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ABSTRACT 

 

Continuity to the Medium Resolution Imaging Spectrometer 

(MERIS) Terrestrial Chlorophyll Index (MTCI) will be 

provided by the Sentinel-3 Ocean and Land Colour 

Instrument (OLCI), and to ensure its utility in a wide range 

of operational applications, validation efforts are required.  

In the past, these activities have been constrained by the 

need for costly airborne hyperspectral data acquisition, but 

the Sentinel-2 Multispectral Instrument (MSI) now offers a 

promising alternative.  In this paper, we explore the 

synergetic use of Sentinel-2 MSI data for validation of the 

Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI) over 

the Valencia Anchor Station, a large agricultural site in the 

Valencian Community, Spain.  High retrieval accuracy 

(RMSE = 0.20 g m-2) was obtained by applying machine 

learning techniques to Sentinel-2 MSI data, highlighting the 

valuable information it can provide when used in synergy 

with Sentinel-3 OLCI data for land product validation. 

 

Index Terms— Vegetation biophysical variables, canopy 

chlorophyll content, Sentinel-2, Sentinel-3, validation 

 

1. INTRODUCTION 

 

Making use of the red-edge bands of the Medium Resolution 

Imaging Spectrometer (MERIS), the MERIS Terrestrial 

Chlorophyll Index (MTCI) provided the first global 

surrogate of canopy chlorophyll content (CCC) at a spatial 

resolution of 300 m [1].  Continuity to its 10 year archive 

will provided by the Sentinel-3 Ocean and Land Colour 

Instrument (OLCI) in the form of the OLCI Terrestrial 

Chlorophyll Index (OTCI), but to ensure its utility in a wide 

range of operational applications, validation efforts are 

required to quantify its accuracy and uncertainty. 

 The moderate spatial resolution of satellite-derived 

CCC products and the heterogeneity of the terrestrial 

landscape make validation particularly challenging, as field 

measurements are typically point-based.  The ‘two-stage’ or 

‘bottom-up’ approach, in which high spatial resolution 

imagery is used to bridge this scale gap, was developed to 

address these challenges [2], [3].  However, prior to the 

launch of the Sentinel-2 missions, its application to satellite-

derived CCC products was constrained by a lack of freely 

available high spatial resolution imagery incorporating 

appropriate spectral bands.  Validation efforts necessitated 

costly airborne hyperspectral data acquisition, making them 

a relatively infrequent activity.  With a spatial resolution of 

20 m in multiple red-edge bands, the Sentinel-2 

Multispectral Instrument (MSI) offers a promising 

alternative in this respect.  As such, in this paper, we explore 

the synergetic use of Senitnel-2 MSI data for validation of 

the Sentinel-3 OTCI. 

 

2. MATERIALS AND METHODS 

 

2.1. Field data collection 

 

Field data collection was carried out between 14th and 18th 

June 2017 within a 10 km x 10 km area of the Valencia 

Anchor Station, a large vineyard dominated agricultural site 

in the Valencian Community, Spain (39.5707, -1.2882).  26 

grapevine elementary sampling units (ESUs) were 

established over the study site, in which measurements of 

leaf area index (LAI) and leaf chlorophyll concentration 

(LCC) were obtained.  Each ESU was approximately 40 m x 

40 m in size, enabling positional uncertainties in the 20 m 

MSI data to be accounted for [4].  Using a handheld global 

positioning system (GPS) device (Garmin eTrex 10), the 

location of each ESU was determined with an error of < 10 

m. 

Within each ESU, 20 measurements of LAI were 

obtained using digital hemispherical photography (Nikon 

Coolpix 4500 with FC-E8 fisheye lens), whilst 10 

measurements of LCC (each comprised of 18 replicates) 

were obtained using an optical chlorophyll meter (Konica 

Minolta SPAD-502).  These measurements were conducted 

over 5 transects positioned diagonally with respect to 



vineyard orientation, enabling the row structure of the 

canopy to be characterised.  DHP data were binarised and 

processed to yield estimates of LAI according to [5].  

Images were split into 6 zenith rings of 10° and each zenith 

ring into a further 36 azimuth cells of 10°, whilst zenith 

angles of > 60° were discarded due to the likelihood of 

mixed pixels [6].  The method proposed by [7] was adopted 

to account for the effects of foliage clumping.  In terms of 

LCC, the relative values provided by the optical chlorophyll 

meter were converted to physical units using the calibration 

function reported for grapevine by [8].  CCC was then 

derived as the product of LAI and LCC. 

 

2.2. Generation of a high spatial resolution CCC 

reference map from Sentinel-2 MSI data 

 

A machine learning approach was used to generate a high 

spatial resolution CCC reference map from L2A Sentinel-2A 

MSI data acquired on 15th June 2017.  CCC was retrieved 

using an artificial neural network (ANN), trained using the 

coupled Leaf Optical Properties Spectra (PROSPECT) and 

Scattering by Arbitrarily Inclined Leaves (SAIL) radiative 

transfer models (RTMs), with additions to account for row 

structured canopies [9]–[13].  50,000 simulations were 

carried out by randomly drawing input parameters from 

within predefined value ranges (Table 1).  The soil 

background was selected randomly from 10 possible spectra 

reflecting the sandy loam soils of the study site [14].  

Simulated spectra were resampled according to the MSI 

spectral response functions [15], and were contaminated 

with wavelength dependent and independent Gaussian noise 

(0.01 additive, 2% multiplicative) to better account for 

instrument uncertainties. 

 

Table 1: Range of values from which RTM input parameters 

were randomly drawn. 

Parameter Values Reference 

Structure (N) 1.62 [12], [13] 

Chlorophyll a+b (μg cm-2) 27.4 to 43.7 This study 

Water thickness (cm) 0.025 [12], [13] 

Dry matter (g cm-2) 0.0035 [12], [13] 

Leaf area index 0.7 to 3 This study 

Average leaf angle (°) 45 [12], [13] 

Hotspot parameter 0.083 [12], [13] 

Row height (m) 1.2 to 1.8 [12], [13] 

Crown diameter (m) 0.6 to 1.3 [12], [13] 

Visible soil strip (m) 1.5 to 3 This study 

Difference between solar 

azimuth angle and row 

direction (°) 

0.3 to 125.7 This study 

Observer zenith angle (°) 5.5 to 6.8 This study 

Solar zenith angle (°) 21.3 to 21.5 This study 

Relative azimuth angle (°) 18.9 to 44.1 This study 

Fraction of diffuse radiation 0.15 This study 

The ANN was comprised of a single hidden layer 

with 5 tangent sigmoid neurons.  Inputs consisted of the 

bottom-of-atmosphere reflectance values in MSI bands 3, 4, 

5, 6, 7, 8a, 11 and 12, in addition to the cosine of the 

observer zenith angle, solar zenith angle and relative 

azimuth angle.  50% of simulations were used for training, 

and the remaining 50% were used for validation and testing.  

Once trained, the ANN was applied to the MSI scene 

(Figure 1).  The resulting CCC retrievals were validated 

against the field measurements, and retrieval accuracy was 

assessed in terms of the root mean square error (RMSE). 

 

 
Figure 1: 20 m MSI-derived CCC reference map. 

 

2.3. Validation of the Sentinel-3 OTCI 

 

L2 Sentinel-3A OLCI data were acquired on 18th June 2017.  

Estimates of CCC were derived from OTCI values using 

empirical relationships established in previous validation 

efforts for the MTCI [16], [17].  Due to positional 

uncertainties in the L2 OLCI data, quantitative comparison 

could not be reliably conducted at its native spatial 

resolution.  Following [16], both the 20 m MSI-derived CCC 

reference map and 300 m L2 OLCI scene were aggregated to 

a common spatial resolution of 1 km.  These aggregated 

datasets were then collocated, and performance was again 

assessed in terms of the RMSE. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Accuracy of the 20 m MSI-derived CCC reference 

map 

 

The 20 m MSI-derived CCC reference map demonstrated 

good spatial consistency with observed patterns of 

vegetation cover over the study site (Figure 1).  A strong 

linear relationship between CCC retrievals and field 

measurements was observed (r = 0.66), although in most 

cases the ANN slightly overestimated CCC (Figure 2).  



Nevertheless, a high retrieval accuracy was obtained (RMSE 

= 0.20 g m-2).  Comparable retrieval accuracies were 

achieved by [18], who applied RTM inversion techniques to 

5 m RapidEye data (RMSE = 0.39 to 0.43 g m-2). 

 

 
Figure 2: Relationship between field measurements and 

MSI-derived CCC retrievals.  Dashed line represents a 1:1 

relationship. 

 

3.2. Performance of the OTCI 

 

Overall, reasonable spatial consistency was observed 

between the aggregated MSI-derived CCC reference map 

and OTCI-derived estimates of CCC, which resolved major 

spatial structures over the study site (Figure 3).  Although 

only a moderate linear relationship between the OTCI and 

CCC was observed (r = 0.37), when estimates of CCC were 

derived from the OTCI using previously established 

empirical relationships, good performance was demonstrated 

(Figure 4).  Using the empirical relationship reported by 

[16], an RMSE of 0.24 g m-2 was obtained, whilst an 

improved RMSE of 0.20 g m-2 was achieved using that of 

[17].  The moderate nature of the relationship between the 

OTCI and CCC observed in this study is primarily a result of 

the limited range of CCC values experienced over the study 

site.  This is particularly apparent when compared to 

previous validation efforts, which have incorporated CCC 

values of up to 3.5 g m-2 [16], [18]. 

 

 
Figure 3: 300 m aggregated MSI-derived CCC reference 

map (left) and OTCI-derived CCC (right).  See Figure 1 for 

interpretation of color scale. 

 
Figure 4: Relationship between MSI-derived CCC retrievals 

and the OTCI, aggregated at 1 km.  Dashed and dotted lines 

represent the empirical relationships reported in [16] and 

[17]. 

 

3.3. Synergetic potential of the Sentinel-2 missions for 

validation of Sentinel-3 OLCI land products 

 

The results of this study indicate that Sentinel-2 MSI data 

are well suited to the retrieval of vegetation biophysical 

variables such as CCC, and thus provide valuable 

information that can be used in synergy with Sentinel-3 

OLCI data for the purposes of land product validation.  

When compared to infrequent airborne hyperspectral data 

acquisition, the Sentinel-2 missions represent a major 

advance towards the routine validation of satellite-derived 

CCC products.  Although not directly investigated in this 

study, the red-edge bands provided by MSI open up 

opportunities for deriving spectral vegetation indices similar 

to the OTCI at a higher spatial resolution than previously 

possible [19].  With appropriate consideration of positional 

uncertainties and differences in spectral response [20], this 

capability could be further exploited for inter-mission 

comparison. 

 

4. CONCLUSIONS 

 

The synergetic use of Senitnel-2 MSI data for validation of 

the Sentinel-3 OTCI was explored over a large agricultural 

site in the Valencian Community, Spain.  A framework for 

validating moderate spatial resolution CCC products using 

Sentinel-2 MSI data was established, and its suitability for 

upscaling field measurements was evaluated.  Importantly, 

the high retrieval accuracy obtained by applying machine 

learning techniques to Sentinel-2 MSI data highlights the 

valuable information it can provide on vegetation 

biophysical variables.  In the context of Sentinel-3 OLCI 

land product validation, the Sentinel-2 missions are a key 

facilitator of operational validation activities.  Further work 



is required to evaluate the proposed framework over 

additional sites covering a wide range of vegetation types. 
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