oriented gradients [19]. An-
other well known approach is the usage of conditional ran-
dom fields ([9], [11], [21]) that can capture both the proba-
bility of labels and the consistency between adjacent pixels.

Starting with the great achievements obtained by the
deep convolutional neural networks in the large scale im-
age classification competitions, deep nets began to receive
more attention for a wide range of tasks. Semantic segmen-
tation was of course, not an exception. Very often these
models have been combined with conditional random fields
in order to explicitly account for the smoothing constraint
([3], [12], [17]). A fully convolutional model based on pro-
cessing images at different levels of resolution using pre-
trained weights is proposed in [13]. The main observation
was that intermediary coarse level representations adjust the
context of the pixels and improve neighbouring consistency,
while fine level representations focus on small details. The
main drawback in such architectures is the need to down-
sample/upsample the images, which makes them lose in-
formation. And because using large convolution kernels to
incorporate more context is very expensive as it drastically
increases the number of parameters, researchers have come
up with a novel concept called dilated or atrous convolu-
tions ([4], [5], [20]). Those filters present sparse convolu-
tion kernels that have a small number of parameters, but the
field of view can easily be increased. The ability to extend
this field of view without overpopulating the model with pa-
rameters is what makes them such a powerful tool. It also
allows for explicit control over the resolution level at which
features are computed, as explained in [4].

3. Approach
3.1. Dataset and Task Overview

The project uses the dataset provided by Semantic Per-
son Retrieval in Surveillance Using Soft Biometrics chal-
lenge organised by the IEEE AVSS 2018 [1]. More infor-
mation about the setting from which the data was captured
can be found in [8]. The dataset consists of 520 surveil-
lance images of variable size capturing one human subject
at a time, and also some sets of ground truth segmentations

comprising 9 classes (background, legs, shoes, torso, lug-
gage, skin legs, skin arms, skin face and hair). A soft bio-
metrics description is provided for each subject, labelling
the features in a categorical way. The goal is to build a
model that ranks all the subjects based on how well they
match a given query. The evaluation is done by comput-
ing the mean rank of all subjects as response to their corre-
sponding query.

3.2. Main Pipeline

The model proposed in this paper consists of a pipeline
containing three independently trained modules, as shown
in Figure 1. Secions 3.4, 3.5 and 3.6 present the functional-
ity and development of each module.

Figure 1: The Feature selection model

3.3. Data Augmentation

The size of the dataset (520 images) is relatively small,
especially for training deep convolutional neural networks.
For a classification task with a small number of classes, it
might exhibit acceptable results, but for semantic segmen-
tations with 9 classes, regular models would be prone to
overfitting. This is why, data augmentation can be a cru-
cial pre-processing step. Another aspect that needs to be
tackled before training is the variation in the shapes of the
input images. The method proposed in this work, solves
both issues and it also provides an explicit technique for en-
forcing the subsequent trainable model to be scale invariant:
a mirrored version of every image is added to the set, and
for both of them n rescaled versions (excluding the origi-
nal size) between some bounds are performed. In the final
experiments n was set to 11. Every obtained image was
padded with black pixels, so that in the end, each sample
was an image of shape (500 × 300 × 3). This process led
to an augmentation factor of 24 (1 original + 1 flipped +
11 scales for each of them), so the final augmented dataset
contained 12,480 samples, which is a considerable increase
over the initial 520. Figure 2 shows a sample of the newly
obtained data. As an observation, during training small ro-
tations have also been applied, but it turned out to be rather a



shortfall than an improvement in the results regardless of the
architecture of the model. The reason for this might be the
fact that the rotations, even though just in the approximate
range (−15◦, 15◦), ruined the positional relations between
the segmented classes and consequently just hampered the
performance of training instead of reducing overfitting.

Figure 2: Data Augmentation

3.4. Semantic Segmentation (I)

The main idea of the segmentation model was to com-
bine two key concepts implemented in several previous
works in the literature. One of those concepts is processing
feature maps at different levels of resolution, in a similar
manner as the one presented in [13]. The assumption was
that combining fine level and coarse level feature maps can
capture both context and fine details. The second key con-
cept is the usage of multiple atrous convolutions with differ-
ent rates on the same feature maps, in a pyramidal fashion.
This approach was first described in [5] and named Atrous
Spatial Pyramid Pooling. The overall architecture of the
semantic segmentation model is displayed in Figure 3.

Blue nodes represent layers that are static (frozen or no
parameters), while the orange ones contain trainable param-
eters. The model begins by extracting features using the
pre-trained VGG network [18] (initially trained for image
classification in the ImageNet competition). It extracts fea-
ture maps from 3 different layer levels, preserving all the
operations performed in the original VGG. This is why the
size of the image is reduced when extracting from layers
4 and 7. The next step applies an Atrous Pyramid Mod-
ule which is inspired from the last layers proposed in [5],
but slightly changed. The configuration of this module is
shown in Figure 4a.

After applying 4 parallel atrous convolutions with rates
1, 2, 4 and 6, a set of convolution layers with 16 filters is
applied pixelwise on each individual feature set, which are
finally concatenated into a feature map with 64 channels. It
should be noted that the atrous VGG layers are all initialized
to the weights from the original subsequent VGG layer. For
instance, for the module that extracts features from Layer

Figure 3: Segmentation model architecture

7, the following atrous filters (Figure 4a) are all initialized
to the weights from VGG layer 8, but are modifiable in the
training process.

The model comprises interpolation of the low resolution
maps and summation to reduce noise and inconsistencies
between adjacent pixels. A general suggestion ([3], [4] and
[12]) is to add a CRF to enforce a smoothing constraint over
the final resulting map. This model on the other hand, pro-
poses appending another module called the Smoother, as it
can be observed in Figure 3. This entity is basically an ad-
ditional set of convolutional and residual layers (as shown
in Figure 4b). The choice of using residual layers is moti-
vated by the fact that the task of this component is to get a
raw segmentation as input and correct it by accounting for
smoothness as well as for the accuracy of pixel predictions.
Every residual layer has the task of getting a segmentation
map and adding a small refinement to it. The whole network
is trained in two main steps. First the initial part exclud-
ing the smoother is trained to minimize the cross-entropy
loss until it settles at a point from where it no longer de-
creases for a period of time. After that, the smoother starts
to train by keeping the rest of the network frozen. Dividing
the training process in those 2 stages avoids creating false
correlations between the first inference part and the second
smoothing part, and reduces the chances of causing an in-
ternal covariate shift. The output of the smoother is con-
sidered the output of the segmentation stage. A batch size



(a) Atrous Pyramid Module
(b) Smoother
architecture

Figure 4: Expanded components

of 4 images was used and the loss was minimized using the
Adam optimizer with a polynomial decay on the learning
rate that starts at 0.001 and saturates at 0.0001 after 10,000
iterations.

3.5. Local Feature Experts (II)

The next step is to extract information from the seg-
mented maps and infer the value of the features that can be
present in the queries. The annotations from the training set
have been used as labels. Each feature was evaluated using
an individual expert, and each expert may use different in-
put information that is fed to a machine learning algorithm.
For choosing the most appropriate features and classifier, a
series of empirical tests were carried out and the best per-
forming ones were kept. A short description of each expert
is given in the following:

Colour (both torso and legs): the area of interest was
extracted from the RGB image using the segmentation and
a historgam of values was build for each channel. An RBF-
kernel SVM was then used to classify the colours.

Gender: the ratio between the area of each class and
the total segmented area was computed and considered as a
feature for a subsequent Random Forest.

Luggage: the ratio between the area classified as lug-
gage and the rest of the segmented area was considered
alone and fed to a Linear SVM with hinge loss.

Type (both torso and legs): the ratio between the area
classified as clothing and the area classified as skin was
taken as the sole feature and fed to a Linear SVM.

Pose: the ratio between the area of each class of the seg-
mentation and the total segmented area was computed and
considered as a feature for a subsequent Gradient Boosting.

Texture (both torso and legs): texture information has
not been used as it was considered a difficult problem that
might turn out to be detrimental.

An important remark that has to be made here is that all
classifiers gave their response as a soft probability over the
possible classes. This was achieved by taking advantage of
the specific mathematical properties of each classifier, like
distances to the boundary lines of SVMs for instance .

3.6. Global Feature Weighting (III)

A prior weight depending on the size of the feature de-
scriptor vector can be assigned (for example luggage pres-
ence is binary, so its only node has weight 1, while pose
has a 4 node categorical representation, each node weight-
ing 1/4) in order to normalize things, but this procedure still
does not capture the usefulness of the features. One ap-
proach to find an optimal set of weights is to perform a grid
search. But having 7 features, and assigning only 4 possible
values for each would result in evaluating the score for the
queries 47 = 16, 384 times, which is impractical.

Instead, this paper proposes a Discrete Gradient Descent
(Algorithm 1) that proceeds as follows. It starts by assign-
ing equal weights to all features. At each iteration it tries
to see the direction of the ”gradients” for each feature, and
then changes the weights in proportion to those gradients.
The counter is used to signal when many consecutive itera-
tions do not show improvement, meaning that the algorithm
converged to a solution. The update decay ensures updates
are getting smaller and smaller over time, in a similar fash-
ion to the learning rate decay in deep neural networks.

4. Results and Analysis
Figure 5 shows segmentation results both on training

(top 3 rows) and on testing (bottom 3 rows) images. The
examples on the left side are good quality samples, while
on the right side there are cases where the results appear to
be rather poor. The model tends to give worse results in
images where illumination varies (row 1), edges are very
difficult to detect (row 2) or multiple humans appear in the
frame (row 3).

The numerical results representing the mean intersection
over union of the predictions of different models are dis-
played in Table 1. Static versions are those that disallowed
the atrous layers to be trained, L2 stands for adding eu-
clidean norm penalty to the loss (0.001 in our experiments),
and -E indicates an extension to (3, 3) kernels instead of (1,
1) in the convolutions that follow the atrous layers. The data
was split in 75% training, 15% validation and 10% testing.

In a similar task on a comparable dataset, [7] set the base-
line for locating people in video frames using semantic de-
scriptions at a mean iou of 44%. The results in Table 1 show
an improvement of 19% (considering best vs best) over this



Algorithm 1 Discrete Gradient Descent

1: feature weights← (1.0, 1.0, ..., 1.0)
2: counter ← 0
3: update decay ← 0.95
4: update magnitude← 1
5: while counter < COUNTER THRESHOLD do
6: score ← evaluate the score on all queries (mean

ranking)
7: if score is minimum so far then
8: save current feature weights
9: counter ← 0

10: end if
11: counter ← counter + 1
12: for each feature weight f do
13: make a slight increase and decrease and re-

evaluate the score on those
14: choose the operation that improves the

score and store the value of the improvement
f improvement

15: end for
16: normalize all f improvement across features
17: for each feature weight f do f ← f +

update magnitude ∗ f improvement ∗ f
18: end for
19: update magnitude ← update magnitude ∗

update decay
20: end while

Model Training Validation Test

Dynamic 64.85% 51.54% 48.22%
Static 60.83% 47.73% 47.93%

Dynamic + L2 61.84% 51.58% 49.38%
Static + L2 64.92% 51.40% 51.97%
Dynamic-E 64.44% 49.56% 51.33%

Static-E 63.09% 50.98% 52.25%
Dynamic-E + L2 49.04% 45.25% 45.42%

Static-E + L2 49.23% 45.82% 46.62%

Table 1: Segmentation models mean-IOU

baseline, which proves that the model proposed for seman-
tic segmentation in this research project has great potential
for tackling this kind of tasks.

Table 2 displays the results obtained for each individual
expert, while Table 3 shows the mean and median ranking
obtained for ranking all subjects from their queries. When
optimizing for the best feature weights using Algorithm 1,
the Dynamic model was used for extracting segmentation
maps (on the training images). The table shows the scores
when testing this set of weights not only on the true seg-
mentations, but also on the ones obtained using the deep

Figure 5: Segmentation results

Feature Classes Classifier Accuracy

Pose 4 Gradient Boosting 59.04%
Gender 2 Random Forest 79.30%

Luggage 2 Linear SVM 91.35%
Torso colour 11 Kernel SVM 48.64%
Leg colour 11 Kernel SVM 56.61%
Torso type 2 Linear SVM 90.96%
Leg type 2 Linear SVM 96.54%

Table 2: Feature experts results

convolutional model. The reason why the median is always
much smaller than the mean is because most of the subjects
are ranked in the top 5% or better, but some samples are
heavily misranked due to very poor segmentations.

Many versions of models can be compared in terms of
performance, but two of them which attracted a lot of inter-
est have their cmc ranking curves plotted in Figure 6. The
curve DA weights represents a model that trained the fea-
ture weights on segmentations predicted by the Dynamic
model, whereas GT weights used the ground truth segmen-



Segmentation Rank Mean Rank Median

Ground Truth 7.510 1
Dynamic 38.162 11

Static 45.423 16
Dynamic + L2 41.373 13

Static + L2 39.042 11
Dynamic-E 38.967 11

Static-E 42.277 13
Dynamic-E + L2 58.560 25

Static-E + L2 57.981 22

Table 3: Ranking scores on the training set

tations as input. As for segmenting the test images, both
of them used the Dynamic model. The results show that
DA weights clearly outperform GT weights. Hence, it has
been proved that accounting for the noise in the segmen-
tation stage when optimizing the feature weights for the
matching stage offered a considerable improvement in the
final ranking results. Additionally, DA weights got a rank-
ing mean of 43.14 and a ranking median of 24, while the
GT weights scored 49.51 and 29.5 respectively.

Figure 6: CMC curves

5. Conclusions and Future work

A novel method for ranking subjects based on soft bio-
metric feature selection was presented. The methodology
shows how the main problem can be divided into inde-
pendently solvable subproblems. Finding better models,
or gathering more data could improve the quality of the
segmentation maps and this can ease the feature extrac-
tion stage. Furthermore, using soft predictions on the maps
like in [7] and implementing a texture extractor can offer
a boost. Another method that might be beneficial is inte-
grating all feature experts into one single entity that would
be able to also take into account correlations between the
attributes. Nevertheless, the overall approach presented
promising results and offered insights into the usage of soft
biometric traits for human identification.
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