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aInstitut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, France.
bCentre for Particle Theory, Department of Mathematical Sciences, Durham University, U.K.
cSTAG Research Centre and Mathematical Sciences, University of Southampton, U.K.

E-mail: adam.bzowski@ipht.fr, paul.l.mcfadden@durham.ac.uk,

k.skenderis@soton.ac.uk

Abstract:

We discuss the renormalisation of mixed 3-point functions involving tensorial and scalar

operators in conformal field theories of general dimension. In previous work we analysed

correlators of either purely scalar or purely tensorial operators, in each case finding new

features and new complications: for scalar correlators, renormalisation leads to beta func-

tions, novel conformal anomalies of type B, and unexpected analytic structure in momen-

tum space; for correlators of stress tensors and/or conserved currents, beta functions vanish

but anomalies of both type B and type A (associated with a 0/0 structure) are present.

Mixed correlators combine all these features: beta functions and anomalies of type B,

plus the possibility of new type A anomalies. Following a non-perturbative and general

momentum-space analysis, we present explicit results in dimensions d = 3, 4 for all renor-

malised 3-point functions of stress tensors, conserved currents and scalars of dimensions

∆ = d and ∆ = d− 2. We identify all anomalies and beta functions, and explain the form

of the anomalous conformal Ward identities. In d = 3, we find a 0/0 structure but the

corresponding type A anomaly turns out to be trivial. In addition, the correlators of two

currents and a scalar, and of two stress tensors and a scalar, both feature universal tensor

structures that are independent of the scalar dimension and vanish for opposite helicities.
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1 Introduction

Momentum-space methods, ubiquitous in quantum field theory, are not yet widely available

for conformal field theories. Even elementary results such as the form of 3-point functions,

known in position space for decades [1–4], have only recently been studied in momentum

space [5–16]. With new applications in cosmology [17–28] and condensed matter [29–34]

for which momentum space is ideally suited, now is the time to close this surprising gap.

General results for 3-point functions, valid for generic values of the operator and space-

time dimensions, were presented in [10]. In certain special cases, however, these results

are invalidated by the presence of divergences. Starting with 3-point functions of scalar

operators, we formulated a corresponding renormalisation prescription in [11]. In [13], we

extended this prescription to obtain the renormalised 3-point functions of stress tensors and

conserved currents. This paper completes our analysis by presenting renormalised 3-point

functions for mixed correlators involving scalars, stress tensors and conserved currents.

Our entire approach is fully non-perturbative, making use only of conformal symmetry.

The standard position-space results for CFT correlators are valid only at separated

points, with coincident insertions leading to singularities. Correlators should nevertheless

be well-defined distributions, and in particular should have a well-defined Fourier trans-

form. In certain cases, to achieve this we must first regulate then supplement the standard

position space expressions with suitable contact terms. The dependence on the renormal-

isation scale thus introduced then leads to conformal anomalies and/or beta functions.

From a purely position-space perspective, while it might appear that these contact terms

can be neglected, this is by no means universally true: certain correlators – for example, the

3-point function of a stress tensor, conserved current and a scalar we study here – appear
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to be nonzero at separated points but vanish when the constraints at coincident points

are taken into account. Examples also exist where an analysis at separated points implies

the correlator vanishes, whereas in fact it is nonzero due to contact terms [35]. Contact

contributions are naturally also important in applications where operator insertions are

integrated over the spacetime coordinates, such as conformal perturbation theory.

For our present purposes, the momentum-space 3-point functions are most easily found

by solving the relevant momentum-space conformal Ward identities. (Certainly, this is

far easier than attempting to Fourier transform from position space.) Using the minimal

decomposition for tensorial structure introduced in [10], these Ward identities take a simple

form and can be solved through surprisingly elementary means: in fact, just separation of

variables followed by a Mellin transform to extract the component of appropriate scaling

dimension. The resulting momentum-space 3-point functions can then be expressed in

terms of triple-K integrals, a general class of parametric integrals involving three modified

Bessel functions and a power.

For special values of the operator and spacetime dimensions, divergences now arise from

the lower limit of these triple-K integrals, corresponding to the divergences one would have

obtained from naively Fourier-transforming the position-space expressions over coincident

configurations. These divergences can be dimensionally regulated through infinitesimal

shifts of the operator and spacetime dimensions, producing corresponding shifts in the

parameters of the triple-K integrals. A major advantage of this regularisation is that it

respects conformal symmetry. Moreover, it allows the form of divergences to be read off

from a simple series expansion of the triple-K integrand. As shown in [11], this result is

a consequence of the Mellin mapping theorem which relates the singularities of a triple-K

integral to the poles of its integrand.

The nature of the singularities present now dictates the type of counterterms required

for their removal. In general, singularities in triple-K integrals arise whenever a certain

singularity condition is satisfied. This condition involves a choice of three independent ±
signs, according to which singularity can be classified. Here, we will encounter singularities

of type (−−−) and (+−−), along with permutations, whose implications are as follows.

Singularities of type (− − −) correspond to triple-K integrals whose divergences are

ultralocal, meaning they are purely analytic functions of the squared momenta. In position

space, they represent contact terms contributing only when all three insertion points are

coincident. Singularities of this type can be removed by local counterterms that are cubic

in the sources, giving rise to conformal anomalies. Singularities of type (+ − −) (and

permutations) correspond instead to triple-K integrals whose divergences are semilocal,

meaning they are non-analytic in only one of the squared momenta, or else a sum of such

terms. In position space, they represent contact terms contributing when only two of

the three insertions are coincident. Singularities of this type can be removed by cubic

counterterms involving two sources and one operator. The 3-point contribution from such

counterterms involves a 2-point function, generating the necessary semilocal momentum

dependence required to cancel the divergence. Counterterms of this nature effectively

reparametrise the source of the operator involved, and hence give rise to a nontrivial beta

function. Being quadratic in the sources, however, this beta function vanishes for the CFT
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itself where the sources are set to zero.

For correlators featuring only stress tensors and/or conserved currents, as studied in

[13], only singularities of type (−−−) arise consistent with the fact that only counterterms

cubic in the sources are available. With the introduction of scalar operators, this is no

longer the case and hence we now find both (−−−) and (+−−) type singularities arising.

The elimination of these singularities can nevertheless be surprisingly intricate. Due to the

restrictions imposed by gauge and Lorentz invariance, we sometimes encounter cases where

either no counterterms are available, or else only counterterms of the wrong type, despite

the presence of singularities. In such cases, as we will see, the singularities are instead

eliminated through two additional mechanisms, acting either singly or in combination.

The first is that cancellations can occur between the singularities of different triple-K

integrals contributing to the same correlator. More precisely, we decompose the tensorial

structure of correlators into a minimal set of basis tensors, each of which is multiplied by

a scalar form factor depending only on the momentum magnitudes. The conformal Ward

identities then impose that each of these form factors is given by a specific linear combina-

tion of triple-K integrals. We can then obtain cancellations between the singularities of the

different triple-K integrals appearing in these sums. Alternatively, as a second mechanism,

the relevant linear combination can be such that a singular triple-K integral is multiplied

by a coefficient that vanishes as some appropriate power of the regulator.

Remarkably, no arbitrariness is involved in either of these cancellation mechanisms.

The set of constants determining these linear combinations of triple-K integrals, which we

refer to as primary constants, are themselves constrained by a subset of the conformal Ward

identities. In general, these can be split into two sets, the primary and secondary Ward

identities, the first of which can be solved in terms of triple-K integrals up to constants

of integration which are the primary constants. The secondary conformal Ward identities

then act simply to constrain these primary constants. (As such, they can most easily

be analysed in special kinematic configurations for which the triple-K integrals simplify,

such as the soft limit where one momentum vanishes.) Their action not only reduces

the number of undetermined parameters to their final physical values, but moreover selects

primary constants such that all singularities not removed by counterterms are automatically

cancelled through the mechanisms described above.

With all singularities eliminated, the regulator can now be removed to obtain the renor-

malised correlators. Where anomalies and/or beta functions are present, these renormalised

correlators obey modified conformal Ward identities now featuring additional inhomoge-

neous (or ‘anomalous’) terms. The form of these additional terms can easily be found by

inserting the renormalised correlators back into the original homogeneous Ward identities,

but can also be understood from theoretical considerations. This is particularly simple

for the dilatation Ward identity, since a dilatation is equivalent to changing the renormal-

isation scale µ while holding the renormalised couplings fixed. On general grounds, the

renormalised generating functional W satisfies

A = µ
d

dµ
W =

[
µ
∂

∂µ
+

∫
ddx

∑
I

βΦI
δ

δΦI

]
W, (1.1)
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where A is the anomaly action and the βΦI are beta functions for some set of couplings

which we schematically denote ΦI . Note that anomalous dimensions are absent, as we

work non-perturbatively assuming a CFT with some specific set of dimensions is given.

The anomaly action and beta functions can be read off from the counterterm action (see

section 2.10), after which the anomalous dilatation Ward identities for correlators follow

by functional differentiation.

Understanding the anomalous terms entering the special conformal Ward identities,

namely the primary and secondary Ward identities above, requires more effort. One way,

as we show in section 4, is to view the CFT as the flat-space limit of a Weyl-invariant

theory on curved spacetime [36]. This perspective is also natural since we use the metric

as a source for the stress tensor. The anomaly then derives from the Weyl variation of the

renormalised generating functional,1

δσW =

∫
ddx
√
gAσ(x), A =

∫
ddx
√
gA, (1.2)

with the variation of the sources given by the beta functions. Since conformal transforma-

tions are equivalent to a diffeomorphism followed by a Weyl transformation, their action

on the renormalised correlators can now be evaluated.

Denoting the generating functional as

W = lim
ε→0

ln 〈 e−Sct−Ssource 〉, (1.3)

we further require the regulated counterterm action satisfies the Weyl covariance condition

δσ(Sct + Ssource) =

∫
ddx
√
g σµ

d

dµ
(Lct + Lsource). (1.4)

In fact, this relation is automatically satisfied by the divergent part of the counterterm

action. As we will see, all divergences in the regulated theory satisfy non-anomalous Ward

identities meaning their Weyl variation follows from their scaling dimension. (Anomalies

arise only after adding counterterms and removing the regulator.) The relation (1.4) is

not however automatically satisfied by the finite (i.e., scheme-dependent) part of countert-

erms. Imposing (1.4) thus restricts us to a narrow class of (conformal) renormalisation

schemes, reducing the number of scheme-dependent terms entering the renormalised corre-

lators. This restriction to conformal schemes is especially useful for the mixed scalar/tensor

correlators we study here, for which a large number of potential counterterms exist even

after gauge- and Lorentz-invariance have been imposed.

Finally, we wish to highlight two features of our results in three spacetime dimensions:

For the 3-point function 〈Tµ1ν2Tµ2ν2O〉, the tensorial basis in which correlators are

decomposed has a degeneracy due to the appearance of an evanescent tensor [10, 13].

As a contraction of a 4-form, this tensor vanishes in three spacetime dimensions but

not in the dimensionally regulated theory. When such tensors appear with divergent

1Derivatives of σ can be removed through integration by parts. The resulting ∇µJ µ contributions to

the anomaly correspond to finite local counterterms (see, e.g., [37]), and are thus scheme-dependent.
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coefficients, one usually finds a type A conformal anomaly which preserves scale but

not special conformal invariance [38]. This mechanism was recently demonstrated for

the four-dimensional Euler anomaly in [13]. Here, in section 3.4.4, we find instead a

three-dimensional counterexample where a 0/0 limit leads to a trivial anomaly that

can be removed by counterterms.

In three dimensions, we find that 〈Tµ1ν1Tµ2ν2O〉 and 〈Jµ1Jµ2O〉 each involve only a

single tensorial structure, which is independent of the dimension of the scalar operator.

This tensorial structure is such that the correlators vanish when the stress tensors

or currents have opposite helicities. Dependence on the scalar dimension enters only

via an overall (scalar) form factor involving the momentum magnitudes. It would

be interesting to find a deeper explanation for this curious behaviour. Holography is

perhaps relevant, as both cases involve a single four-dimensional bulk vertex whose

non-scalar part is Weyl invariant.

The layout of this paper is as follows. In section 2, we introduce our momentum-

space technology summarising the relevant Ward identities; their tensorial decomposition

and solution in terms of triple-K integrals; regularisation and renormalisation; results for

2-point functions; and the extraction of anomalies and beta functions. Our main results

for renormalised 3-point functions are then presented in section 3. In section 4, we give

a detailed analysis explaining the form of the anomalous conformal Ward identities, after

which we conclude in section 5. Two appendices discuss the analysis of counterterms, while

a third presents general shadow relations for the correlators of interest.

We have endeavoured to make this paper self-contained, with the relevant background

material summarised in section 2. The different subsections of section 3 can then be read

independently of one another, so readers interested only in results for a particular correlator

may head directly to the relevant subsection after reviewing our conventions in section 2.

2 Overview of the method

This section summarises the notation and definitions we will use for presenting our results.

A complementary discussion of our solution method can be found in section 2 of [13]; here

we focus principally on the new features arising for mixed correlators of scalars and tensors.

Throughout, we assume we are working in d ≥ 3 Euclidean dimensions.

2.1 Transverse Ward identities

Under a variation of the sources, we find the variation of the renormalised generating

functional

δW [gµν , A
a
µ, φ

I ] = −
∫

ddx
√
g
(1

2
〈Tµν〉s δgµν + 〈Jµa〉s δAaµ + 〈OI〉sδφI

)
, (2.1)

where the subscript s denotes a nontrivial source profile. The gauge field Aaµ sources a

symmetry current Jµa associated with some group G, in general non-Abelian. The indices

a = 1, . . . , dimG and repeated indices are to be summed. The φI source scalar primary

operators OI , transforming in some representation R with generator matrices (T aR)IJ .
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Under a gauge transformation αa, the sources transform as

δgµν = 0, (2.2)

δAaµ = −∇µαa − gfabcAbµαc, (2.3)

δφI = −igαa(T aR)IJφJ , (2.4)

where fabc is the structure constant and g the gauge coupling. Under a diffeomorphism ξµ,

δgµν = −2∇(µξν), (2.5)

δAaµ = ξν∇νAaµ +Aaν∇µξν , (2.6)

δφI = ξµ∇µφI , (2.7)

where we perform all symmetrisations (and antisymmetrisations) with unit strength. The

invariance of the generating functional under these transformations yields the transverse

Ward identities,

0 = ∇µ〈Jµa〉s − ig〈OI〉s(T aR)IJφJ + gfabcAbµ〈Jµc〉s, (2.8)

0 = ∇µ〈Tµν〉s + 〈OI〉s∇νφI + 〈Jµa〉s2∇[νA
a
µ] −A

a
ν∇µ〈Jµa〉s. (2.9)

Introducing the covariant derivative and field strength

DIJ
µ = δIJ∇µ − igAaµ(T aR)IJ , (2.10)

F aµν = 2∇[µA
a
ν] + gfabcAbµA

c
ν , (2.11)

we can alternatively write (2.8) and (2.9) as

0 = Dµ〈Jµa〉s − ig〈OI〉s(T aR)IJφJ , (2.12)

0 = ∇µ〈Tµν〉s + 〈OI〉sDνφ
I − F aµν〈Jµa〉s. (2.13)

To obtain the second of these equations, we substituted (2.8) into (2.9), and for the first

we used the adjoint representation (T aA)bc = −ifabc for the current.

The corresponding transverse Ward identities for 3-point functions now follow by func-

tionally differentiating twice with respect to the sources. In momentum space, these iden-

tities give the longitudinal components of 3-point functions in terms of 2-point functions,

for example

p1µ1〈〈Jµ1a(p1)OI2(p2)OI3(p3)〉〉

= −g(T aR)KI3〈〈OK(p2)OI2(−p2)〉〉 − g(T aR)KI2〈〈OK(p3)OI3(−p3)〉〉. (2.14)

Our double-bracket notation for correlators simply indicates stripping off the overall delta

function of momentum conservation, thus

〈Jµ1a1(p1)OI2(p2)OI3(p3)〉 = 〈〈Jµ1a1(p1)OI2(p2)OI3(p3)〉〉 (2π)dδ(p1 + p2 + p3), (2.15)

〈OI2(p2)OI3(p3)〉 = 〈〈OI2(p2)OI3(−p2)〉〉(2π)dδ(p2 + p3). (2.16)

We list the transverse Ward identities for each correlator at the beginning of every section.
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2.2 Trace Ward identities

The trace of stress tensor correlators are determined by the trace Ward identities. These

derive from Weyl transformations, under which the sources transform as

δgµν = −2σgµν , δAaµ = βAaµσ, δφI =
(
− (d−∆I)φI + βφI

)
σ. (2.17)

By definition, our beta functions βAaµ and βφI begin at quadratic order in the sources, and

hence arise from the renormalisation of (+ − −) type singularities. In the CFT, where

all sources take their background values, Aaµ then has Weyl weight zero while φI has

Weyl weight d −∆I . These weights are chosen so that under a conformal transformation

(constructed from a Weyl transformation and a diffeomorphism as discussed in section 4),

the operators Jµa and OI now have the required dilatation weights d− 1 and ∆I .

The renormalised generating functional is not in general invariant under a Weyl trans-

formation and transforms anomalously as given in (1.2). From (2.1), we then obtain the

trace Ward identity

〈T 〉s =
[
− (d−∆I)φI + βφI

]
〈OI〉s + βAaµ〈J

µa〉s +A. (2.18)

The corresponding Ward identities for the renormalised 3-point functions follow by func-

tionally differentiating this identity twice with respect to the sources, before restoring them

to their background values. As βAaµ and βφI are quadratic in the sources, and all 1-point

functions in the CFT vanish, these beta function terms make no contribution to the 3-point

trace Ward identities. They may however contribute to the anomalous conformal Ward

identities, as discussed in section 4.

Where present, we list the trace Ward identities at the start of each section of our

results. Note these identities apply only in the renormalised theory; in the dimensionally

regulated theory from which our analysis begins, all stress tensor correlators are traceless.

Through identifying and eliminating the divergences that arise, we determine the anomaly

and beta functions, and hence the trace Ward identities for the renormalised correlator.

2.3 Defining the 3-point function

We define all 3-point functions through three functional derivatives of the generating func-

tional, as in [3]. All metric factors are positioned outside the functional derivatives to

preserve symmetry under permutations, e.g.,

〈Tµ1ν1(x1)Tµ2ν2(x2)OI(x3)〉 = − 4√
g(x1)g(x2)g(x3)

δ3W

δgµ1ν1(x1)δgµ2ν2(x2)δφI(x3)

∣∣∣
0
,

(2.19)

where the subscript zero indicates switching off the sources. We caution this definition

differs from that in [10], where 3-point functions were defined through three insertions

of the relevant operators. All results can easily be converted between these definitions,

however, and we point out differences where they arise. Our present convention simplifies

the treatment of semilocal terms in divergent correlators, for reasons discussed in [13].
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Once the definition of the 3-point function has been fixed, the solution of the conformal

Ward identities is unique.2 Of course, if this definition is changed, the form of the Ward

identities and hence that of the solutions can change (see e.g., [39]). Nevertheless, for a

given definition the solution is still unique hence such modifications do not constitute an

intrinsic ambiguity.

2.4 Momentum variables

We denote momentum vectors with bold letters, while their magnitudes are

pj = |pj | =
√
p2
j , j = 1, 2, 3. (2.20)

For 3-point functions, momentum conservation allows any Lorentz scalar pi · pj to be re-

expressed purely in terms of the momentum magnitudes. To write our results in compact

form, we define the following symmetric polynomials of the momentum magnitudes

a123 = p1 + p2 + p3, b123 = p1p2 + p1p3 + p2p3, c123 = p1p2p3,

aij = pi + pj , bij = pipj , (2.21)

where i, j = 1, 2, 3, as well as the combination

J2 = (p1 + p2 + p3)(−p1 + p2 + p3)(p1 − p2 + p3)(p1 + p2 − p3)

= −p4
1 − p4

2 − p4
3 + 2p2

1p
2
2 + 2p2

2p
2
3 + 2p2

3p
2
1. (2.22)

By Heron’s formula,
√
J2/4 represents the area of the triangle formed by the momenta.

Equivalently, the Gram determinant of any two such momenta is given by J2/4.

2.5 Tensorial decomposition

We decompose all correlators into a basis of scalar form factors multiplying tensor structures

built from the metric and momenta. The form factors are functions of the momentum

magnitudes, Aj = Aj(p1, p2, p3). When no arguments are specified, this standard ordering

of momenta is assumed; otherwise the exchange of arguments is indicated with an arrow,

e.g., Aj(p1 ↔ p2) = Aj(p2, p1, p3).

Through momentum conservation, only two of the three momenta appearing in a

3-point function are independent. Rather than making a global choice for these two inde-

pendent momenta, which would obscure the permutation symmetries for 3-point functions

of identical operators, we will instead make a different choice of independent momenta for

each operator insertion. Numbering all Lorentz indices according to the operator insertion

they are associated with, we choose the independent momenta according to the cyclic rule:

p1,p2 for µ1, ν1; p2,p3 for µ2, ν2 and p3,p1 for µ3, ν3. (2.23)

Thus, for example, for the second operator insertion, which carries Lorentz indices labelled

with a 2 subscript, the independent momenta are p2 and p3. By respecting the permutation

2The possibility of constructing local solutions corresponding to non-triple-K integrals, as discussed in

appendix A.3 of [11], can be ruled out by explicit computation, see [13].
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symmetry of identical operators, this choice of independent momenta leads to a basis with

the minimal number of scalar form factors; see section 1 of [10]. Use of this cyclic convention

is assumed whenever we refer to the “coefficient of” some specific tensorial structure in a

3-point function. Thus, before reading off this coefficient, we first replace momenta as

required (using momentum conservation) so as to be consistent with (2.23).

One of the main advantages of momentum space is that the transverse Ward identities

are algebraic. As we saw above, this means all the longitudinal components of 3-point

functions can be reduced to 2-point functions. Moreover, all trace components can be ob-

tained from the trace Ward identities. The remaining transverse-traceless tensor structure

can then be decomposed with the aid of the transverse and transverse-traceless projectors,

πµν(p) = δµν −
pµpν
p2

, (2.24)

Πµναβ(p) =
1

2

(
πµα(p)πνβ(p) + πµβ(p)πνα(p)

)
− 1

d− 1
πµν(p)παβ(p). (2.25)

We will write the transverse(-traceless) parts of the conserved current and stress tensor as

jµ ≡ πµαJα, tµν ≡ Πµν
αβTαβ. (2.26)

2.6 Conformal Ward identities

The conformal Ward identities (or CWI) can be split into two types, which we label primary

and secondary [10]. The primary conformal Ward identities can be expressed using the

second-order differential operators

Kij = Ki−Kj , Kj =
∂2

∂p2
j

+
d+ 1− 2∆j

pj

∂

∂pj
, i, j = 1, 2, 3 (2.27)

where ∆j denotes the dimension of the j-th operator in the 3-point function at hand. In

〈Tµ1ν1J
µ2Jµ3〉, for example, we thus have ∆1 = d and ∆2 = ∆3 = d− 1.

The solution to these primary CWIs can be written in terms of the triple-K integral

Iα{βj} and (for convenience) its reduced counterpart JN{kj}. These integrals are defined by

Iα{β1β2β3}(p1, p2, p3) =

∫ ∞
0

dx xα
3∏
j=1

p
βj
j Kβj (pjx), (2.28)

JN{kj} = I d
2
−1+N{∆j− d2 +kj}, (2.29)

where Kν is a modified Bessel function of the second kind and we use the compressed

notation {kj} = {k1k2k3}. Solutions to the primary CWIs consist of linear combinations

of reduced triple-K integrals multiplied by constants Cj which we refer to as primary

constants. Some of these primary constants are fixed by the secondary CWIs as below; the

remainder are free parameters characterising the specific CFT at hand.
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The secondary CWI involve the first-order differential operators3

LN = p1(p2
1 + p2

2 − p2
3)

∂

∂p1
+ 2p2

1p2
∂

∂p2

+
[
(2d−∆1 − 2∆2 +N)p2

1 + (2∆1 − d)(p2
3 − p2

2)
]
, (2.30)

R = p1
∂

∂p1
− 2∆1 + d, (2.31)

and their permutations

L′N = LN with (p1 ↔ p2) and (∆1 ↔ ∆2), (2.32)

R′ = R with (p1 → p2) and (∆1 → ∆2). (2.33)

Substituting in our solution of the primary CWI, these secondary CWIs serve to fix a

number of the undetermined primary constants Cj appearing in our solution. To evaluate

these relationships it is useful to examine the secondary CWI in the soft limit p3 → 0,

where the action of the differential operators (2.30) - (2.33) on triple-K integrals can be

explicitly evaluated [10]. To do this, we use the general relation

∂

∂pi
Iα{βj} = −piIα+1{βj−δij}, i, j = 1, 2, 3 (2.34)

to eliminate derivatives, after which the soft limit is given by

lim
p3→0

Iα{βj}(p, p, p3) = `α{βj}p
β1+β2+β3−α−1, (2.35)

where

`α{βk} =
2α−3Γ(β3)

Γ(α− β3 + 1)

∏
σ1,σ2∈{−1,1}

Γ

(
α− β3 + 1 + σ1β1 + σ2β2

2

)
. (2.36)

This formula is valid for β3 > 0 and away from poles of the gamma functions.

2.7 Regularisation

Triple-K integrals diverge whenever [11]

α+ 1± β1 ± β2 ± β3 = −2n, (2.37)

where n is any non-negative integer n = 0, 1, 2 . . ., and any independent choice of ± signs

can be made for each βj . The singularity type (± ± ±) is then given by this set of signs.

In such cases, we regulate using the generalised dimensional scheme

Iα{β1β2β3} 7→ Iα̃{β̃1β̃2β̃3} = Iα+uε{β1+v1ε,β2+v2ε,β3+v3ε}, (2.38)

3In the original arXiv version of this paper, we used Ls,n and Rs where s is the spin of the first operator.

As this operator is always either Tµν or Jµ, we have simplified by substituting s = ∆1−d+2 and redefining

Ls,n → LN with N = s+ n and Rs → R.
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where the constants {u, vj} parametrise our freedom to shift the operator and spacetime

dimensions according to

d→ d̃ = d+ 2uε, ∆j → ∆̃j = ∆j + (u+ vj)ε, j = 1, 2, 3. (2.39)

Each choice of the constants {u, vj} thus defines a different regularisation scheme. After the

divergences have been removed, physical dimensions are then restored by sending ε→ 0.

For the conserved current Jµa and stress tensor Tµν , our choice of scheme is restricted

by the necessity for these operators to retain their canonical dimensions, i.e.,

∆̃J = d̃− 1, ∆̃T = d̃ ⇒ v = u. (2.40)

With this scheme, gauge- and diffeomorphism invariance are respected and the transverse

Ward identities take the same form in both the regulated and the renormalised theory.

The divergences of triple-K integrals can be directly read off from a series expansion

of their integrand about the origin [11]. Writing this expansion as

xα̃
3∏
j=1

p
β̃j
j Kβ̃j

(pjx) =
∑
η

cηx
η, (2.41)

the divergences arise from terms of the form x−1+wε (for some finite nonzero w) that become

poles in the limit as ε → 0. Via the Mellin mapping theorem, these divergences are given

by the formula

Idiv
α̃,{β̃j}

=
∑
w

c−1+wε

wε
+O(ε0). (2.42)

When the singularity condition (2.37) is multiply satisfied, the coefficients c−1+wε them-

selves contain poles in ε, leading to a higher-order overall divergence.

2.8 Reduction scheme and master integral

For four-dimensional CFTs, all the triple-K integrals we encounter can be derived from a

single finite master integral I1{000}. The corresponding reduction scheme, which we use to

obtain many of our results, is derived in [12]. The master integral I1{000} is well-known

in the literature (see e.g., [12, 40–42]) and represents, for example, the 3-point function of

O2 = :ϕ2 : for a free conformal scalar ϕ in four dimensions. It can be evaluated as

I1{000} =
1

2
√
−J2

[π2

6
− 2 ln

p1

p3
ln
p2

p3
+ lnX lnY − Li2X − Li2Y

]
, (2.43)

where J2 is given in (2.22) and

X =
−p2

1 + p2
2 + p2

3 −
√
−J2

2p2
3

, Y =
−p2

2 + p2
1 + p2

3 −
√
−J2

2p2
3

. (2.44)

Here, X is effectively a dimensionless complex variable with conjugate X̄ = 1− Y .
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To express our results efficiently, we also define the finite auxiliary integrals

I
(fin)
2{111} = −1

3

[
p2

1

(
2 + p1

∂

∂p1

)
+ p2

2

(
2 + p2

∂

∂p2

)
+ p2

3

(
2 + p3

∂

∂p3

)]
I1{000}, (2.45)

I
(fin)
3{222} =

(
2− p1

∂

∂p1

)(
2− p2

∂

∂p2

)(
2− p3

∂

∂p3

)(
1

4
J2I1{000}

)
. (2.46)

Up to scheme-dependent terms, these auxiliary integrals are simply the finite parts of the

divergent triple-K integrals after which they are named.4 Similarly, although we will not

write it this way, the frequently occurring combination (1/4)J2I1{000} is simply the finite

non-local part of the divergent integral I0{111} (see (4.6) of [12]). The derivatives appearing

in these formulae, and in all our later results, can be trivially evaluated using

p1
∂

∂p1
I1{000} =

1

J2

[
2p2

1(p2
1 − p2

2 − p2
3)I1{000}

− p2
1 ln p2

1 +
1

2
(p2

1 + p2
2 − p2

3) ln p2
2 +

1

2
(p2

1 − p2
2 + p2

3) ln p2
3

]
, (2.47)

with the analogous results for other momenta following by permutation. In this fashion,

for example, we can re-write (2.45) as given in equation (3.48) of [13],

I
(fin)
2{111} = −4p2

1p
2
2p

2
3

J2
I1{000} −

1

6J2

[
p2

1(p2
2 + p2

3 − p2
1) ln

(
p4

1

p2
2p

2
3

)
+ p2

2(p2
1 + p2

3 − p2
2) ln

(
p4

2

p2
1p

2
3

)
+ p2

3(p2
1 + p2

2 − p2
3) ln

(
p4

3

p2
1p

2
2

)]
. (2.48)

To obtain compact expressions, however, we usually leave such derivatives unevaluated.

2.9 Renormalised 2-point functions

In spacetimes of general dimension d > 2, the momentum-space 2-point functions read

〈〈OI(p)OJ(−p)〉〉 = COOδ
IJp2∆−d, (2.49)

〈〈Jµa(p)Jνb(−p)〉〉 = CJJδ
abπµν(p)pd−2, (2.50)

〈〈Tµν(p)Tρσ(−p)〉〉 = CTTΠµνρσ(p)pd, (2.51)

while all 2-point functions of different operators vanish. These expressions are unsuitable

however when the power of the momenta becomes an even non-negative integer. When

this occurs, the 2-point function is ultralocal in position space (i.e., has support only when

the operator insertions coincide) and can be removed by a local counterterm. The 2-point

function would then vanish implying the operator has zero norm in violation of unitarity.

In reality, in all such cases the corresponding coefficient COO, CJJ or CTT has a UV

divergence, and renormalisation is necessary. For the scalar 2-point function, this occurs

whenever

n = ∆− d

2
(2.52)

4For example, we define I2{1+ε,1+ε,1+ε} = −1/3ε+ I
(fin)

2{111} +O(ε). From (4.20) of [12], this definition is

equivalent to (2.48). Alternatively, from (3.16) of [12] with α = 3 and βj = 1 + ε, we obtain (2.45) after

noting that I1{ε,ε,ε} = I1{000} +O(ε2) and using the dilatation Ward identity for I1{000}.
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is a non-negative integer, while for 2-point functions of conserved currents and the stress

tensor, renormalisation is necessary in all even spacetime dimensions d = 2N .

To remove these divergences we pass to the dimensionally regulated theory with

d̃ = d+ 2uε, ∆̃ = ∆ + (u+ v)ε, (2.53)

where u and v are constants parametrising our choice of regularisation scheme. (For stress

tensors and currents, conservation enforces v = u, however for a scalar v is unrestricted.)

Provided v 6= 0, the 2-point functions are now finite. The overall normalisation constant

is now a divergent function of the regulator,

Cj(ε) =
Cj
vε

+ C
(0)
j +O(ε), j ∈ {OO, JJ, TT}. (2.54)

allowing the regulated 2-point functions to be expanded as

〈〈OI(p)OJ(−p)〉〉reg = δIJp2∆−d
[COO
vε

+ COO ln p2 + C
(0)
OO +O(ε)

]
, (2.55)

〈〈Jµa(p)Jνb(−p)〉〉reg = δabπµν(p)pd−2
[CJJ
vε

+ CJJ ln p2 + C
(0)
JJ +O(ε)

]
, (2.56)

〈〈Tµν(p)Tρσ(−p)〉〉reg = Πµνρσ(p)pd
[CTT
vε

+ CTT ln p2 + C
(0)
TT +O(ε)

]
. (2.57)

These expressions can be renormalised through the addition of suitable counterterms.

To quadratic order in the sources, these counterterms are

Sct =

∫
dd+2uεx

√
g µ2vε

[
cOOφ

I�∆−d/2φI + cJJδ
abF aµν�

(d−4)/2Fµνb

+ cTTWµνρσ�
(d−4)/2Wµνρσ

]
, (2.58)

where Wµνρσ denotes the Weyl tensor and the renormalisation scale µ enters on dimensional

grounds. All the Laplacians are raised to positive integer powers, as required for locality,

since the scalar counterterm exists only when ∆ − d/2 = n while those for the currents

and stress tensors only when d = 2N ≥ 4. Beyond quadratic order in the sources, these

Laplacians should be replaced by their Weyl-covariant generalisations.

Choosing the counterterm coefficients

cOO =
(−1)∆−d/2COO

2vε
+ c

(0)
OO +O(ε), (2.59)

cJJ =
(−1)d/2CJJ

4vε
+ c

(0)
JJ +O(ε), (2.60)

cTT =
(−1)d/2CTT

4vε
+ c

(0)
TT +O(ε), (2.61)

where the finite coefficients c
(0)
OO, c

(0)
JJ and c

(0)
TT encode a particular choice of renormalisation

scheme, the renormalised correlation functions can now be obtained by subtracting the
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counterterm contributions from the regulated correlators and taking the limit ε→ 0. This

procedure yields the renormalised correlators

〈〈OI(p)OJ(−p)〉〉 = δIJp2∆−d
[
COO ln

p2

µ2
+DOO

]
, (2.62)

〈〈Jµa(p)Jνb(−p)〉〉 = δabπµν(p)pd−2
[
CJJ ln

p2

µ2
+DJJ

]
, (2.63)

〈〈Tµν(p)Tρσ(−p)〉〉 = Πµνρσ(p)pd
[
CTT ln

p2

µ2
+DTT

]
(2.64)

where

DOO = C
(0)
OO − 2(−1)∆−d/2c

(0)
OO, (2.65)

DJJ = C
(0)
JJ − 4(−1)d/2c

(0)
JJ , (2.66)

DTT = C
(0)
TT − 4(−1)d/2c

(0)
TT . (2.67)

From the perspective of the renormalised theory, however, the constants DOO, DJJ and

DTT represent scheme-dependent terms whose values can be adjusted arbitrarily through

a change of the renormalisation scale.

Unlike our original expressions (2.49) - (2.51), the renormalised correlators (2.62) -

(2.64) are non-analytic functions of the squared momentum, and are hence nonlocal. Due to

the explicit µ-dependence introduced by the counterterms, they acquire a scale-dependence

µ
∂

∂µ
〈〈OI(p)OJ(−p)〉〉 = −2p2∆−dCOO, (2.68)

µ
∂

∂µ
〈〈Jµa(p)Jνb(−p)〉〉 = −2δabπµν(p)pd−2CJJ , (2.69)

µ
∂

∂µ
〈〈Tµν(p)Tρσ(−p)〉〉 = −2Πµνρσ(p)pdCTT . (2.70)

The anomalous terms appearing on the right-hand sides of these equations are finite, local,

and scheme-independent.

2.10 Anomalies and beta functions

The general structure of the anomalies and beta functions can be understood from (1.1).

Let us consider first the case where only anomalies are present, and no beta functions. This

case encompasses all 2-point functions, and 3-point functions for which only type (−−−)

singularities arise. The anomaly action is then

A = − lim
ε→0

µ
∂

∂µ
Sct, (2.71)

where the counterterm action depends only on the non-dynamical sources and hence can

be extracted from the expectation value in (1.3). The quadratic anomaly action associated
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with the 2-point functions above is thus

A = −
∫

ddx
√
g
[
COOφ

I(−�)∆−d/2φI +
1

2
CJJF

a
µν(−�)(d−4)/2Fµνa

+
1

2
CTTWµνρσ(−�)(d−4)/2Wµνρσ

]
. (2.72)

Let us now consider cases involving beta functions. These arise wherever (+ − −)

singularities of 3-point functions (or permutations thereof) are removed by counterterms

involving two sources and an operator. Where type (−−−) singularities are also present,

then we have both beta functions and anomalies. For concreteness, let us consider the

case of a beta function for the gauge field Aaµ. Here, the bare source A
a (bare)
µ for the

current Jµa is renormalised by a cubic counterterm involving Jµa and some quadratic

source combination, which we denote schematically by

Aa (ct)
µ =

δSct

δJµa
. (2.73)

In the full action for counterterms and sources, the current thus appears as

Ssource + Sct =

∫
ddx (Aaµ +Aa (ct)

µ )Jµa + . . . =

∫
ddxAa (bare)

µ Jµa + . . . (2.74)

Perturbatively inverting, the renormalised source Aaµ (with respect to which we differentiate

to find the renormalised correlators), is now given by Aaµ = A
a (bare)
µ − Aa (ct)

µ . Since by

definition A
a (bare)
µ is independent of the renormalisation scale µ, the beta function is now

βAaµ = − lim
ε→0

µ
∂

∂µ
Aa (ct)
µ . (2.75)

From (1.1) and (1.3), the corresponding anomaly action is

A =
(
µ
∂

∂µ
+

∫
ddxβAaµ

δ

δAaµ

)
lim
ε→0

[
ln 〈 e−Ssource−Sct 〉

]

= lim
ε→0

[
− µ ∂

∂µ
Sct +

∫
ddx

(
µ
∂

∂µ
Aa (ct)
µ

)(
Jµa +

δSct

δAaµ

)]
. (2.76)

Here, the first term on the second line involves only the counterterm action, since the

source action has no explicit dependence on µ. In the second term, the first bracketed

factor is equivalent to (minus) the beta function, while the second bracketed factor derives

from differentiating the source and counterterm actions with respect to Aaµ. As the beta

function is already of quadratic order in the sources, note here we need only evaluate the

linear part of δSct/δA
a
µ coming from the 2-point counterterm action (2.58).

The second line of (2.76) now depends only on the sources and not on the current.

Clearly this is true for both the linear part of δSct/δA
a
µ and for the beta function, while the

explicit Jµa in the second term cancels with the first-term contribution coming from acting

with −µ(∂/∂µ) on the
∫

ddxA
a (ct)
µ Jµa piece of Sct. As the anomaly action thus depends

only on the non-dynamical sources, and not on the operators, we were able to remove the

expectation value in the second line. This remains true even in more complicated cases

where beta functions for other operators are present, once (2.76) is suitably generalised.
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Examples. Let us consider the correlator 〈JµaOI2OI3〉, where OI is a marginal scalar.

In d = 3, as discussed in section 3.1.3, this has only a (+ − −) singularity and hence a

beta function but no anomaly. In d = 4, as discussed in section 3.1.5 and 4, we find both

(+−−) and (−−−) singularities, and hence a beta function as well as an anomaly. Both

cases can be understood from the general formulae (2.75) and (2.76).

Working in a scheme with u = v1 and v2 = v3, as dictated by current conservation and

permutation symmetry, in three dimensions the relevant counterterm action is

Sct =

∫
d3+2uεx c1µ

2(v2−u)εig(T aR)IJ φIDµφ
JJµa, (2.77)

where the coefficient c1 = c
(−1)
1 ε−1 +O(ε0) has a pole removing the (+−−) singularity of

the correlator. From (2.75), the beta function is then

βAaµ = −2(v2 − u)c
(−1)
1 ig(T aR)IJ φIDµφ

J . (2.78)

From (2.76), the anomaly vanishes since δSct/δA
a
µ has no linear piece in three dimensions,

and the remaining terms cancel.

In four dimensions, including all terms up to cubic order, we have instead

Sct =

∫
d4+2uεx

[
cJJµ

2uεFµνaF aµν + cOOµ
2v2ε(D2φI)2 + c1µ

2(v2−u)εig(T aR)IJφIDµφ
JJµa

+ c2µ
2v2εig(T aR)IJFµνaDµφ

IDνφ
J
]
. (2.79)

As we saw in (2.58), the first two counterterms are required for the renormalisation of the

2-point functions. Only the final three terms proportional to cOO, c1 and c2 contribute

to the 3-point function at hand. Analysing the divergences, we find that all counterterm

coefficients carry single poles except for c2, which has a double pole

c2 = c
(−2)
2 ε−2 + c

(−1)
1 ε−1 +O(ε0). (2.80)

The (+−−) counterterm proportional to c1 leads again to the beta function given in (2.78)

above. Using (2.76), the anomaly action is

A = lim
ε→0

∫
d4+2uεx

[
− 2uεcJJµ

2uεFµνaF aµν − 2v2εcOOµ
2v2ε(D2φI)2

+ (−2v2εc2 + 8(v2 − u)εc1cJJ)ig(T aR)IJFµνaDµφ
IDνφ

J
]
. (2.81)

For the final term to have a finite limit, the pole of εc2 must cancel against that of εc1cJJ , the

term coming from δSct/δA
a
µ times the beta function. As we will see in section 3.1.5, when

we insert the specific counterterm coefficients obtained from our analysis of the divergences,

this is indeed precisely what happens. Making use of (2.59) and (2.60), the anomaly action

is then

A = −
∫

d4x
[1

2
CJJF

µνaF aµν + COO(D2φI)2 + 2a0ig(T aR)IJFµνaDµφ
IDνφ

J
]
, (2.82)

where

a0 = v2c
(−1)
2 − 4(v2 − u)(c

(−1)
1 c

(0)
JJ + c

(0)
1 c

(−1)
JJ ). (2.83)
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As we will see in section 3.1.5, however, this term is scheme-dependent and can be consis-

tently set to zero. In fact, as we discuss in section 4, the a0 term in (2.82) is Weyl exact

and hence does not represent a genuine anomaly.

3 Results for renormalised correlators

We now present our main results for renormalised 3-point correlators. In each case, we list

the relevant transverse and trace Ward identities; the decomposition of tensor structure into

transverse-traceless form factors; the primary and secondary conformal Ward identities; the

divergences arising and the counterterms available to us for their disposal. We generally

classify these counterterms according to whether they give rise to beta functions or to

conformal anomalies. For each correlator, we then compute explicit results for the cases

d = 3 and d = 4, with scalar operators of dimension ∆I = d− 2 and ∆I = d.

3.1 〈JµOO〉

3.1.1 General analysis

Decomposition. Using the transverse Ward identity,

p1µ1〈〈Jµ1a(p1)OI2(p2)OI3(p3)〉〉

= −g(T aR)KI3〈〈OK(p2)OI2(−p2)〉〉 − g(T aR)KI2〈〈OK(p3)OI3(−p3)〉〉, (3.1)

we can decompose the 3-point function into transverse and longitudinal pieces,

〈〈Jµ1a(p1)OI2(p2)OI3(p3)〉〉 = 〈〈jµ1a(p1)OI2(p2)OI3(p3)〉〉

− pµ1
1

p2
1

[
g(T aR)KI3〈〈OK(p2)OI2(−p2)〉〉+ g(T aR)KI2〈〈OK(p3)OI3(−p3)〉〉

]
. (3.2)

Form factors. The transverse part can then be written

〈〈jµ1a(p1)OI2(p2)OI3(p3)〉〉 = AaI2I31 πµ1
α1

(p1)pα1
2 , (3.3)

where the scalar form factor A1 is a function of the momentum magnitudes and is symmetric

under (p2, I2)↔ (p3, I3), i.e.,

AaI3I21 (p1, p3, p2) = AaI2I31 (p1, p2, p3). (3.4)

Its relation to the complete correlator is

AaI2I31 = coefficient of pµ1
2 in 〈〈Jµ1a(p1)OI2(p2)OI3(p3)〉〉, (3.5)

where before reading off the coefficient we first impose the cyclic rule (2.23), which in this

case amounts to eliminating pµ1
3 via momentum conservation.
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Primary CWIs. The primary CWIs are

Kij A
aI2I3
1 = 0, i, j = 1, 2, 3. (3.6)

Their solution in terms of triple-K integrals is

AaI2I31 = CaI2I31 J1{000}, (3.7)

where CaI2I31 is a primary constant.

Secondary CWIs. There is only one independent secondary CWI, which reads

L1A
aI2I3
1 = 2(∆1 − 1) p1µ1〈〈Jµ1a(p1)OI2(p2)OI3(p3)〉〉. (3.8)

The right-hand side of this identity can be evaluated using the transverse Ward identity

(3.1) and the scalar 2-point function (2.49). The role of this secondary CWI is then to fix

the primary constant CaI2I31 in terms of the scalar 2-point normalisation COO. To obtain

this relation, it is sufficient to work in the soft limit p3 → 0. In this limit, the left-hand

side of (3.8) can easily be evaluated using (2.34) and (2.35). Divergences, where they arise,

can be avoided by working in the regulated theory. One finds that the secondary CWI can

only be satisfied if

CaI2I31 =
24−d/2g(T aR)I2I3 COO(ε) sin (π(∆2 − d/2))

πΓ (d/2− 1)
δ∆2,∆3 . (3.9)

The 3-point function thus vanishes for an uncharged scalar operator, for which g = 0,

or whenever ∆2 6= ∆3. For cases where ∆2 = d/2 + n, the 3-point function is actually

non-vanishing since the zero in the sine function cancels against the pole in the 2-point

normalisation COO(ε), see (2.52) and (2.54).

Regularisation. To obtain a nonzero 3-point function, in the following we restrict to

the case of a single scalar operator with ∆2 = ∆3. This requires a scheme with v2 = v3.

To preserve current conservation, we also impose u = v1. Provided u 6= v2, this scheme is

then sufficient to regulate all the divergences arising, summarised in the following table:

Form factor Integral (−−−) (+−−) (−+ +)

A1 J1{000} ∆ = d/2 + 1 + n ∆ = d+ n ∆ = d/2− 1− n

Table 1: Singularities arising for 〈Jµ1OI2OI3〉, with ∆ = ∆2 = ∆3.

Note that singularities of type (+ + −) and (+ + +) are forbidden as the former requires

d ≤ 0 while the latter requires ∆2 = ∆3 ≤ 0. For a unitary theory, the (−+ +) singularity

only occurs for ∆2 = ∆3 = d/2− 1 corresponding to a free theory.
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Renormalisation. To remove these singularities we need to evaluate the counterterms

available to us. These fall into two classes. The first class consists of counterterms that

are cubic in the sources: these serve to eliminate (− − −) singularities and give rise to

anomalies. The second class consists of counterterms involving two sources and one opera-

tor. Counterterms of this type remove (+−−) singularities and give rise to beta functions,

since adding them to the Lagrangian redefines the source of the operator in question.

As we will see below, counterterms exist for all of the cases in the following table:

Singularity type Counterterms available when

(−−−) ∆2 = ∆3 = d/2 + 1 + n

(+−−) ∆2 = ∆3 = d+ n

Table 2: Availability of counterterms for 〈Jµ1OI2OI3〉.

Comparing with table 1, we see that for (−−−) and (+−−) singularities a counterterm

is always available. In the remaining case of a (− + +) singularity, the primary constant

multiplying the divergence must instead vanish as a suitable power of the regulator. The

resulting finite form factor is then fully nonlocal, see [11].

Anomalies. To find the possible anomalies, we must therefore classify all counterterms

with one Aaµ and two φI . Since counterterms must be both Lorentz- and gauge-invariant,

the source Aaµ can only appear through its field strength F aµν or covariant derivatives Dµ.

(We will ignore possible topological terms since we are considering only the parity-even

part of correlation functions.) We therefore have two possible families of counterterms, of

which the simplest representatives are∫
ddxDµφ

IDµφI , g(T aR)IJ
∫

ddxFµνaDµφ
IDνφ

J . (3.10)

More complicated examples can then be constructed featuring an even number of additional

covariant derivatives. Counterterms of this type exist and give rise to anomalies whenever

∆2 = ∆3 =
d

2
+ 1 + n, n = 0, 1, 2, . . . (3.11)

Beta functions. There are potentially four types of counterterm involving two sources

and one operator: (i) those containing the current Jµa and two scalar sources φI ; (ii) those

containing Jµa plus the sources φI and Aaµ; (iii) those containing the scalar operator OI

and two scalar sources φI ; (iv) those containing OI along with φJ and Aaµ.

The simplest counterterm of the form (i) is

g(T aR)IJ
∫

ddx JµaφIDµφ
J . (3.12)

Allowing for the possible addition of further derivatives, the existence of this counterterm

then leads to the following requirement for a nontrivial beta function:

∆2 = ∆3 = d+ n, n = 0, 1, 2, . . . (3.13)
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In fact, this counterterm is the only one capable of generating a nontrivial beta function.

As we will now verify, all the remaining possibilities are either ruled out or else do not

contribute to the 3-point function at hand.

The two simplest counterterms of the form (ii) are

raI
∫

ddxJµaDµφ
I , rabI

∫
ddxF νa

µ JµbDνφ
I , (3.14)

where raI and rabI are some invariant tensors specified by a chosen representation. The first

of these counterterms must be rejected as it contributes to the 2-point function 〈JµaOI〉,
which has to vanish by conformal invariance. The second counterterm simply does not

contribute, either to the 2-point functions or to the 3-point function. (Its contribution to

〈JµaOIOJ〉 is proportional to rabI〈JµbOJ〉 = 0.)

Through similar reasoning, counterterms of the form (iii) also make no contribution to

the 3-point function. Indeed, the simplest such term is

rIJK
∫

ddxOIφJφK , (3.15)

whose contribution to 〈JµaOIOJ〉 is proportional to rIJK〈JµaOK〉 = 0. Finally, countert-

erms of the form (iv) are forbidden on dimensional grounds, since the scaling dimension

of the combination AaµOIφJ already exceeds the spacetime dimension. With these general

considerations in place, we now proceed to examine some specific cases of interest.

3.1.2 d = 3 and ∆2 = ∆3 = 1

The relevant triple-K integral for this case is finite and (3.9) leads directly to

AaI2I31 = −
2g(T aR)I2I3COO

a123b23
, (3.16)

where the symmetric polynomials appearing in the denominator are defined in (2.21).

3.1.3 d = 3 and ∆2 = ∆3 = 3

Here, the triple-K integral arising in our solution (3.7) of the primary CWIs is linearly

divergent. Its evaluation in a fully general regularisation scheme yields(π
2

)− 3
2
I 3

2
+uε{ 1

2
+v1ε,

3
2

+v2ε,
3
2

+v3ε}

= − p1

(u+ v1 − v2 − v3)ε
+

p1

u+ v1 − v2 − v3

[
u(−2 + γE + ln 2)− v1 ln p2

1

]
+
[
p1 ln a123 + (1− ln 2)p1 −

p1(p2 + p3) + p2p3 + p2
2 + p2

3

a123

]
+O(ε). (3.17)

This result is obtained by first evaluating the integral in the special scheme vj = 0 for

j = 1, 2, 3, in which all Bessel functions reduce to elementary functions. The scheme can

then be changed through the addition of suitable terms using the method described in [12].
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As discussed above, current conservation and the requirement ∆2 = ∆3 impose a

regularisation scheme where u = v1 and v2 = v3. In fact, these conditions are also imposed

independently by the secondary Ward identity (3.8). As it is interesting to see this in

operation, we will leave the parameters u, vj generic for the time being. The primary

Ward identities are thus solved by the regulated triple-K integral above, multiplied by an

undetermined constant CaI2I31 (ε), which is itself a function of the regulator ε. Since the

integral is linearly divergent, to keep track of finite terms in the product we need to expand

this constant to linear order in the regulator,

CaI2I31 (ε) = C
(0)aI2I3
1 + ε C

(1)aI2I3
1 +O(ε2). (3.18)

The left-hand side of the secondary Ward identity (3.8) then reads

L1A
aI2I3
1 =

(π
2

) 3
2
C

(0)aI2I3
1

[
p3

2 − p3
3 +

(u− v1)p1(p2
2 − p2

3) + (v2 − v3)p3
1

u+ v1 − v2 − v3
+O(ε)

]
. (3.19)

As we see, this result does not depend on the subleading term C
(1)aI2I3
1 . The right-hand

side of the Ward identity (3.8) is instead

− 2gCOO(T aR)I2I3(p3
2 − p3

3) +O(ε), (3.20)

after using the transverse Ward identity (3.1). Comparing these two expressions, we see

that the scheme-independent terms match provided

CaI2I31 = −2
(π

2

)− 3
2
gCOO(T aR)I2I3 +O(ε). (3.21)

This result is also consistent with our general formula (3.9). The remaining scheme-

dependent terms in (3.19) must then vanish, for arbitrary values of the momenta. Clearly

this is only possible if u = v1 and v2 = v3. To solve the secondary Ward identity (3.8) thus

requires working in a regularisation scheme respecting current conservation (u = v1) and

permutation symmetry of the scalar operators (v2 = v3).

Our remaining task is to renormalise the correlation function. A single counterterm is

available, namely

Sct = c1

∫
d3+2uεx ig(T aR)I2I3JµaφI2Dµφ

I3µ2ε(v2−u). (3.22)

In the regularisation scheme u = v1 and v2 = v3, which we now enforce, the contribution

of this counterterm to the 3-point function is

〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉ct = 2c1g(T aR)I2I3CJJµ
2(v2−u)εp1+2uε

1 πµα(p1)pα2 . (3.23)

Choosing the counterterm constant

c1 =
COO

2CJJ(v2 − u)ε
+ c

(0)
1 +O(ε), (3.24)
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where c
(0)
1 is arbitrary, we obtain the finite renormalised 3-point function

AaI2I31 = 2g(T aR)I2I3COO

[
− p1 ln

a123

µ
+
b123 + p2

2 + p2
3

a123

]
+DaI2I3

1 p1. (3.25)

Here, DaI2I3
1 is a scheme-dependent constant that can be expressed in terms of subleading

quantities in the regulated theory,

DaI2I3
1 =

(π
2

) 3
2 C

(1)aI2I3
1

2(v2 − u)
+ 4CJJg(T aR)I2I3c

(0)
1

+ COOg(T aR)I2I3
u(γE − ln 2) + 2v2(−1 + ln 2)

v2 − u
. (3.26)

This relationship is not meaningful in the renormalised theory, however, where only the

constant DaI2I3
1 appears. The value of this constant can be arbitrarily shifted by a change

of the renormalisation scale µ.

Anomalous CWI. The µ-dependence introduced by the counterterm ensures the renor-

malised form factor obeys the anomalous dilatation Ward identity

µ
∂

∂µ
AaI2I31 = 2COOg(T aR)I2I3p1. (3.27)

The primary CWI are non-anomalous and retain their original homogeneous form (3.6).

The secondary Ward identity (3.8), on the other hand, becomes anomalous for the renor-

malised form factor and reads

L1A
aI2I3
1 = 2g(T aR)I2I3COO(−p3

2 + p3
3)− 2g(T aR)I2I3COOp

3
1. (3.28)

As we noted in the introduction, the form of the anomalous dilatation Ward identity

(3.27) can easily be understood from (1.1). Due to the (+ − −) counterterm (3.22), we

have the beta function

βAaµ = −COO
CJJ

ig(T aR)IJφIDµφ
J , (3.29)

as can be seen by inserting (3.24) into (2.78). Without (−−−) counterterms, the anomaly

vanishes and from (1.1) we find

µ
∂

∂µ
〈Jµa(x1)OI2(x2)OI3(x3)〉 =

∫
d3x

δ2βAbν (x)

δφI2(x2)δφI3(x3)

∣∣∣
0
〈Jνb(x)Jµa(x1)〉. (3.30)

In momentum space, this reads

µ
∂

∂µ
〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉 =

COO
CJJ

2g(T bR)I2I3pν2〈〈Jνb(p1)Jµa(−p1)〉〉. (3.31)

Substituting for the 2-point function and decomposing into form factors using (3.2) and

(3.3), we recover precisely (3.27). The form of the anomalous secondary CWI (3.28) can

similarly be understood through an analysis analogous to that presented in section 4.
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3.1.4 d = 4 and ∆2 = ∆3 = 2

Here, the solution to the primary Ward identities reads

AaI2I31 = CaI2I31 I2{100}, (3.32)

where the triple-K integral on the right-hand side is finite. Substituting this expression

into the secondary Ward identity (3.8), the left-hand side is5

L1A
aI2I3
1 = CaI2I31 (ln p2

3 − ln p2
2). (3.33)

Evaluating the right-hand side using the transverse Ward identity (3.1), we obtain however

a pair of divergent scalar 2-point functions. Passing to the regulated theory, we can remove

these divergences with the first counterterm in (2.58). Since the left-hand side of the

secondary Ward identity is finite, scheme-dependent corrections to (3.33) can only appear

at order ε in the regulated theory. This means all finite scheme-dependent terms on the

right-hand side of the secondary Ward identity, due to the counterterm (2.58), must cancel

in order to satisfy the Ward identity. This required cancellation occurs only in the scheme

u = v1 and v2 = v3. Once again then, we see that the secondary Ward identity forces us to

use the appropriate regularisation scheme preserving current conservation and permutation

symmetry of the scalar operators. In this scheme, we then find

CaI2I31 = 4g(T aR)I2I3COO, (3.34)

leading to the renormalised form factor

AaI2I31 = 4g(T aR)I2I3COOI2{100} = −4g(T aR)I2I3COOp1
∂

∂p1
I1{000}, (3.35)

where the right-hand side can be evaluated using (2.47). As no singularities arise in the

3-point function itself, the dilatation and primary CWI are non-anomalous. The secondary

CWI (3.33) is anomalous only due to the singularities in the scalar 2-point function as we

saw above.

3.1.5 d = 4 and ∆2 = ∆3 = 4

In the regulated theory, the primary CWIs are solved by

AaI2I31 = CaI2I31 I2{122}, (3.36)

where the triple-K integral on the right-hand side exhibits a double pole in the regulator.

Using the method given in [12], in the regularisation scheme u = v1 and v2 = v3, we find

I2{122} =
p2

1

2v2(u− v2) ε2
+

1

2v2ε

[ v2

u− v2
p2

1 ln p2
1 +

(v2 + u(ln 2− γE)

u− v2

)
p2

1 + p2
2 + p2

3

]
+O(ε0).

(3.37)

5Here, we use (3.12) and (4.19) of [12] to write I2{100} = −p1∂1I1{000}, and the latter is given in (2.47).
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The scalar 2-point function, on the other hand, has a single pole as given in (2.55). Eval-

uating our solution (3.9) of the secondary CWI with u = v1 and v2 = v3, we find

CaI2I31 = 4g(T aR)I2I3
[
COO + ε

(
COOu(γE − ln 2) + v2C

(0)
OO

)
+O(ε2)

]
. (3.38)

Since the triple-K integral has a double pole, in principle we also need to work out the ε2

term here. In practice, however, this term will only generate a scheme-dependent contribu-

tion, as the double pole it multiplies is ultralocal, so we can avoid evaluating it explicitly.

Up to cubic order in the sources, the relevant counterterms are

Sct =

∫
d4+2uεx

[
cJJµ

2uεFµνaF aµν + cOOµ
2v2ε(D2φI)2 + c1µ

2(v2−u)εig(T aR)IJJµaφIDµφ
J

+ c2µ
2v2εig(T aR)IJFµνaDµφ

IDνφ
J
]
. (3.39)

Here, the counterterms proportional to cJJ and cOO are responsible for renormalising the

2-point functions. Their coefficients must therefore satisfy (2.59) - (2.60), namely

cJJ =
CJJ
4uε

+ c
(0)
JJ +O(ε), cOO =

COO
2v2ε

+ c
(0)
OO +O(ε). (3.40)

Although the cJJ counterterm does not contribute to the 3-point function directly, its

presence is necessary to ensure the Weyl covariance of the cubic counterterm action. As

we show in appendix A.1, this imposes the relation

(v2 − u)εc2 + 2(1 + v2ε)cOO − 4(v2 − u)εc1cJJ = 0 (3.41)

which will play an important role in our understanding of the anomalous Ward identities.

The counterterms proportional to cOO, c1 and c2 lead to the 3-point contribution

〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉ct

= 2g(T aR)I2I3µ2εv2

[
− c2 + c1

(CJJ
uε

+ C
(0)
JJ +O(ε)

)(p1

µ

)2uε]
p2

1p
α
2π

µ
α(p1)

− 2g(T aR)I2I3µ2εv2

(COO
2v2ε

+ c
(0)
OO +O(ε)

)
(p2

2 + p2
3)(pµ1 + 2pµ2 ). (3.42)

Notice here that the contribution from the cOO counterterm is not transverse:

p1µ〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉ct =
(COO
v2ε

+ 2c
(0)
OO +O(ε)

)
g(T aR)I2I3µ2εv2(p4

3 − p4
2). (3.43)

This behaviour can be understood from the transverse Ward identity (3.1), which holds

both in the regulated and in the renormalised theory. Since the cOO counterterm con-

tributes to the right-hand side of this identity through the renormalisation of the 2-point

function, it must supply an equal contribution to the left-hand side as we see above.

The transverse part of the counterterm contribution (3.42) must now cancel the di-

vergences of the regulated form factor (i.e., the triple-K integral (3.37) multiplied by the
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primary constant (3.38)). This requires the counterterm coefficients

c1 =
COO

(v2 − u)CJJε
+ c

(0)
1 +O(ε), (3.44)

c2 =
COO
uv2ε2

+
1

ε

[CJJc(0)
1

u
+

1

v2 − u

(COOC(0)
JJ

CJJ
− C(0)

OO − COO
)]

+O(ε0), (3.45)

where the leading term in c1 is fixed by cancelling the singularities proportional to p2
1 ln p2

1.

Inserting these coefficients into the relation (3.40), Weyl covariance then constrains the

finite part of the cJJ counterterm so that

DJJ

CJJ
=
DOO
COO

. (3.46)

Here, DOO and DJJ are the scheme-dependent coefficients appearing in the renormalised

2-point functions, as defined in (2.65) and (2.66).

Using the reduction scheme for triple-K integrals given in [12]6, we can now evaluate

the renormalised form factor yielding

AaI2I31 = g(T aR)I2I3COO

[(
2− p2

∂

∂p2

)(
2− p3

∂

∂p3

)(
J2I1{000}

)
− p2

1

(
ln
p2

1

µ2
ln
p2

2

µ2
+ ln

p2
1

µ2
ln
p2

3

µ2
− ln

p2
2

µ2
ln
p2

3

µ2

)
+ p2

2 ln
p2

1p
2
3

µ4
+ p2

3 ln
p2

1p
2
2

µ4
− p2

1 ln
p2

2p
2
3

µ4

]
+ 2g(T aR)I2I3(a0 + COO −DOO)p2

1 ln
p2

1

µ2

− g(T aR)I2I3(COO − 2DOO)(p2
2 + p2

3) +DaI2I3
1 p2

1. (3.47)

Besides DOO, this result contains two additional scheme-dependent constants, DaI2I3
1 and

a0. The first multiplies a p2
1 term that can always be added with arbitrary coefficient as it

satisfies the homogeneous conformal Ward identities. The second is related to the data of

the regulated theory by

a0 = CJJc
(0)
1 +DOO +

1

v2 − u

[uCOOC(0)
JJ

CJJ
− v2(C

(0)
OO + COO)

]
, (3.48)

and can consistently be set to zero through an appropriate choice of c
(0)
1 . In particular,

this choice is preserved under a change of renormalisation scale, since rescaling µ2 → eλµ2

shifts DOO → DOO − λCOO and DaI2I3
1 → DaI2I3

1 −
(
2λ(a0 − DOO) + λ2COO

)
g(T aR)I2I3 ,

but leaves a0 invariant.

From the perspective of the renormalised theory, a0 appears as a (scheme-dependent)

coefficient in the anomaly action (2.82). Indeed, our earlier expression (2.83) matches (3.48)

after plugging in the relevant counterterm coefficients (2.60), (2.66) and (3.44) - (3.46). As

its scheme-dependence suggests, however, this term does not represent a genuine anomaly.

In fact, it is Weyl exact as we will see later in (4.34).

6Specifically, I2{122} can be related to I0{111} as given in Table 1 of [12]. Using (4.2), (4.6), (4.15) and

(4.19) of [12], we can then re-write the non-local part of this integral as I
(non−local)

0{111} = (1/4)J2I1{000}.
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Anomalous CWI. Using the relation (3.46), the anomalous CWI for the renormalised

form factor (3.47) can be written as follows. First, we have the dilatation Ward identity

µ
∂

∂µ
AaI2I31 = 4g(T aR)I2I3

[COO
CJJ

(
CJJ ln

p2
1

µ2
+DJJ

)
p2

1 − a0p
2
1 − COO(p2

2 + p2
3)
]
, (3.49)

then the primary CWIs

K23A
aI2I3
1 = 0, K12A

aI2I3
1 = 8a0 g(T aR)I2I3 , (3.50)

and the secondary CWI

L1A
aI2I3
1 = 4g(T aR)I2I3

[
− COO
CJJ

(
CJJ ln

p2
1

µ2
+DJJ

)
p4

1 −
(
COO ln

p2
2

µ2
+DOO

)
p4

2

+
(
COO ln

p2
3

µ2
+DOO

)
p4

3 + 2COOp
2
1p

2
2 + a0 p

2
1(p2

1 + p2
2 − p2

3)
]
. (3.51)

At first sight, the inhomogeneous terms appearing on the right-hand sides of these identi-

ties are quite complicated, involving a mix of semilocal terms with momentum dependence

matching that of the renormalised 2-point functions, and ultralocal terms related to anoma-

lies. As we will show in section 4, however, all these anomalous Ward identities can easily

be understood from first principles.

In the meantime, the form of the dilatation Ward identity (3.49) can be understood

using (1.1). Since we have both (+−−) and (−−−) counterterms, we have both a beta

function and an anomaly as discussed in section 2.10. From (2.78) and (3.44), the beta

function is

βAaµ = −2COO
CJJ

ig(T aR)IJφIDµφ
J , (3.52)

whereupon (1.1) yields

µ
∂

∂µ
〈Jµa(x1)OI2(x2)OI3(x3)〉

=

∫
d3x

(
δ2βAbν (x)

δφI2(x2)δφI3(x3)

∣∣∣
0
〈Jνb(x)Jµa(x1)〉 − δ3A(x)

δAaµ(x1)δφI2(x2)δφI3(x3)

∣∣∣
0

)
. (3.53)

In momentum space, we then obtain

µ
∂

∂µ
〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉 =

4COO
CJJ

gT bI2I3p2ν〈〈Jνb(p1)Jµa(−p1)〉〉+AaµI2I3JOO , (3.54)

where, from the anomaly action (2.82), the anomaly contribution

(AJOO)aµI2I3 = −2COOg(T aR)I2I3(p2
2 + p2

3)(pµ2 − p
µ
3 )− 4a0 g(T aR)I2I3p2

1π
µν(p1)p2ν . (3.55)

Inserting the renormalised 2-point function (2.63) and decomposing into form factors using

(3.2) and (3.3), we then recover the anomalous dilatation Ward identity (3.49).
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3.2 〈Tµ1ν1OO〉

3.2.1 General analysis

Decomposition. The transverse Ward identity reads

pν1
1 〈〈Tµ1ν1(p1)OI2(p2)OI3(p3)〉〉

= p3µ1〈〈OI2(p3)OI3(−p3)〉〉+ p2µ1〈〈OI2(p2)OI3(−p2)〉〉. (3.56)

Since our renormalisation prescription preserves diffeomorphism invariance, this identity is

non-anomalous and takes the same form in both the regulated and the renormalised theory.

Weyl invariance, on the other hand, is not in general preserved in the renormalised theory.

This leads to an anomaly AI2I3 in the trace Ward identity for the renormalised correlator7

〈〈T (p1)OI2(p2)OI3(p3)〉〉

= (d−∆3)〈〈OI2(p2)OI3(−p2)〉〉+ (d−∆2)〈〈OI2(p3)OI3(−p3)〉〉+AI2I3 . (3.57)

The specific form of this anomalous contribution can be determined on a case-by-case basis.

In fact, only the last of the examples we study here is anomalous and the corresponding

anomaly is given in (3.89).

Using these identities, the renormalised 3-point function can be reconstructed from its

purely transverse-traceless part according to

〈〈Tµ1ν1(p1)OI2(p2)OI3(p3)〉〉 = 〈〈tµ1ν1(p1)OI2(p2)OI3(p3)〉〉

+
[(
pα2 Tµ1ν1α(p1) +

d−∆3

d− 1
πµ1ν1(p1)

)
〈〈OI2(p2)OI3(−p2)〉〉+ (2↔ 3)

]
+
AI2I3
d− 1

πµ1ν1(p1), (3.58)

where

Tµνα(p) =
1

p2

[
2p(µδν)α −

pα
d− 1

(
δµν + (d− 2)

pµpν
p2

)]
. (3.59)

Form factors. The tensorial structure of this transverse-traceless part is

〈〈tµ1ν1(p1)OI2(p2)OI3(p3)〉〉 = AI2I31 Πµ1ν1α1β1(p1)pα1
2 pβ1

2 , (3.60)

where A1 is a form factor depending on the momentum magnitudes. This form factor is

symmetric under (p2, I2)↔ (p3, I3), i.e.,

AI3I21 (p1, p3, p2) = AI2I31 (p1, p2, p3), (3.61)

and is related to the full correlator by

AI2I31 = coefficient of p2µ1p2ν1 in 〈〈Tµ1ν1(p1)OI2(p2)OI3(p3)〉〉. (3.62)

To apply this formula, we must first select the independent momenta according to the

cyclic rule (2.23) before extracting the coefficient indicated.

7Note the trace Ward identity (3.57) and reconstruction formula (3.58) differ from those in [10] since

here we define the 3-point function through three functional derivatives, as discussed on p. 15-16 of [13].
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Primary CWIs. The primary CWIs are

Kij A
I2I3
1 = 0, i, j = 1, 2, 3, (3.63)

and their solution in terms of triple-K integrals is

AI2I31 = CI2I31 J2{000}, (3.64)

where CI2I31 = CI3I21 is a constant.

Secondary CWIs. The independent secondary Ward identity is

L2A
I2I3
1 = 2∆1 · coefficient of p2µ1 in pν1

1 〈〈Tµ1ν1(p1)OI2(p2)OI3(p3)〉〉

= 2∆1

(
〈〈OI2(p2)OI3(−p2)〉〉 − 〈〈OI2(p3)OI3(−p3)〉〉

)
. (3.65)

To obtain the second line, we used the transverse Ward identity (3.56) with independent

momenta as prescribed by (2.23). The constraint imposed by this secondary CWI on the

primary constant CI2I31 can be extracted by analysing the soft limit p3 → 0, similar to

our earlier analysis leading to (3.9). Working in the regularised theory where necessary to

avoid divergences, we find

CI2I31 =
23−d/2COO(ε) sin

(
π(d/2−∆2)

)
πΓ(d/2)

δ∆2,∆3 . (3.66)

Once again, for non-identical scalars with ∆2 6= ∆3 the 3-point function vanishes. For

∆2 = d/2 + n, the 3-point function is non-vanishing since the zero in the sine function

cancels against the pole in the 2-point normalisation COO(ε), see (2.52) and (2.54).

Regularisation. From now on, in order to obtain a non-vanishing 3-point function, we

will restrict to the case of a single scalar with ∆2 = ∆3. This condition requires us to work

in a scheme with v2 = v3. In addition, conservation of the stress tensor requires u = v1.

All singularities are then regulated provided u 6= v2. The cases where singularities occur

are summarised in the following table:

Form factor Integral (−−−) (+−−) (−+ +)

A1 J2{000} ∆ = d/2 + 1 + n ∆ = d+ 1 + n ∆ = d/2− 1− n

Table 3: Singularities arising for 〈Tµ1ν2OI2OI3〉, with ∆2 = ∆3 = ∆.

Singularities of types (++−) and (+++) are forbidden as the former requires d < 0 while

the latter requires ∆2 = ∆3 < 0. For a unitary theory, the (−+ +) singularity only occurs

for ∆2 = ∆3 = d/2− 1 corresponding to a free theory.

Renormalisation. As discussed previously for 〈JµOO〉, counterterms can be classified

by the type of singularity they remove. Those removing (−−−) singularities give rise to

anomalies and are cubic in the sources, while those removing (+ − −) singularities give

rise to beta functions and involve two sources and one operator. As we will see below,

counterterms can only be constructed for the cases listed in the following table:
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Singularity type Counterterms available when

(−−−) ∆2 = ∆3 = d/2 + 1 + n

(+−−) ∆2 = ∆3 = d+ 1 + n

Table 4: Availability of counterterms for 〈Tµ1ν1OI2OI3〉.

Comparing with table 3, we see that for (−−−) and (+−−) singularities counterterms are

always available. For cases with a (−+ +) singularity, the primary constant must instead

vanish as a suitable power of the regulator. The resulting finite form factor is then fully

nonlocal [11].

Anomalies. Our analysis of anomalies here is similar to that for 〈Jµ1OO〉. The countert-

erms must be Lorentz-invariant, and hence the metric tensor can appear only through the

Riemann tensor or covariant derivatives. Moreover, since we functionally differentiate with

respect to the source gµν only once before returning to a flat metric, the Riemann tensor

cannot appear more than once. There are therefore two possible types of counterterms,

the simplest examples of which are∫
ddx
√
g∇µφI∇µφI ,

∫
ddx
√
gRµν∇µφI∇νφI . (3.67)

We can also add an even number of additional covariant derivatives. The existence of these

counterterms leads to anomalies whenever

∆2 = ∆3 =
d

2
+ 1 + n, n = 0, 1, 2, . . . (3.68)

Beta functions. Beta functions derive from counterterms containing one operator and

two sources. Here, the only such counterterms contributing to the 3-point function at hand

are those containing the stress tensor and two scalar sources. This can be seen through an

analysis similar to that discussed earlier for 〈JµOO〉.8 The simplest terms of this form are∫
ddx
√
g TφIφI ,

∫
ddx
√
g Tµν∇µφI∇νφI . (3.69)

More complicated examples can be constructed by adding an even number of covariant

derivatives. The contribution to the 3-point function from the first counterterm in (3.69)

(and its analogues with additional covariant derivatives) is proportional to 〈TTµν〉, however,

which vanishes by scale invariance. (The 2-point function has no trace anomaly above two

dimensions.) From the second class of counterterms, we expect nontrivial beta functions

to appear whenever

∆2 = ∆3 = d+ 1 + n, n = 0, 1, 2, . . . (3.70)

Comparing (3.68) and (3.70) with the corresponding formulae (3.11) and (3.13) for

〈JµOO〉, we see the conditions for anomalies in the 3-point functions are identical while

those to obtain a beta function differ by a unit shift in dimensions. In particular, for a

marginal scalar with ∆2 = ∆3 = d, the 3-point function 〈JµOO〉 exhibits a nontrivial beta

function while 〈TµνOO〉 does not. For a marginal scalar, both 3-point functions contain

anomalies if and only if d is even.

8Note that counterterms containing two scalar sources and a scalar operator, while generating a beta

function for φI , do not contribute to 〈TµνOO〉 and so are not relevant to our present discussion.
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3.2.2 d = 3 and ∆2 = ∆3 = 1

The direct evaluation of (3.66) leads to

AI2I31 = 2COOδ
I2I3 (p1 + a123)

b23a2
123

, (3.71)

where the symmetric polynomials appearing are defined in (2.21).

3.2.3 d = 3 and ∆2 = ∆3 = 3

In contrast to the case of 〈JµOO〉 with d = 3 and ∆2 = ∆3 = 3, here the correlator is

represented by a convergent triple-K integral. This is consistent with (3.69), from which

we see that no counterterms are available. Evaluating the triple-K integral, we find

AI2I31 = −2COOδ
I2I3 (a3

123 − a123b123 − c123)

a2
123

. (3.72)

3.2.4 d = 4 and ∆2 = ∆3 = 2

This case is almost identical to the corresponding case for 〈JµOO〉. The triple-K integral

is finite and the solution reads

AI2I31 = −2COOδ
I2I3I3{200}

= −2COOδ
I2I3p1

(
p1

∂

∂p1
− 1

)
∂

∂p1
I1{000}, (3.73)

where I1{000} is given in (2.43). The scalar 2-point function is singular, but the combina-

tion appearing on the right-hand side of the secondary Ward identity (3.65) is finite and

unambiguous.

3.2.5 d = 4 and ∆2 = ∆3 = 4

Expanding the solution (3.66) of the secondary CWI, working in the regulated theory with

COO(ε) as given in (2.54), we find

CI2I31 = −2COO + 2ε
[
uCOO(1− γE + ln 2)− v2C

(0)
OO

]
+O(ε2). (3.74)

The regulated form factor then reads

AI2I31 = CI2I31 I3+uε{2+uε,2+v2ε,2+v2ε} = −2COO
v2ε

(p2
1 + p2

2 + p2
3) +O(ε0), (3.75)

requiring us to choose a scheme with v2 6= 0.

At our disposal we have four linearly independent counterterms built from gµν and φI

that yield a non-vanishing contribution to 〈TµνOO〉, namely

cOO

∫
d4+2uεx

√
g(�φI)2µ2v2ε, c2

∫
d4+2uεx

√
gRµν∇µφI∇νφIµ2v2ε,

c3

∫
d4+2uεx

√
gR∇µφI∇µφIµ2v2ε, c4

∫
d4+2uεx

√
gRφI�φIµ2v2ε. (3.76)
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The coefficient cOO of the first counterterm is already fixed by the renormalisation of the

scalar 2-point function, as given in (2.59). The remaining counterterms only contribute

to 3- and higher-point functions. In fact, only the first two counterterms contribute to

the transverse-traceless part of the 3-point function. Their contribution to the form factor

AI2I31 is

AI2I31 ct = 4cOO(p2
2 + p2

3)µ2v2ε − 2c2p
2
1µ

2v2ε. (3.77)

Adding this contribution to (3.75), the divergence proportional to p2
2 + p2

3 cancels while to

eliminate the divergence proportional to p2
1 requires c2 = −COO/(v2ε) + c

(0)
2 +O(ε).

At this stage the resulting 3-point function is finite and the solution depends on the two

undetermined constants c
(0)
OO and c

(0)
2 . In addition to cancelling the divergences, however,

the counterterm action should also be Weyl covariant as given in (1.4). As here there are

no beta functions, this condition simplifies to

δσSct =

∫
ddx
√
gσµ

∂

∂µ
Lct. (3.78)

Evaluating the Weyl-covariant completion of the first counterterm in (3.76), we find9

Sct = cOO

∫
d4+2uεx

√
gµ2v2ε

[
(�φI)2 − 2(1 + v2ε)

(1 + uε)
Rµν∂µφ

I∂νφ
I +

(v2 − u)ε

(3 + 2uε)
RφI�φI

+
(2 + uε)(1 + v2ε)

(3 + 2uε)(1 + uε)
R(∂φI)2 +

(v2 − u)2ε2

4(3 + 2uε)2
R2(φI)2 − (v2 − u)ε(1 + v2ε)

4(1 + uε)(1 + 2uε)
E4(φI)2

]
,

(3.79)

where E4 is the four-dimensional Euler density. Weyl covariance thus imposes specific

relations between the coefficients of the various counterterms listed in (3.76). In particular,

c2 =
(
− 2− 2(v2 − u)ε+O(ε2)

)
cOO, (3.80)

and hence from (2.59) and (2.65),

c2 = −COO
v2ε

+
(
− (v2 − u)

v2
COO − C(0)

OO +DOO

)
+O(ε). (3.81)

The renormalised 3-point function is then given by10

AI2I31 = −COOδI2I3
[
2I

(fin)
3{222} + (p2

1 + p2
2) ln

p2
3

µ2
+ (p2

2 + p2
3) ln

p2
1

µ2
+ (p2

1 + p2
3) ln

p2
2

µ2

]
+ 2(COO −DOO)δI2I3(p2

1 + p2
2 + p2

3), (3.82)

9See (A.13) to (A.19) of appendix A.1. Note that when v2 = 0 the counterterm action Sct has no

dependence on the RG scale µ and hence it is Weyl invariant from (3.78). It can then be re-expressed in

terms of the Paneitz operator as given in (A.20). We emphasise however that the scheme v2 = 0 is not

admissible since the divergences depend on 1/v2.
10Here, we used the reduction scheme in Table 1 of [12] to relate the triple-K integral I3{222} to the

integral I0{111}. The non-local part of the latter can then be re-expressed as I
(non−local)

0{111} = (1/4)J2I1{000}

using equations (4.2), (4.6), (4.15) and (4.19) of [12].

31



where the finite integral I
(fin)
3{222} is given in (2.46). As we see, the only surviving scheme-

dependent constant, DOO, is that already appearing in the 2-point function. This makes

sense since the counterterm action is fully fixed by the renormalisation of the 2-point

function plus Weyl covariance, so the 3-point function cannot involve any new scheme-

dependent constants. A change of renormalisation scale µ2 → eλµ2 is equivalent to shifting

DOO → DOO − λCOO, both for the 2- and the 3-point function.

Anomalous CWI. The renormalised form factor (3.82) satisfies the following anomalous

Ward identities:

µ
∂

∂µ
AI2I31 = 4COOδ

I2I3(p2
1 + p2

2 + p2
3), (3.83)

Kij A
I2I3
1 = 0, (3.84)

L2A
I2I3
1 = 8

[
COO

(
p4

2 ln
p2

2

µ2
− p4

3 ln
p2

3

µ2

)
+DOO(p4

2 − p4
3)
]

− 4COOδ
I2I3p2

1(p2
1 + 2p2

2). (3.85)

In addition, we need to determine the anomaly AI2I3 entering the trace Ward identity

(3.57) and the reconstruction formula (3.58). As only (− − −) counterterms are present,

using (2.71) the anomaly action is

A =

∫
d4x
√
gA = −COO

∫
d4x
√
g φI∆4φ

I , (3.86)

where the four-dimensional Paneitz operator

∆4φ
I = ∇µ

(
(∇µ∇ν + 2Rµν − 2

3
Rgµν)∇νφI

)
= �2φI +

1

3
∇µR∇µφI + 2Rµν∇µ∇νφI −

2

3
R�φI . (3.87)

Written in this form, the anomaly action (3.86) is manifestly Weyl invariant. The anomaly

AI2I3 then follows by restoring a flat metric and evaluating

AI2I3 =
δ2A(x1)

δφI2(x2)δφI3(x3)

∣∣∣
0
. (3.88)

In momentum space, we thus obtain

AI2I3 = −COOδI2I3p2
2p

2
3. (3.89)

We can also cross-check the form of the anomalous dilatation Ward identity. From (1.1),

this should be

µ
∂

∂µ
〈Tµ1ν1(x1)OI2(x2)OI3(x3)〉 = −2

δ3A

δgµ1ν1(x1)δφI2(x2)δφI3(x3)

∣∣∣
0

(3.90)

Evaluating this, converting to momentum space and decomposing into form factors, we

indeed recover (3.83).
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3.3 〈Jµ1Jµ2O〉

3.3.1 General analysis

Decomposition. The transverse Ward identity is11

p1µ1〈〈Jµ1a1(p1)Jµ2a2(p2)OI(p3)〉〉 = 0, (3.91)

and so the 3-point function is purely transverse:

〈〈Jµ1a1(p1)Jµ2a2(p2)OI(p3)〉〉 = 〈〈jµ1a1(p1)jµ2a2(p2)OI(p3)〉〉. (3.92)

Form factors. We now have the tensor decomposition

〈〈jµ1a1(p1)jµ2a2(p2)OI(p3)〉〉 = πµ1
α1

(p1)πµ2
α2

(p2)
[
Aa1a2I

1 pα1
2 pα2

3 +Aa1a2I
2 δα1α2

]
. (3.93)

The form factors A1 and A2 are functions of the momentum magnitudes. Both form factors

are symmetric under (p1, a1)↔ (p2, a2), i.e., they satisfy

Aa2a1I
j (p2, p1, p3) = Aa1a2I

j (p1, p2, p3), j = 1, 2. (3.94)

These form factors can be extracted from 〈〈Jµ1a1(p1)Jµ2a2(p2)OI(p3)〉〉 using

Aa1a2I
1 = coefficient of pµ1

2 pµ2
3 , (3.95)

Aa1a2I
2 = coefficient of δµ1µ2 . (3.96)

As always, before reading off these coefficients we must first write the 3-point in terms of

the independent momenta prescribed by our cyclic rule (2.23).

Primary CWIs. The primary CWIs are

K12A
a1a2I
1 = 0, K13A

a1a2I
1 = 0,

K12A
a1a2I
2 = 0, K13A

a1a2I
2 = 2Aa1a2I

1 .
(3.97)

Their solution in terms of triple-K integrals is

Aa1a2I
1 = Ca1a2I

1 J2{000}, (3.98)

Aa1a2I
2 = Ca1a2I

1 J1{001} + Ca1a2I
2 J0{000}, (3.99)

where CaI2I3j , j = 1, 2 are constants. In particular Ca2a1I
j = Ca1a2I

j for j = 1, 2.

Secondary CWIs. The independent secondary CWI is

L1A
a1a2I
1 + 2 RAa1a2I

2

= 2(∆1 − 1) · coefficient of pµ2
3 in p1µ1〈〈Jµ1a1(p1)Jµ2a2(p2)OI(p3)〉〉, (3.100)

where the right-hand side vanishes from (3.91). The constraint imposed by this secondary

CWI on the primary constants CaI2I31 and CaI2I32 can now be obtained from an analysis

of the soft limit p3 → 0, as used earlier to derive (3.9). Working in the regulated theory

where necessary to avoid divergences, we find

Ca1a2I
2 = −1

2
∆3(∆3 − d+ 2)Ca1a2I

1 . (3.101)

11This identity differs from that in [10] since here we define the 3-point function through three functional

derivatives, see p. 15-16 of [13].
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Regularisation. We work in a scheme with u = v1 = v2 to maintain current conserva-

tion, but set v3 6= u. This scheme is sufficient to regulate all the singularities we encounter.

These can be classified according to the choice of ± signs appearing in the singularity

condition (2.37). For the 3-point function at hand, the occurrence of (−+ +) or (+ + +)

singularities violates unitarity by requiring either ∆3 ≤ 0 or d ≤ 0. The remaining cases

are then given in the following table, using ′′ to indicate repetition of the line above:

Factor Integral (−−−) (+−−) (−−+) (+ +−)

A1 J2{000} ∆3 = 4 + 2n ∆3 = d+ 2 + 2n ∆3 = d− 4− 2n ∆3 = 2d+ 2n

A2 J1{001} ∆3 = 2 + 2n ∆3 = d+ 2n ∆3 = d− 4− 2n ∆3 = 2d− 2 + 2n

J0{000}
′′ ′′ ∆3 = d− 2− 2n ′′

Table 5: Singularities arising in triple-K integrals for the form factors of 〈Jµ1Jµ2OI〉.

Renormalisation. The counterterms available to remove these singularities are strongly

constrained by gauge- and Lorentz-invariance. In fact, as we will discuss below, countert-

erms only exist for the cases summarised in the following table:

Singularity type Counterterms available when

(−−−) ∆3 = 4 + 2n

(−−+) ∆3 = d− 4− 2n

(+−−) ∆3 = d+ 2 + 2n

Table 6: Availability of counterterms for 〈Jµ1Jµ2OI〉.

In many examples, we then find there are no counterterms available to remove a certain type

of singularity. When this occurs, there are two possibilities: either the primary constants

multiplying these divergent triple-K integrals must vanish as some suitable power of the

regulator, or else the singularities of individual triple-K integrals must cancel when summed

together to construct the regulated form factor. Here, such cancellations can occur between

the singularities of J1{001} and J0{000} when summed to produce the form factor A2. In

either case, the specific values of the primary constants required to effect these vanishings

or cancellations are not chosen by hand; rather, these values are uniquely determined by

solving the secondary conformal Ward identities.

Anomalies. Divergences of the type (−−−) are removed by counterterms that are cubic

in the sources, and give rise to anomalies. Here, we require counterterm involving a single

scalar source φI and two gauge fields Aaµ. The two simplest such counterterms take the

form

δabrabI
∫

ddxDµD
µφI , rabI

∫
ddxF aµνF

µνbφI , (3.102)

where rabI is some invariant symbol satisfying

− ig(T cR)IJrabJ = facdrdbI + f bcdrdaI . (3.103)
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As one might expect, however, given its resemblance to a total derivative, the first countert-

erm in (3.102) vanishes: the piece imposed by gauge invariance that is not a total derivative,

namely −igδabrabI
∫

ddxAcµT
cIJDµφJ , vanishes since from (3.103) δabrabI is proportional

to facdrdaI , but rdaI is symmetric in a and d while facd is antisymmetric. All (− − −)

singularities in the form factor A2 with ∆3 = 2 must therefore either cancel or else appear

with vanishing primary constants, since there are no counterterms able to remove such sin-

gularities. For (−−−) singularities with ∆3 = 4, 6, 8, . . ., however, we can use the second

counterterm in (3.102), along with its analogues containing an even number of additional

derivatives. We therefore obtain anomalies only for ∆3 = 4 + 2n.

Beta functions. Divergences of the type (−−+) are removed by counterterms containing

the scalar operator OI and two gauge fields, generating a nontrivial beta function for OI .
Their form is similar to the (−−−) counterterms but with φI replaced by OI , namely

δabrabI
∫

ddxDµD
µOI , rabI

∫
ddxF aµνF

µνbOI . (3.104)

By the same reasoning as above, however, the first of these counterterms vanishes. The

second counterterm is only available when ∆3 = d− 4− 2n, for some non-negative integer

n = 0, 1, 2 . . .. Thus, only in these cases can (− − +) singularities be removed by a

counterterm; in all other cases such singularities must either cancel or else appear with

vanishing primary constants.

Type (+ − −) singularities are removed by counterterms containing the conserved

current Jµa and the sources Aaµ and φI , giving a beta function for Jµa. The simplest such

counterterms take the form

raI
∫

ddx JµaDµφ
I , rabI

∫
ddx JaµF

µνbDνφ
I . (3.105)

In the first counterterm, we introduced another invariant raI . This counterterm, however,

vanishes by current conservation and hence does not contribute to correlation functions.

Only the second counterterm is valid, allowing (+−−) singularities to be removed whenever

∆3 = d+ 2 + 2n for some non-negative integer n. In all other cases, such singularities must

either cancel or appear with vanishing primary constants.

3.3.2 d = 3 and ∆3 = 1

In this example, no counterterms are available to us. The triple-K integrals appearing in

the form factors are straightforward to calculate:

J2{000} = I 5
2
{ 1

2
, 1
2
,− 1

2
} =

(π
2

)3/2 1

p3a2
123

, (3.106)

J1{001} = I 3
2
{ 1

2
, 1
2
, 1
2
} =

(π
2

)3/2 1

a123
, (3.107)

J0{000} = I 1
2

+uε{ 1
2

+uε, 1
2

+uε,− 1
2

+v3ε} = −
(π

2

)3/2 1

(u− v3)ε

1

p3
+O(ε0). (3.108)
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Only the integral J0{000} has a pole corresponding to a (− − +) singularity. As no other

singularities are present, cancellations cannot occur and so instead the corresponding pri-

mary constant Ca1a2I
2 must be of order ε. Indeed, evaluating the solution (3.101) of the

secondary CWI, we find

Ca1a2I
2 =

[1

2
(u− v3)ε+O(ε2)

]
Ca1a2I

1 . (3.109)

Removing the regulator by sending ε→ 0, we then find

Aa1a2I
1 =

Ca1a2I
1

p3a2
123

, (3.110)

Aa1a2I
2 = Ca1a2I

1

( 1

a123
− 1

2p3

)
, (3.111)

where for convenience we have rescaled the primary constant Ca1a2I
1 7→ (π/2)−3/2Ca1a2I

1 .

3.3.3 d = 3 and ∆3 = 3

In this case, we again lack counterterms. Both the integrals J0{000} and J1{001} contributing

to the form factor A2 satisfy the (+ − −) condition hence have single poles. Via (3.101),

the secondary CWI then imposes Ca1a2I
2 = (−3 +O(ε))Ca1a2I

1 and the singularities cancel.

After removing the regulator and rescaling the primary constant as above, we obtain

Aa1a2I
1 = Ca1a2I

1

(a123 + p3)

a2
123

, (3.112)

Aa1a2I
2 = −Ca1a2I

1

(a2
12 + p3a12 − 2p2

3)

2a123
. (3.113)

3.3.4 d = 3 and general ∆3

In three dimensions, a particularly useful scheme is u = v1 = v2 = 0 with v3 6= 0. Besides

regulating all divergences, this scheme ensures that the triple-K integrals appearing in

the form factors (3.98) - (3.99) all have β1 = β2 = 1/2. We can then obtain further

simplifications using the identities

Iα{ 1
2
, 1
2
,β3+1} = −(p1 + p2)Iα{ 1

2
, 1
2
,β3} + (α+ β3 − 1)Iα−1{ 1

2
, 1
2
,β3}, (3.114)

(β2
3 − α2)Iα{ 1

2
, 1
2
,β3} = −(2α+ 1)(p1 + p2)Iα+1{ 1

2
, 1
2
,β3} + 2χIα+2{ 1

2
, 1
2
,β3}, (3.115)

where

χ =
1

2
(p1 + p2 + p3)(p1 + p2 − p3). (3.116)

Here, both identities follows from simple integration by parts: the first after re-expressing

all half-integer Bessel functions in terms of elementary functions; the second after applying

the modified Bessel differential operator to the Kβ3(p3x) factor inside Iα{ 1
2
, 1
2
,β3}.

Using these identities, our solution (3.98) - (3.99) plus (3.101) for the regulated form

factors can be re-written as

Aa1a2I
1 = Ca1a2I

1 I 5
2
{ 1

2
, 1
2

∆3−3/2+v3ε}, (3.117)

Aa1a2I
2 = −χCa1a2I

1 I 5
2
{ 1

2
, 1
2

∆3−3/2+v3ε}. (3.118)
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For general values of ∆3, the three-dimensional form factors are thus related by

0 = χAa1a2I
1 +Aa1a2I

2 , (3.119)

and hence the tensor structure takes the universal form

〈〈Jµ1a1(p1)Jµ2a2(p2)OI(p3)〉〉 = Aa1a2I
1 πµ1

α1
(p1)πµ2

α2
(p2)

(
pα1

2 pα2
3 − χδ

α1α2

)
. (3.120)

Converting to a helicity basis, as described in section 8.1.1 of [10], this result reads

〈〈J (s1)a1(p1)J (s2)a2(p2)OI(p3)〉〉 = Aa1a2I
1 χδs1s2 , (3.121)

where the helicities s1 and s2 take values ±1. The correlator thus vanishes when the

helicities differ.

The relation (3.119) is easily checked for the cases ∆3 = 1 and ∆3 = 3 studied above.

Where divergences arise, the regulated form factors must satisfy (3.119) order by order in

the regulator ε. The same must then be true for all divergent counterterm contributions,

meaning that up to finite scheme-dependent terms the relation (3.119) extends to the

renormalised theory as well.

3.3.5 d = 4 and ∆3 = 2

Once again, in this case we lack counterterms. The integral J1{001} has a single pole

associated with a (−−−) singularity while J0{000} has a double pole corresponding to the

presence of both (−−−) and (−−+) singularities:

J1{001} = I2+uε{1+uε,1+uε,1+v3ε} = − 1

(u+ v3)ε
+O(ε0), (3.122)

J0{000} = I1+uε{1+uε,1+uε,v3ε}

=
1

(u2 − v2
3)ε2

+
1

(u− v3)ε

[u(ln 2− γE)

u+ v3
+ ln p3

]
+O(ε0). (3.123)

The solution (3.101) of the secondary CWI then imposes Ca1a2I
2 = ((u−v3)ε+O(ε2))Ca1a2I

1 .

When we assemble the form factor A2, we thus obtain two single poles which cancel. After

removing the regulator, the final result is then

Aa1a2I
1 = Ca1a2I

1 p1p2
∂2

∂p1∂p2
I1{000}, (3.124)

Aa1a2I
2 = Ca1a2I

1

(
I

(fin)
2{111} +

1

6
ln

p4
3

p2
1p

2
2

+
1

2

)
, (3.125)

where the finite integrals I1{000} and I
(fin)
2{111} are given in (2.43) and (2.48).

3.3.6 d = 4 and ∆3 = 4

In this case, all the triple-K integrals diverge. From table 5 on page 34, the integral J2{000}
for the form factor A1 has a single pole of type (−−−), while for the form factor A2, both

J1{001} and J0{000} have double poles due to the presence of both (− − −) and (+ − −)
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singularities. To remove these singularities, we have only a single counterterm of type

(−−−) (see table 6 on page 34), and so we can already anticipate that the (+−−) type

singularities in A2 should cancel.

To verify this, from our solution (3.101) of the secondary CWI, the dependence between

the primary constants is

C
(0)a1a2I
2 = −4C

(0)a1a2I
1 , (3.126)

C
(1)a1a2I
2 = (u− 3v3)C

(0)a1a2I
1 − 4C

(1)a1a2I
1 , (3.127)

C
(2)a1a2I
2 = 1

2(u2 − v2
3)C

(0)a1a2I
1 + (u− 3v3)C

(1)a1a2I
1 − 4C

(2)a1a2I
1 , (3.128)

where for convenience we have decomposed

Ca1a2I
j = C

(0)a1a2I
j + εC

(1)a1a2I
j + ε2C

(2)a1a2I
j +O(ε3), j = 1, 2. (3.129)

Evaluating the divergences of the triple-K integrals, we then find that the (+−−) singu-

larities in A2 do indeed cancel leaving us with only single poles of type (−−−), namely

Aa1a2I
1 = −2C

(0)a1a2I
1

(u+ v3)ε
+O(ε0), (3.130)

Aa1a2I
2 =

C
(0)a1a2I
1

(u+ v3)ε
(p2

1 + p2
2 − p2

3) +O(ε0). (3.131)

As these form factors still diverge, we use the single available counterterm

Sct = cabI
∫

d4+2uεxF aµνF
µνbφIµ(u+v3)ε, (3.132)

which contributes to the form factors as

Aa1a2Ict
1 = −4ca1a2Iµ(u+v3)ε, (3.133)

Aa1a2Ict
2 = 2ca1a2Iµ(u+v3)ε(p2

1 + p2
2 − p2

3). (3.134)

The divergences can thus be cancelled by setting

ca1a2I = − C
(0)a1a2I
1

2(u+ v3)ε
+O(ε0). (3.135)

Removing the regulator and relabelling C
(0)a1a2I
1 → Ca1a2I

1 , the final renormalised form

factors are then

Aa1a2I
1 = Ca1a2I

1

(
2− p3

∂

∂p3

)
I

(fin)
2{111} −

1

3
Ca1a2I

1

(
ln
p2

1

µ2
+ ln

p2
2

µ2
+ ln

p2
3

µ2

)
+Da1a2I

1 , (3.136)

Aa1a2I
2 = Ca1a2I

1 p2
3I

(fin)
2{111} +

1

6
Ca1a2I

1

[
(3p2

1 − p2
3) ln

p2
1

µ2
+ (3p2

2 − p2
3) ln

p2
2

µ2
− p2

3 ln
p2

3

µ2
+ 3p2

3

]
+ (p2

1 + p2
2 − p2

3)
[1

6
Ca1a2I

1 − 1

2
Da1a2I

1

]
, (3.137)
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where the finite integral I
(fin)
2{111} is given in (2.48). The scheme-dependent constant Da1a2I

1

is related to the data of the regulated theory by

Da1a2I
1 = −

(2

3
− γE + ln 2

)
C

(0)a1a2I
1 − C

(1)a1a2I
1

u
− 4c(0)a1a2I . (3.138)

In the renormalised theory, Da1a2I
1 can be shifted arbitrarily by a change of renormalisation

scale. (Scaling µ2 → eλµ2 is equivalent to shifting Da1a2I
1 → Da1a2I

1 + λCa1a2I
1 .)

Anomalous CWI. The renormalised form factors satisfy the anomalous dilatation Ward

identities

µ
∂

∂µ
Aa1a2I

1 = 2Ca1a2I
1 , (3.139)

µ
∂

∂µ
Aa1a2I

2 = −Ca1a2I
1 (p2

1 + p2
2 − p2

3), (3.140)

and the anomalous primary CWIs

K12A
a1a2I
1 = 0, K13A

a1a2I
1 = 0,

K12A
a1a2I
2 = 0, K13A

a1a2I
2 = 2Aa1a2I

1 + 4Ca1a2I
1 . (3.141)

The secondary CWI is however non-anomalous, and retains its original homogeneous form

L1A
a1a2I
1 + 2 RAa1a2I

2 = 0. (3.142)

As only a (−−−) counterterm is present, from (2.71) the anomaly action is

A =

∫
d4x

1

2
CabI1 φIF aµνF

µνb. (3.143)

On a conformal manifold, for cases where CabI1 = CI1δ
ab this can be interpreted as a moduli-

dependent shift of the 2-point normalisation CJJ → CJJ −CI1φI in the quadratic anomaly

action (2.72).

The anomalous dilatation Ward identities (3.139) - (3.140) now correspond to

µ
∂

∂µ
〈Jµ1a1(x1)Jµ2a2(x2)OI(x3)〉 = − δ3A

δAa1
µ1(x1)δAa2

µ2(x2)δφI(x3)

∣∣∣
0
. (3.144)

3.4 〈Tµ1ν1Tµ2ν2O〉

3.4.1 General analysis

Decomposition. The renormalised 3-point function satisfies the following transverse and

trace Ward identities12

pν1
1 〈〈Tµ1ν1(p1)Tµ2ν2(p2)OI(p3)〉〉 = 0, (3.145)

〈〈T (p1)Tµ2ν2(p2)OI(p3)〉〉 = AIµ2ν2
. (3.146)

12Note these identities differ from those in [10] since here we define the 3-point function through three

functional derivatives, see p. 15-16 of [13].
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In general, the trace Ward identity features an anomaly AIµ2ν2
. Taking the trace of the

transverse Ward identity we see this anomaly must be transverse, pµ2
2 AIµ2ν2

= 0, and clearly

its trace δαβAIαβ must be symmetric under p1 ↔ p2. We will evaluate this anomaly on a

case-by-case basis; for most of the cases we study here, no counterterms are present and

hence this anomaly is absent. In the final case we study (d = ∆3 = 4) there is a nontrivial

counterterm but, as it turns out, AIµ2ν2
also vanishes. Nevertheless, this anomaly will be

present in general. The renormalised 3-point function can then be reconstructed from its

transverse-traceless part using the formula

〈〈Tµ1ν1(p1)Tµ2ν2(p2)OI(p3)〉〉 = 〈〈tµ1ν1(p1)tµ2ν2(p2)OI(p3)〉〉+
1

d− 1
πµ1ν1(p1)AIµ2ν2

+
1

d− 1
πµ2ν2(p2)AIµ1ν1

(p1 ↔ p2)− 1

(d− 1)2
πµ1ν1(p1)πµ2ν2(p2)δαβAIαβ. (3.147)

When the anomaly is absent, the 3-point function is purely transverse-traceless.

Form factors. The transverse-traceless part of the correlator can be decomposed as

〈〈tµ1ν1(p1)tµ2ν2(p2)OI(p3)〉〉 (3.148)

= Πµ1ν1α1β1(p1)Πµ2ν2α2β2(p2)
[
AI1p

α1
2 pβ1

2 p
α2
3 pβ2

3 + AI2δ
α1α2pβ1

2 p
β2
3 +AI3δ

α1α2δβ1β2

]
,

where the form factors Aj , j = 1, 2, 3 are functions of the momentum magnitudes. All form

factors are symmetric under p1 ↔ p2, i.e., they satisfy

AIj (p2, p1, p3) = AIj (p1, p2, p3), j = 1, 2, 3. (3.149)

Given the full correlator 〈〈Tµ1ν1(p1)Tµ2ν2(p2)OI(p3)〉〉, with the independent momenta cho-

sen according to our cyclic rule (2.23), the form factors can be extracted as follows:

AI1 = coefficient of p2µ1p2ν1p3µ2p3ν2 , (3.150)

AI2 = 4 · coefficient of δµ1µ2p2ν1p3ν2 , (3.151)

AI3 = 2 · coefficient of δµ1µ2δν1ν2 . (3.152)

Degeneracy. In three dimensions, the form factor basis above is degenerate as discussed

in appendix A.4 of [13]. Specifically, the following combination vanishes since in three

dimensions one of the indices in the 4-form must necessarily be repeated:

Πµ1ν1
α1
β1(p1)Πµ2ν2

α2
β2(p2) 4! δβ1

[α1
δβ2
α2
p1α3p2α4]p

α3
1 pα4

2

= Πµ1ν1α1β1(p1)Πµ2ν2α2β2(p2)
[
pα1

2 pβ1
2 p

α2
3 pβ2

3

− (p2
1 + p2

2 − p2
3)δβ1β2pα1

2 pα2
3 −

1

4
J2δα1α2δβ1β2

]
. (3.153)

Multiplying through by an arbitrary function F I(p1, p2, p3) = F I(p2, p1, p3), we obtain a

degenerate set of form factors which yield zero contribution to the 3-point function:

AI1 = F I , AI2 = −(p2
1 + p2

2 − p2
3)F I , AI3 = −1

4
J2F I . (3.154)
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In principle, one can use this degeneracy to eliminate one of the form factors, however

we will not do so here since the resulting conformal Ward identities then take a more

complicated form. (The degeneracy does not apply in the dimensionally regulated theory,

so using it to eliminate a form factor in the renormalised theory means the renormalised

CWIs are no longer simply those in the regulated theory plus potential anomalous terms.)

The existence of this degeneracy also raises the interesting possibility of novel three-

dimensional type A anomalies, where the degenerate form factor combination appears with

a linearly divergent coefficient. Such a 0/0 structure is directly responsible for the four-

dimensional Euler anomaly, as discussed in [13, 38]. Here, a specific example where a 0/0

structure of this type occurs is the case of ∆3 = 4, as we will discuss in section 3.4.4.

Primary CWIs. The primary CWIs are

K12A
I
1 = 0, K13A

I
1 = 0,

K12A
I
2 = 0, K13A

I
2 = 8AI1,

K12A
I
3 = 0, K13A

I
3 = 2AI2.

(3.155)

Their solution in terms of triple-K integrals is

AI1 = CI1J4{000}, (3.156)

AI2 = 4CI1J3{001} + CI2J2{000}, (3.157)

AI3 = 2CI1J2{002} + CI2J1{001} + CI3J0{000}, (3.158)

where CIj , j = 1, 2, 3 are constants.

Secondary CWIs. The independent secondary CWIs are

L2A
I
1 + RAI2

= 2∆1 · coefficient of p2µ1p3µ2p3ν2 in pν1
1 〈〈Tµ1ν1(p1)Tµ2ν2(p2)OI(p3)〉〉, (3.159)

L2A
I
2 + 4 RAI3

= 8∆1 · coefficient of δµ1µ2p3ν2 in pν1
1 〈〈Tµ1ν1(p1)Tµ2ν2(p2)OI(p3)〉〉, (3.160)

where both right-hand sides vanish by (3.145). As in our earlier analysis leading to (3.9),

these secondary Ward identities can conveniently be solved in the soft limit p3 → 0. Work-

ing in the regulated theory where necessary to avoid divergences, we obtain the constraints

CI2 = (∆3 + 2)(d−∆3 − 2)CI1 , (3.161)

CI3 =
1

4
∆3(∆3 + 2)(d−∆3)(d−∆3 − 2)CI1 . (3.162)

The regulated 3-point function thus depends on a single theory-specific constant CI1 .

Regularisation. Conservation of the stress tensor requires u = v1 = v2. To regulate the

various singularities arising in triple-K integrals, however, we must retain v3 6= u. These

singularities are summarised in the table below. Divergences of the type (+ + +) and

(−+ +) are excluded by unitarity since they require either ∆3 ≤ 0 or d ≤ 0.
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Factor Integral (−−−) (+−−) (−−+) (+ +−)

A1 J4{000} ∆3 = 4 + 2n ∆3 = d+ 4 + 2n ∆3 = d− 4− 2n ∆3 = 2d+ 4 + 2n

A2 J3{001} ∆3 = 2 + 2n ∆3 = d+ 2 + 2n ∆3 = d− 4− 2n ∆3 = 2d+ 2 + 2n

J2{000}
′′ ′′ ∆3 = d− 2− 2n ′′

A3 J2{002} ∆3 = 2n ∆3 = d+ 2n ∆3 = d− 4− 2n ∆3 = 2d+ 2n

J1{001}
′′ ′′ ∆3 = d− 2− 2n ′′

J0{000}
′′ ′′ ∆3 = d− 2n ′′

Table 7: Singularities arising in triple-K integrals for the form factors of 〈Tµ1ν1Tµ2ν2OI〉.

Renormalisation. As we discuss below, counterterms are only available for the cases

summarised in table 8. In certain instances, there are then no counterterms able to remove

a particular singularity. When this occurs, there are two possibilities: either the primary

constants multiplying these divergent triple-K integrals must vanish as some suitable power

of the regulator, or else the singularities of individual triple-K integrals cancel against one

another when summed to construct the regulated form factor. As we will see in specific

examples later, these two possibilities are not mutually exclusive. In fact, the precise

combination of cancellations and/or vanishing that occurs is dictated by the secondary

conformal Ward identities, which impose specific relations between the primary constants.

The elimination of singularities in this manner thus introduces no arbitrariness.

Singularity type Counterterms available when

(−−−) ∆3 = 4 + 2n

(+−−) ∆3 = d+ 2 + 2n

(−−+) ∆3 = d− 4− 2n

Table 8: Availability of counterterms for 〈Tµ1µ2Tµ2ν2OI〉.

Anomalies. Singularities of type (−−−) are removed by counterterms that are cubic in

the sources, giving rise to anomalies. Here, the relevant sources are a single scalar source

φI and two metric perturbations. The three simplest such counterterms are∫
ddx
√
g φI ,

∫
ddx
√
g RφI ,

∫
ddx
√
gW 2φI , (3.163)

and more complicated examples can be constructed by adding an even number of covariant

derivatives. The first two of these counterterms are forbidden, however, since they con-

tribute respectively to the 1-point function 〈OI〉 and to the 2-point function 〈TOI〉, both of

which must vanish to preserve conformal invariance. Only the third counterterm (and its

analogues with additional covariant derivatives) is therefore permitted. All such countert-

erms contain at least two Riemann tensors, which requires ∆3 = 4 + 2n, for n = 0, 1, 2 . . ..

Anomalies can then only arise in these cases.
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Beta functions. Singularities of type (+ − −) are removed by a counterterm contain-

ing the stress tensor Tµν and two sources, the metric and φI . The three simplest such

counterterms are∫
ddx
√
g TφI ,

∫
ddx
√
g∇µ∇νTµνφI ,

∫
ddx
√
g TµνR

µνφI , (3.164)

while more complicated examples follow by adding an even number of additional covariant

derivatives. The first two of these counterterms introduce however a mixing between O
and either T or ∇µ∇νTµν . While these latter operators are local, they are not conformal

primaries and so these counterterms cannot be added while keeping OI primary. Only

the third counterterm (and its analogues with additional covariant derivatives) is therefore

acceptable; such counterterms only exist for ∆3 = d+ 2 + 2n.

Finally, (− − +) singularities can be removed by counterterm involving the scalar

operator OI and two metric perturbations. The three simplest such counterterms are∫
ddx
√
gOI ,

∫
ddx
√
gOIR,

∫
ddx
√
gW 2OI , (3.165)

and again more complicated examples can be constructed by adding additional covariant

derivatives. The first counterterm simply represents a constant deformation of the original

CFT by a marginal operator, and so does not need to be considered. The second coun-

terterm is the so-called improvement term and contributes to the mixed 2-point function

〈TµνOI〉. As this must vanish by conformal invariance, this counterterm can also be ex-

cluded. Only the third counterterm and its analogues with additional covariant derivatives

are therefore permitted. All such counterterms involve at least two Riemann tensors, and

hence only exist for ∆3 = d− 4− 2n.

3.4.2 d = 3 and ∆3 = 1

From table 7, all triple-K integrals multiplying the primary constant CI1 are finite, while

those multiplying CI2 and CI3 all have (− − +) singularities and hence ε−1 poles. From

our solution (3.161) - (3.162) of the secondary Ward identities, however, we see that the

primary constants CI2 and CI3 are both suppressed by a factor of ε relative to CI1 . The

leading term in CI1 is thus of order ε0 while the expansions of CI2 and CI3 begin at order ε.

The regulated form factors are then finite as ε → 0, as indeed must be the case given the

absence of counterterms. After redefining CI1 to absorb an overall numerical factor, the

result is

AI1 =
CI1

a4
123p3

E1, (3.166)

AI2 =
CI1

a3
123p3

(
− E1(a12 − p3) + 2E2b12

)
, (3.167)

AI3 =
CI1 (a12 − p3)

4a2
123p3

(
E1(a12 − p3)− 4E2b12

)
, (3.168)
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where the polynomials

E1 = 3a2
12 + 6b12 + 4a12p3 + p2

3, E2 = 3a12 + p3. (3.169)

As d = 3, we can also add to these form factors the degenerate combination (3.154).

3.4.3 d = 3 and ∆3 = 3

In this case, all the triple-K integrals appearing in the form factors AI1 and AI2 are finite,

while those appearing in AI3 all have ε−1 poles due to the presence of (+−−) singularities.

(The integral J0{000} has in addition a (−−+) singularity, however since this differs only

by a permutation, it does not lead to a double pole; see [11]). Explicitly, we find

J2{002} = I 5
2

+uε{ 3
2

+uε, 3
2

+uε, 7
2

+v3ε} =
(π

2

)3/2 5

(u− v3)ε
(p3

1 + p3
2) +O(ε0), (3.170)

J1{001} = I 3
2

+uε{ 3
2

+uε, 3
2

+uε, 5
2

+v3ε} =
(π

2

)3/2 1

(u− v3)ε
(p3

1 + p3
2) +O(ε0), (3.171)

J0{000} = I 1
2

+uε{ 3
2

+uε, 3
2

+uε, 3
2

+v3ε} =
(π

2

)3/2 1

3(u− v3)ε
(p3

1 + p3
2 − p3

3) +O(ε0). (3.172)

As again there are no counterterms available, the regulated form factors must be finite as

ε→ 0. Here, the secondary Ward identities (3.161) - (3.161) tell us that to leading order

CI2 =
(
− 10 +O(ε)

)
CI1 , CI3 =

(
− 15

2
(u− v3)ε+O(ε2)

)
CI1 . (3.173)

With these primary constants, the poles in J2{002} and J1{001} now cancel when summed

to construct the form factor AI3, while the expansion of CI3 begins at order ε eliminating

the pole contribution from J0{000}. Sending ε → 0 and reabsorbing an overall numerical

factor into CI1 , the final result is

AI1 =
CI1
a4

123

E1, (3.174)

AI2 =
CI1
a3

123

(
− E1(a12 − p3) + 2E2b12

)
, (3.175)

AI3 =
CI1 (a12 − p3)

4a2
123

(
E1(a12 − p3)− 4E2b12

)
, (3.176)

where the polynomials

E1 = a3
123 + a123b123 + 3c123, E2 = a2

12 + 3a12p3 + p2
3. (3.177)

Once again, as d = 3, we are free to add to these form factors the degenerate combination

(3.154).
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3.4.4 d = 3 and ∆3 = 4

We examine this additional case since it raises the novel possibility of a three-dimensional

type A anomaly. In dimensional regularisation, type A anomalies originate from a 0/0 limit

in which an ε−1 pole multiplies an evanescent tensorial structure that vanishes as ε → 0.

Here, we find exactly this: the regulated form factors are

AI1 =
cI

uε
+O(ε0), (3.178)

AI2 = − c
I

uε
(p2

1 + p2
2 − p2

3) +O(ε0), (3.179)

AI3 = − cI

4uε
J2 +O(ε0), (3.180)

where

cI = −
(π

2

)3/2 3u

(u+ v3)
C

(0)I
1 . (3.181)

The divergences thus correspond to a pole multiplying the degenerate form factor combina-

tion (3.154). This combination derives from the contraction of a 4-form (namely (3.153)),

and so vanishes in the limit of three spacetime dimensions.

As discussed in section 4.1 of [13], the divergent form factors (3.178) - (3.180) are

equivalent to a finite anomalous contribution to the 3-point function of the form

〈〈Tµ1ν1(p1)Tµ2ν2(p2)OI(p3)〉〉anom.

= cIp2
2 πµ1ν1(p1)Πµ2ν2α2β2(p2)pα2

3 pβ2
3 + cIp2

1 πµ2ν2(p2)Πµ1ν1α1β1(p1)pα1
2 pβ1

2

− cI

8
J2πµ1ν1(p1)πµ2ν2(p2). (3.182)

One way to see this is to note that, in dimensional regularisation, the external Lorentz

indices µ1, ν1, µ2, ν2 run only over the physical values 1, 2, 3, while all internal Lorentz

indices (i.e., those that are contracted) run over the full d dimensions. Proceeding now

to evaluate the left-hand side of (3.153), we note first that the 4-form vanishes when

contracted with any momentum. From the definition (2.25) of the transverse-traceless

projectors, when contracted with the 4-form the only nonzero contributions then come

from the terms

Πµναβ(p) = δµ(αδβ)ν −
1

d− 1
πµν(p)δαβ + . . . (3.183)

Here, in the first δµ(αδβ)ν term, the α and β indices take physical values since the µ and ν

are external indices. In the second term, the α and β indices are instead internal and hence

run over d dimensions. Consequently, when we evaluate the left-hand side of (3.153), the

δµ1(α1
δβ1)ν1

δµ2(α2
δβ2)ν2

piece from the product of the two transverse-traceless projectors

makes no contribution, since all indices in the 4-form are forced to take physical values.

(The α3 and α4 indices are attached to external momenta hence also take physical values.)

The remaining terms all contain at least one d-dimensional trace over the 4-form, generating
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a factor of (d − 3) = 2uε. This zero cancels the overall pole multiplying the form factors,

yielding the finite result given in (3.182).

An alternative way to obtain this same result is to consider adding a counterterm

Sct = aI
∫

d3+2uεx
√
gµ(u+v3)εφIE4, (3.184)

whose contribution to the 3-point function is

〈〈Tµ1ν1(p1)Tµ2ν2(p2)OI(p3)〉〉ct

= 192µ(u+v3)εaIδα1

(µ1
δν1)β1

δα2

(µ2
δν2)β2

δβ1

[α1
δβ2
α2
p1α3p2α4]p

α3
1 pα4

2 . (3.185)

We then re-write the right-hand side using the identity

δµ(αδβ)ν = Πµναβ(p) + Tµν(α(p) pβ) +
1

d− 1
πµν(p)δαβ, (3.186)

where Tµνα(p) is defined in (3.59). The contribution from Tµν(α(p)pβ) vanishes, however,

since the 4-form on the right-hand side of (3.185) is transverse. The terms containing two

transverse-traceless projectors are proportional to (3.153), and are equivalent to the form

factors listed in (A.43) - (A.45). Setting

aI = − cI

8uε
+O(ε0), (3.187)

we can cancel the divergences in the regulated form factors (3.178) - (3.180). The remain-

ing contribution from the counterterm then corresponds to the anomalous terms given in

(3.182). In this second approach, therefore, rather than evaluating the 4-form we simply

cancel it with an appropriate counterterm; on the other hand, from the first approach it is

clear that adding counterterms is not required in order to remove the divergences. This is

generally the case for type A anomalies, as originally emphasised in [38].

Resuming our analysis, tracing over (3.182) the anomalous contribution to the trace

Ward identity (3.146) can be written

AIµ2ν2
= −2cI δα1

(µ1
δν2)β1

(
εα1α2α3p

α2
2 pα3

3

)(
εβ1β2β3p

β2
2 p

β3
3

)
. (3.188)

Both this contribution and (3.182) follow from the full trace anomaly

〈T 〉s = −3cI∇[α1
∇[α1

(
R
α2α3]
α2α3]φ

I
)

= 2cIGµν∇µ∇νφI , (3.189)

where Gµν is the Einstein tensor, as can easily be verified by writing gµν = δµν + δgµν and

hαβ = δασδgβσ, whereupon

〈T 〉s = 6cI ∂[α1
∂[α1hα2

α2
∂α3]∂

α3]φI +O(h2φ). (3.190)

Unfortunately, as this anomaly is exact, it must however be of the trivial variety that

can be removed through the addition of counterterms. These counterterms should be

scale-invariant and give rise to a virial current J µ such that 〈T 〉ct = ∇µJ µ cancels the
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anomaly. Independently, we could have anticipated the triviality of this anomaly from the

scheme-dependence of the coefficient cI in (3.181).

To find the counterterms cancelling the anomaly, notice that the square of the Weyl

tensor in d = 3 + 2uε is

W 2
d = E4 +

8uε

1 + 2uε
RµνR

µν − uε(3 + 2uε)

(1 + uε)(1 + 2uε)
R2, (3.191)

and the Weyl variation of the corresponding counterterm is

δσ

(
aI
∫

ddx
√
gµ(u+v3)εφIW 2

d

)
= (u+ v3)ε aI

∫
ddx
√
gµ(u+v3)εφIW 2

d σ. (3.192)

In the limit ε→ 0, this variation then vanishes since the prefactor on the right-hand side is

finite from (3.187), while the Weyl tensor vanishes in three dimensions. We recognise the

first part of this counterterm as (3.184), so the finite remainder must therefore supply the

counterterms required to remove the anomaly,

Sct = −cI
∫

ddx
√
gµ(u+v3)εφI

(
RµνR

µν − 3

8
R2
)
. (3.193)

Indeed, in three dimensions, these have exactly the Weyl variation we seek:

δσSct = 2cI
∫

d3x
√
g σGµν∇µ∇νφI . (3.194)

Finally, for completeness, let us evaluate the renormalised correlator. From our discus-

sion above, we can effectively remove both the divergences in the original regulated form

factors (3.178) - (3.180) and the anomaly through the combined counterterm

Sct = cI
∫

ddx
√
gµ(u+v3)εφIW 2

d , cI = − cI

8uε
+ cI(0) +O(ε). (3.195)

This combined counterterm is also Weyl covariant (in the sense of (3.78)), as follows from

(3.192). Relabelling C
(0)I
1 → (π/2)3/2(CI1/4) and removing the regulator, we then obtain

the renormalised form factors

AI1 =
CI1
a4

123

E1 − 6CI1 ln
a2

123

µ2
+DI

1, (3.196)

AI2 =
CI1
a3

123

(
− E1(a12 − p3) + 2E2b12

)
+ (p2

1 + p2
2 − p2

3)
(

6CI1 ln
a2

123

µ2
−DI

1

)
, (3.197)

AI3 =
CI1 (a12 − p3)

4a2
123

(
E1(a12 − p3)− 4E2b12

)
+

1

4
J2
(

6CI1 ln
a2

123

µ2
−DI

1

)
, (3.198)

where the polynomials

E1 = a2
12(a2

12 + 12b12) + 16a12(a2
12 + 3b12)p3 + 6(7a2

12 + 10b12)p2
3 + 32a12p

3
3 + 5p4

3, (3.199)

E2 = a3
12 + 15a2

12p3 + 27a12p
2
3 + 5p3

3. (3.200)
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The scheme-dependent constant DI
1 can be adjusted arbitrarily by rescaling µ, and in

fact these terms, as well as all logarithmic terms, are of the degenerate form (3.154). When

we reconstruct the renormalised correlator, all dependence on DI
1 and µ therefore drops

out and the result depends on CI1 only.

This is also evident from the dilatation Ward identities, in which the right-hand sides

are again of the degenerate form meaning the reconstructed correlator is scale-invariant:

µ
∂

∂µ
AI1 = 12CI1 (3.201)

µ
∂

∂µ
AI2 = −12CI1 (p2

1 + p2
2 − p2

3) (3.202)

µ
∂

∂µ
AI3 = −3CI1J

2. (3.203)

The primary CWIs read

K12A
I
1 = 0, K13A

I
1 = 0,

K12A
I
2 = 0, K13A

I
2 = 8AI1 + 48CI1 ,

K12A
I
3 = 0, K13A

I
3 = 2AI2 − 24CI1 (p2

1 + p2
2 − p2

3),

(3.204)

while the secondary CWIs retain their original homogeneous form,

L2A
I
1 + RAI2 = 0, L2A

I
2 + 4 RAI3 = 0. (3.205)

The trace Ward identity (3.146) is satisfied with AIµν = 0.

While two of the primary CWI in (3.204) are apparently anomalous, we know that

in reality the anomaly has been removed by the counterterm (3.195). The ‘anomalous’

terms appearing in these identities are in fact an artefact of the degeneracy: as discussed

in [10], special conformal transformations are represented, not by the Kij per se, but rather

by these operators acting in combination with dilatations. For the two ‘anomalous’ pri-

mary CWI in (3.204), the corresponding identities associated purely with special conformal

transformations are

0 = K13A
I
2 +

2

p3

∂

∂p3
D2A

I
2 − 8AI1, (3.206)

0 = K13A
I
3 +

2

p3

∂

∂p3
D4A

I
3 − 2AI2, (3.207)

where Dα is the dilatation operator

Dα = −α+

3∑
j=1

pj
∂

∂pj
= −µ ∂

∂µ
. (3.208)

When evaluated on the solution (3.196) - (3.198), these equations are satisfied without any

anomalous terms. Using (3.201) - (3.203), we can then check that the two terms involving

the dilatation operator Dα are responsible for producing the ‘anomalous’ terms in (3.204).

These terms are thus simply the result of cross-contamination from the corresponding

‘anomalous’ terms in the dilatation Ward identities (3.201) - (3.203), which are manifestly

of the degenerate form. When the renormalised correlator is reconstructed from its con-

stituent form factors, it therefore obeys the homogeneous conformal Ward identities in

their full tensorial form.
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3.4.5 d = 3 and general ∆3

As we saw in section 3.3.4, additional simplifications in d = 3 can be obtained through use

of the scheme u = v1 = v2 = 0 with v3 6= 0. In this scheme all triple-K integrals appearing

in our solution (3.156) - (3.158) for the regulated form factors have β1 = β2 = 3/2. These

can then converted to integrals with β1 = β2 = 1/2 using the identity

Iα{ 3
2
, 3
2
,β3} = Iα−2{ 1

2
, 1
2
,β3} + (p1 + p2)Iα−1{ 1

2
, 1
2
,β3} + p1p2Iα{ 1

2
, 1
2
,β3}, (3.209)

which follows from writing out all half-integer Bessel functions as elementary functions.

Making repeated use of our earlier identities (3.114) - (3.115), one can then show that our

solution for the regulated form factors, (3.156) - (3.157) plus (3.161), is equivalent to

AI1 = p1p2FI1 + FI2 , (3.210)

AI2 = −2χp1p2FI1 + 2(p1p2 − χ)FI2 , (3.211)

AI3 = χ2p1p2FI1 + χ(χ− 2p1p2)FI2 , (3.212)

with χ as given in (3.116) and

FI1 = CI1I 9
2
{ 1

2
, 1
2
,∆3− 3

2
+v3ε}, (3.213)

F2 = CI1I 5
2
{ 1

2
, 1
2
,∆3− 3

2
+v3ε} + (p1 + p2)CI1I 7

2
{ 1

2
, 1
2
,∆3− 3

2
+v3ε}. (3.214)

Since

2(p1p2 − χ) = −(p2
1 + p2

2 − p2
3), χ(χ− 2p1p2) = −J2/4, (3.215)

all terms proportional to FI2 are thus of the degenerate form (3.154). When the correlator is

reconstructed from the form factors, the result is thus given by FI1 times a single universal

tensor structure that is independent of ∆3. Due to the degeneracy, this structure can be

written in a number of equivalent ways. Perhaps the most efficient is to use the degeneracy

to set AI1 to zero, whereupon we obtain

〈〈tµ1ν1(p1)tµ2ν2(p2)OI(p3)〉〉 =

− 2p2
1p

2
2FI1 Πµ1ν1αβ1(p1)Πµ2ν2

α
β2(p2)

(
pβ1

2 p
β2
3 − χδ

β1β2

)
. (3.216)

Projecting into a helicity basis as described in section 8.1.1 of [10], we find

〈〈T (s1)(p1)T (s2)(p2)OI(p3)〉〉 =
1

2
p1p2χ

2FI1 δs1s2 (3.217)

where the helicities s1 and s2 take values ±1. The correlator thus vanishes for opposite

helicities. More generally, even when we retain the degenerate FI2 terms, the form factors

satisfy

0 = χ2AI1 + χAI2 +AI3. (3.218)

This remarkable relation is valid for general values of the scalar dimension ∆3. A quick

check shows it holds for all the specific cases ∆3 = 1, 3, 4 studied above.
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Finally, (3.210) - (3.212) also tells us the functional dependence of the form factors on

the symmetric polynomials a12 = p1 + p2 and b12 = p1p2. Since

Iα{ 1
2
, 1
2
,β3} =

π

2

∫ ∞
0

dxxαe−(p1+p2)xpβ3
3 Kβ3(p3x), (3.219)

both FI1 and FI2 are functions of a12 and p3 only, and indeed the same is true of χ.

The dependence of the form factors on b12 is thus limited to that appearing explicitly in

(3.210) - (3.212).

Our discussion thus far has been in the regulated theory. Where divergences arise, the

relation (3.218) must hold order by order in the regulator ε. The counterterm contributions

removing these divergences must then satisfy (3.218) also, at least up to finite scheme-

dependent terms. The relation (3.218) then extends to the renormalised form factors, as

indeed we saw for the case of ∆3 = 4 in section 3.4.4 above.

The occurrence of a 0/0 limit for this case is also clear, since FI2 has a pole from the

(− − −) singularity of the first triple-K integral in (3.214), but multiplies the degenerate

combination of form factors. Similar 0/0 limits will clearly arise for all other ∆3 such

that FI2 is singular, however the residual scheme-dependence of the result suggests that no

genuine type A anomalies can arise.

3.4.6 d = 4 and ∆3 = 2

Here, all triple-K integrals multiplying the primary constants CI2 and CI3 have ε−2 poles,

due to the presence of both (− − −) and (− − +) singularities. The secondary Ward

identities (3.161) - (3.162), however, tell us that these primary constants are suppressed by

a factor of ε relative to CI1 . To leading order,

CI2 =
(
4(u− v3)ε+O(ε2)

)
CI1 , CI3 =

(
4(u− v3)ε+O(ε2)

)
CI1 . (3.220)

The corresponding contributions to the form factors AI2 and AI3 are therefore only linearly

divergent. Meanwhile, of the triple-K integrals multiplying the primary constant CI1 , those

appearing in the form factors AI2 and AI3 have single poles (since only (−−−) singularities

are present), while the triple-K integral for the form factor AI1 is finite.

As no counterterms are available (see table 8), we now anticipate a grand cancellation

of singularities. First, for the form factor AI2, we have

J3{001} = I4+uε{2+uε,2+uε,1+v3ε} = − 4

(u+ v3)ε
+O(ε0), (3.221)

J2{000} = I3+uε{2+uε,2+uε,v3ε} =
4

(u2 − v2
3)ε2

+O(ε−1). (3.222)

From (3.220) and (3.157), the two pole contributions to AI2 then cancel as required. Next,
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for the form factor AI3, the leading singularities are

J2{002} = I3+uε{2+uε,2+uε,2+v3ε} =
2

(u+ v3)ε
(p2

1 + p2
2 + p2

3) +O(ε0), (3.223)

J1{001} = I2+uε{2+uε,2+uε,1+v3ε} = − 2

(u2 − v2
3)ε2

p2
3 +O(ε−1), (3.224)

J0{000} = I1+uε{2+uε,2+uε,v3ε} = − 1

(u2 − v2
3)ε2

(p2
1 + p2

2 − p2
3) +O(ε−1). (3.225)

From (3.220) and (3.158), we then obtain three cancelling pole contributions to AI3. Thus,

all the regulated form factors are indeed finite as ε→ 0.

Evaluating the subleading contributions to the triple-K integrals, after removing the

regulator and reabsorbing an overall numerical factor into CI1 , we obtain the final result

AI1 = CI1

(
2− p1

∂

∂p1

)(
2− p2

∂

∂p2

)
p1p2

∂2

∂p1∂p2
I1{000}, (3.226)

AI2 = 4CI1

[(
2− p1

∂

∂p1

)(
2− p2

∂

∂p2

)
I

(fin)
2{111} −

2

3
ln
p2

1p
2
2

p4
3

+
7

3

]
, (3.227)

AI3 =
96CI1p

4
1p

4
2p

4
3

J4
I1{000} (3.228)

− 2CI1
J4

[
p4

1(p2
1 − p2

2 − p2
3)(J2 + 6p2

2p
2
3) ln

p2
1

p2
3

+ (p1 ↔ p2)
]

+
CI1
J2

[
3a6

12 − a4
12(18b12 + 7p2

3) + a2
12(24b212 + 28b12p

2
3 + 5p4

3)− 28b212p
2
3 − 10b12p

4
3 − p6

3

]
.

The integrals I
(fin)
2{111} and I1{000} are given in (2.45) and (2.43).

3.4.7 d = 4 and ∆3 = 4

From table 7, the triple-K integrals appearing in the form factors A1 and A2 diverge as

ε−1 due to the presence of (−−−) singularities. Those entering the form factor A3 diverge

as ε−2 due to the presence of (−−−) and (+−−) singularities. (J0{000} in addition has a

(−−+) singularity.) Evaluating this latter form factor explicitly, we find

AI3 =
1

2(u2 − v2
3) ε2

[
−
(
48C

(0)I
1 + 4C

(0)I
2 + C

(0)I
3

)
(p4

1 + p4
2) + C

(0)I
3 p4

3

]
+O(ε−1), (3.229)

where we have expanded all primary constants as

CIj = C
(0)I
j + εC

(1)I
j + ε2C

(2)I
j +O(ε3) (3.230)
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for j = 1, 2, 3. From (3.161) - (3.162), on the other hand, the secondary Ward identities tell

us that

C
(0)I
2 = −12C

(0)I
1 , (3.231)

C
(1)I
2 = −12C

(1)I
1 + 4(u− 2v3)C

(0)I
1 , (3.232)

C
(2)I
2 = −12C

(2)I
1 + 4(u− 2v3)C

(1)I
1 + (u2 − v2

3)C
(0)I
1 , (3.233)

C
(0)I
3 = 0, (3.234)

C
(1)I
3 = −12(u− v3)C

(0)I
1 , (3.235)

C
(2)I
3 = −12(u− v3)C

(1)I
1 + (u− v3)(u− 11v3)C

(0)I
1 (3.236)

and so we see immediately that the leading ε−2 pole in AI3 in fact vanishes. The remaining

divergences are now all of order ε−1, and read

AI1 = − 8C
(0)I
1

(u+ v3)ε
+O(ε0), (3.237)

AI2 =
8C

(0)I
1

(u+ v3)ε
(p2

1 + p2
2 − p2

3) +O(ε0), (3.238)

AI3 =
2C

(0)I
1

(u+ v3)ε
(J2 − 2p2

1p
2
2) +O(ε0). (3.239)

To eliminate these remaining divergences, we have at our disposal the (−−−) counterterm

Sct = cI
∫

d4+2uεx
√
g φIW 2

dµ
(u+v3)ε. (3.240)

Here, we use the Weyl tensor in d = 4 + 2uε dimensions, rather than four, to ensure the

counterterm action is Weyl covariant (i.e., of the form (3.78)). Using

W 2
d = W 2

4 + uε(W 2
4 − E4 +

1

9
R2) +O(ε2), (3.241)

and the results of appendix A.2, we then obtain the counterterm contributions

Act I
1 = 8cIµ(u+v3)ε, (3.242)

Act I
2 = −8cI(p2

1 + p2
2 − p2

3)µ(u+v3)ε, (3.243)

Act I
3 = 2cI

(
2(1 + uε)p2

1p
2
2 − J2

)
µ(u+v3)ε. (3.244)

We can now eliminate the divergences by choosing

cI =
C

(0)I
1

(u+ v3)ε
+ c(0)I +O(ε). (3.245)
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Relabelling C
(0)I
1 → CI1 and evaluating the renormalised form factors, we find

AI1 = CI1

(
2− p1

∂

∂p1

)(
2− p2

∂

∂p2

)(
2− p3

∂

∂p3

)
I

(fin)
2{111}

− 4

3
CI1

[
ln
p2

1

µ2
+ ln

p2
2

µ2
+ ln

p2
3

µ2

]
− 8CI1 − 4DI

1, (3.246)

AI2 = 4CI1

(
1− p3

∂

∂p3

)
I

(fin)
3{222}

+ 2CI1

[
(p2

1 + p2
2) ln

p2
3

µ2
+ (p2

1 − p2
3) ln

p2
2

µ2
+ (p2

2 − p2
3) ln

p2
1

µ2

]
+ 4CI1p

2
3 + 4(p2

1 + p2
2 − p2

3)DI
1, (3.247)

AI3 = 2CI1p
2
3I

(fin)
3{222} + CI1

[
(p2

2p
2
3 − p4

1 + p4
3) ln

p2
1

µ2
+ (p2

1p
2
3 − p4

2 + p4
3) ln

p2
2

µ2

+ p2
3(p2

1 + p2
2 − 3p2

3) ln
p2

3

µ2
− 2(p4

1 + p4
2 − p2

1p
2
2 + 2p4

3)
]

+ (J2 − 2p2
1p

2
2)DI

1, (3.248)

where the finite integrals I
(fin)
2{111} and I

(fin)
3{222} are given in (2.48) and (2.46). The scheme-

dependent constant DI
1 is a linear combination of the regulated theory data,

DI
1 = −2c(0)I +

2C
(1)I
1

(u+ v3)
+
u(3− 2γE + 2 ln 2)− v3

u+ v3
C

(0)I
1 . (3.249)

In the renormalised theory, DI
1 can be shifted arbitrarily by rescaling µ.

Anomalous CWI. Due to the counterterms, the renormalised form factors satisfy the

anomalous dilatation Ward identities

µ
∂

∂µ
AI1 = 8CI1 , (3.250)

µ
∂

∂µ
AI2 = −8CI1 (p2

1 + p2
2 − p2

3), (3.251)

µ
∂

∂µ
AI3 = 2CI1 (2p2

1p
2
2 − J2). (3.252)

The conformal Ward identities are similarly anomalous: the primary CWI read

K12A
I
1 = 0, K13A

I
1 = 0,

K12A
I
2 = 0, K13A

I
2 = 8AI1 + 32CI1 , (3.253)

K12A
I
3 = 0, K13A

I
3 = 2AI2 − 16CI1 (p2

1 + p2
2 − p2

3),

while the secondary CWI retain their original homogeneous form

L2A
I
1 + RAI2 = 0, L2A

I
2 + 4 RAI3 = 0. (3.254)
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From (2.71), the anomaly action is

A = −CI1
∫

d4x
√
g φIW 2

4 , (3.255)

and from (1.1), the anomalous dilatation Ward identities (3.250) - (3.252) are equivalent to

µ
∂

∂µ
〈Tµ1ν1(x1)Tµ2ν2(x2)OI(x3)〉 = −4

δ3A

δgµ1ν1(x1)δgµ2ν2(x2)δOI(x3)

∣∣∣
0
. (3.256)

On a conformal manifold, (3.255) represents a moduli-dependent shift c → c − CI1φI

in the c-coefficient of the Weyl anomaly, as discussed recently in [43]. Since c = −CTT /2,

this is equivalent to a shift CTT → CTT + 2CI1φ
I in the 2-point normalisation entering the

quadratic anomaly action (2.72). The same result also follows from conformal perturbation

theory, where one finds the renormalised 2-point function takes the expected form (2.64),

but with CTT shifted as above.13

Finally, the anomalous contribution AIµ2ν2
appearing in the trace Ward identity (3.146)

can be obtained by functionally differentiating the anomaly action (3.255) with respect to

the metric and the scalar source φI . As this action is quadratic in the metric perturbations,

however, AIµ2ν2
vanishes and hence

〈〈T (p1)Tµ2ν2(p2)OI(p3)〉〉 = 0. (3.257)

3.5 〈Tµ1ν1Jµ2O〉

Decomposition. The transverse and trace Ward identities are

pν1
1 〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉 = 0, (3.258)

p2µ2〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉 = 0, (3.259)

〈〈T (p1)Jµ2a(p2)OI(p3)〉〉 = 0, (3.260)

so the 3-point function is purely transverse,

〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉 = 〈〈tµ1ν1(p1)jµ2a(p2)OI(p3)〉〉. (3.261)

Form factors. The tensor structure can be decomposed as

〈〈tµ1ν1(p1)jµ2a(p2)OI(p3)〉〉 = Πµ1ν1

α1β1
(p1)πµ2

α2
(p2)

[
AaI1 p

α1
2 pβ1

2 p
α2
3 +AaI2 δ

α1α2pβ1
2

]
. (3.262)

The form factors A1 and A2 are functions of the momentum magnitudes, with no sym-

metries under permutations of these momenta. Given 〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉, with

momenta chosen according to our cyclic rule (2.23), the form factors can be extracted using

AaI1 = coefficient of pµ1
2 pν1

2 p
µ2
3 , (3.263)

AaI2 = 2 · coefficient of δµ1µ2pν1
2 . (3.264)

13For this analysis, one evaluates 〈〈Tµ1ν1(p)Tµ2ν2(−p)O(0)〉〉 = A3(p, p, 0)Πµ1ν1µ2ν2(p) using (3.248).
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Primary CWIs. The primary CWIs are

K12A
aI
1 = 0, K13A

aI
1 = 0,

K12A
aI
2 = 0, K13A

aI
2 = 4AaI1 .

(3.265)

The solution in terms of triple-K integrals is

AaI1 = CaI1 J3{000}, (3.266)

AaI2 = 2CaI1 J2{001} + CaI2 J1{000}, (3.267)

where CaIj , j = 1, 2 are constants.

Secondary CWIs. The independent secondary CWIs are

L2A
aI
1 + RAaI2 = 2d · coefficient of pµ1

2 pµ2
3 in p1ν1〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉, (3.268)

L′1A
aI
1 + 2 R′AaI2

= −2(d− 2) · coefficient of pµ1
2 pν1

2 in p2µ2〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉, (3.269)

L2A
aI
2 = 4d · coefficient of δµ1µ2 in p1ν1〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉, (3.270)

where all right-hand sides vanish using (3.258) and (3.259). This leads to an over-determined

system of equations. Evaluating the soft limit p3 → 0 using (2.34) and (2.35), keeping

generic values of dimensions, we find

0 = CaI2 + ∆3(∆3 + 2− d)CaI1 , (3.271)

0 = CaI2 +
1

2
(∆3 + 2)(∆3 + 2− d)CaI1 , (3.272)

0 = CaI2 + 2(2∆3 − d)CaI1 , (3.273)

which requires14

CaI1 = CaI2 = 0. (3.274)

The correlation function therefore vanishes:

〈〈Tµ1ν1(p1)Jµ2a(p2)OI(p3)〉〉 = 0. (3.275)

This result is consistent with our original analysis in [10] after taking into account the

different definition of the 3-point function employed here.15

14While ∆2 = 2 with v3 = −u appears to yield a solution, for this specific case the derivation leading to

(3.271) - (3.273) is invalidated by the presence of singularities in (2.36). A careful analysis of the soft limit

for this specific case shows instead that the secondary CWIs are not satisfied.
15In [44], a nontrivial result for this correlator was proposed based on a position space analysis (at non-

coincident points) for the case d = 3 and ∆3 = 1. Our results indicate however that this is only possible

by relaxing both of the transverse Ward identities (3.258) and (3.259) to allow additional semilocal terms.
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4 Anomalous terms in the conformal Ward identities

In this section, we return to our goal of understanding the form of the anomalous conformal

Ward identities obeyed by the renormalised correlators. In our analysis above, we found the

inhomogeneous terms entering these identities simply by inserting the renormalised form

factors back into the original homogeneous Ward identities. Here, our aim is to understand

how these anomalous terms arise from the underlying beta functions and anomalies.

For concreteness, we focus on the most interesting of the cases encountered above,

namely 〈JµOO〉 for d = ∆2 = ∆3 = 4, which features both an anomaly and a beta

function. The general principles of our discussion can then be applied to other correlators.

To set the scene, recall from equations (3.49) - (3.51) in section 3.1.5 that the renormalised

form factor for this correlator obeys the anomalous dilatation Ward identity

µ
∂

∂µ
AaI2I31 = 4g(T aR)I2I3

[COO
CJJ

(
CJJ ln

p2
1

µ2
+DJJ

)
p2

1 − a0p
2
1 − COO(p2

2 + p2
3)
]
, (4.1)

the anomalous primary CWIs

K23A
aI2I3
1 = 0, K12A

aI2I3
1 = 8a0 g(T aR)I2I3 , (4.2)

and the anomalous secondary CWI

L1A
aI2I3
1 = 4g(T aR)I2I3

[
− COO
CJJ

(
CJJ ln

p2
1

µ2
+DJJ

)
p4

1 −
(
COO ln

p2
2

µ2
+DOO

)
p4

2

+
(
COO ln

p2
3

µ2
+DOO

)
p4

3 + 2COOp
2
1p

2
2 + a0 p

2
1(p2

1 + p2
2 − p2

3)
]
. (4.3)

In contrast, in the dimensionally regulated theory, all these right-hand sides are absent.

Our task is thus to understand the origin of these nontrivial right-hand sides.

4.1 Generating relation

We can view a conformal transformation as a diffeomorphism followed by a Weyl rescaling.

The diffeomorphism is such as to produce an initial rescaling of the flat metric, δgµν =

2∂(µξν) = (2/d)(∂ ·ξ)δµν , which is then eliminated by a Weyl transformation of the opposing

sign, δgµν = 2σδµν with σ = −(1/d)(∂ ·ξ). The net transformation of the sources, following

our discussion of the trace Ward identity in section 2, is then

δgµν = 0, (4.4)

δAaµ = ξν∂νA
a
µ +Aaν∂µξ

ν − 1

d
(∂ · ξ)βAaµ , (4.5)

δφI = ξµ∂µφ
I − 1

d
(∂ · ξ)

[
− (d−∆I)φI + βφI

]
. (4.6)

In particular, the beta function contributions βAaµ and βφI have expansions beginning at

quadratic order in the sources. (We will obtain explicit expressions for these shortly.) The

renormalised generating functional, meanwhile, transforms anomalously as

δW = −1

d

∫
ddx (∂ · ξ)A. (4.7)
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Combining these equations and integrating by parts, we obtain the generating relation

0 =

∫
ddx

[1

d
(∂ · ξ)A+

(1

d
(∂ · ξ)(∆IφI + βφI ) + φIξµ∂µ

)
〈OI〉s

+
(1

d
(∂ · ξ)(dAaµ + βAaµ) +Aaµξ

ν∂ν −Aaν (∂µξ
ν)
)
〈Jµa〉s

]
, (4.8)

which holds about a flat background but with arbitrary scalar and gauge field sources.16

The conformal Ward identities for the renormalised 3-point function now follow by

functional differentiation. Noting that once the sources are switched off, (i) all 1-point

functions, and 2-point functions of different operators vanish; (ii) the beta functions and

their first derivatives vanish (as they are of quadratic or higher order), we find

Lµν 〈Jνa(x1)OI2(x2)OI3(x3)〉

=

∫
ddx

1

d
(∂ · ξ)x

((
δ2βφJ (x)

δφI2(x2)δAaµ(x1)

∣∣∣
0
〈OJ(x)OI3(x3)〉+ (2↔ 3)

)

+
δ2βAbν (x)

δφI2(x2)δφI3(x3)

∣∣∣
0
〈Jνb(x)Jµa(x1)〉 − δ3A(x)

δAaµ(x1)δφI2(x2)δφI3(x3)

∣∣∣
0

)
. (4.9)

The subscript zero here denotes switching off the sources, and the differential operator

Lµν =
[
ξα(x1)

∂

∂xα1
+ (∂ · ξ)x1 +

3∑
i=2

(
ξα(xi)

∂

∂xαi
+

1

d
(∂ · ξ)xi∆Ii

)]
δµν −

∂ξµ(x1)

∂xν1
. (4.10)

For dilatations ξµ = λxµ, this operator reduces to Lµν = −λδµνD where

D = −∆t −
3∑
i=1

xαi
∂

∂xαi
(4.11)

is the usual dilatation operator, with ∆t = d−1+∆I2 +∆I3 the total dimension of 〈JµOO〉.
On dimensional grounds, we also have the relation D〈JµOO〉 = −µ(∂/∂µ)〈JµOO〉.

For special conformal transformations ξµ = x2bµ − 2(b · x)xµ, we recover the expected

special conformal operator for 〈JµOO〉. This can be written as

Lµν = bα
[
2xµ1δ

α
ν − 2x1νδ

αµ + (2dxα1 −Kα)δµν
]
, (4.12)

where

Kα =
3∑
i=1

[
2∆ix

α
i +

(
2xαi x

κ
i − x2

i δ
ακ
) ∂

∂xκi

]
(4.13)

is the special conformal operator that one would find when acting on correlators of three

scalars. (We take ∆1 = d − 1 and ∆i = ∆Ii for i = 2, 3.) The additional terms in (4.12)

are a result of the vectorial nature of 〈JµOO〉.
16 For correlators with stress tensor insertions, an analogous generating relation can be found by first

functionally differentiating with respect to the metric to create the required insertions.
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In summary then, the left-hand side of (4.9) is equivalent to the homogeneous con-

formal Ward identities. The right-hand side consists of inhomogeneous terms that encode

the breaking of conformal symmetry due to the beta functions and the conformal anomaly.

The precise form of these inhomogeneous terms can be determined from the nature of the

counterterm action, as we discuss next.

4.2 Finding the beta function

We now focus specifically on the case at hand, d = ∆I2 = ∆I3 = 4. To preserve gauge

invariance, as well as the symmetry of interchanging OI2 and OI3 , we adopt a regularisation

scheme where u = v1 and v2 = v3. As we saw in (3.39), including all terms up to cubic

order in the sources, the counterterm action is then

Sct =

∫
d4+2uεx

[
cJJµ

2uεFµνaF aµν + cOOµ
2v2ε(D2φI)2

+ c1µ
2(v2−u)εig(T aR)IJJµaφIDµφ

J + c2µ
2v2εig(T aR)IJFµνaDµφ

IDνφ
J
]
. (4.14)

The coefficients cJJ and cOO are fixed from the renormalisation of the 2-point function, as

given in (3.40). In addition, we have of course the usual source terms

Ssource =

∫
d4+2uεx

[
OIφI + JµaAaµ

]
. (4.15)

Recalling our earlier discussions in sections 2.10 and 3.1.5, only those terms propor-

tional to cOO, c1 and c2 contribute to 〈JµOO〉ct. The c1 counterterm acts to renormalise the

gauge field Aaµ generating a nonzero beta function βAaµ . As there are no cubic counterterms

involving OI , however, the scalar source φI is not renormalised and βφI vanishes.

Since differentiating the generating functional W with respect to Aaµ generates renor-

malised current insertions, Aaµ is by definition the renormalised source. The bare source

corresponds instead to the overall coefficient multiplying Jµa in the subtracted action,

(Abare)aµ = Aaµ + c1µ
2(v2−u)εig(T aR)IJφIDµφ

J . (4.16)

Since (Abare)aµ and φI are independent of the renormalisation scale µ, to quadratic order

the beta function is then

βAaµ = lim
ε→0

µ
d

dµ
Aaµ = −2(v2 − u)c

(−1)
1 ig(T aR)IJφI∂µφ

J , (4.17)

where we expanded c1 = c
(−1)
1 ε−1 + c

(0)
1 +O(ε). Alternatively, under a Weyl variation

δσφ
I = (v2 − u)εφIσ, δσ(Abare)aµ = 0, (4.18)

hence

δσA
a
µ = −2(v2 − u)εµ2(v2−u)εc1ig(T aR)IJφIDµφ

Jσ, (4.19)

where the ∂µσ term vanishes due to the antisymmetry17 of (T aR)IJ . The vanishing of this

term is important since it ensures that

δσA
a
µ = σµ

d

dµ
Aaµ. (4.20)

17Starting from the gauge transformation δφI = −igαa(T aR)IJφJ , for φI and αa to be real we require the

combination i(T aR)IJ to be real. Since (T aR)IJ is also Hermitian, we have i(T aR)IJ = −i(T aR∗)IJ = −i(T aR)JI .
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As we remove the regulator by sending ε→ 0, we now recover δσA
a
µ = σβAaµ which was our

starting point in deriving the anomalous conformal Ward identities above.

4.3 Finding the anomaly

Having found the beta function, we now need to find the anomaly. For this, we need to

know the Weyl variation of the renormalised generating functional. In appendix A.1, we

show that imposing the relation

(v2 − u)εc2 + 2(1 + v2ε)cOO − 4(v2 − u)εc1cJJ = 0 (4.21)

ensures the Weyl covariance of the action for counterterms and sources:

δσ(Sct + Ssource) =

∫
ddx
√
g σµ

d

dµ
(Lct + Lsource). (4.22)

Evaluating this expression to cubic order in the sources about a flat background then gives

δσ(Sct + Ssource) =

∫
d4+2uεxσ

[
2uεcJJµ

2uεFµνaF aµν + 2v2εcOOµ
2v2ε(D2φI)2

+ 2
(
v2εc2 − 4(v2 − u)εc1cJJ

)
µ2v2εig(T aR)IJFµνaDµφ

IDνφ
J
]
, (4.23)

where the final term proportional to c1cJJ derives from the implicit µ-dependence of the

renormalised gauge field Aaµ in the FµνaF aµν counterterm,

µ
d

dµ
(FµνaF aµν) = −8(v2 − u)εµ2(v2−u)εc1ig(T aR)IJFµνaDµφ

IDνφ
J . (4.24)

Notice also that all dependence on the operators has dropped out, since

µ
d

dµ

∫
d4+2uεx

[
c1µ

2(v2−u)εig(T aR)IJφIDµφ
J +Aaµ

]
Jµa = µ

d

dµ

∫
d4+2uεx (Abare)aµJ

µa = 0.

(4.25)

As the Weyl variation (4.23) thus depends only on the sources, we can pull it outside the

path integral in the generating functional to obtain

δσW = lim
ε→0

[
δσ ln 〈e−Sct−Ssource〉

]
= lim

ε→0

[
− δσ(Sct + Ssource)

]
. (4.26)

SinceW is the renormalised generating function, this Weyl variation must be finite as ε→ 0.

From (4.23), we see that cJJ and cOO can have at most single poles in ε, consistent with

the renormalisation of the 2-point functions. In addition, the scheme-dependent constant

a0 = lim
ε→0

[
(v2εc2 − 4(v2 − u)εc1cJJ

)
µ2v2ε

]
= lim

ε→0

[
(uεc2 − 2(1 + v2ε)cOO)µ2v2ε

]
(4.27)

must be finite, where the second equation follows from (4.21). As cOO has a single pole,

this requires that c2 has a double pole with coefficient

c
(−2)
2 =

2

u
c
(−1)
OO =

COO
uv2

. (4.28)
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Solving (4.21) at orders ε−1 and ε0 with the aid of (2.65) and (2.66), we then find that c1
has only a single pole, and obtain the relations

c
(−1)
1 =

COO
(v2 − u)CJJ

, (4.29)

c
(−1)
2 =

CJJ
u

c
(0)
1 +

1

(v2 − u)

[COO
CJJ

(C
(0)
JJ −DJJ) +DOO − C(0)

OO − COO
]
, (4.30)

and hence

a0 = CJJc
(0)
1 +

1

(v2 − u)

[uCOO
CJJ

(C
(0)
JJ −DJJ) + v2(DOO − C(0)

OO − COO)
]
. (4.31)

These relations are equivalent to those we obtained earlier through a direct analysis of

the 3-point function divergences, namely (3.44), (3.45) and (3.48), after using (3.46) to

eliminate terms proportional to DJJ .

The anomaly action can now be read off using

A =

∫
d4xA = lim

ε→0

[
− δσ(Sct + Ssource)

]
σ=1

= lim
ε→0

[
− µ d

dµ
(Sct + Ssource)

]
. (4.32)

As we saw above, for the Weyl covariance (4.22) used in the last step here, it is crucial to

take into account the implicit µ-dependence of the renormalised sources, both in Sct and

Ssource. We thus find the anomaly action

A = −
∫

d4x
[CJJ

2
FµνaF aµν + COO(D2φI)2 + 2a0 ig(T aR)IJFµνaDµφ

IDνφ
J
]
. (4.33)

As we noted earlier in section 2.10, due to its scheme dependence a0 does not parametrise a

genuine anomaly. Instead, this term is Weyl exact and can be obtained from the variation

δσ

∫
d4x

a0

2

( CJJ
COO

FµνaF aµν + (D2φI)2
)

= −
∫

d4x 2a0 ig(T aR)IJFµνaDµφ
IDνφ

Jσ, (4.34)

as can be seen from (A.7) and (A.27) in appendix A.1.

4.4 Anomalous dilatation Ward identity

Knowing the anomaly action and the beta functions, we now have all the ingredients we

need to reconstruct the right-hand sides of the anomalous conformal Ward identities. From

our results (4.17) and (4.29) above, the beta function is

βAaµ = −2COO
CJJ

ig(T aR)IJφI∂µφ
J . (4.35)

Inserting this into the dilatation Ward identity following from (4.9), we obtain

D〈Jµa(x1)OI2(x2)OI3(x3)〉

=
[2COO
CJJ

ig(T bR)I2I3〈Jµa(x1)Jνb(x2)〉 ∂
∂xν2

δ(x2 − x3) + (2↔ 3)
]
− (AJOO)aµI2I3 , (4.36)
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where the anomalous contribution

(AJOO)aµI2I3 = − δ3A

δAaµ(x1)δφI2(x2)δφI3(x3)

∣∣∣
0

(4.37)

Examining (4.33), we see in fact only the last two terms contribute. Transforming to

momentum space, this Ward identity reads

(
2d−∆t +

3∑
i=2

pνi
∂

∂pνi

)
〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉

= −4COO
CJJ

g(T bR)I2I3p2ν〈〈Jνb(p1)Jµa(−p1)〉〉 − (AJOO)aµI2I3 , (4.38)

where the renormalised current 2-point function is given in (2.63) and the anomalous

contribution18

(AJOO)aµI2I3 = −2COOg(T aR)I2I3(p2
2 + p2

3)(pµ2 − p
µ
3 )− 4a0 g(T aR)I2I3p2

1π
µν(p1)p2ν . (4.39)

To recover (4.1), we need to recast this dilatation Ward identity in terms of the form

factor AaI2I31 . From (3.2) and (3.3), we recall the 3-point function takes the form

〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉 = AaI2I31 πµν(p1)p2ν

− pµ1
p2

1

[
g(T aR)JI3〈〈OJ(p2)OI2(−p2)〉〉+ g(T aR)JI2〈〈OJ(p3)OI3(−p3)〉〉

]
. (4.40)

Inserting this decomposition into (4.38), we find the longitudinal part is automatically

satisfied while the transverse part yields

µ
∂

∂µ
AaI2I31 = −

[
2d−∆t + 1 +

3∑
i=1

pi
∂

∂pi

]
AaI2I31

= 4g(T aR)I2I3
[COO
CJJ

(
CJJ ln

p2
1

µ2
+DJJ

)
p2

1 − a0p
2
1 − COO(p2

2 + p2
3)
]
. (4.41)

This is indeed the expected anomalous dilatation Ward identity (4.1). The logarithm of the

renormalisation scale µ appearing on the right-hand side means that the form factor AaI2I31

contains a product of such logarithms. From (4.38), we see this behaviour is a result of the

beta function introducing a dependence on the renormalised current 2-point function.

18Here, we have chosen p2 and p3 as independent momenta to make the 2 ↔ 3 symmetry manifest.

Despite appearances, (4.38) is actually symmetric under 2↔ 3 since (T bR)I3I2 = −(T bR)I2I3 and the current

2-point function is transverse.
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4.5 Anomalous special conformal Ward identities

The special conformal Ward identity following from (4.38) reads[
2xµ1δ

α
ν − 2x1νδ

αµ + (2dxα1 −Kα)δµν
]
〈Jνa(x1)OI2(x2)OI3(x3)〉

=
[4COO
CJJ

ig(T bR)I2I3〈Jµa(x1)Jνb(x2)〉xα2
∂

∂xν2
δ(x2 − x3) + (2↔ 3)

]
− 2

δ3

δAaµ(x1)δφI2(x2)δφI3(x3)

∣∣∣
0

∫
ddxxαA(x) (4.42)

where we used the beta function (4.35). The anomalous contribution can be evaluated

from the action (4.33), giving

δ3

δAaµ(x1)δφI2(x2)δφI3(x3)

∣∣∣
0

∫
ddxxαA(x)

= −2COOig(T aR)I2I3
[
2xα1∂

2
1δ(x2 − x1)∂µ1 δ(x3 − x1) + xα3∂

µ
3 δ(x1 − x3)∂2

3δ(x2 − x3)− (2↔ 3)
]

− 4a0 ig(T aR)I2I3
[
∂α1 δ(x2 − x1)∂µ1 δ(x3 − x1) + xα1∂1ν(∂ν1 δ(x2 − x1)∂µ1 δ(x3 − x1))− (2↔ 3)

]
.

(4.43)

The conversion of (4.42) to momentum space is simplified by first translating x1 → 0,

reducing the tensor structure on the left-hand side. To keep the 2↔ 3 symmetry manifest,

we choose p2 and p3 as the independent momenta. The result is

3∑
i=2

[
pαi

∂

∂pνi

∂

∂piν
− 2pνi

∂

∂pνi

∂

∂pαi

]
〈〈Jµa(p1)OI2(p2)OI3(p3)〉〉

=
4COO
CJJ

g(T bR)I2I3
(
pν2

∂

∂pα2
− pν3

∂

∂pα3

)
〈〈Jµa(p1)Jνb(−p1)〉〉

− 4COOg(T aR)I2I3(p2
2 − p2

3)δαµ + 8a0 g(T aR)I2I3(pα2 p
µ
3 − p

α
3 p

µ
2 ). (4.44)

Inserting once again our form factor decomposition (3.2), and using the renormalised cur-

rent 2-point function (2.63), with some algebra one can show this Ward identity is equiva-

lent to the primary CWIs

K23A
aI2I3
1 = 0, K12A

aI2I3
1 = 8a0 g(T aR)I2I3 , (4.45)

and the secondary CWI

L1A
aI2I3
1 − 4p1µ〈〈Jaµ(p1)OI2(p2)OI3(p3)〉〉

= 4g(T aR)I2I3p2
1

[
− COO
CJJ

(
CJJ ln

p2
1

µ2
+DJJ

)
p2

1 + 2COOp
2
2 + a0(p2

1 + p2
2 − p2

3)
]
. (4.46)

Using the transverse Ward identity (3.1), we can then rewrite this as

L1A
aI2I3
1 = 4g(T aR)I2I3

[
− COO
CJJ

(
CJJ ln

p2
1

µ2
+DJJ

)
p4

1 −
(
COO ln

p2
2

µ2
+DOO

)
p4

2

+
(
COO ln

p2
3

µ2
+DOO

)
p4

3 + 2COOp
2
1p

2
2 + a0 p

2
1(p2

1 + p2
2 − p2

3)
]
. (4.47)
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Comparing (4.45) and (4.47) with (4.2) and (4.3), we see these are precisely the anomalous

CWI we wished to derive. We can equivalently express these identities, along with the

anomalous dilatation Ward identity (4.41), in terms of the renormalised 2-point functions:

µ
∂

∂µ
AaI2I31 = 4g(T bR)I2I3

[ COO
3CJJ

〈〈Jνb(p1)Jaν (−p1)〉〉 − δab
(
a0p

2
1 + COO(p2

2 + p2
3)
)]
, (4.48)

L1A
aI2I3
1 = −4g(T aR)KI3〈〈OK(p2)OI2(−p2)〉〉+ 4g(T aR)I2K〈〈OK(p3)OI3(−p3)〉〉

+ 4
(
COO + a0

)
g(T aR)I2I3p2

1(p2
2 − p2

3)− p2
1 µ

∂

∂µ
AaI2I31 , (4.49)

As discussed earlier, with an appropriate choice of scheme, we can moreover set a0 to zero.

In conclusion then, our generating relation (4.9) correctly accounts for the inhomogeneous

terms appearing on the right-hand sides of all the anomalous conformal Ward identities,

tracing their form back to the underlying beta functions and conformal anomalies of the

renormalised theory.

5 Discussion

Our first steps in understanding momentum-space CFT are now complete. We know the

form of 2- and 3-point correlators, both for general values of the spacetime and operator

dimensions [10], and for the special cases requiring renormalisation [11, 13]. With the

results of this paper, we can now construct renormalised 3-point functions involving a mix

of scalars, stress tensors and conserved currents. Besides obtaining compact and explicit

expressions for all major cases of interest, we have identified the relevant anomalous Ward

identities, conformal anomalies and beta functions.

We hope these results will find many interesting applications. Promising candidates

include the analysis of inflationary correlators in holographic cosmology (see e.g., [17–28])

and extending studies of quantum critical transport [29–34] to cases where divergences

arise. It may also be interesting to re-interpret recent bounds, such as those derived from

conformal collider physics and the average null energy condition (see e.g., [45–47]), from

our present momentum-space perspective. Our results should further be relevant for the

analysis of conformal manifolds [39, 48–50], particularly for cases where the dimension of

some scalar operator varies continuously as a function of the moduli.

Indeed, where such a manifold exists, all the specific results we have obtained in the

present series of papers [10–13] can be reinterpreted as providing nontrivial information

about the analytic structure of the CFT data as a function of the moduli. Moving about

on the conformal manifold, the conformal dimensions in general will vary and the constants

that determine 2- and 3-points functions will contain poles wherever the scalar dimensions

are such that the corresponding correlators diverge. Our results reveal the location of these

poles, and whether they are of single or higher order [11]. It would be interesting to connect

this local analytic structure with global information from integrability or supersymmetry.

Another interesting question raised by our work is whether type A anomalies exist in

three spacetime dimensions. For 〈Tµ1ν1Tµ2ν2O〉 with ∆3 = 4, we found in section 3.4.4
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an evanescent tensor appearing with a divergent coefficient. While such a 0/0 mechanism

is characteristic of type A anomalies [13, 38], here the result we obtained was exact and

thus could be removed with a counterterm. Similar 0/0 limits exist for other values of ∆3,

however in all cases the result remains scheme-dependent and should likewise be remov-

able. This suggests no true type A anomalies can be found, but leaves room for deeper

investigation.

Looking to the bigger picture, beyond extending our 3-point results to parity-odd and

higher-spin examples, the next challenge in the development of momentum-space CFT is

clearly the 4-point function [51, 52]. What are the momentum-space analogues of conformal

cross-ratios? Can momentum-space methods be of service to the bootstrap programme?
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A Appendices

A.1 Weyl covariance of the action for counterterms and sources

In this appendix, we discuss how to impose the Weyl covariance relation

δσ(Sct + Ssource) =

∫
ddx
√
g σµ

d

dµ
(Lct + Lsource) (A.1)

on the counterterm action for 〈JµaOI2OI3〉 in the case of d = ∆I2 = ∆I3 = 4. From section

3.1.5, the relevant counterterm and source actions are

Sct =

∫
d4+2uεx

√
g
[
cJJµ

2uεFµνaF aµν + cOOµ
2v2ε(D2φI)2

+ c1µ
2(v2−u)εig(T aR)IJJµaφIDµφ

J + c2µ
2v2εig(T aR)IJFµνaDµφ

IDνφ
J
]
, (A.2)

Ssource =

∫
d4+2uεx

√
g
[
OIφI + JµaAaµ

]
, (A.3)

where gauge invariance and permutation symmetry of the scalars impose a scheme where

u = v1 and v2 = v3. As we will now show, Weyl covariance requires the counterterm
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coefficients satisfy the additional relation

(v2 − u)εc2 + 2(1 + v2ε)cOO − 4(v2 − u)εc1cJJ = 0, (A.4)

which we have made use of in sections 3.1.5 and 4.3 of the main text. (Further discussion

of this correlator also appears in section 2.10.)

We begin first with the counterterm

S
(JJ)
ct = cJJ

∫
d4+2uεx

√
g µ2uεFµνaF aµν . (A.5)

Under a Weyl transformation, δσ
√
g = (4 + 2uε)σ

√
g while to quadratic order

δσF
a
µν = 2∂[µδσA

a
ν] + 2gfabcAb[µδσA

c
ν]

= −4(v2 − u)εµ2(v2−u)εc1ig(T aR)IJ
[
∂µφ

I∂νφ
Jσ + φI∂[νφ

J∂µ]σ
]
, (A.6)

where the Weyl variation of Aaµ (derived from the corresponding beta function) is given in

(4.19). To cubic order, using the Weyl variation of φI given in (4.18), we then find

δσS
(JJ)
ct = cJJ

∫
d4+2uεx

√
g
[
2uεµ2uεFµνaF aµνσ

− 8(v2 − u)εµ2v2εc1ig(T aR)IJFµνa
(
∂µφ

I∂νφ
Jσ + φI∂νφ

J∂µσ
)]
. (A.7)

The implicit µ-dependence of the renormalised source Aaµ is encoded in the beta function

(4.17). The corresponding µ-dependence of the squared field strength is then (4.24). Under

change of the renormalisation scale, we thus find∫
d4+2uεx

√
g σµ

d

dµ
L(JJ)

ct

= cJJ

∫
d4+2uεx

√
g σ
[
2uεµ2uεFµνaF aµν − 8(v2 − u)εµ2v2εc1ig(T aR)IJFµνa∂µφ

I∂νφ
J
]

= δσS
(JJ)
ct + 8(v2 − u)εc1cJJ

∫
d4+2uεx

√
g µ2v2εFµνaig(T aR)IJφI∂νφ

J∂µσ. (A.8)

Next, as we noted in (4.25), µ(d/dµ) of the c1 counterterm is zero when combined with

the current source term, and its Weyl variation similarly vanishes:

0 = δσ

∫
d4+2uεx

√
g
[
c1µ

2(v2−u)εig(T aR)IJφIDµφ
J +Aaµ

]
Jµa

= δσ

∫
d4+2uεx

√
g Jµa(Abare)aµ. (A.9)

The φIOI source term is likewise invariant under both Weyl transformations and µ(d/dµ).

We now deal with the counterterm

S
(2)
ct = c2

∫
d4+2uεx

√
g µ2v2εig(T aR)IJFµνaDµφ

IDνφ
J . (A.10)
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To cubic order in the sources, the Weyl variation of this term is

δσS
(2)
ct = c2

∫
d4+2uεx

√
gµ2v2εig(T aR)IJ

[
2v2εF

µνa∂µφ
I∂νφ

Jσ

+ 2(v2 − u)εFµνaφI∂νφ
J∂µσ

]
, (A.11)

while under a change of renormalisation scale,∫
d4+2uεx

√
gσµ

d

dµ
L(2)

ct = c2

∫
d4+2uεx

√
g µ2v2εig(T aR)IJ2v2εF

µνa∂µφ
I∂νφ

Jσ

= δσS
(2)
ct − 2(v2 − u)εc2

∫
d4+2uεx

√
gµ2v2εig(T aR)IJFµνaφI∂νφ

J∂µσ. (A.12)

Neither the Weyl variation nor the µ-dependence of F aµν contribute here as both begin at

quadratic order in the sources.

Finally, to deal with the counterterm proportional to cOO, a little more work is required.

First, we can construct a Weyl covariant analogue of (�φ)2 by introducing the following

additional couplings to spacetime curvature,

Scov = cOO

∫
ddx
√
gµd−4+2s

[
(�φ)2 − 2(d− 2 + 2s)

(d− 2)
Rµν∂µφ∂νφ+

d(d− 2 + 2s)

2(d− 1)(d− 2)
R(∂φ)2

+
s

(d− 1)
Rφ�φ+

s2

4(d− 1)2
R2φ2 − s(d− 2 + 2s)

4(d− 2)(d− 3)
E4φ

2
]
, (A.13)

where E4 is the four-dimensional Euler density. Using the transformations

δσφ = sσφ, (A.14)

δσ(�φ) = (s− 2)σ�φ+ (d− 2 + 2s)∂µφ∂
µσ + sφ�σ, (A.15)

δσR = −2σR− 2(d− 1)�σ, (A.16)

δσRµν = −(d− 2)∇µ∂νσ − gµν�σ, (A.17)

δσE4 = −4σE4 + 8(d− 3)Rµν∇µ∂νσ − 4(d− 3)R�σ, (A.18)

one can then verify that

δσScov = (d− 4 + 2s)

∫
ddx
√
g σLcov =

∫
ddx
√
g σµ

∂

∂µ
Lcov. (A.19)

In the regulated theory, s = (v2−u)ε and the counterterm (A.13) is not Weyl invariant

(as one would anticipate). The corresponding anomaly action is however Weyl invariant,

and can be obtained (for general d) by setting s = −(d − 4)/2. Up to a constant, (A.13)

can then be rewritten ∫
ddx
√
g
[ (d− 4)

4(d− 3)(d− 3)
W 2
dφ

2 + φ∆4φ
]
, (A.20)

where W 2
d is the square of the d-dimensional Weyl tensor and ∆4 is the d-dimensional

Paneitz operator

∆4φ = �2φ+∇µ
[(

(d− 2)Jgµν − 4Pµν
)
∇νφ

]
+ (d− 4)Qφ, (A.21)
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with the Schouten tensor Pµν and Q-curvature

Pµν =
1

(d− 2)

(
Rµν − Jgµν

)
, J = gµνPµν , Q =

1

4

(
dJ2 + 2�J − 4PµνP

µν
)
. (A.22)

The Weyl invariance of (A.20) is now apparent from the relation

∆̃4φ̃ = e−(d+4)σ/2∆4φ, (A.23)

where ∆̃4 is evaluated on g̃µν = e2σgµν and φ̃ = e−(d−4)σ/2φ. Indeed, we encountered the

four-dimensional version of this action in (3.86) of section 3.2.5 (see also [53]).

Returning to the counterterm (A.13), having enforced Weyl covariance, we now need

to covariantise under gauge transformations. Promoting φ→ φI and ∂µ → DIJ
µ , we obtain

the new counterterm

S
(OO)
ct = cOO

∫
d4+2uεx

√
gµ2v2ε

[
(D2φI)2 − 2(1 + v2ε)

(1 + uε)
RµνDµφ

IDνφ
I +

(v2 − u)ε

(3 + 2uε)
RφID2φI

+
(2 + uε)(1 + v2ε)

(3 + 2uε)(1 + uε)
R(DφI)2 +

(v2 − u)2ε2

4(3 + 2uε)2
R2(φI)2 − (v2 − u)ε(1 + v2ε)

4(1 + uε)(1 + 2uε)
E4(φI)2

]
.

(A.24)

On a flat background, this new counterterm reduces to the original cOO counterterm in

(A.2), but on a general metric has improved Weyl covariance properties: we will therefore

use it in place of our original counterterm. Notice however that in this last step of gauge-

covariantising we effectively introduced the new cubic terms

cOO

∫
d4+2uεx

√
gµ2v2εig(T aR)IJ

[
− 4Aaµ�φ

I∂µφJ + 2∇µAaµφI�φJ −
4(1 + v2ε)

(1 + uε)
RµνAaνφ

I∂µφ
J

− 2

(3 + 2uε)

[
(v2 − u)ε− (2 + uε)(1 + v2ε)

(1 + uε)

]
RAaµφI∂µφ

J
]
. (A.25)

These new cubic terms in fact break the full Weyl covariance we had in (A.13): using

δσ(∇µAaµ) = −2σ∇µAaµ + (d− 2)Aaµ∂µσ, (A.26)

after some calculation, we find that∫
d4+2uεx

√
gσµ

d

dµ
L(OO)

ct

= δσS
(OO)
ct − 4(1 + v2ε)cOO

∫
d4+2uεx

√
gµ2v2εig(T aR)IJFµνaφI∂νφ

J∂µσ. (A.27)

For the combined counterterm and source action to satisfy the Weyl covariance relation

(A.1), we now need to arrange for all the non-Weyl covariant terms proportional to ∂µσ

to cancel out. Putting together our results (A.8), (A.12) and (A.27) above, we obtain the

desired relation (A.4).
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A.2 Evaluation of counterterm contributions

In this appendix, we compute the counterterm contributions to the form factors appearing

in our transverse traceless decomposition of correlators. For this purpose, it suffices to

work in a gauge where the inverse metric perturbation is transverse traceless,

gµν = δµν + γµν , γµµ = 0, γµν,ν = 0, (A.28)

since all other components are projected out in the calculation of form factors.

Writing gµν = δµν + hµν , we then have

hµν = −γµν + γµαγαν +O(γ3) (A.29)

where

h = hµµ = γµνγµν +O(γ3), hµν,ν = γµα,νγαν +O(γ3). (A.30)

The Ricci curvature

Rµν = −1

2
∂2hµν −

1

2
h,µν + hα(µ,ν)α +

1

4
(hαβhαβ),µν − hαβŜβµν,α − ŜαβµŜβαν +O(γ3)

(A.31)

where

Ŝµνα = Γ(1)µ
να =

1

2
(hµν,α + hµα,ν − hνα,µ) (A.32)

and we have used the fact that to O(γ3) we can treat hµν as transverse traceless where it

appears quadratically. We thus have

R(1)
µν =

1

2
∂2γµν , (A.33)

R(2)
µν = −1

2
∂2(γµαγαν) + (γαβγα(µ),ν)β −

1

4
(γαβγαβ),µν − γαβSβµν,α − SαβµSβαν (A.34)

where

Sµνα =
1

2
(γµν,α + γµα,ν − γνα,µ). (A.35)

The scalar curvature

R(1) = 0, (A.36)

R(2) = −γµν∂2γµν −
5

4
γµν,αγµν,α +

1

2
γµν,αγµα,ν , (A.37)

while the Riemann curvature

R
(1)
µναβ = −2Sµν[α,β] (A.38)

R
(2)
µναβ = −2Sλν[αhµλ,β] + 2Sλν[βSµλα]. (A.39)

We can now evaluate the counterterms contributions for 〈Tµ1ν1Tµ2ν2O〉 with d = ∆3 = 4.

The first counterterm involves the Weyl tensor (as defined in exactly four dimensions),∫
ddx
√
gµ(u+v3)εφIW 2

4

=

∫
ddxµ(u+v3)εφI

[
γµν,αβγµν,αβ + γµα,νβγνβ,µα − 2γµα,νβγµν,αβ −

1

2
∂2γµν∂

2γµν

]
.

(A.40)
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Since R2 vanishes to quadratic order in γµν , we then have∫
ddx
√
gµ(u+v3)εφIE4 =

∫
ddxµ(u+v3)εφI

[
W 2

4 − 2R(1)
µνR

(1)
µν

]
=

∫
ddxµ(u+v3)εφI

[
W 2

4 −
1

2
∂2γµν∂

2γµν

]
. (A.41)

The counterterm action ∫
ddx
√
gµ(u+v3)εφI (aIE4 + cIW 2

4 ) (A.42)

then generates the counterterm contributions

Act I
1 = 8(aI + cI)µ(u+v3)ε, (A.43)

Act I
2 = −8(aI + cI)(p2

1 + p2
2 − p2

3)µ(u+v3)ε, (A.44)

Act I
3 =

[
4cIp2

1p
2
2 − 2(aI + cI)J2

]
µ(u+v3)ε. (A.45)

In fact, the finite piece of the Weyl-squared counterterm (A.40) generates a stress tensor

ambiguity of the form discussed in [4]. In four dimensions, to quadratic order in γµν we

have∫
d4x
√
gφIW 2

4 = 2

∫
d4xφIW

(1)
µναβW

(1)
µναβ

= 2

∫
d4xφIW

(1)
µναβ

[
R

(1)
µναβ − δµ[αR

(1)
β]ν + δν[αR

(1)
β]µ +

1

3
R(1)δµ[αδβ]ν

]
= 2

∫
d4xφIW

(1)
µναβR

(1)
µναβ

= −4

∫
d4xφIW

(1)
µναβγνα,µβ , (A.46)

where the last two lines follow from the symmetries and tracelessness of the Weyl tensor,

along with (A.38). To linear order in γµν , we then obtain a transverse-traceless contribution

to the stress tensor of the form

Tνα(x) = − 2
√
g

δS

δgνα(x)
= 8∂µ∂β

[
φIW

(1)
µναβ

]
. (A.47)

Finally, for completeness, let us consider the counterterm∫
ddx
√
gµ(u+v3)εR�φI =

∫
ddx
√
gµ(u+v3)εφI�R = 2

∫
ddx
√
gµ(u+v3)εRµν∇µ∇νφI ,

(A.48)

where the last relation follows from the contracted Bianchi identities. We find∫
ddx
√
gµ(u+v3)εR�φI

=

∫
ddxµ(u+v3)ε∂2φI

[
− γµν∂2γµν −

5

4
γµν,αγµν,α +

1

2
γµν,αγµα,ν

]
(A.49)
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leading to

Act I
2 = −4p2

3µ
(u+v3)ε, (A.50)

Act I
3 =

(
(p2

1 + p2
2)p2

3 − 5p4
3

)
µ(u+v3)ε. (A.51)

We will not use this counterterm, however, since it generates the mixed 2-point function

〈〈Tµν(p)OI(−p)〉〉ct = −2p4πµν(p). (A.52)

A.3 Shadow relations

The transverse-(traceless) parts of the correlators satisfy the following shadow relations,

where the scalar OI of dimension ∆ is replaced with its shadow ÕI of dimension ∆̃ = d−∆.

〈〈jµa(p1)ÕI2(p2)ÕI3(p3)〉〉 ∝ 〈〈jµa(p1)OI2(p2)OI3(p3)〉〉
〈〈OK2(p2)OK2(−p2)〉〉〈〈OK3(p3)OK3(−p3)〉〉

, (A.53)

〈〈tµ1ν1(p1)ÕI2(p2)ÕI3(p3)〉〉 ∝ 〈〈tµ1ν1(p1)OI2(p2)OI3(p3)〉〉
〈〈OK2(p2)OK2(−p2)〉〉〈〈OK3(p3)OK3(−p3)〉〉

, (A.54)

〈〈jµ1a1(p1)jµ2a2(p2)ÕI3(p3)〉〉 ∝ 〈〈j
µ1a1(p1)jµ2a2(p2)OI3(p3)〉〉
〈〈OK3(p3)OK3(−p3)〉〉

, (A.55)

〈〈tµ1ν1(p1)tµ2ν2(p2)ÕI3(p3)〉〉 ∝ 〈〈tµ1ν1(p1)tµ2ν2(p2)OI3(p3)〉〉
〈〈OK3(p3)OK3(−p3)〉〉

. (A.56)

These relations are valid for generic d and ∆, but not in cases where renormalisation is

required. (The shadow correlators have singularities of the opposite type, in which all ±
signs are reversed; this alters the renormalisation procedure as discussed in [11].) Moreover,

these relations do not always extend to the longitudinal parts of the correlators, as can be

seen from examining the corresponding transverse Ward identities (e.g., for (A.54)).

Their proof follows from the fact that the modified Bessel function is an even function

of its index. Since Kβ(x) = K−β(x), it follows that

Iα{β1,β2,β3} = p2β3
3 Iα{β1,β2,−β3} = p2β2

2 p2β3
3 Iα{β1,−β2,−β3}. (A.57)

The relations (A.53) and (A.54) then follow from our solutions (3.7) and (3.64), using

(2.49). For (A.55), we instead use equation (3.12) of [12] to rewrite the form factors for

〈〈jµ1a1jµ2a2OI〉〉 , given in (3.98) - (3.99) and (3.101), as

Aa1a2I
1 = Ca1a2I

1 J2{000}, (A.58)

Aa1a2I
2 = Ca1a2I

1 p∆3
3

[1

2
(∆3 − 2)(∆̃3 − 2)−

(
2 + p3

∂

∂p3

)](
p−∆3

3 J0{000}

)
, (A.59)

where ∆̃3 = d−∆3. Since

p−∆3
3 JN{000} = p−∆3

3 I d
2
−1+N{ d

2
−1, d

2
−1,∆3− d2 }

= p−∆̃3
3 I d

2
−1+N{ d

2
−1, d

2
−1,∆̃3− d2 }

= p−∆̃3
3 JN{000̃}, (A.60)
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it is then straightforward to see that

p−∆̃3
3 Ãa1a2I

j = p−∆3
3 Aa1a2I

j , j = 1, 2, (A.61)

where the tilded form factors are those of the shadow correlator 〈〈jµ1a1jµ2a2ÕI〉〉. The

relation (A.55) immediately follows.

The proof of (A.56) is analogous, and follows by writing the form factors (3.156) -

(3.158) for 〈〈tµ1ν1tµ2ν2OI〉〉, with (3.161) - (3.162), in the form

AI1 = CI1J0{000}, (A.62)

AI2 = CI1p
∆3
3

[
(∆3 − 2)(∆̃3 − 2)− 4

(
2 + p3

∂

∂p3

)](
p−∆3

3 J2{000}

)
, (A.63)

AI3 = CI1p
−∆3
3

[
(∆3 − 2)(∆̃3 − 2)

(∆3∆̃3

4
− p3

∂

∂p3

)
+ 2
(

2 + p3
∂

∂p3

)
p3

∂

∂p3

](
p−∆3

3 J0{000}

)
. (A.64)
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