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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

By installing a home battery to accompany rooftop solar PV, grid electricity usage is reduced and self-sufficiency 
increased. One motivation for pursuing this goal is environmental concern. By modelling domestic PV-battery systems 
in this work, self-sufficiency is found not to correlate well with CO2 emissions savings, in some cases even correlating 
negatively. A system’s complexities, such as transmission and distribution losses, are not encapsulated in self-
sufficiency. Self-sufficiency should not be considered in isolation when designing PV-battery systems to maximize 
CO2 emissions savings. 
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1. Introduction 

There is growing consumer interest in home batteries to accompany rooftop solar PV. By storing unused PV 
generation during the day and using that stored energy within the home at night, home batteries promise an increase 
in energy self-sufficiency, and a reduced electricity bill. The self-sufficiency ratio (SSR) is defined as the proportion 
of a household’s demand that is served directly by PV generation or discharging the battery onsite, i.e. not by the 
electricity grid [1]: 
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There is growing consumer interest in home batteries to accompany rooftop solar PV. By storing unused PV 
generation during the day and using that stored energy within the home at night, home batteries promise an increase 
in energy self-sufficiency, and a reduced electricity bill. The self-sufficiency ratio (SSR) is defined as the proportion 
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Nomenclature 

SSR Self-sufficiency ratio (%) 
Pg

–(t) Electricity import from the grid (kW) 
PD(t) Household electrical demand (kW) 
1  Average electrical loss from centralized grid generator to conceptual branch point (%) 
2  Average electrical loss from conceptual branch point to house (%) 
cg0  Marginal CO2 intensity of grid generation (kg/kWh) 
cg

-  CO2 intensity of grid import (kg/kWh) 
cg

+  CO2 intensity of grid export (kg/kWh) 

𝑆𝑆𝑆𝑆𝑆𝑆 =  100 % − ∑ 𝑃𝑃𝑔𝑔−(𝑡𝑡)𝑡𝑡
∑ 𝑃𝑃𝐷𝐷(𝑡𝑡)𝑡𝑡

 .    (1) 

Many design and modelling studies of domestic solar PV and battery systems take SSR maximization as one of the 
objectives [2-4]. Most take it as given that SSR maximization is a good thing. However, Bertsch et al. have published 
a critique showing the positive correlation between SSR and internal rate of return (IRR, a measure of financial benefit) 
exists only up to SSR = 65 % in Ireland and 76 % in Germany [5]. Further increases in SSR can be achieved by larger 
battery size, but at greater cost than can be recouped by saving on electricity bills during the battery’s lifetime. 

Simshauser and Nelson have speculated on an adverse consequence of many households trying to maximize SSR, 
which they term the ‘energy market death spiral’ [6]. Households increasing their SSR may reduce the income of 
electricity retailers, who increase their tariffs in response, leading to more households (if they can afford it) increasing 
their SSR to reduce their exposure to ever higher electricity prices. The pursuit of SSR is not a straightforward good. 

Little has been published on the relationship between SSR and environmental benefit. Zhang et al. use SSR as a 
proxy for environmental benefit in their modelling of a block of flats with PV and battery [7]. They cite Luthander et 
al.’s paper as justification, though no link between SSR and environmental benefit is claimed therein [1]. 

Of the 268 residents of Queensland, Australia, that Agnew and Dargusch surveyed on their attitudes towards home 
batteries, 80 % wished to reduce their greenhouse gas emissions [8]. Although reduction of electricity bills was the 
most common reason for considering buying home batteries, a link between energy self-sufficiency and environmental 
benefit has clearly become embedded in many minds. This link must be examined in order that research into the design 
of domestic PV-battery systems may better serve the environmentally-conscious section of the public. 

The method for investigating the link between SSR and environmental benefit through mathematical modelling is 
described in Section 2. Results are presented in Section 3, followed by conclusions and further work in Section 4. 

2. Method 

Industry specialists were consulted for this work, to identify potential environmental benefits of home batteries. 
The claims were examined by developing a Matlab model of a domestic PV-battery system operating an SSR-
maximizing ‘greedy’ algorithm, as used by Weniger et al. [3] and Truong et al. [4]. The battery capacity was varied 
and its effects on SSR, net present value (NPV), and CO2 emissions over the 15-year battery lifespan were examined. 

One year’s rooftop PV generation and six household demand time series in the UK were measured for this work at 
2-s and 5-minute resolution respectively. The PV time series was averaged to 5-minute resolution before use. The 
annual loads range from 2563-8015 kWh. This spans the UK average of 3800 kWh, providing a good range for study. 
Behavior often changes after installing a home battery [8], but the effect on electrical usage is not modelled here. 

A so-called ‘greedy algorithm’ is mathematically guaranteed to maximize SSR [4]. It serves demand first by PV 
electricity, then by discharging the battery if this is insufficient. If the discharge power limit is reached or the battery 
runs empty, power is imported from the grid. If there is more PV electricity generated than needed, the excess is used 
to charge the battery up to the power limit or until it is full, then any remaining excess is exported to the grid. 

SSR is calculated as in equation (1). NPV is calculated by a discounted cash flow analysis, including capital 
expenditure on PV and batteries, expenditure on electricity import, and income from the Feed-in Tariff (FiT) and 
export tariff. A similar calculation is made for CO2 emissions. It includes embodied emissions of PV and battery 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2018.09.040&domain=pdf
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benefit has clearly become embedded in many minds. This link must be examined in order that research into the design 
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The method for investigating the link between SSR and environmental benefit through mathematical modelling is 
described in Section 2. Results are presented in Section 3, followed by conclusions and further work in Section 4. 

2. Method 

Industry specialists were consulted for this work, to identify potential environmental benefits of home batteries. 
The claims were examined by developing a Matlab model of a domestic PV-battery system operating an SSR-
maximizing ‘greedy’ algorithm, as used by Weniger et al. [3] and Truong et al. [4]. The battery capacity was varied 
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2-s and 5-minute resolution respectively. The PV time series was averaged to 5-minute resolution before use. The 
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runs empty, power is imported from the grid. If there is more PV electricity generated than needed, the excess is used 
to charge the battery up to the power limit or until it is full, then any remaining excess is exported to the grid. 
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manufacture, emissions from imported grid electricity, and credits from displacing grid generation when exporting 
electricity. More details of the model inputs, algorithm and parameter values are given in Appendix A. 

3. Results 

Consultation with industry specialists identified the following potential environmental benefits of home batteries. 
These are examined in turn using the model and data described in Section 2. 

• Usage of more low-CO2 electricity, 
• Reduction of transmission and distribution losses by consuming more of the electricity generated onsite, 
• Reduction of peak import/export and associated losses and inefficiencies, 
• Relief of voltage violations on the distribution network, allowing more PV to connect. 

‘CO2 arbitrage’ (shifting import/export between periods of low/high grid CO2 intensity), is left to future work.

3.1. Usage of more low-CO2 electricity 

Fig. 1 shows for House 1 (annual electricity consumption 8015 kWh) that SSR is increased by installing larger PV 
and battery. NPV relative to the case with no PV and no battery is maximized around 11 kW PV and 10.5 kWh battery. 
CO2 saved relative to no PV and no battery increases with PV capacity but decreases with battery capacity. Kabakian 
et al.’s finding that installing a battery saves less CO2 than having PV only [9] is confirmed for all six houses, due 
simply to the battery’s charge/discharge losses and embodied emissions of manufacture. However, Uddin et al.’s 
conclusion that home batteries are thus bad for the environment [10] is too simplistic, as shown in the next sections. 

 

Fig. 1. (a) SSR (%); (b) NPV (k£); (c) CO2 saved (ton) relative to the case with no PV, no battery, for House 1, vs. PV and battery size. 

3.2. Reduction of transmission and distribution losses 

The average electrical loss in the UK transmission and distribution networks is 8-9 % [11]. Transmitting PV 
electricity that goes unused in one house, to one nearby, typically incurs negligible losses. In that case, each kWh 
exported is credited equally to the burden of each kWh imported. However, if a house is very remote, finite losses in 
exporting excess PV electricity can reduce the environmental benefit compared to onsite consumption. 

To explore this effect, a loss of 1 = 8 % is modelled up to a conceptual branch point, and a further 2 to the house 
(Fig. 2). If every kWh of electricity generation causes cg0 kg/kWh of CO2 to be emitted, every kWh imported emits  

𝑐𝑐𝑔𝑔
− =  𝑐𝑐𝑔𝑔0

(1−[𝜆𝜆1+𝜆𝜆2])  kg/kWh    (2) 

when taking account of transmission and distribution losses, while every kWh exported saves 

 𝑐𝑐𝑔𝑔
+ =  𝑐𝑐𝑔𝑔0(1−2𝜆𝜆2)

(1−[𝜆𝜆1+𝜆𝜆2])  kg/kWh.    (3) 
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Fig. 2. Abstraction showing transmission and distribution loss of 1 +2 to each house, and 22 in exporting from one house to another. 

In reality, there is generally not one conceptual branch point and conceptual neighbour: excess PV energy could 
be transmitted to many neighbours. Local loss 2 would vary across the network and throughout the day, with varying 
network loading. Although the physical characteristics corresponding to specific values of 2 have not yet been 
determined, Fig. 3 (a) and (b) show that for 2 ≥ 15% and across the range of households, a non-zero battery can save 
CO2 relative to PV only. This is in contrast to the previous section, when 2 = 0. The extremely unlikely bounding 
case of 2 = 50 % is included for logical completeness. Varying 2 has no effect on SSR nor NPV (Fig. 3 (c), (d)), 
because 2 only affects the CO2 accounting but neither the other two calculations. 

 

Fig. 3. CO2 savings of (a) House 1, and; (b) House 6, for varying 2 and battery sizes; (c) SSR, and; (d) NPV, showing no change with 2. 

3.3. Reduction of peak import/export 

By reducing peak flows, ohmic losses in power cables are reduced. Furthermore, reduced import peaks mean less 
need to upgrade electricity network infrastructure such as transformers and new peaker generation plants. 

While increasing battery size does reduce peak import across the year (Appendix B, Fig. 4), there is no effect at 
all on peak export when using the SSR-maximizing greedy algorithm. Solar irradiation at UK latitudes has such wide 
annual variation that under this algorithm, the battery is empty nearly all the time in winter, and often full before noon 
in summer, when excess PV generation is highest (Appendix B, Fig. 5). 

Unsurprisingly the greedy algorithm is not used when import/export minimization is the goal. Instead, linear 
programming methods are favoured [12]. With judicious algorithm design, the SSR need not be greatly reduced from 
the theoretically possible maximum obtained using the greedy algorithm. 

3.4. Relief of voltage violations 

The increasing penetration of rooftop PV increases the risk of voltage violations on the distribution network. 
Crossland et al. have modelled this phenomenon in real networks [13]. They recommend placing home batteries in 
targeted locations to relieve voltage problems, and thus allow more PV to connect and contribute towards 
decarbonizing the electricity system. Their work relies on the assumption that the batteries are designed to charge 
during high-risk periods, that is, summer noon-time when domestic demand is low and PV generation high. But as 
shown in Section 3.3, the greedy algorithm does not achieve this. 



 S.I. Sun  et al. / Energy Procedia 151 (2018) 150–157 153
 Author name / Energy Procedia 00 (2018) 000–000  3 

manufacture, emissions from imported grid electricity, and credits from displacing grid generation when exporting 
electricity. More details of the model inputs, algorithm and parameter values are given in Appendix A. 

3. Results 

Consultation with industry specialists identified the following potential environmental benefits of home batteries. 
These are examined in turn using the model and data described in Section 2. 

• Usage of more low-CO2 electricity, 
• Reduction of transmission and distribution losses by consuming more of the electricity generated onsite, 
• Reduction of peak import/export and associated losses and inefficiencies, 
• Relief of voltage violations on the distribution network, allowing more PV to connect. 

‘CO2 arbitrage’ (shifting import/export between periods of low/high grid CO2 intensity), is left to future work.

3.1. Usage of more low-CO2 electricity 

Fig. 1 shows for House 1 (annual electricity consumption 8015 kWh) that SSR is increased by installing larger PV 
and battery. NPV relative to the case with no PV and no battery is maximized around 11 kW PV and 10.5 kWh battery. 
CO2 saved relative to no PV and no battery increases with PV capacity but decreases with battery capacity. Kabakian 
et al.’s finding that installing a battery saves less CO2 than having PV only [9] is confirmed for all six houses, due 
simply to the battery’s charge/discharge losses and embodied emissions of manufacture. However, Uddin et al.’s 
conclusion that home batteries are thus bad for the environment [10] is too simplistic, as shown in the next sections. 

 

Fig. 1. (a) SSR (%); (b) NPV (k£); (c) CO2 saved (ton) relative to the case with no PV, no battery, for House 1, vs. PV and battery size. 

3.2. Reduction of transmission and distribution losses 

The average electrical loss in the UK transmission and distribution networks is 8-9 % [11]. Transmitting PV 
electricity that goes unused in one house, to one nearby, typically incurs negligible losses. In that case, each kWh 
exported is credited equally to the burden of each kWh imported. However, if a house is very remote, finite losses in 
exporting excess PV electricity can reduce the environmental benefit compared to onsite consumption. 

To explore this effect, a loss of 1 = 8 % is modelled up to a conceptual branch point, and a further 2 to the house 
(Fig. 2). If every kWh of electricity generation causes cg0 kg/kWh of CO2 to be emitted, every kWh imported emits  

𝑐𝑐𝑔𝑔
− =  𝑐𝑐𝑔𝑔0

(1−[𝜆𝜆1+𝜆𝜆2])  kg/kWh    (2) 

when taking account of transmission and distribution losses, while every kWh exported saves 

 𝑐𝑐𝑔𝑔
+ =  𝑐𝑐𝑔𝑔0(1−2𝜆𝜆2)

(1−[𝜆𝜆1+𝜆𝜆2])  kg/kWh.    (3) 

4 Author name / Energy Procedia 00 (2018) 000–000 

 

Fig. 2. Abstraction showing transmission and distribution loss of 1 +2 to each house, and 22 in exporting from one house to another. 

In reality, there is generally not one conceptual branch point and conceptual neighbour: excess PV energy could 
be transmitted to many neighbours. Local loss 2 would vary across the network and throughout the day, with varying 
network loading. Although the physical characteristics corresponding to specific values of 2 have not yet been 
determined, Fig. 3 (a) and (b) show that for 2 ≥ 15% and across the range of households, a non-zero battery can save 
CO2 relative to PV only. This is in contrast to the previous section, when 2 = 0. The extremely unlikely bounding 
case of 2 = 50 % is included for logical completeness. Varying 2 has no effect on SSR nor NPV (Fig. 3 (c), (d)), 
because 2 only affects the CO2 accounting but neither the other two calculations. 

 

Fig. 3. CO2 savings of (a) House 1, and; (b) House 6, for varying 2 and battery sizes; (c) SSR, and; (d) NPV, showing no change with 2. 

3.3. Reduction of peak import/export 

By reducing peak flows, ohmic losses in power cables are reduced. Furthermore, reduced import peaks mean less 
need to upgrade electricity network infrastructure such as transformers and new peaker generation plants. 

While increasing battery size does reduce peak import across the year (Appendix B, Fig. 4), there is no effect at 
all on peak export when using the SSR-maximizing greedy algorithm. Solar irradiation at UK latitudes has such wide 
annual variation that under this algorithm, the battery is empty nearly all the time in winter, and often full before noon 
in summer, when excess PV generation is highest (Appendix B, Fig. 5). 

Unsurprisingly the greedy algorithm is not used when import/export minimization is the goal. Instead, linear 
programming methods are favoured [12]. With judicious algorithm design, the SSR need not be greatly reduced from 
the theoretically possible maximum obtained using the greedy algorithm. 

3.4. Relief of voltage violations 

The increasing penetration of rooftop PV increases the risk of voltage violations on the distribution network. 
Crossland et al. have modelled this phenomenon in real networks [13]. They recommend placing home batteries in 
targeted locations to relieve voltage problems, and thus allow more PV to connect and contribute towards 
decarbonizing the electricity system. Their work relies on the assumption that the batteries are designed to charge 
during high-risk periods, that is, summer noon-time when domestic demand is low and PV generation high. But as 
shown in Section 3.3, the greedy algorithm does not achieve this. 
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4. Conclusions and further work 

When exporting electricity to one’s neighbors is nearly loss-less, as in most residential areas in the UK, CO2 savings 
decrease with battery size. In this case, SSR is negatively correlated with environmental benefit. However, when a 
network is lossy, or PV penetration is high and forces exported energy further away, installing a battery can indeed 
save CO2 emissions. This is not reflected in SSR, which has no dependence on local network losses. Finding the level 
of loss or PV penetration each value of 2 corresponds to is left to further work. 

Benefits associated with reducing grid import/export and relieving voltage constraints are better achieved through 
algorithms designed for these aims. They need not sacrifice SSR greatly, but must be designed intelligently. 

This may also be true of ‘CO2 arbitrage’, whereby electricity is imported from the grid at times of low CO2 intensity 
and exported when CO2 intensity is high. Grid CO2 intensity has been assumed constant throughout this work, at the 
level of combined cycle gas turbines (CCGT). In future, the marginal generator may at times be wind, PV or nuclear, 
rather than always CCGT. The authors are constructing hourly grid CO2 time series under different generation mix 
scenarios, to test the impact of CO2 arbitrage. 

Some financial benefit is possible by installing home batteries, as seen for Houses 1 and 2 in Fig. 3 (d). An argument 
can be made for using the concept of self-sufficiency as a marketing tool, to connect more PV to the grid than 
otherwise. For researchers however, it should be clear that SSR alone is not an appropriate metric for environmental 
benefit. The system must be modelled in all its complexity, instead of relying on the apparent objectivity of SSR. 
Indeed, this work too can be criticized for neglecting human toxicity, resource depletion, ecological damage, and other 
sustainability indicators. Not only SSR, but CO2 as well may be an insufficient metric for environmental benefit. 
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Appendix A. Model details 

This comprises a description of the model input data, the operating algorithm programmed into Matlab, the 
calculation of net present value (NPV) and CO2 emissions, as indicators of financial benefit and environmental impact 
respectively, and parameter values used. 

A.1. Model input data 

The system consists of PPV kW of PV panels (variable, or fixed at values in Table 1), EB kWh of batteries (variable), 
and all the household loads, connected behind the meter. 

The PV generation time series Pgen(t) is given by a 2-s dataset collected by Dickon Hood from a 3.6 kW array on a 
southeast-facing roof inclined roughly 45˚ from the horizontal, in Berkshire, UK, 2015-12-02 to 2016-11-30. 

The household demand time series PD(t) were taken from six houses in the Midlands, UK, metered at 5-minute 
resolution from 2012-02-01 to 2013-01-31, by E.ON UK plc. For the simulations with fixed PV capacity, the capacity 
chosen for each house was such as to cover its electrical demand across the year (Table 1). For Houses 1 and 2, this is 
larger than a typical UK roof can support. The PV cost structure (Table 2) used in this work may be inaccurate for 
such cases, so results should be interpreted with caution. 

Table 1. Annual loads for each house, and corresponding PV capacity. 

House Annual load, t PD(t) dt   (kWh) PV capacity, PPV   (kW) 

1 8 015 8.25 

2 7 343 7.50 

3 4 836 5.00 

4 3 845 4.00 

5 2 706 2.75 

6 2 563 2.75 

 
The PV time series was averaged to 5-minute resolution to match the demand time series. The modelling time step 

is 5 minutes. All datasets were shifted to begin at 1st January. 

A.2. Operating algorithm 

Following Weniger et al. [3], Truong et al. [4], and others, the greedy algorithm is used to operate the battery: 
• At each time step: 

• If PV generation exceeds demand ( Pgen(t) > PD(t) ): 
• Charge the battery with the excess ( Pgen(t) – PD(t) ), up to the charging power limit PB, or until 

the state of charge (SoC) upper limit EB
+ is reached. 

• Export remaining power to the grid ( Pg
+(t) ). 

• Update battery SoC, Esoc(t), taking account of charging efficiency c . 
• Else (when  Pgen(t) < PD(t) ): 

• Discharge the battery to meet the net load (at rate PD(t) – Pgen(t) ), up to the discharging power 
limit –PB, or until the SoC lower limit EB

– is reached. 
• Import any power still needed to meet the load from the grid ( Pg

–(t) ). 
• Update battery SoC, Esoc(t), taking account of discharging efficiency d . 
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4. Conclusions and further work 

When exporting electricity to one’s neighbors is nearly loss-less, as in most residential areas in the UK, CO2 savings 
decrease with battery size. In this case, SSR is negatively correlated with environmental benefit. However, when a 
network is lossy, or PV penetration is high and forces exported energy further away, installing a battery can indeed 
save CO2 emissions. This is not reflected in SSR, which has no dependence on local network losses. Finding the level 
of loss or PV penetration each value of 2 corresponds to is left to further work. 

Benefits associated with reducing grid import/export and relieving voltage constraints are better achieved through 
algorithms designed for these aims. They need not sacrifice SSR greatly, but must be designed intelligently. 

This may also be true of ‘CO2 arbitrage’, whereby electricity is imported from the grid at times of low CO2 intensity 
and exported when CO2 intensity is high. Grid CO2 intensity has been assumed constant throughout this work, at the 
level of combined cycle gas turbines (CCGT). In future, the marginal generator may at times be wind, PV or nuclear, 
rather than always CCGT. The authors are constructing hourly grid CO2 time series under different generation mix 
scenarios, to test the impact of CO2 arbitrage. 

Some financial benefit is possible by installing home batteries, as seen for Houses 1 and 2 in Fig. 3 (d). An argument 
can be made for using the concept of self-sufficiency as a marketing tool, to connect more PV to the grid than 
otherwise. For researchers however, it should be clear that SSR alone is not an appropriate metric for environmental 
benefit. The system must be modelled in all its complexity, instead of relying on the apparent objectivity of SSR. 
Indeed, this work too can be criticized for neglecting human toxicity, resource depletion, ecological damage, and other 
sustainability indicators. Not only SSR, but CO2 as well may be an insufficient metric for environmental benefit. 
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Appendix A. Model details 

This comprises a description of the model input data, the operating algorithm programmed into Matlab, the 
calculation of net present value (NPV) and CO2 emissions, as indicators of financial benefit and environmental impact 
respectively, and parameter values used. 

A.1. Model input data 

The system consists of PPV kW of PV panels (variable, or fixed at values in Table 1), EB kWh of batteries (variable), 
and all the household loads, connected behind the meter. 

The PV generation time series Pgen(t) is given by a 2-s dataset collected by Dickon Hood from a 3.6 kW array on a 
southeast-facing roof inclined roughly 45˚ from the horizontal, in Berkshire, UK, 2015-12-02 to 2016-11-30. 

The household demand time series PD(t) were taken from six houses in the Midlands, UK, metered at 5-minute 
resolution from 2012-02-01 to 2013-01-31, by E.ON UK plc. For the simulations with fixed PV capacity, the capacity 
chosen for each house was such as to cover its electrical demand across the year (Table 1). For Houses 1 and 2, this is 
larger than a typical UK roof can support. The PV cost structure (Table 2) used in this work may be inaccurate for 
such cases, so results should be interpreted with caution. 

Table 1. Annual loads for each house, and corresponding PV capacity. 

House Annual load, t PD(t) dt   (kWh) PV capacity, PPV   (kW) 

1 8 015 8.25 

2 7 343 7.50 

3 4 836 5.00 

4 3 845 4.00 

5 2 706 2.75 

6 2 563 2.75 

 
The PV time series was averaged to 5-minute resolution to match the demand time series. The modelling time step 

is 5 minutes. All datasets were shifted to begin at 1st January. 

A.2. Operating algorithm 

Following Weniger et al. [3], Truong et al. [4], and others, the greedy algorithm is used to operate the battery: 
• At each time step: 

• If PV generation exceeds demand ( Pgen(t) > PD(t) ): 
• Charge the battery with the excess ( Pgen(t) – PD(t) ), up to the charging power limit PB, or until 

the state of charge (SoC) upper limit EB
+ is reached. 

• Export remaining power to the grid ( Pg
+(t) ). 

• Update battery SoC, Esoc(t), taking account of charging efficiency c . 
• Else (when  Pgen(t) < PD(t) ): 

• Discharge the battery to meet the net load (at rate PD(t) – Pgen(t) ), up to the discharging power 
limit –PB, or until the SoC lower limit EB

– is reached. 
• Import any power still needed to meet the load from the grid ( Pg

–(t) ). 
• Update battery SoC, Esoc(t), taking account of discharging efficiency d . 
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A.3. Calculation of NPV and CO2 

For each case, NPV is calculated from year n = 1 to N, where N = 15 (parameter meanings and values in Table 2): 
  

𝑁𝑁𝑁𝑁𝑁𝑁 = −𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶 + ∑ (𝑅𝑅𝐶𝐶𝑁𝑁 ( 1
1+𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

)
𝑛𝑛−1

− 𝑆𝑆𝑁𝑁𝐶𝐶𝑁𝑁𝑆𝑆 (1+𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1+𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

)
𝑛𝑛−1

)𝑛𝑛=𝑁𝑁
𝑛𝑛=1  .   (4) 

𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑃𝑃𝑃𝑃,£,𝑣𝑣 ∙ 𝑁𝑁𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑃𝑃𝑃𝑃,£,𝑓𝑓 + 𝑐𝑐𝐵𝐵,£,𝑣𝑣 ∙ 𝐶𝐶𝐵𝐵 + 𝑐𝑐𝐵𝐵,£,𝑓𝑓 .   (5) 

𝑅𝑅𝐶𝐶𝑁𝑁 = 𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹 ∙ ∑ 𝑁𝑁𝑔𝑔𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡 𝑑𝑑𝑡𝑡 + 50 % × 𝑐𝑐𝑔𝑔𝑒𝑒𝑒𝑒 ∙ ∑ 𝑁𝑁𝑔𝑔𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡 𝑑𝑑𝑡𝑡 .   (6) 

𝑆𝑆𝑁𝑁𝐶𝐶𝑁𝑁𝑆𝑆 = 𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏 ∙ ∑ 𝑁𝑁𝑔𝑔
−(𝑡𝑡)𝑡𝑡 𝑑𝑑𝑡𝑡 .    (7) 

Cash flows are discounted by interest rate rint . Capital expenditure (CAPEX) includes fixed and variable costs for 
PV and battery, including installation and power electronics. Yearly revenues (REV) comprise feed-in and export 
tariffs, which are fixed from the beginning of operation. Export is typically not metered but deemed at 50 % of 
generation. SPEND is yearly expenditure on electricity, buy price cbuy increasing at rate rinfl. Operations and 
maintenance are assumed covered by the suppliers. The NPV for the same house with no PV and no battery is then 
subtracted from (4), as a baseline reference. 

The lifetime CO2 emissions are calculated analogously to (4). Instead of –CAPEX there is embodied CO2 of 
manufacture (assumed variable costs only). Instead of –SPEND and +REV there are, respectively, CO2 emissions, 
 +cg

–t Pg
–(t) dt, and emissions credits, –cg

+t Pg
+(t) dt. There is no inflation associated with CO2, but a discount rate 

of rint,CO2 is applied. ‘CO2 savings’ are –1× CO2 emissions, and are also considered relative to no PV and no battery. 
The parameter values used in the calculations are given in Table 2. The battery parameters are based on the Tesla 

Powerwall. 

Table 2. System parameters, and how they were established. 

PV Interest rates 

cPV,£,v 1000 £/kW Variable cost (a) rint 4.0 % NPV discount rate (f) 

cPV,£,f 2400 £ Fixed cost (a) rint,CO2 1.5 % CO2 discount rate (g) 

cPV,CO2 1590 kg/kW CO2 emissions (b)     

Battery Grid electricity 

cB,£,v 400 £/kWh Variable cost (c) cFiT 0.0378 £/kWh Feed-in Tariff (h) 

cB,£,f 2000 £ Fixed cost (c) cexp 0.0503 £/kWh Export tariff (h) 

cB,CO2 193 kg/kWh CO2 emissions (d) cbuy 0.163 £/kWh Retail buy price (i) 

cd 90 % Round-trip efficiency (e) cg0 0.378 kg/kWh CO2 intensity of grid generation (b) 

PB 0.5 C Power limit (e) 1 8.0 % T&D losses to branch point (j) 

EB
+ 100 % Upper SoC limit (e) rinfl 5.8 % Inflation rate (i) 

EB
- 5 % Lower SoC limit (e)     

N 15 years Lifetime (e)     

(a) https://www.gov.uk/government/statistics/solar-pv-cost-data (accessed 28/06/18) - the 2017/18 median is £1701/kW for 0-4 kW, 
£1393/kW for 4-10 kW, £1080/kW for 10-50 kW, consistent with a price of roughly £2400 + £1000/kW. 

(b) Stamford, Laurence, and Adisa Azapagic. "Life cycle sustainability assessment of electricity options for the UK." International Journal 
of Energy Research 36, no. 14 (2012): 1263-1290. Further breakdown of data kindly supplied by Laurence Stamford. It is assumed that 
combined cycle gas turbines (CCGT) are the marginal generators at all times, but this may change in future. 

(c) https://www.renewableenergyhub.co.uk/product/tesla-powerwall-6-4-kwh-home-battery.html (accessed 28/06/18) - a 7 kWh Tesla 
Powerwall costs £4800 including power converter, whereas a 14 kWh Powerwall 2 costs £5400 plus £500 for supporting hardware plus 
£800-2000 for installation – this is consistent with roughly £2000 + £400/kWh. 

(d) Hao, Han, Zhexuan Mu, Shuhua Jiang, Zongwei Liu, and Fuquan Zhao. "GHG Emissions from the production of lithium-ion batteries 
for electric vehicles in China." Sustainability 9, no. 4 (2017): 504. Hao et al. found embodied CO2 emissions of Li-NMC batteries of 
36.9-196 kg/kWh reported in the literature. 

8 Author name / Energy Procedia 00 (2018) 000–000 

Hawkins, Troy R., Bhawna Singh, Guillaume Majeau‐Bettez, and Anders Hammer Strømman. "Comparative environmental life cycle 
assessment of conventional and electric vehicles." Journal of Industrial Ecology 17, no. 1 (2013): 53-64. Hawkins et al.’s value of 193 
kg/kWh is taken, as the embodied emissions of the power converter need to be included. 

(e) https://www.tesla.com/en_GB/powerwall?redirect=no (accessed 28/06/18) – although the warranty is 10 years, the battery is likely to 
keep working for years after that, especially as cycling is low enough not to reach the 7000 cycle limit even by the end of 15 years. 
Charge efficiency, c, is approximated as equal to discharge efficiency, d . 

(f) 4 % is lower than the return typically asked for from business investments, but it is likely a homeowner will accept less than this. 4 % is 
still higher than the interest rate on any cash ISA today, which is likely the highest-payoff alternative a homeowner may invest in. 

(g) The CO2 discount rate is a measure of the consideration of future climate-induced suffering relative to suffering in the present. 
Egalitarians favour lower discount rate, but a rate >0 is advised due to non-zero risk of human extinction by other means.  

(h) https://www.ofgem.gov.uk/system/files/docs/2017/10/tariff_table_october_2017_1.pdf (accessed 28/06/18) – rates for installations 
beginning 01/06/18-30/09/18. 

(i) https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/695141/table_223.xls (accessed 28/06/18) – price 
averaged across all regions of the UK, all payment types, 2017. Up 5.8 % from 15.41 p/kWh in 2016. 

(j) See [11]. 

Appendix B. Results: Effect of battery size on peak import and export 

Setting 2 = 0 again, the peak import across the year ( max( Pg
-(t) ) ) was recorded. The effect of battery size on 

peak import depends on details of the household’s demand, not just its annual total. E.g. almost no effect on Houses 
1, 3, 4, but large effect on House 6. A 7 kWh battery has no effect on House 2, but the effect becomes sizeable for 14 
kWh. Peak import occurs in winter, when there is little PV energy to charge the battery, regardless of its size.  

 

Fig. 4. Peak import power across the year, as a function of battery capacity, for all houses.  

The low winter-time PV generation cannot charge the battery as quickly as the household demand drains it every day, 
resulting in the battery often running empty. The converse is true in summer, resulting in the battery being full nearly 
all the time. Even for battery capacity as large as 28 kWh, operating a greedy algorithm means the summer-time 
demand cannot empty the battery sufficiently each night, before the next morning’s PV generation completely fills it 
again, often before noon. The battery then cannot accept more PV energy, at the very time when grid export is highest, 
and when voltage violations are most likely. 

 

Fig. 5. PV generation and energy stored in a 28 kWh battery, for House 4, whole year. 
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A.3. Calculation of NPV and CO2 

For each case, NPV is calculated from year n = 1 to N, where N = 15 (parameter meanings and values in Table 2): 
  

𝑁𝑁𝑁𝑁𝑁𝑁 = −𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶 + ∑ (𝑅𝑅𝐶𝐶𝑁𝑁 ( 1
1+𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

)
𝑛𝑛−1

− 𝑆𝑆𝑁𝑁𝐶𝐶𝑁𝑁𝑆𝑆 (1+𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
1+𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

)
𝑛𝑛−1

)𝑛𝑛=𝑁𝑁
𝑛𝑛=1  .   (4) 

𝐶𝐶𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑃𝑃𝑃𝑃,£,𝑣𝑣 ∙ 𝑁𝑁𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑃𝑃𝑃𝑃,£,𝑓𝑓 + 𝑐𝑐𝐵𝐵,£,𝑣𝑣 ∙ 𝐶𝐶𝐵𝐵 + 𝑐𝑐𝐵𝐵,£,𝑓𝑓 .   (5) 

𝑅𝑅𝐶𝐶𝑁𝑁 = 𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹 ∙ ∑ 𝑁𝑁𝑔𝑔𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡 𝑑𝑑𝑡𝑡 + 50 % × 𝑐𝑐𝑔𝑔𝑒𝑒𝑒𝑒 ∙ ∑ 𝑁𝑁𝑔𝑔𝑔𝑔𝑛𝑛(𝑡𝑡)𝑡𝑡 𝑑𝑑𝑡𝑡 .   (6) 

𝑆𝑆𝑁𝑁𝐶𝐶𝑁𝑁𝑆𝑆 = 𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏 ∙ ∑ 𝑁𝑁𝑔𝑔
−(𝑡𝑡)𝑡𝑡 𝑑𝑑𝑡𝑡 .    (7) 

Cash flows are discounted by interest rate rint . Capital expenditure (CAPEX) includes fixed and variable costs for 
PV and battery, including installation and power electronics. Yearly revenues (REV) comprise feed-in and export 
tariffs, which are fixed from the beginning of operation. Export is typically not metered but deemed at 50 % of 
generation. SPEND is yearly expenditure on electricity, buy price cbuy increasing at rate rinfl. Operations and 
maintenance are assumed covered by the suppliers. The NPV for the same house with no PV and no battery is then 
subtracted from (4), as a baseline reference. 

The lifetime CO2 emissions are calculated analogously to (4). Instead of –CAPEX there is embodied CO2 of 
manufacture (assumed variable costs only). Instead of –SPEND and +REV there are, respectively, CO2 emissions, 
 +cg

–t Pg
–(t) dt, and emissions credits, –cg

+t Pg
+(t) dt. There is no inflation associated with CO2, but a discount rate 

of rint,CO2 is applied. ‘CO2 savings’ are –1× CO2 emissions, and are also considered relative to no PV and no battery. 
The parameter values used in the calculations are given in Table 2. The battery parameters are based on the Tesla 

Powerwall. 

Table 2. System parameters, and how they were established. 

PV Interest rates 

cPV,£,v 1000 £/kW Variable cost (a) rint 4.0 % NPV discount rate (f) 

cPV,£,f 2400 £ Fixed cost (a) rint,CO2 1.5 % CO2 discount rate (g) 

cPV,CO2 1590 kg/kW CO2 emissions (b)     

Battery Grid electricity 

cB,£,v 400 £/kWh Variable cost (c) cFiT 0.0378 £/kWh Feed-in Tariff (h) 

cB,£,f 2000 £ Fixed cost (c) cexp 0.0503 £/kWh Export tariff (h) 

cB,CO2 193 kg/kWh CO2 emissions (d) cbuy 0.163 £/kWh Retail buy price (i) 

cd 90 % Round-trip efficiency (e) cg0 0.378 kg/kWh CO2 intensity of grid generation (b) 

PB 0.5 C Power limit (e) 1 8.0 % T&D losses to branch point (j) 

EB
+ 100 % Upper SoC limit (e) rinfl 5.8 % Inflation rate (i) 

EB
- 5 % Lower SoC limit (e)     

N 15 years Lifetime (e)     

(a) https://www.gov.uk/government/statistics/solar-pv-cost-data (accessed 28/06/18) - the 2017/18 median is £1701/kW for 0-4 kW, 
£1393/kW for 4-10 kW, £1080/kW for 10-50 kW, consistent with a price of roughly £2400 + £1000/kW. 

(b) Stamford, Laurence, and Adisa Azapagic. "Life cycle sustainability assessment of electricity options for the UK." International Journal 
of Energy Research 36, no. 14 (2012): 1263-1290. Further breakdown of data kindly supplied by Laurence Stamford. It is assumed that 
combined cycle gas turbines (CCGT) are the marginal generators at all times, but this may change in future. 

(c) https://www.renewableenergyhub.co.uk/product/tesla-powerwall-6-4-kwh-home-battery.html (accessed 28/06/18) - a 7 kWh Tesla 
Powerwall costs £4800 including power converter, whereas a 14 kWh Powerwall 2 costs £5400 plus £500 for supporting hardware plus 
£800-2000 for installation – this is consistent with roughly £2000 + £400/kWh. 

(d) Hao, Han, Zhexuan Mu, Shuhua Jiang, Zongwei Liu, and Fuquan Zhao. "GHG Emissions from the production of lithium-ion batteries 
for electric vehicles in China." Sustainability 9, no. 4 (2017): 504. Hao et al. found embodied CO2 emissions of Li-NMC batteries of 
36.9-196 kg/kWh reported in the literature. 

8 Author name / Energy Procedia 00 (2018) 000–000 

Hawkins, Troy R., Bhawna Singh, Guillaume Majeau‐Bettez, and Anders Hammer Strømman. "Comparative environmental life cycle 
assessment of conventional and electric vehicles." Journal of Industrial Ecology 17, no. 1 (2013): 53-64. Hawkins et al.’s value of 193 
kg/kWh is taken, as the embodied emissions of the power converter need to be included. 

(e) https://www.tesla.com/en_GB/powerwall?redirect=no (accessed 28/06/18) – although the warranty is 10 years, the battery is likely to 
keep working for years after that, especially as cycling is low enough not to reach the 7000 cycle limit even by the end of 15 years. 
Charge efficiency, c, is approximated as equal to discharge efficiency, d . 

(f) 4 % is lower than the return typically asked for from business investments, but it is likely a homeowner will accept less than this. 4 % is 
still higher than the interest rate on any cash ISA today, which is likely the highest-payoff alternative a homeowner may invest in. 

(g) The CO2 discount rate is a measure of the consideration of future climate-induced suffering relative to suffering in the present. 
Egalitarians favour lower discount rate, but a rate >0 is advised due to non-zero risk of human extinction by other means.  

(h) https://www.ofgem.gov.uk/system/files/docs/2017/10/tariff_table_october_2017_1.pdf (accessed 28/06/18) – rates for installations 
beginning 01/06/18-30/09/18. 

(i) https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/695141/table_223.xls (accessed 28/06/18) – price 
averaged across all regions of the UK, all payment types, 2017. Up 5.8 % from 15.41 p/kWh in 2016. 

(j) See [11]. 

Appendix B. Results: Effect of battery size on peak import and export 

Setting 2 = 0 again, the peak import across the year ( max( Pg
-(t) ) ) was recorded. The effect of battery size on 

peak import depends on details of the household’s demand, not just its annual total. E.g. almost no effect on Houses 
1, 3, 4, but large effect on House 6. A 7 kWh battery has no effect on House 2, but the effect becomes sizeable for 14 
kWh. Peak import occurs in winter, when there is little PV energy to charge the battery, regardless of its size.  

 

Fig. 4. Peak import power across the year, as a function of battery capacity, for all houses.  

The low winter-time PV generation cannot charge the battery as quickly as the household demand drains it every day, 
resulting in the battery often running empty. The converse is true in summer, resulting in the battery being full nearly 
all the time. Even for battery capacity as large as 28 kWh, operating a greedy algorithm means the summer-time 
demand cannot empty the battery sufficiently each night, before the next morning’s PV generation completely fills it 
again, often before noon. The battery then cannot accept more PV energy, at the very time when grid export is highest, 
and when voltage violations are most likely. 

 

Fig. 5. PV generation and energy stored in a 28 kWh battery, for House 4, whole year. 


